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Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and
posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is
discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered
immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following
challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to
establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of
processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided
insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological
processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection,
significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense
response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with
pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI
response and active transcriptional suppression at specific promoter configurations by P. syringae.

INTRODUCTION

Currently the primary methods of disease control against crop
pathogens are agrochemical sprays or the deployment of clas-
sical plant disease resistance (R) genes using marker-assisted

breeding. However, pathogens rapidly overcomemostR genes in
the field and regulatory changes and a lack of new chemistries
have led to a shortage of effective agrochemicals. Therefore,
innovative methods need to be developed to provide alternative
strategies for crop health (Dangl et al., 2013). One possibility is to
reengineer existing plant defense networks (Grant et al., 2013). A
prerequisite to such an approach is comprehensive knowledge of
core transcriptional networks recruited during defense and the
molecular strategy pathogens deploy to overcome plant innate
immunity. A first step toward attaining this knowledge is ensuring
a fundamental understanding of how plant-pathogen interactions
are propagated at the transcriptional level.
Plants have evolved a robust innate immune system that pro-

vides broad-spectrum protection against a variety of pathogens
with wide-ranging lifestyles (Jones and Dangl, 2006). Effective
plant immunity requires the efficient perception of potentially
pathogenic microbial-associatedmolecular patterns (MAMPs) by
a range of host-encoded extracellular pattern recognition re-
ceptors (PRRs) (Belkhadir et al., 2014; Böhm et al., 2014; Macho
andZipfel, 2014; Zipfel, 2014). Thesestimuli are translated into the
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rapid transcriptional activation of a network of MAMP-triggered
immunity (MTI) responses (BuscaillandRivas,2014).Thisgerm-line-
encoded MTI provides robust defense against a diverse variety of
pathogens and offers biotechnological potential to improve re-
sistance in elite crop varieties. Over the past decade, significant
progress has been made in identifying MAMP receptors and their
cognate ligands from a range of phytopathogens, including the
archetypalPRRs, the leucine-richrepeat-containingreceptorkinase
FLAGELLIN SENSING2 that recognizes bacterial flagellin (Gómez-
Gómez and Boller, 2000), and the LYSM domain-containing PRR
that recognizes fungal cell wall chitin (Wan et al., 2008). Combined
biochemicalandgeneticstudiesarebeginningtouncoveradditional
components of these PRR complexes and provide insight into how
these receptors are activated and recycled (Göhre et al., 2008;
Greeff et al., 2012; XinandHe,2013;MachoandZipfel, 2014;Zipfel,
2014). However, a detailed, highly resolved temporal analysis of
the transcriptional responses underpinning MTI and a mechanistic
understanding of how these activated networks confer resistance
to nonadapted pathogens is lacking.

Superimposed on PRR activation of MTI is the capacity of
pathogens toproduceeffectors, comprisingboth smallmolecules
and proteins. Effectors are usually delivered into the host cell
where they target one or more susceptibility factors to attenuate
both MTI and effector-triggered immunity (ETI) and reconfigure
host metabolism to provide pathogen nutrition (Cui et al., 2010,
2015;FengandZhou,2012;MachoandZipfel, 2015).Effectorsact
at a number of levels in theMTI signaling cascade to attenuate this
defense response (leading to effector-triggered susceptibility
[ETS]), including at the PRR interface, or targeting the Golgi,
chloroplast, mitochondria, or the nucleus (Macho and Zipfel,
2015). Underpinning successful effector-driven disease de-
velopment is anetworkof complex transcriptional reprogramming
events. These early responses collectively overcome MTI and
promote pathogen growth. Central to ETS is the pathogen-driven
modulation of the host hormonal balance, the extent anddirection
of which appears to be linked to the pathogen’s lifestyle (Robert-
Seilaniantz et al., 2011; Pieterse et al., 2012; Kazan and Lyons,
2014). These hormonal perturbations,manifested at both the level
of biosynthesis and signaling, are under strong transcriptional
control.

Recent comparative genomic sequencing efforts have
revealed both reduced and highly plastic pathogen genomes
and facilitated the identification of an expanding catalog of
predicted candidate effector proteins, many of which appear
to be pathogen lifestyle specific (Win et al., 2012). With the
exception of some conserved pattern motifs, the effector
proteins reveal little about their role in pathogen virulence
strategies, reflecting the emerging paradigm that they function
cooperatively and redundantly, often targeting multiple host
components and pathways to successfully promote disease
(Lee et al., 2008; Lindeberg et al., 2012; Xin and He, 2013;
Macho and Zipfel, 2014). Successful pathogenesis requires
suppression of host defense and nutrient acquisition. How this
is achieved largely remains enigmatic, including knowledge of
the sequence of events necessary to orchestrate disease
progression. What is clear is that genetic studies have re-
vealed the existence of many core plant defense components
that confer enhanced susceptibility across a broad spectrum

of pathogens, suggesting that despite deploying disparate
effectors, pathogen virulence strategies converge on con-
served regulatory hubs (Glazebrook, 2005; Kazan and Lyons,
2014).
Transcriptional reprogramming underpins plant disease and

defense strategies. MTI, ETS, or ETI networks are all dependent
upon transcriptional activation and regulation (Buscaill and Rivas,
2014). Effectors may act posttranslationally to modify compo-
nents of a signaling network, for example, by acetylation, or act
directly as transcriptional repressorsor activators (Leeet al., 2008;
Macho and Zipfel, 2014). Thus, understanding the transcriptional
dynamics associated with disease development affords the
possibility of developing precise approaches to intercept path-
ogen virulence strategies and rewire host defense responses
(Grant et al., 2013). Such approaches first require the capture and
interpretation of expression profiles derived from high-resolution
sampling of leaves responding to virulent pathogens. To gain an
overview of the transcriptional phases of disease development, it
is necessary to understand how the expression signature of
transcription factors drives or represses expression of down-
stream network components.
Recently, significant progress has been made toward de-

velopingalgorithms tomathematicallymodel high-resolutionRNA
expression data sets. However, analysis of gene expression
arising from interactions between two biological organisms is
challenging, and inherent restrictions include insufficient and/or
inappropriate time points to provide robust expression profiles for
individual genes and to infer statistically significant changes in
expression signatures over the infection time frame. An ideal
pathosystem will allow confluent and synchronous infection to
prevent excessive dilution of signal with uninfected or asyn-
chronous cellular responses. It would provide data to discriminate
between transcriptional networks associated with MTI and ETS,
providing currently lacking insight into the role of effectors and/or
the host response to effector perturbationof innate immunity tobe
captured (Kazan and Lyons, 2014).
The Arabidopsis thaliana-Pseudomonas syringae pv tomato

DC3000 (DC3000)pathosystem is ideally suited todissectingboth
MTI and ETS processes at the transcriptional level (Xin and He,
2013). DC3000 is highly virulent on Arabidopsis. DC3000 directly
delivers 28 effector proteins (Cunnac et al., 2009) into the host cell
through the type III secretion system (T3SS) as well as small
molecules such as the phytotoxin coronatine (Bender et al., 1998).
These virulence factors collectively suppress MTI and enhance
nutrient availability, therefore enabling bacterial multiplication. A
key structural component of the T3SS pilus is the HrpA protein
(Roine et al., 1997). DC3000hrpA- mutants activate MTI but
cannot form a T3SS to deliver the suite of effectors required to
suppress MTI. They also produce minimal amounts of coronatine
(de Torres Zabala et al., 2009). Thus, DC3000hrpA- infection
triggers MTI in the host. Detailed comparisons between mock,
DC3000hrpA-, and DC3000 treatments capture gene expression
associated with MTI, effector-mediated suppression of MTI, and
subsequent transcriptional changes associated with metabolic
reconfigurations that favor pathogennutrition, e.g., deploymentof
SWEET transporters (Chen et al., 2010, 2012).
To date, a small number of studies have captured single or

limited time points of foliar infections with P. syringae (Thilmony
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et al., 2006; Truman et al., 2006). These lack temporal context,
do not adequately discriminate MTI responses from effector-
mediated transcriptional reprogramming, and lack corroborating
data to link suppressionof defensewithpathogenproliferation. An
mRNA-seq study of virulent and avirulent challenges did not
capture MTI, and the three combined time points and complexity
of thedata limited theability to interpret phase transitions and/or
to temporally pinpoint and monitor key processes (Howard
et al., 2013). In this study, we generate and analyze high-
temporal resolution (13 time points) microarray data reporting
MTI induced by DC3000hrpA- treatment and ETS caused by
virulent DC3000 challenge. Inclusion of mock-treated leaves
allowed the capture of both gene expression dynamics of MTI
induced by DC3000hrpA- and how those expression profiles
were modulated by DC3000. We provide a timeline for how the
host deploys its defense transcriptome and howcomponents of
this may bemodulated by effectors. We define sets of promoter
elements that potentially drive these changes and using dif-
ferent mathematical approaches define coregulatory and net-
work models that predict key regulators of plant defense and
potential targets of effector manipulation.

RESULTS

Transcriptional Dynamics of MTI and ETS Revealed from
a Large-Scale, Highly Resolved Time Series
Expression Study

To design a high-resolution expression experiment, we used
previous transcriptomic (de Torres Zabala et al., 2009), proteomic
(Jones et al., 2006a, 2006b), andmetabolomics (Ward et al., 2010)
studies to inform sampling times. We additionally constructed a
FLAGELLIN INDUCED RECEPTOR KINASE1 (FRK1; At2g19190)
promoter luciferase fusion to ensure the earliest stages of ETS
werecaptured (seeMethods).Weusedhigh inoculum (OD6000.15;
;0.753108colony-formingunits [cfu]mL21) syringe infiltrationof
a single fully expanded leaf per plant. Figure 1A illustrates that
DC3000 but not DC3000hrpA- challenge suppressed FRK1:lu-
ciferase reporter expression between 3 and 6 h postinfiltration
(hpi). As effector delivery in this system does not occur until ;90
min postinfection (Grant et al., 2000), following an initial 0 hpi
sample, we then sampled at 2 hpi and subsequently at 3, 4, 6, 7, 8,
10, 11, 12, 14,16, and 17.5 hpi. For each treatment (mock in-
oculation, DC3000 infection, and DC3000hrpA- infection), leaf 8
from four 34-d-old Col-4 rosettes was sampled, providing four
biological replicates per time point, per treatment. In addition, four
technical replicates were conducted per biological replicate, in-
cluding a dye swap. In total, the experiment used 312 two-color
microarrays (i.e., two samples hybridized to each array) with 624
samplesconsistingof 13 timepoints33 treatments34biological
replicates 3 4 technical replicates. RNA was prepared and hy-
bridized to CATMA spottedmicroarrays (Allemeersch et al., 2005)
using a randomized loop array design (Supplemental Figure 1) to
maximize the comparative power of the experiment. Data were
extracted and normalized as previously reported (Breeze et al.,
2011) to generate a single expression value for each gene in each
biological replicate at each time point in each of the three

treatments. The expression profiles for each individual probe on
theCATMAarraycanbeviewedusingaWebtool (under the “Data”
section at http://go.warwick.ac.uk/presta). This plots the ex-
pression profiles at all time points for the infected (DC3000 and
DC3000hrpA-) and mock-inoculated leaves. Variation in ex-
pression is shown as a bar representing one SE.
To first provide a global overview of transcriptional dynamics

across the time course, we used scatterplots to represent com-
monalities and differences in gene expression between DC3000
(ETS) and DC3000hrpA- (MTI) challenges relative to the mock
control based on a pairwise comparison of all genes at each time
point. Significantly differentially expressedgenes (DEGs)between
pairs of treatments at each time point were determined with the
Bioconductor package LIMMA (Smyth et al., 2005) using the
Benjamini-Hochberg false discovery rate (FDR) correction and aP
value cutoff of 0.05 (Supplemental Data Set 1). Scatterplots are
used in Figure 1B to illustrate the dynamics of DEGs between
DC3000 and DC3000hrpA- challenges relative to mock. In these
plots the y axis indicates log2 fold change between DC3000 in-
fection and mock, while the x axis indicates log2 fold change
between DC3000hrpA- and mock. Individual DEGs are then
coloredbasedon their expressionpatterns in the three treatments.
Green represents DEGs changing in the same direction in both
DC3000 and DC3000hrpA- challenges compared with mock
(MgCl2) inoculation. Therefore, genes categorized as green rep-
resentMAMP response genes similarly differentially expressedby
both DC3000 or DC3000hrpA- challenge. Red represents genes
differentially expressedbetweenDC3000andmockchallengebut
not between DC3000hrpA- andmock challenge (these lie roughly
along the line x = 0, hence no fold change in response to
DC3000hrpA- infection compared with mock). Thus, red repre-
sents DEGs actively influenced by effectors (induction or re-
pression). Conversely, blue represents MAMP-responsive genes
whose expression is attenuated by DC3000 (i.e., these genes
exhibit little fold change between DC3000 infection and mock). In
summary, the DEGs observed between treatments are repre-
sented as such: red, effector-driven changes; blue, MAMP re-
sponses suppressed by effectors; green, persistent MAMP
responses.
Our pairwise differential expression analysis also identified

genes that were differentially expressed between DC3000
and DC30000hrpA-, in addition to DC3000 versus mock and
DC3000hrpA- versus mock. In Figure 1, violet genes are differ-
entially expressed between all three treatments with the same
direction of expression change in both pathogen infections
compared with mock. These appear late in the time course.
As expected, at 2 hpi, the majority of DEGs are MAMP re-

sponsive.Greenand reddominate. Thesignificant redcomponent
suggests that effectors are just beginning to have an impact
becauseat this timepoint therearenoDEGsbetweenDC3000and
DC3000hrpA-.Without furtherexperimentation it isnotpossible to
determine whether these transcriptional changes are part of the
pathogen virulence strategy or are the result of a weak initial ETI
response. A rapid, but transient, change between 2 and 3 hpi
captures the first significant effector-driven transcriptional dif-
ferencesbetweenDC3000andDC3000hrpA-challenges.At3hpi,
the impactof effectorswasstriking, despite theamplitudeof these
responses being relatively small. The strong blue signal indicates
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DEGs in DC3000hrpA- but not DC3000, signifying an initial
transcriptional suppression of MTI by effectors resulting in re-
alignment of gene profiles in DC3000-infected leaves back to the
mock signature. By4hpi theprofile changes again,with persistent
MAMP- (green) and DC3000-driven changes (red, corresponding
to ETS or weak ETI) dominant and with an obvious increase in

amplitude. From4 to 6 hpi anothermajor change inMTI andETS is
evident, illustrated by the strong blue and red profiles, re-
spectively, and by appearance of a violet signal. This pattern
subsequently consolidates and is characterized by an increasing
number of DEGs over time with a diminishing blue signal and
the emergence of a strong violet signal. Notably, persistent

Figure 1. Dynamics of Differentially Expressed Genes during MTI and Disease Development.

(A) Infection dynamics reveal suppression of MAMP-triggered defense responses by DC3000 using a reporter line expressing FRK1 (At2g19190) fused to
luciferase. Rapid suppression of FRK1 expression is evident between 3 and 6 hpi following DC3000 challenge, whereas FRK1 expression decreasesmore
slowly in the DC3000hrpA-challenged leaf.
(B) Dynamics of expression in Arabidopsis leaves after challenge with either DC3000 or the DC3000hrpA- mutant, representing disease and defense
responses respectively. Gene expression is represented graphically at each time point by a scatterplot. The y axis indicates log2 fold change between
DC3000 infectionandmock,while the xaxis indicates log2 foldchangebetweenDC3000hrpA-andmock. In theseplots, green representsDEGschanging in
the samedirection inboth virulentDC3000andmutantDC3000hrpA- challenges comparedwithmock (MgCl2) inoculation. Therefore, genescategorizedas
green represent MAMP response genes not modified by effectors. Red represents DEGs between DC3000 and mock challenge but not between
DC3000hrpA- andmock challenge. Thus, red represents genes actively influenced (induced or repressed) by effectors relative to mock and DC3000hrpA-
infection. Conversely, blue representsMAMP-responsive geneswhose response is attenuated by effectors. In summary, for DEGs in one treatment relative
to mock, red represents effector-driven changes relative to DC3000hrpA- treatment compared with mock; blue represents MAMP responses modified by
effectors; green representspersistentMAMP responses. Violet indicatesDEGsbetweenall three treatments, and theseappear late in the timecourse.Gene
expressionanalysiswasperformedusing theLIMMApackage inBioconductorusingaPvaluecutoffof 0.05andFDRappliedusing theBenjamini-Hochberg
method.
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MAMP-responsive expression (green) remains a major compo-
nent across the time course. This reflects a continued role for
activated PRRs in a sustained host-defensive response and
indicates that effectors only modulate a subset of MAMP-
responsive genes.

The Majority of Transcriptional Changes Are Initiated by 6
hpi

To take full advantage of the temporal nature of our data sets and
to ensurewecaptured thebreadth of the transcriptional response,
DEGs were found using three techniques specifically adapted to
time series data (Supplemental Figure 2 and Supplemental Data
Set 2): a locally adapted Gaussian Process two-sample test
modeling time series (GP2S; Stegle et al., 2010) that calculates
differential expression based on a Bayes factor calculated be-
tween two models, one that assumes that the microarray time
series in both conditions are samples drawn from an identical
shared distribution and an alternative model that describes the
time series in both conditions as samples from two independent
distributions; Bayesian Analysis of Time Series data (Angelini
et al., 2008),which uses the ratios of the expression in the different
time series treatments to calculate the Bayes factor, indicating
whether a gene is differentially expressed and fits a function to this
expression-ratio time series; and Microarray Analysis of Variance
(MAANOVA;Wuetal., 2003),whichcanbeapplied to thestatistical
analysis of gene expression data from two-color cDNA micro-
arrays with sophisticated experimental design. These three
methods can identify different sets of DEGs, and all have ad-
vantages and different weaknesses. For example, we are confi-
dent in the genes identified by GP2S from our previous work
(Breeze et al., 2011; Windram et al., 2012). However, due to the
process-fitting algorithm, the GP2S algorithm is not ideally suited
to capture genes that change rapidly in expression as seen in the
rapid transitions early in the infection process (Figure 1B). As no
method resulted in enriched false positives within the Venn areas
in Supplemental Figure 2, we therefore took the union of DEGs
predicted by these three methods to allow us to increase the
scope of our differential expression analysis. To find the time at
which expression of these DEGs first diverges between treat-
ments, we applied the Gaussian process gradient tool (Breeze
et al., 2011). Figure 2 shows the time at which the gradient sig-
nificantly deviates from zero for the log expression ratios, i.e., the
point at which the gradient of the expression ratio significantly
increases (upregulation) or decreases (downregulation) from zero
for mock-subtracted DC3000hrpA- expression (Figure 2A; MTI
responses), mock-subtracted DC3000 expression (Figure 2B), or
effector-driven differences in DC3000hrpA- subtracted DC3000
expression (Figure 2C). Note that Figure 2 is labeled with the time
at which the gradient starts to change. As many of the tran-
scriptional changes captured in the data set are rapidMTI-related
responses, the expression of a significant proportion of genes has
already clearly differentiated between treatments by 2 hpi;
therefore, the gradient appears to be changing from 0 hpi.
Comparison of both DC3000 and DC3000hrpA- challenges with
mock shows that the majority of genes exhibit first differential
expression within 6 hpi, with a notable peak evident 2 hpi, con-
sistent with a strong MTI response. Comparing the time of

expression divergence (gradient change) across treatment
comparisons, more DEGs were detected during infection with
DC3000 (as inferred from Figure 1), but overall both challenges
have similar temporal profiles. The impact of effectors increases
from 2hpi (Figure 2C), with a strong peak in differential expression
at 6 hpi, before declining. Between 7 and 10 hpi, very few new
genes exhibit divergent expression in the two treatments for the
first time and virtually none after 10 h. These data illustrate that the
majority of the transcriptional response toMTI and ETS is initiated
within the first 6 hpi. These signatures are subsequently modified
in amplitude and direction or sustained in response to further
effector activities during succeeding time points as captured in
Figure 1.

Early Effector Activity Leads to Major Transcriptional
Changes Prior to Increased Bacterial Growth

Using the time series DEGs, we next mapped the temporal
structure of MTI- and effector-induced gene expression (Figure 2)
on to the respective pathogen growth curves and used Gene
Ontology (GO) selection (Ashburner et al., 2000) to capture ex-
isting knowledge of processes modulated by these contrasting
challenges. GO selection was based on minimizing repetitive
terms and maximizing informative terms (e.g., phytoalexin bio-
synthesis rather thancellularmetabolism). Figure3A illustrates the
temporal changes in biological process ontologies (determined
using BiNGO; Maere et al., 2005) enriched in genes differentially
expressed during MTI (DC3000hrpA- versus mock challenge)
mapped onto bar charts depicting DC3000hrpA- growth under
identical inoculation conditions used for the microarray experi-
ments. Figure 3B captures effector-modified gene expression
(DC3000hrpA- versus virulent DC3000) mapped on to multipli-
cationof thehrpmutantandvirulentDC3000, samplingat0,4, 6,7,
8, 9, 10, 12, and 21 hpi. Growth curves are annotated with
overrepresented gene ontologies of up- (red) or downregulated
(blue) genes separated by the time at which the gradients first
diverge between treatments. Bacterial growth curves show that
DC3000 does not grow significantly until 8 hpi, whereas
DC3000hrpA-hardlymultiplies during the time course (Figure 3B).
Thus, themajority of the transcriptional responses toMTI andETS
seen in Figure 2 occur prior to multiplication of DC3000. Notably,
a reproducible dip in bacterial growth shortly after infiltration can
beseen inbothDC3000andDC3000hrpA-growthcurves andhas
previouslybeen reported (Mitchell et al., 2015).However, thedip in
DC3000 growth appears to bemore pronounced, suggesting that
the delivery of effectors may initially be detrimental to DC3000
growth, perhaps suggesting a weak but ultimately unsuccessful
ETI response within the host. To corroborate the bacterial growth
dynamics, confocal images of YFP-expressing DC3000 (;7.5 3
108 cfu/mL) within Arabidopsis leaves captured 4, 8, and 22 hpi
show the very limited growth of DC3000 at 8 hpi (Figure 3C).
As expected, the early biological process GOs induced by

DC3000hrpA- challenge represented defense responses. These
could be further refined into respiratory burst, phosphorylation,
posttranslational modification, and salicylic acid (SA) synthesis,
consistent with our emerging knowledge of howMAMP receptors
respond to their cognate ligands (Kadota et al., 2014; Macho
and Zipfel, 2014; Zipfel, 2014). A short time later, at 4 hpi and
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somewhat counterintuitively given the role of jasmonic acid (JA) in
suppression of SA signaling, both JA synthesis and response to
oxidative stress are overrepresented. As we compared syringe-
infiltrated MgCl2 as the mock control, the JA response that oc-
curred inDC3000hrpA- challengedbut notmock-treated leaves is

unlikely to have arisen from the wound response due to the in-
oculation technique. Interestingly, by 7 hpi, the most dominant
ontology is ubiquitin-dependent protein metabolism, a process
intimately linked to removal of key regulatory modules (Dudler,
2013). By contrast, a striking enrichment of GO terms associated
with plastid-targeted genes, in particular photosynthesis-related
processes, account for the earliest suppressed processes, oc-
curring within 2 hpi. This appears to be a dynamic process, as
additional plastid-related genes continue to be suppressed at 6
hpi. Changes in nuclear-encoded plastid genes have been re-
ported previously in various host-pathogen responses (Bonfig
et al., 2006; Truman et al., 2006; Zheng et al., 2012), but these
studies have not captured the striking rapidity of this response nor
clear attribution to MTI. By 7 hpi, components of fatty acid me-
tabolismandcuticledevelopment (implicatingsynthesisofwaxes)
are suppressed. Subsequent to 8 hpi, few other processes are
induced, perhaps indicative of the quelling of the energy de-
manding MTI response in the absence of perceived effector
modulation. Selected GO terms enriched in DEGs between
DC3000 and mock-infiltrated leaves are shown in Supplemental
Figure 3, and the full lists of significant GO terms for all treatment
comparisons are given in Supplemental Data Set 3.
Analysis of genes that diverge between DC3000 and

DC3000hrpA- enables the impact of ETS to be captured and
examined in further detail and in isolation from persistent MTI
expression. Notably, ontologies capturing an early induction in
host response toabscisicacid (ABA)between4and6hpi reinforce
the importance of this hormone in suppressing early MAMP re-
sponses and promoting susceptibility (de Torres Zabala et al.,
2009). Also of note is the coordinated induction of negative
regulators of signaling at 4 hpi. Negative regulation is proposed to
be a key mechanism in reconfiguring host transcriptional re-
sponses to virulent pathogens (Kazan, 2006). This is paralleled by
overrepresentedontologies for transcription factor (TF) import into
the nucleus at 6 hpi and autophagy at 7 hpi. Photosynthetic
processes, which initially occur as part of MTI in both treatments
relative to mock, represents the most dominant effector-sup-
pressed ontology. Suppression of photosynthetic processes is
maintained throughout the time course in DC3000-infected
leaves, whereas recovery of expression can be seen in
DC3000hrpA-by 17.5 hpi. In addition, chromatin assembly (4 hpi),
histoneassembly (7hpi), andglucosinolatebiosynthesis (8hpi) are
the most notable ontologies among the suppressed genes,
suggesting restriction of secondary metabolism and global re-
configuration of the transcriptome architecture. The most striking
feature of the effector-induced host transcriptional reprogram-
ming is that the majority occurs remarkably rapidly, well before
significant bacterial multiplication (Figure 3B).
Although we used four single leaf replicates and two technical

replicates per treatment per timepoint, this is a single time course.
To validate our data, we compared theDEGs from this experiment
with DEGs from corresponding time points and treatments
identified by Truman et al. (2006) in a study run under very similar
conditionsatdifferent locations (SupplementalTable1).Strikingly,
we saw highly significant concordance between these two
studies, with a Spearman correlation ranging between 0.76 and
0.90, indicating a remarkable degree of reproducibility between
these two experiments and supporting the integrity of these data.

Figure 2. Time at Which Gradients of DEGs Begin to Significantly Differ
between Treatments.

The histograms show the times at which the gradient profile of log ex-
pression ratios ofDEGsbetween treatment pairs first diverges fromzero as
determined by the gradient tool (Breeze et al., 2011). Threshold for up/
downregulation is three standard deviations of the gradient being signif-
icantly non-zero (Pnon-zero < 0.05).
(A) Mock-subtracted expression during DC3000hrpA- infection.
(B) Mock-subtracted expression during DC3000 infection.
(C) DC3000hrpA-subtracted expression during DC3000 infection.
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Figure 3. Growth Curves of DC3000 and DC3000hrpA-, with Selected GO Terms Enriched by Genes Changing Expression at Indicated Time Points.
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Detailed Analysis of Gene Expression Patterns during MTI
and ETS

To tease apart the complexity of these responses and identify
the groups of genes showing MTI- and effector-responsive
expression, we looked at how DEGs (Supplemental Figure 2)
overlap between pairwise comparisons of the three treatments
(Supplemental Figure 4 and Supplemental Data Set 4). Each
area of the Venn diagram is labeled according to the tran-
scriptional response output it represents. The DEGs in two or
more pairwise comparisons (i.e., sections D, E, F, and G in
Supplemental Figure 4) were further subdivided into those up-
anddownregulated and are illustrated by representative profiles
in Figure 4. These genes represent four broad response sub-
categories.CategoryD is definedasMTI responsive; these3880
genes behave similarly in both bacterial treatments relative to
mock-inoculated leaves. The ontologies representing trans-
port, ubiquitination, response to bacterium, phosphorylation,
response to JA, and phytoalexin biosynthesis are enriched in
induced genes in Category D, whereas suppressed genes are
enriched in protein import and photosynthesis-related com-
ponents. The large number of genes within this category repre-
sent core MTI response components not modulated by effectors
(green in the pairwise comparison in Figure 1) and serve to high-
light (1) the scale of the transcriptional reprogramming and (2)
that a successful infection does not require wholesale, but rather
selective, suppression of immunity-induced gene expression
changes.

Category E contains 525 genes that are responsive to MTI
during DC3000hrpA- infection, but that are suppressed (by either
up- or downregulation) and return to mock expression levels by
effector activity during DC3000 infection. Effector-suppressed
Category E genes are enriched in ontologies capturing phos-
phorylation, calcium signaling, response to stress, glucosinolate
catabolism, cell death, and defense responses. Notably, effector-
inducedontologies inCategoryEcapture inductionof JAandABA
response genes.

A more detailed examination of Category E genes reveal
several that encode known regulators of the defense response:
the EF-Tu receptor (EFR), TGA3,WRKY53, RBOHD, PEN2, and
PEN3. EFR specifically recognizes bacterial elongation factor,
activates plant defense responses, and exists in a complexwith
RBOHD, responsible for the generation of reactive oxygen
species during plant defense (Kadota et al., 2014). PEN2 and
PEN3 are essential components of cell wall defense linked to
metabolismand transport of secondarymetabolites (Clay et al.,
2009). TGA3 and WRKY53 encode TFs playing critical roles in
defense against DC3000 (Kesarwani et al., 2007; Murray et al.,

2007). Although it is clearly posttranscriptional events that
determine the ultimate activity of these proteins, the sup-
pression of their transcripts by virulent DC3000 suggests
this plays a significant contribution as an effective virulence
strategy.
The presence of six genes encoding putative R proteins within

thisgroupofsuppresseddefensegenes isparticularly striking,five
ofwhichencode theTIRclassofRprotein (TIR-NBS-LRR) andone
encoding the coiled coil type (CC-NBS-LRR). R proteins are
a crucial component of ETI, and suppression of these six putative
R proteins byDC3000 effectors suggests that theymay play a key
role in the plant defense response. Indeed, two of these putativeR
proteins (AT1G12290 and AT4G09420) are able to interact with
and potentially “guard” Arabidopsis proteins that themselves can
interact with P. syringae effectors (Mukhtar et al., 2011). One
hypothesis would therefore be that these R proteins are detecting
the activity of pathogen effectors (via the intermediate interacting
proteins); hence, effector-mediated transcriptional repression of
these R proteins could help to dampen ETI. To our knowledge,
recessive avr genes, i.e., pathogenic effectors that prevent
the recognition of other effectors, have yet to be identified in
P. syringae pv tomato, although such genes have been found in
fungal and other bacterial plant pathogens (Iyer-Pascuzzi and
McCouch, 2007).
Another hypothesis emerging from the analysis of DC3000-

suppressed genes involves protein disulfide isomerase (PDI)
activity. Four PDI genes (PDI1, 2, 5, and 6) are upregulated during
MTI and suppressed by the virulent pathogen, presumably being
indirect targets of one or more effectors. These PDI proteins are
localized to theendoplasmic reticulumwithat leastone,PDI6,also
being targeted to chloroplasts (Yuen et al., 2013;Wittenberg et al.,
2014). Knockout mutants of PDI6 show reduced photoinhibition
due to enhanced repair of photosystems (Garcia et al., 2008;
Wittenberg et al., 2014). Hence, preventing induction of PDI6may
represent a strategy designed to maintain energy and nutrient
supplies.
The signatures of the 2325 genes in Category F represent those

uniquely responsive to DC3000 challenge. Their expression
profiles are similar in DC3000hrpA- and mock-inoculated leaves,
indicating that they are not components of MTI but that they
represent specific effector-responsive transcriptional re-
programming. Without additional experimentation, it is not pos-
sible to determine whether these are transcribed as part of the
pathogen virulence strategy or representative of a host response
to effector activities. These genes may be involved in a host
secondary defense response, may be responding to bacterial
proliferation, or may be susceptibility targets of effectors that
facilitate the infection process.

Figure 3. (continued).

Bacterial growth in log10(CFU/unit leaf area) of disarmed DC3000hrpA- (A) and virulent DC3000 (B) following syringe challenge of bacteria at 108 cells/mL.
Asterisk represents significance growth differences between treatments as determined by Students t test (P < 0.5, n = 5; means6 SD). Growth curves are
annotated with overrepresented gene ontologies of up- (red) or downregulated (blue) genes separated by the time at which the gradients of DEG profiles
begin to deviate (Figure 2). Ontologies of DEGs between DC3000hrpA- to MgCl2 treatments (A); ontologies of DEGs between DC3000 and DC3000hrpA-
challenges (B). GO enrichmentwas determined usingBiNGO (Maere et al., 2005). Growth of YFP-expressingDC3000within Arabidopsis leaves at 4, 8, and
22 hpi corroborates growth curve data (C).
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Figure 4. Response Categories of DEGs Capturing Different MTI and ETS Profiles.
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As expected, Category F encompasses a diverse range of
genes reflecting the necessarily broad range of processes tar-
geted by effectors or induced by the host in an attempt tomitigate
the extent of effector activities. Ontologies enriched in these ef-
fector-induced genes include autophagy, response to JA, regu-
lation of transcription, ubiquitination, and dephosphorylation,
whereas suppressed genes include ontologies associated with
chromatin assembly, phosphorylation, signaling, and defense
response.

The most striking gene class downregulated in Category F was
the family encoding receptor-like proteins (At-RLP). Arabidopsis
has 57 RLPs, 15 of which are downregulated;10 hpi in Category
F, consistent with effector-mediated attenuation of host defense
capability. Twoother notable features in this categorywere a large
number ofMYBdomain-encoding genes (30) and four out of six of
the ABA INSENSITIVE5 (ABI5) binding proteins that regulate ABA
signaling (Garcia et al., 2008), including NINJA, the negative
regulator of JA signaling (Pauwels et al., 2010).

Looking at biological processes, most notable were the strong
suppression of transcripts (Supplemental Data Set 5) associated
with chromatin reorganization (Figure 5A) and the induction of
components annotated as playing a role in ubiquitination (Figure
5B), particularly as both these processes play broadly comple-
mentary roles in controlling transcriptional networks (Dantuma
et al., 2006; Zhao et al., 2014).

To validate the expression profiles, we made promoter lucif-
erase fusionsbetween twogenes rapidly inducedbyeffectors and
tested their response to bacterial challenge by transient assay in
Nicotiana benthamiana. We chose a classical TIR-NBS-LRR
(At1g72940) and a RAB GTPase homolog C2B GTP binding
transcription factor (At3g09910). In contrast to the suppression of
Rgenes inCategoryEandRLPs inCategoryFabove, thestrikingly
rapid induction of At1g72940 in response to DC3000 but not
DC3000hrpA- challenge (Figure 5C) suggests activation of a host
defense response to effectors and reinforces the possibility of
active engagement of an early ETI response. At3g09910 showed
a similar DC3000-responsive profile in N. benthamiana transient
assays (Supplemental Figure 5), but consistent with the micro-
array data, the magnitude of response is significantly less than
that driven by the At1g72940 promoter (Figure 5D).

Finally, Category G contains 1927 DEGs that behave differently
acrossall three treatments.Broadly,CategoryG representsgenes
involved in the manipulation of defense. These genes can be
further classified as follows: 681 and 789 genes with a DC3000
profile that appears to be an amplification or suppression, re-
spectively, of the DC3000hrpA- response compared with mock
and most likely to represent a sustained host defense response
that serves to restrict pathogen multiplication; 306 and 47 genes
that have an intermediate expression profile in that they are
suppressed or induced, respectively, in DC3000-treated leaves
compared with DC3000hrpA- but do not realign to expression

levels in mock-infiltrated leaves, indicating a partial quelling of
MTI. A further 62 and 42 genes show opposing responses to
DC3000hrpA- or DC3000 compared with mock infection, re-
spectively. These subcategories serve to highlight the underlying
complexity of the transcriptional response.

Early Sustained Effector-Specific DEGs Are Predicted to
Modulate Perception of External Stimuli and
Chromatin Reorganization

We selected effector specific DEG profiles to probe processes
initially targeted by DC3000. We identified 140 potential ef-
fector-induced genes and 42 potential effector-repressed
genes using the criteria that the gene had a sustained (6 to 8 hpi)
differential expression profile between DC3000 versus mock
and between DC3000 versus DC3000hrpA-, but not between
mock versus DC3000hrpA- (Supplemental Data Set 6). These
genes are predicted to capture the initial host transcriptional
changesdrivenbyeffector delivery andnot inducedduringMTI.
Unexpectedly, not a singleGO termwas overrepresented in the
upregulated list (corrected P > 0.05). This is consistent with the
hypothesis that effectors target a broad range of host genes
and this interval captures early effector action before initial
effects propagate through the network to affect significant
numbers of genes in individual GO term categories. By con-
trast, in the suppressed genes set, we found highly significant
overrepresentation of the term “chromatin assembly” (cor-
rectedP<1.4e212)with histonesH1.2,GAMMA-H2AX,HTA13,
HTB2, HTB9, HTB11, H3, and H4 strongly suppressed fol-
lowing effector delivery. Two representative examples are
shown in Supplemental Figure 6. MEME analysis (Bailey et al.,
2006) revealed that promoter sequences of five of these eight
genes contained a paired Oct-TCA motif in close proximity to
the transcriptional start site. This motif, originally identified in
tobacco histone genes, has been shown to confer S phase-
specific transcriptional activation (Taoka et al., 1999). These
data suggest that effectors either directly bind to Oct-TCA
and neighboring motifs or recruit/maintain transcriptional re-
pressors on the promoters of these histones.
Additional inspection revealed suppression of 10 putative de-

fense-related receptor-like kinase encoding genes (encoding
three leucine-rich repeat receptor kinases, two cysteine-rich
RLKs, three RLKs, and two TIR-domain resistance gene homo-
logs), suggesting rapid ETS of these signaling modules. Our data
imply that an early virulence strategy restricts components of
chromatin assembly, which would have a global effect on nu-
cleosome packaging, providing enhanced access for transcrip-
tional regulators. Concomitantly, transcripts for putative defense
receptors/resistancegenesaresuppressed topotentially dampen
further host defense responses as seen for RLPs in Figure 4
Category F.

Figure 4. (continued).

Categories derived from the Venn diagram of DEGs (Supplemental Figure 4) showing direction of change. Numbers of genes falling into each category with
accompanyingexpressionplots (yaxis, log relativegeneexpression; xaxis, hpi; bars indicate SE) for a representative example are shown.GOenrichmentsof
each subcategory were established using BiNGO (Maere et al., 2005).

Temporal Transcriptome of Plant Defense 3047

http://www.plantcell.org/cgi/content/full/tpc.15.00471/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00471/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00471/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00471/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00471/DC1


Figure 5. Analysis of Effector-Specific DEG Profiles Reveals Dynamic Changes in Functionally Related Genes and Possible ETI Responses.

Heat maps were generated for chromatin and ubiquitin related genes identified as differentially regulated in Category F (Supplemental Figure 4 and
SupplementalDataSet5).Geneswerescaledonaper-genebasis andexpression represented inblue forgenes induced inDC3000hrpA- relative toDC3000
and yellow for genes that were significantly higher in DC3000 relative to DC3000hrpA-.
(A)Ubiquitin-associatedgenes differentially regulated inDC3000-challenged leaves. Annotatedgenes are color coded as follows: red =E2 ligases, green =
E3 ligases, and black = other related genes (COPs, SUMOs, etc.).
(B) Chromatin-associated genes were strongly suppressed in DC3000-challenged leaves. Annotated histone genes are color coded as follows: green =
H2A, yellow = H2B, blue = H3, red = H4, and black = H1 linker genes.
(C)Very rapid and strong induction of a gene encoding a predicted TIR plant disease resistance protein,At1g72940, suggests possible early ETI responses
to effectors.
(D) Dynamics of expression were validated using transient expression of an At1g72940 promoter luciferase reporter fusion in N. benthamiana.
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Investigation of Regulatory Elements Driving Establishment
of Defense or Disease

ConservedDNA sequences upstreamof transcriptional start sites
represent important regulatory regions of the promoter (Baxter
et al., 2012). The combinatorial arrangement of these motifs, the
natureof thecognateTF regulation, TFavailability, thepresenceof
posttranslational modifications, and competing transcriptional
repressors collectively determine gene expression. We extended
our targeted MEME analysis of early effector specific genes to all
expression patterns observed and all DEGs. We employed un-
supervised clustering (SplineCluster; Heard et al., 2006) of ex-
pression profiles within each treatment (Supplemental Data Set 7)
and then forall clustersanalyzedmotifoccurrences (Supplemental
Data Set 8). Clustering expression profiles over time lends
strength to the hypothesis that genes in a cluster are not only
coexpressed but also coregulated.

A total of 32 clusters across all treatment comparisons showed
statistically significant overrepresentation for at least one motif
(Figure6). Variation isobserved in termsofboth the rangeofmotifs
distributed over different comparisons and different clusters
within a comparison. Notably, where the same motif was linked
with more than one expression cluster these expression clusters
largely had similar temporal profiles, further validating genuine
links between motif occurrence and temporal profiles. For ex-
ample DC3000hrpA- clusters 48 and 49 are associated with the
same motifs, as are DC3000-DC3000hrpA- clusters 2, 3 and 4.

The motifs identified in the DC3000hrpA- comparison (Figure
6A) provide an insight into transcriptional regulation ofMTI. Genes
in clusters 5 and 18 are downregulated early following
DC3000hrpA- challenge and contain G-box motifs, whereas
clusters 42, 47, 48, and 49 contain W-box motifs and are
upregulated early in infection. This is consistent with the role of
WRKYs in the rapid gene activation early in the defense re-
sponse (Eulgem et al., 2000; Eulgem and Somssich, 2007).

In addition to these motifs, notable plant-specific motifs
uniquely overrepresented in DC3000hrpA- clusters include (1)
a specific W-box in cluster 47 involved in elicitor-induced acti-
vation of the tobacco chitinase gene, which is bound by Nt-
WRKYs 1, 2, and 4 (Yamamoto et al., 2004); (2) the A-box
(TACGTA),which isoverrepresented incluster26; (3) theAP3SV40
motif in cluster 24; (4) the Zfx box; and (5) BoxB in cluster 30.

A number of motifs were identified as strongly overrepresented
specifically in DC3000 expression clusters (Figure 6B). In clusters
showing suppression, these include (1) the DRE2 (drought-re-
sponsive element) core element, first described in the promoter of
ABA-inducible Rab17 (Busk and Pagès, 1998), (2) SWI5 (Badis
et al., 2008), and (3) an as-1-like motif found in the cucumber
hydroxypyruvate reductase A promoter, required for cytokinin
responsiveness (Jin et al., 1998). Cluster 15, characterized by
rapid early gene induction, showed overrepresentation of the
Telo-box (Axelos et al., 1989), a motif found in the 59 region of
numerous genes encoding components of the translational ap-
paratus. Gene clusters with a late induction profile were char-
acterized by overrepresentation of the ABASEEDmotif involved in
ABA regulation and seed expression (Busk and Pagès, 1998),
a specific variant of the TATA-box (cluster 4), or the PHO2 box
motif (cluster 2).

The DC3000-DC3000hrpA- comparison (Figure 6C) highlights
clusters that have combinatorial overrepresented motifs: WRKY
(Eulgemet al., 1999), tll (Noyeset al., 2008b), andexd (Noyeset al.,
2008a) motifs in cluster 11; and NF-Y (Mantovani, 1998) and two
histoneOCTAMER (Taoka et al., 1999)motifs in cluster 5 revealing
a set of motifs that appear to recruit TFs that are central to ETS.
Thus, both our targeted analysis of effector-suppressed genes
anduntargetedglobalmotif analysis suggest effectorsspecifically
target a subset of genes with OCT motifs. NF-Y motifs are mar-
ginally overrepresented in multiple clusters, and it is notable that
NF-Y TFs have been shown to recruit histone deacetylase to NF-
Y-containing motifs to inhibit promoter activity (Peng and Jah-
roudi, 2003), and NF-Y TFs are largely accepted as providing
a fundamental link between chromatin and transcription (Dolfini
et al., 2012).
DC3000 hrpA- clusters 42, 47, 48, and 49 that showa very rapid

(2 to 3 hpi) MTI response are enriched in WRKY (Eulgem et al.,
1999), tll (Noyes et al., 2008b), MBP1 (Pachkov et al., 2007), and
exd (Noyes et al., 2008a) motifs (Figure 6A). Notably, DC3000-
DC3000hrpA- clusters 2, 3, 4, and 11 are also enriched with these
motifs; they are early induced in both DC3000 and DC3000hrpA-
infections, but in DC3000 infection, the expression of genes with
these defense-related promotermotifs is later suppressed (Figure
6C).Bycontrast,ABRE (BuskandPagès,1998),MycN (Chenetal.,
2008), and G-box (Giuliano et al., 1988) motifs are highly over-
represented in DC3000-DC3000hrpA- clusters 22 and 42 (Figure
6C), comprising genes that are induced by effectors. Strikingly,
these motifs are significantly overrepresented in genes that are
suppressed early in the defense response to DC3000hrpA-
challenge, implying ETS deploys active transcriptional suppres-
sion at specific promoter configurations. In summary, we
demonstrate a degree of motif specificity and cooperativity in the
complex transcriptional regulatory networks recruited during MTI
and the modulation of innate immunity by effectors.

Multiple Time Series Coexpression Analysis Predicts
Specific Regulation of Pathogen-Responsive Genes

As explained above, coexpression of genes has regularly been
used as an indicator of coregulation, and coexpression
throughout a high-resolution time series as described here should
enhance the likelihood of identifying such coregulated genes. We
extended this analysis using Wigwams (Polanski et al., 2014) to
identify genes coexpressed across at least two of the three time
series treatments. Incontrast toSplineCluster,Wigwamsdoesnot
partition the genes into clusters but identifies modules of genes
showing statistically significant coexpression (i.e., not all genes in
the analysis will end up in a module). The statistical test in Wig-
wams discriminates between coexpression stemming from the
abundance of a particular expression profile and coexpression
indicative of coregulatory mechanisms acting in multiple time
series, which is of higher relevance to understanding the un-
derlying gene expression dynamics of the host response. In total,
309 modules (containing 6685 unique genes) were identified that
showed statistically significant coexpression in at least two time
series (Supplemental Data Set 9). These modules contain genes
that may not exhibit expression profile similarities between
treatments, but they have similar expression profiles to eachother
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within two or more treatments. For example, the module repre-
sented in Figure 7A includes genes that all share a pattern of
sustained upregulation in DC3000 and transient upregulation in
theother two timeserieswhich, by theWigwams test, is not amere

consequence of the abundance of such trajectories in the in-
dividual time series. In an attempt to identify regulatory events
positively or negatively modulating their transcription, modules
were evaluated for enrichment of known TF binding motifs in the

Figure 6. Revealing Links between TF Binding Motifs and Temporal Expression Patterns.

Overrepresentation of known TF binding motifs in promoters of gene clusters in three sets of expression clusters. Genes were clustered by expression in
DC3000hrpA- (A), expression in DC3000 (B), and expression in DC3000hrpA- subtracted from DC3000 (C). Clusters were ordered by profile similarity.
Clusternumbersaregivenon thehorizontal axis, coloredsymbols indicateclusterswithsimilarprofiles, andaselectedclusterexpressionprofileof each type
is plotted below. Names and sequence logo representations of TF binding motifs (where character size indicates nucleotide frequency) are shown on the
vertical axis. Colored boxes correspond to P values. P values are comparable across rows and columns, i.e., not affected by cluster sizes (see Methods).
Rows/columns where at least one cluster-motif pairing shows significant enrichment (P# 1e24) are shown (for full results, see Supplemental Data Set 8).
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Figure 7. Genes Containing the Same Transcription Factor Binding Site(s) in Their Upstream Promoter Sequences Are Coexpressed across Multiple
Conditions.
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genes’ upstream sequences. A total of 31modules were enriched
for known TF binding motifs targeted by a range of different TF
families (Supplemental Data Set 10A). We determined the genes
within thesemodules that contained the enrichedTFbindingmotif
(s) in their promoter sequences, hence themost likely coregulated
group, and two examples are shown in Figures 7A and 7B and
Supplemental Data Set 10B.

The 17 genes in Figure 7A show coexpression across
DC3000hrpA- and DC3000 infection, and all contain a MYB TF
bindingmotif in theirpromoters, suggesting their expressioncould
be controlled by a MYB TF. Intriguingly, this group of genes in-
cludes three protein phosphorylation enzymes (two kinases and
aphosphatase)with knownpositive effects ondefenseor defense
geneexpression:PKS5,WIN2, andCRK45. PKS5phosphorylates
NPR1, and expression of two NPR1 target genes, WRKY38 and
WRKY62, is reduced in pks5 mutants (Xie et al., 2010). Over-
expressionof thephosphataseWIN2enhances resistanceagainst
DC3000, andWIN2 has been shown to interact with HopW1-1, an
effector present in DC3000 (Lee et al., 2008). Similarly, over-
expression of the cysteine-rich receptor-like kinase CRK45 en-
hances expression of defense genes and resistance against
DC3000, and mutants lacking CRK45 show increased suscepti-
bility to the pathogen (Zhang et al., 2013). These genes appear to
be part of an ultimately unsuccessful effector-triggered immune
response driven by a MYB TF. A second group of potentially
coregulated genes is shown in Figure 7B. These 54 genes contain
a WRKY TF binding site in their promoters and exhibit coex-
pression across both pathogen infection time series and the
mock-inoculated time series. The group features several genes
with a role in defense against P. syringae. PUB22, PUB23, and
WRKY11 all encode negative regulators of P. syringae disease
resistance (Journot-Catalino et al., 2006; Trujillo et al., 2008) with
FRK1 and WRKY29 key genes induced in response to infection
(Asai et al., 2002, Figure 1A). Furthermore, WRKY29 induces
expression of itself and FRK1 (Asai et al., 2002), validating their
membership of the same Wigwams module and suggesting that
WRKY29 may regulate the other genes in this group.

Conserved noncoding sequences usually encompass multiple
TF binding site, suggesting that combinatorial activity of TFs is
often required forgene inductionor repression (Baxteretal., 2012).
We searched for Wigwamsmodules that were enriched for motifs

bound by two ormore different TF families and, hence, potentially
subject to combinatorial regulation. Two examples of such sets of
genesare shown inFigures7Cand7DandSupplemental DataSet
10B. Figure 7C features 26 genes coexpressed in the mock and
DC3000 time series that contain motifs bound by bZIP and ABI3/
VP1 TFs in their promoters. This group includes several known
ABA-inducible genes, such as Rap2.6 (Zhu et al., 2010), AFP3
(Garcia et al., 2008), STZ (Sakamoto et al., 2004), ANAC072 (Tran
et al., 2004), andMAPKKK18 (Menges et al., 2008). Furthermore,
ATAF1 and ANAC072 are components of the ABA signaling
pathway and affect the response of the plant to ABA (Fujita et al.,
2004; Jensen et al., 2008). The Arabidopsis ABI3 TF and its
monocot ortholog VP1 are known to play essential roles in ABA-
dependent responses. Although ABI3/VP1 is reported to be seed
specific, there are 14 members of this TF family in Arabidopsis
(Riechmannetal., 2000) andothermembersmayplayasimilar role
in other tissues. The hypothesis that coexpression of these genes
depends on binding of two TF families is strengthened by the
identification of a bZIP protein in rice (Oryza sativa) that interacts
with VP1 and mediates ABA-dependent gene expression (Hobo
et al., 1999). The final example (Figure 7D) is a group of 23 genes
coexpressed in the DC3000 and DC3000hrpA- infections and
containing bZIP, bHLH, and TCP motifs in their promoter se-
quences. This group contains a number of photosynthetic genes,
such as PSB29 (Keren et al., 2005), LHCA6 (Ifuku et al., 2005),
PSB27 (Chen et al., 2006),PNSL2 (Ifuku et al., 2005),PSBQA, and
PSBO1 (Murakami et al., 2005). Photosynthetic genes are known
to be downregulated in response to many environmental stress
conditions including P. syringae challenge (Bonfig et al., 2006;
Truman et al., 2006; de Torres-Zabala et al., 2015, Figure 3), and
this finding suggests the downregulation is coordinated by TFs
from different families with different DNA binding domains. Select
phytochrome interacting factors (bHLH TFs) and TCPs have re-
cently been shown to have a role in promoting P. syringae mul-
tiplication (Weßling et al., 2014).

Modeling the Transcriptional Network Topology during
Disease and Defense

With the exception of the module in Figure 7B, the Wigwams
analysis above predicts the family of TF regulating a module but

Figure 7. (continued).

Wigwamsmodules containing genes showing statistically significant coexpression across at least two of the three conditionswere tested for enrichment of
TFbindingmotifs ingenepromoter sequences.Genescontainingenrichedmotifs in their promoterswere identified. In all cases, themeanexpressionprofile
of representative genes is shown (green, mock; purple, DC3000hrpA-; red, DC3000) with shading indicating SD. The bindingmotifs, relevant TF family, and
names of key genes are provided.
(A) Genes coexpressed during DC3000hrpA- and DC3000 infection and containing a MYB TF binding motif (PLACE: S-000355) in their upstream 500-bp
sequences.
(B) Genes coexpressed during DC3000hrpA- and DC3000 infection and containing a WRKY TF binding motif (PLACE: S-000390) in their promoters.
(C) and (D)Examples of genes fromWigwamsmodules enriched formotifs boundbydifferent families of TFs suggesting combinatorial TF activity regulates
expression of these genes.
(C)GenescoexpressedduringDC3000hrpA-andDC3000 infectionandcontainingabZIPbindingmotif (M00441)andanABI3VP1bindingmotif (S-000145)
in their promoters.
(D)Genes coexpressed duringDC3000hrpA- andDC3000 infection containing bHLH (M00435), bZIP (M00442), and TCP (S-000474) bindingmotifs in their
upstream promoter sequences.
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does not elucidate specific TF-target gene interactions. Our high-
resolution time series experiment was specifically designed to
apply network inference approaches, allowing predictions of
putative causal regulatory interactions between genes. As TFs
determine the topology of transcriptional networks, we inferred
regulatory interactions between TFs differentially expressed early
during DC3000 and/or DC3000hrpA- infection using the Causal
Structure Identification (CSI) algorithm (Penfold and Wild, 2011;
Penfoldetal., 2015).WemodeledTFsdifferentially expressedator
before 8 hpi to capture the key early events associated with es-
tablishment of MTI and activation of ETS. These time points also
ensured that expression data are not confounded by increased
bacterial multiplication in the compatible interaction. We antici-
pate that the network topology (i.e., specific TF-promoter cis-
element interaction) is the same during challenge with either
DC3000 or DC3000hrpA- but that the flow of information through
the network will differ. Specific TFs, their subcellular location,
posttranslational modifications, and expression levels will de-
termine information flow during the different bacterial challenges.
The CSI algorithm is capable of identifying connections between
genes that are only “active” in a subset of the available data sets,
providing the expression profiles in the other data sets do not
contradict them. Hence, network inference was performed using
the expression data for the mock, DC3000, and DC3000hrpA-
infections simultaneously.

The resulting networkmodel features 609 interactions between
433 nodes, thus representing a relatively sparse interaction in-
terface (Supplemental Data Set 11). These more linear associa-
tionsmay be indicative of a strategy to rapidly activate TFs driving
specific subnetworks rather than using an extended transcrip-
tional cascade. Such a topology would add robustness andmake
pathogen intervention approaches more challenging. A similar
sparse relatively independent network topology was inferred in
a recent “global” model of effector-triggered immunity derived
froma rangeofdisparatedatasets (Dongetal., 2015). Thenetwork
model is shown in Figure 8 with node color illustrating the dif-
ferential flow of information through the network in response to
DC3000 or DC3000hrpA- infection and the impact of effectors.
Expression at a single time point is shown in Figure 8, and amovie
capturing the dynamic changes in expression of the whole net-
work can be found in Supplemental Data Set 12. To facilitate
visualization and interpretation, genes are classified into eight
groups, referenced 1 to 8 clockwise, according to the difference in
their expression between DC3000 and DC3000hrpA- infection
and containing 3, 23, 59, 87, 53, 92, 81, and 35 nodes, re-
spectively. This arrangement is designed to highlight the com-
plexityofnetwork topologiesdriving themultiple signalingoutputs
and the inherent host MTI and ETS responses. In Figure 8A, the
network nodes are colored according to the difference in ex-
pression level between DC3000hrpA- and the mock with red in-
dicating a TF is upregulated after DC3000hrpA- challenge
comparedwithmockandgreen indicatingdownregulation. Figure
8B shows the same network with the nodes colored according to
the difference in expression level after DC3000 infection com-
pared with mock inoculation, and Figure 8C shows the network
with nodes colored according to the difference in expression
between DC3000 and DC3000hrpA- infection. Nodes with higher
expression after DC3000 infection are colored red and those

with higher expression following DC3000hrpA- challenge are
colored green.
The network visualizations in Figures 8A and 8B demonstrate

that the majority of the network TFs are expressed in a similar
manner (i.e., up- or downregulated) in response to DC3000 or
DC3000hrpA- infection, althoughexpression is alsomodulatedby
treatment (Figure 8C), as inferred above (Figures 1 to 4).
Figure 8C (shown dynamically in Supplemental Movie 1) cap-

tures network flux in response to effector delivery and groups 1, 2,
and 8 highlight markedly contrasting gene expression responses
to the presence of effectors. White nodes are similarly induced by
DC3000 or DC3000hrpA- challenge, reflecting that a significant
component of the MTI network is not actually perturbed by ef-
fectors. This isparticularlypronounced innetworkgroups4,5, and
6, whereas groups 3 and 7 comprise a mixture of MTI-responsive
and effector-modulated components.
Each network group has numerous interesting components, and

wehighlighta fewof these.Group3(59members) ischaracterizedby
six auxin response factor/IAA TFs, nine homeobox domain-con-
taining TFs, and six WRKY TFs. Notably, all WRKY TFs (WRKYs 9,
11,17,22,38,48, and54) are strongly inducedbyDC3000hrpA-but
not DC3000, suggesting these are key defense targets transcrip-
tionally suppressed by effectors. The majority of Group 4 compo-
nents (87 TFs) were associated with MTI (Figure 8C). Interestingly,
there was a strong representation of genes related to floral and leaf
development, including five CONSTANS-like genes, a regulator of
CONSTANS, CAULIFLOWER, AINTEGUMENTA, ETTIN (ARF3),
REDUCED VERNALIZATION2, AGAMOUS-LIKE87, BELLRINGER,
LATE ELONGATED HYPOCOTYL, MERISTEM LAYER1, and
ASYMMETRIC LEAVES1 as well as chloroplast-localized RNA
POLYMERASESIGMAFACTORS2, 4,A, and F. Downregulation of
these TF genes associated with developmental processes appears
to be a core MTI response, unaltered by effectors, underlining the
interrelationship of transcriptional regulation in development and
innate immunity.
Group 2 consists of genes strongly suppressed by effectors. Of

the 23 nodes, >25% (6) represent MYB domain containing TFs
(reinforcing the strong MYB domain representation seen in Cat-
egory F). These comprise a number of negative regulators of
transcription, including RAV1 and RAV2, and TCP20 (a negative
regulator of senescence and cell size; Lopez et al., 2015). Thus,
a strategy for rapid transcriptional activation of pathways by ef-
fectors may be to suppress negative regulators of susceptibility
targets.
Cruciallywecanuse thisnetwork topredict thespecificactionof

pathogeneffectorsduringDC3000 infection. Forexample, theTFs
in group 8 are strongly induced following infection with DC3000,
whereas they show minimal change compared with mock after
DC3000hrpA- inoculation, suggesting that pathogen effector
proteins drive their expression. We analyzed the network to
identify TFs that were predicted to regulate several of these ef-
fector-activated TFs. We hypothesize that effectors cause mis-
regulation of these upstreamTFs, which subsequently upregulate
their downstreamTF targetgenes. ThreeTFspredicted to regulate
a number of the TFs in group 8 are XND1 (AT5G64530), FBH3
(AT1G51140), and AT2G40620, all of which show a remarkably
rapid change in expression specifically in response to DC3000
infection around3 to 4hpi (Figure 9). This coincideswith the timing
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Figure 8. The Inferred Transcription Factor Network Model, Jointly Obtained for Mock, DC3000hrpA-, and DC3000.
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of the first effector-driven changes in gene expression and is
consistent with these three TFs playing a key role in mediating
effector influence within the plant.

XND1 is amember of theNAC (NAM, ATAF, CUC) TF family and
is thought to negatively regulate programmed cell death in xylem
cells (Zhaoetal., 2008). Thiswouldbeconsistentwith itspredicted
effector-mediated upregulation as a hemibiotrophic pathogen
would benefit from suppression of cell death. FBH3 encodes
a basic helix-loop-helix TF that can activate expression of the
CONSTANS gene and cause early flowering (Ito et al., 2012). Early
flowering in response to P. syringae infection has been observed
(Korves andBergelson, 2003), butwhether this is adevelopmental
response driven by the plant (as a means to escape disease) or
driven by the pathogen is not clear. Our findings are consistent
with the active manipulation of flowering within the host plant.
AT2G40620 encodes abZIPTFof unknown function.Our network
analysis suggests that these three TFs could represent key hubs
playing a major role in the promotion of susceptibility by virulent
P. syringae (as mediators of effector-driven transcriptional
change) and would be candidates for network disruption studies.
The mechanism by which these three TFs are upregulated in
response to effectors is not clear, yet their position in the network
(upstream nodes) suggests that effectors either target their pro-
moters directly or more likely interact posttranscriptionally with
other TFs to regulate expression of these hubs. TFs whose ac-
tivity is determined posttranscriptionally would not be detected
in our transcriptional network model. Linking our regulatory net-
work to specific effectors via effector-host protein interaction will
be the focus of future research.

DISCUSSION

The Chronology of Effector-Mediated
Transcriptional Reprogramming

Reprogramming of key components of host transcription to fa-
cilitate suppression of plant immune responses and acquisition of
sufficient carbon and nitrogen resources for bacterial multipli-
cation underpins successful infection by pathogens. Here, we
describe a detailed comparative analysis of transcriptional
responses in P. syringae-infected Arabidopsis leaves.

The primary objectives of this study were to move knowledge
beyond single and dual time point studies and (1) capture and
contrast the transcriptional dynamics associated with MTI and
how these were modified during ETS, (2) reveal new insights into
bacterial virulence mechanisms from the complement of genes
targeted by pathogen effector activities during a susceptible in-
teraction, and (3) provide high-quality data sets that can be used

by researchers to explore specific transcriptional subnetworks
associated withMTI and ETS in detail. To achieve these goals, we
sampled four single leaf biological replicates at 13 time points.
Including both technical replicates and dye swaps, we probed 16
arrays for each treatment at any specific time point, resulting in
a detailed and highly replicated infection data set comprising 312
two-color arrays in total. No plant inoculation method is ideal.
Dipping or spraying has the advantage of addressing stomatal
immunity, but disadvantages include the use of high pathogen
inoculums and gross differences in bacterial load across the in-
dividual leaf sampled. As pathogens enter via the stomata, there
are spatial differences in pathogen distribution and asynchronous
infections, confounding any interpretation of time course data. By
contrast, syringe challengewith adefined inoculumconcentration
ensures (1) infection is as synchronous as possible, avoiding
confounding gene expression values, (2) as much foliar tissue as
possible is exposed to the bacterial treatments to maximize re-
sponse signatures, and (3) leaves of identical developmental
stages can be challenged to reduce effects of developmental
stages. However, the possibility remains that interactions or
common responses between wounding from the syringe in-
oculation and the infection process may be masked.
Analysis of this information-rich data set with a range of

computational tools provided insights into the earliest tran-
scriptional events triggered by effector injection, regulatory
mechanisms recruited, andbiological processes targeted.Central
to our study was the ability to relate transcriptional changes to in
planta bacterial growth. Effector-driven transcriptional modula-
tion was evident as early as 3 hpi, consistent with in planta
suppression of luciferase activity seen in leaves of DC3000-
challenged FRK1-luciferase lines (Figure 1). Many genes, par-
ticularly those responding toDC3000challenge, showedcomplex
patterns of regulation, oftenwith expression profiles showing very
early perturbations from their initial trajectories. Strikingly, despite
more than a third of the transcriptome being differentially ex-
pressed across our time course, the majority of transcriptional
responses (measuredby the timeatwhichgradients of expression
significantlydiverge frommockchallenge)were initiatedwithin the
first 6 hpi (Figure 2). This is;4 h after effector delivery (Grant et al.,
2000) and significantly before measurable increases in bacterial
growth at 8 hpi (Figure 3). These early transcriptional changes and
complex dynamics during initial effector-mediated transcriptional
reprogramming have not been captured in previous studies
constrained by resolution and sampling strategy.
Within 2 hpi, the impact of effectors was evident in the com-

parisons betweenmock andDC3000orDC3000hrpA- challenges
(Figure1), althoughat thisearlystage therewerenoDEGsbetween
DC3000andDC3000hrpA-challenges.Bycontrastatboth3and4
hpi substantial changes in transcriptional dynamics between

Figure 8. (continued).

Themodel is limited to genes deemeddifferentially expressed in at least two of the three pairwise differential expression comparisons and showing an early
response. The visualization shows the expression levels of the genes in the network at 8 hpi in a comparison betweenDC3000hrpA- (A) andmock, DC3000
and mock (B), and DC3000 and DC3000hrpA- (C). Higher expression levels in the former condition always correspond to red colored nodes, while green
nodes represent higher expression in the latter condition. For ease of viewing, the genes in the networkwere grouped based on their expression trend in the
DC3000 and DC3000hrpA- delta profile, as shown in (C).
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DC3000 and DC3000hrpA- treatments were evident, consistent
with early effector activity targeting multiple points of activated
PRR signaling pathways (Macho and Zipfel, 2015). By 6 hpi
a persistent pattern began to emerge, characterized by an in-
creasing magnitude and number of DEGs between all treatments
over time as initial effector targets activated specific transcrip-
tional networks. However, is it important to note that not all ef-
fector-mediated transcriptional responses are necessarily part of
a pathogen virulence strategy. Some may be associated with
early, or failed,ETI responses.Theearlyeffector responsesseenat
2 and 3 hpi with DC3000 in Figure 1, the significantly reduced
growthat6hpi (Figure3; reported inMitchell et al., 2015), and rapid
induction of a TIR-NBS-LRR transcript (At1g72940; Figure 5C) all
are evidence for an early ETI response.
Approximately 4000 MAMP-responsive genes were identified

across the time course (Figure 4) and represented a major com-
ponent of the compatible response. These results indicate that
while MTI responses are remarkably complex, it is not necessary
for effectors to suppress the entire MAMP-responsive network,
but rather effectors canselectively suppress specificcomponents
or subnetworks to successfully promote disease. This is con-
sistent with the hypothesis that effector target proteins are key
components of the host immune response.
The earliest MTI transcriptional response sampled, occurring

between 0 and 2 hpi, captured ontologies associated with the
respiratory burst, phosphorylation, posttranslational modifica-
tion, and SA synthesis (Figure 3). One of the most prominent MTI
responses was a rapid and sustained suppression of a large
proportion of transcripts encoding photosynthetic components,
occurring within 2 hpi and being sustained for the first 10 hpi.
Thereafter, the majority of these transcripts in DC3000hrpA-
treated leaves returned to mock levels by 17.5 hpi, whereas in
DC3000-treated leaves, transcripts largely remained suppressed.
These profiles support an increasing belief that chloroplasts are
potential integrators of plant immune responses (Stael et al.,
2015), and recent experimental evidence in support of this was
derived using a subset of the data presented here (de Torres-
Zabala et al., 2015).
The impact of effectors was early, regulating transcripts

encoding adiverse rangeof proteins. Geneontologies highlighted
ABA biosynthesis as one of the earliest processes induced by
effector activity, in agreement with our previous studies (de
Torres-Zabala et al., 2007; de Torres Zabala et al., 2009). In
parallel, transcriptional regulators were overrepresented among
early DC3000-induced genes, consistent with an active sup-
pression of MTI transcription responses (Li et al., 2015) and re-
flected by overrepresentation of ontologies associated with
autophagy (Patel andDinesh-Kumar, 2008) and TF import into the
nucleus coincident with initial bacterial multiplication ;8 hpi.

Figure 9. The Expression Profiles of Three Genes Present in the Inferred
Transcription Factor Network Model.

Three genes were identified as having a high number of downstream
targets among genes upregulated in DC3000 response while being
downregulated in DC3000hrpA- response. The identified genes are XND1
(AT5G64530), FBH3 (AT1G51140), and AT2G40620. XND1 is thought to
negatively regulate cell death, FBH3 contributes to early flowering, and
AT2G40620’s function is currently unknown.
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Biological Processes Impacted by Effectors

Two general patterns of effector modulation of host transcription
were evident. Effectors could modify MAMP-responsive ex-
pression through repressing accumulation or preventing sup-
pression of transcripts. We identified 525 MTI-responsive genes
that inDC3000challengewere reconfiguredbyeffectors toamock
profile (Figure 4). Among these genes were previously well-
characterized regulators of defense responses, including EFR,
TGA3, WRKY53, RBOHD, PEN2, and PEN3. The vast majority of
effector-modulatedgeneprofileswere representedby thespecific
induction or suppression of a diverse variety of 2325 host genes,
which were not MAMP responsive (i.e., same profile in mock and
DC3000hrpA- challenges; Figure 4). Notable was the over-
representation of genes involved in transcriptional repression and
ubiquitination (Figure 5A), genes encodingMYBdomains, and the
repression of genes encoding plant receptor-like kinases. We
hypothesize that the coordinated transcriptional reconfiguration
of these processes represents a fundamental pathogen virulence
strategy. Repression of plant receptor-like kinases to attenuate
PRR signaling or induction of ubiquitin ligase activity encoding
genes to facilitate targeted proteolysis are intuitive strategies.
However,most strikingwas the differential regulation of a range of
genes involved in chromatin remodeling.

An Emerging Role for Chromatin Remodeling Early in the
Susceptible Interaction

The earliest sustained transcriptional responses specifically
upregulated by DC3000 but not by DC3000hrpA- showed no
statistical overrepresentation of anyGO functional category term.
In stark contrast, early downregulated genes showed a highly
significant enrichment for “chromatin assembly.” This indicates
that at early infection stages, effector activities have not suffi-
ciently propagated through the network to converge onto suffi-
cient numbers of genes in any functional category to yield
a statistical signal, whereas downregulation of chromatin as-
sembly genes was rapid (Figure 5B). Consistent with these
findings, motif analysis of promoters of early downregulated
genes identified the octamer-TCA motif as enriched in these
genes and particularly in the subset of chromatin-related gene
promoters. The link between this motif and DC3000-specific
downregulation was also reinforced in an unbiased analysis of all
temporal expression clusters (Figure 6C).

Covalent modifications or “marking” of histone tail residues is
crucial for regulation of gene transcription within the chromatin
context. Histone lysine methyltransferases and histone lysine de-
methylases act collectively to impart specific methylation patterns
on particular histone lysine residues (Berr et al., 2011; Zentner and
Henikoff, 2013). A large number of histone encoding genes were
suppressed by effectors including class 3 and 4 histones aswell as
Histone2A (HTAs10,13, and6) andHistone2B (HTBs4,9, and11).
Notably, HTB9 encodes DECREASED DNA METHYLATION2/cy-
tosine methyltransferase 1 (DDM2/MET1) (Kankel et al., 2003),
suggesting that effectors are actively remodeling chromatin early in
the infection process. Reprogramming of chromatin remodeling
was reinforced by specific analysis of early (6 to 8 hpi) effector-
modulated genes, identifying Histones H1.2, GAMMA-H2AX,

HTA13, HTB2, HTB9, HTB11, H3, and H4 among the 42 genes
suppressed early, with the majority of the others being a mixture
of immunity related receptors (Supplemental Data Set 6).
In parallel to repression of numerous histone encoding genes,

effectors also induced some chromatin remodeling genes. The
induction of HDA15, encoding a histone deacetylase, which
negatively regulates chlorophyll biosynthesis and photosynthesis
gene expression in etiolated seedlings (Liu et al., 2013), would be
likely to contribute to the sustainedsuppressionof photosynthetic
genes observed in Figure 3. Additionally the SET-domain con-
taining genes KRYPTONITE (SDG33) and ASHH1 (SDG26) were
induced early in infection. These encode H3K9MTs implicated in
crosstalk between DNA and histone methylation (Du et al., 2014)
and in transcription regulation and flowering time control (Berr
et al., 2015). Thus, the suppression of histone-encoding genes
and the selective induction of genes involved in covalent modi-
fication of histones evidenced from this study is consistentwith an
early pathogen strategy to render stretches of DNA more ac-
cessible to TFs. It is particularly notable that these changes co-
incidewith increasedABA;6hpi (deTorres-Zabalaetal., 2007;de
Torres Zabala et al., 2009). Mechanistic links to chromatin re-
modeling and ABA (Chinnusamy et al., 2008; Ma et al., 2011) or
deubiquitination (Sridhar et al., 2007) are emerging. The Arabi-
dopsis homolog of the yeast SWI3 subunit of SWI/SNF (Switch/
Sucrose Nonfermenting) chromatin-remodeling complexes
(Sarnowski et al., 2002), SWI3B, interacts with the PP2C, HAB1.
swi3b mutants show reduced sensitivity to ABA, implicating
SWI3B as a novel positive regulator of ABA signaling regulated by
HAB1 (Saez et al., 2008). By contrast, the Arabidopsis ATPase
BRAHMA SWI2/SNF2 complex represses the ABI5 bZIP tran-
scription factor, which is important in regulating a range of ABA-
mediated functions, including vegetative growth andwater stress
responses (Han et al., 2012).

Predictions of Regulatory Relationships Underlying MTI and
ETS

To gain further insight into how differential MTI and ETS tran-
scriptional signatures evolved, we looked for individual and
combinatorial TF binding motifs in promoter elements, first using
unsupervised clustering to identify DEGs that exhibit similar
treatment-specific expression profiles and then screening these
clusters for overrepresentation of known TF binding motifs. In
addition to previously reported WRKY boxes in early-induced
genes, we also found G-boxes enriched within clusters of sup-
pressed genes and enrichment of specific motifs in gene clusters
showing opposing expression profiles. For example, specific
combinations of motifs (WRKY, tll, MBP1, and exd) engaged in
fine-tuning the MTI response are recognized and targeted for
suppression following effector delivery. It is well documented that
some WRKYs can act as repressors of MTI depending upon the
context of the response (Pandey and Somssich, 2009). Con-
versely, we found motifs (ABRE, MycN, and G-box) enriched in
genes rapidly suppressed in response to MAMP recognition yet
highly overrepresented in two effector-induced clusters. Collec-
tively, these data strongly support the hypothesis that ETS de-
ploys active transcriptional suppression at specific promoter
configurations that are targets of MTI.
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Our analysis further provided evidence for unique motifs in
DC3000-responding gene clusters, identifying specific motifs in
both early and late induced clusters and in clusters with genes
rapidly suppressed by DC3000 challenge. Reinforcing a role for
chromatin remodeling in disease progression, we identified both
histone OCTAMER and NFY motifs in effector-modulated genes.
Notably, NFY TFs are implicated in recruiting histone deacety-
lases to the promoters (Dolfini et al., 2012).

In parallel, we used the Wigwams algorithm (Polanski et al.,
2014) to identify 31 gene modules with a strong statistical
probability of being coregulated across the multiple time series.
Consistent with the overrepresentation of MYB binding domains
(Category F in Figure 4), we identified a module of 17 genes
containing a MYB TF binding motif in their promoters, many of
which have experimental evidence supporting a role in plant
defense.ABA is central toDC3000’svirulence strategy (deTorres-
Zabala et al., 2007, 2009). Wigwams predicted a module of 26
genes whose promoters are enriched in bZIP and ABI3/VP1 TF
binding domains (ABI3/VP1 TFs are regulators of ABA signaling).
Wigwams also identified a module of suppressed genes over-
represented in photosynthetic components that contain bZIP,
bHLH, and TCP binding motif in their promoters. Thus, these
results highlight the utility of using coregulatory predictions to
provide insight into how components of complex processes may
be coordinately transcriptionally regulated.

Network Modeling Highlights Key
Effector-Modulated Genes

Finally, we used CSI to generate a TF network model of the
regulatory events controlling transcriptional reprogramming
during infection and defense. We focused on transcriptional
eventsup to8hpi, thuscapturing thenetworks recruitedduring the
crucial stages of infection and defense and before the first de-
tectable increase in bacterial growth. The network was un-
expectedly sparse, with only 609 interactions predicted between
432 TFs. This may reflect the evolved nature of effector activity,
with effectors targeting multiple host proteins to activate parallel,
relatively independent signalingpathways rather thanacascading
transcriptional response. We identified a core MTI network not
perturbedbyeffectorsand interconnectedmoduleswithmarkedly
contrasting responses to the presence of effectors. The model
provides predictive information about the consequences of ac-
tivatedMTI and possible tactics pathogens use to cause disease.
It predicts that a strategy for rapid transcriptional activation of
pathways by effectors may be to suppress negative regulators of
susceptibility targets, and it is likely these include MYB domain-
containing TFs. It also predicts that the strong suppression of TFs
involved in developmental processes, particularly floral and leaf
development, by MAMPs may underlie the mechanism that
regulates the trade-off between growth and defense. The mod-
eling predicts three TFs, XND1, FBH3, and the bZIP AT2G40620
are at the apex of a transcriptional cascade regulating a number of
the TFs that collaborate to suppress host defenses. A future
challenge is to identify the specific TFs directly posttranslationally
modifiedbyeffectors (Li et al., 2015) that initiate the transcriptional
cascade including how effector induced chromatin changes re-
model the nature of the genomic landscape to facilitate the

transcriptional reprogramming by early effector induced TFs to
permit disease progression.

METHODS

Sowing and Plant Growth Conditions

Arabidopsis thaliana seed (Col-4) were suspended in sterile 0.1% agarose
and stratified for 3 d at 4°C in darkness. Seeds were sown using a dis-
posable Pasteur pipette onto ;7-cm square pots of sieved compost mix
(Levington’s F2 compost+sand [LEV206]:vermiculite [medium grade]
mixed in a 6:1 ratio). Plants were grown in individual pots grown in trays
under a controlled environment conditions comprising a 10-h photoperiod
of 120 µmol m22 s21 at 23°C (day), 20°C (night), and relative humidity of
65%. Trays were repositioned every 3 to 4 d during the growth phase to
negate position effects in the growth room. Two days prior to experi-
mentation, plantswere separated into individual pots and randomized. The
challenged leaf, leaf 8, was identified and marked the day before and all
plants for each treatment and time point were selected randomly from
these to reduce any systematic error.

Pseudomonas syringae Growth and Maintenance

Maintenance and challenge of bacteria were as described (de Torres et al.,
2006).Pseudomonassyringaepv tomatostrainDC3000carrying theempty
broad host range vector pVSP61 (Innes et al., 1993) and the disarmed
DC3000hrpA-mutant strain were grown on solidified King’s Bmedia (King
et al., 1954) containing 50mgmL21 rifampicin and 25mgmL21 kanamycin.
For inoculation, overnight cultures were grown at 28°C. Cells were har-
vested, washed, and resuspended in 10 mM MgCl2. Cell density was
adjusted to OD600 0.15 (;0.75 3 108 cfu mL21).

Pathogen Challenges

Treatments were begun 2.5 h after subjective dawn using 34-d-old plants
by infiltration on the abaxial surface with a 1-mL needleless syringe
containing bacteria (OD600 0.15; ;0.75 3 108 cfu mL21) or 10 mM MgCl2
(mock). Leaf 8 on four individual plants was challenged per treatment
(DC3000, DC3000hrpA-, or mock), and inoculated plants were left under
a light bench in the laboratory (22°C). Samples were taken 0, 2, 3, 4, 6, 7, 8,
10, 11,12, 14, and17.5hpi. Leaveswereharvestedbycuttingat thepetiole/
leaf blade junction andwere immediately snap-frozen and stored at280°C
until used for RNA preparation.

Bacterial Growth Measurements

All bacterial growth measurements were determined from a minimum of
five independent replicates, each comprising three challenged leaves/
plant. Significant growth differences between treatmentswere determined
by Student’s t test (P < 0.5), with error bars representing SD of themean. All
experiments were repeated at least three times.

Plant RNA Extraction

RNA was extracted according to de Torres et al. (2006) from a single leaf
ground to a fine powder in a liquid nitrogen precooledmortar. The resultant
RNAwas cleaned up using aQiagenRNeasyPlantmini kit according to the
manufacturer’s instructions and samples eluted in 30 mL of RNase-free
water.

Microarray Hybridization

Cy3- and Cy5-labeled cDNA probes were generated from extracted RNA
samples and hybridized to CATMA arrays (Allemeersch et al., 2005), and
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the arrays were processed as described (Breeze et al., 2011). Samples
were labeled and hybridized to arrays according to a randomized loop
design (as described in Breeze et al., 2011; Supplemental Figure 1), fa-
cilitating key sample comparisons, while minimizing the number of arrays
required. Four biological and four technical replicates (including a dye
swap) were used for each combination of three treatments and 13 time
points; in total, 312 two-color arrays were used to generate the tran-
scriptome data set.

Analysis of Microarray Data

Data quality checks and normalization were conducted using a locally
adapted MAANOVA package workflow (Wu et al., 2003). Spatial and dye-
bias artifacts were removed from the data through normalization using
locally weighted scatterplot smoothing transformation.

Identification of DEGs

The following selection of methods was used to rigorously capture genes
showing differential expression.

For Figure 1, the Bioconductor package LIMMA (Linear Models for
Microarray Data) was applied to log2-transformed and normalized data
sets (Smyth et al., 2005), applying multiple testing correction method
“separate,” a P value cutoff of 0.05, and FDR correction using the
Benjamini-Hochberg method. For Figure 2 onwards, DEGs were se-
lected based upon the three methods described below, and probes
above the point at which the false positive level exceeds 10% were
included in the list of differentially expressed probes. The three lists of
differentially expressed probes for each pairwise comparison of treat-
ments were merged, duplicate probes removed, and the list ordered
based on the combined rank from all methods. (1) MAANOVA (Wu et al.,
2003) was used to fit an ANOVA model to the data, from which nor-
malized relative probe expressions were obtained. Per-probe F tests
were conducted and probes were ranked using the resulting F statistics.
Probes above the point at which the percentage of false positives
exceeded 10% were deemed differentially expressed.

A locally adapted GP2S method (Stegle et al., 2010) applied Gaussian
processes to model the time series data to infer a likelihood of differential
expression. The resulting per-probe Bayes factors were ranked frommost
to least likely to be differentially expressed.

Bayesian Analysis of Time Series data (Angelini et al., 2008) adopts
a Bayesian approach to estimating expression profiles, identifying genes
differentially expressed over time, and to rank them. Ratios of the treat-
ments were used as input expression values.

Clustering by Gene Expression Profile

SplineCluster (Heard et al., 2006) was implemented to cluster DEGs that
share similar expression profiles, with sweepmergers between allocations
to allow movement of allocated genes between clusters to maximize the
resulting log likelihood. Genes for the DC3000hrpA- versus mock com-
parison were clustered with a prior precision of 0.0001 on the basis of
DC3000hrpA- expression. DEGs for theDC3000 versusmock comparison
were clustered using DC3000 expression profiles with a prior precision of
0.0001. DEGs between DC3000hrpA- and DC3000 were clustered using
a prior precision of 0.0005 using the difference in expression between the
two infections (log2DC3000hrpA-log2DC3000). In each case, clustering
was performed using a range of prior precision values and the most in-
formative set of clusters selected balancing variation within each cluster
versus variation between clusters. Sweepmergers for the clustering of all
comparisons was set to 10,000 iterative reclassifications.

GO Enrichment

GO enrichments were assessed using BiNGO (Maere et al., 2005).

Time of First Differential Expression

An in-house implementation of the Gaussian process gradient analysis
(Breezeet al., 2011)wasused to identify the timeatwhichgenes first exhibit
differential expression, using a delta expression profile for each gene
obtained by subtracting expression levels in bacterial challenged leaves
from mock expression.

Promoter Motif and Transcription Factor Family Analysis

MEME was used to search for any enriched motifs within 200 bp of the
promoters of genes affected early by effectors. Publically available posi-
tion-specificscoringmatrices (PSSMs)werecollected fromthePLACEand
JASPAR databases (Higo et al., 1999; Sandelin et al., 2004). To remove
redundancy PSSMs were clustered by similarity, and a representative of
eachclusterwaschosen for screening. Promoter regionscorresponding to
200 bp upstream of the transcription start site were from Ensembl Plants
database (release 50).

For any given PSSM and promoter, the sequence was scanned and
amatrix similarity scorecomputed (Kel et al., 2003) at eachpositiononboth
strands. P values for each score were computed from a score distribution
obtained by applying the PSSM to randomly generated sequences. A
binomial test for the occurrence of k sites with observed n values within
a sequence of length 200 bp was performed on the top k nonoverlapping
hits. The parameter k was optimized within the range 1 to 5 for minimum
binomialPvalue toallowdetectionofbindingsiteswithoutafixed threshold
per binding site. To determine the presence or absence of a PSSM in
a promoter, the top 1000 promoters, sorted by P value, were selected. For
eachPSSM, its frequency in promoters of each cluster was comparedwith
its occurrence in all promoters in thegenome.Clustersweredownsampled
(R Stats “sample” function) to 100 genes to allow better comparison of
hypergeometric P values across differently sized clusters. Motif enrich-
ment was calculated using the hypergeometric distribution (phyper
function in theRstats package). P value#1e-4were considered significant
to allow for multiple testing.

Wigwams Module Mining

Wigwams (Polanski et al., 2014) was used to identify groups of genes
statistically significantly coexpressed across two or more of the three time
course data sets. The gene list was filtered to only include genes deemed
differentially expressed in at least two of the three performed pairwise
comparisons. The gene expression profiles were not standardized in order
to capture the scope of the dynamics in the modeling.

Network Modeling

A joint network model for all three treatments was inferred using CSI
(Penfold and Wild, 2011; Penfold et al., 2015). A preselection of genes
limited the ones used inmodeling to TFs differentially expressed in at least
two of the three performed pairwise comparisons and showcasing
a TOFDE of no later than 8 h in at least one of the performed TOFDE
analyses. A pathogen growth profile was also present in the data as
a putative network node, with the values for the missing points obtained
with a spline fit. The Gaussian process hyperparameter prior was left
unchanged and the maximum indegree was set to 2. The marginal
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probability of each possible regulatory connection was then calculated to
generate a marginal adjacency matrix; a threshold probability of 0.1 was
used to generate final networks. Connections not joined with the resulting
main network structure were trimmed. For the purpose of Figure 8
groupings, the area between the expression profile curves for DC3000 and
DC3000hrpA- was computed for each of the genes and the network was
divided into eight subnetwork groups linearly spaced between the ob-
served minimum and maximum.

Accession Numbers

Microarray data were deposited in the Gene Expression Omnibus under
accession number GSE56094. The gene identifiers corresponding to gene
names mentioned in the text are given in Supplemental Table 2.

Supplemental Data

Supplemental Figure 1. Experimental design for the microarray
hybridizations.

Supplemental Figure 2. Differentially expressed probes and genes.

Supplemental Figure 3. Growth curve and GO term enrichment for
DC3000 versus mock inoculation.

Supplemental Figure 4. Venn diagram of DEG overlap between pairs
of treatments.

Supplemental Figure 5. Transient expression of luciferase in N.
benthamiana under the RAB GTPase homolog At3g09910 promoter.

Supplemental Figure 6. Two examples of downregulated genes in the
first wave of effector action.

Supplemental Table 1. Validation of CATMA microarray infection
data.

Supplemental Table 2. Arabidopsis gene identifiers for gene names
mentioned in the text.

Supplemental Data Set 1. LIMMA 3D trend data for Figure 1.

Supplemental Data Set 2. DEGs from time series algorithms.

Supplemental Data Set 3. Go term enrichment in clusters of DEGs.

Supplemental Data Set 4. Venn diagram information for Figure 4.

Supplemental Data Set 5. Gene list of ubiquitin and histone-
associated genes up- and downregulated, respectively, by effector
activity.

Supplemental Data Set 6. Genes whose expression is effector driven
between 6 and 8 hpi.

Supplemental Data Set 7. Gene membership of clusters.

Supplemental Data Set 8. Motif enrichment in gene clusters.

Supplemental Data Set 9. Wigwams module membership.

Supplemental Data Set 10. Wigwams module motif enrichment.

Supplemental Data Set 11. Network model.

Supplemental Movie 1. Movie of network model dynamics.
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