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A B S T R A C T   

Farm typologies are often used to reduce the complexity in categorising diverse farming systems, particularly in 
sub-Saharan Africa. The resulting typologies can then be used in multiple ways including designing efficient 
sampling schemes that capture the diversity in smallholder farms, prescribing the selection of certain farm types 
to which interventions can be targeted or upscaled, or to give context into derived relationships. However, the 
construction of farm typologies consists of many subjective decisions that are not always obvious or evident to 
the end-user. By developing a generalized framework for constructing farm typologies, we clarify where these 
subjective decisions are and quantify the impact they have on the resulting typologies. Further, this framework 
has been encapsulated in the open source RShiny App: TypologyGenerator to enable users to focus on the decisions 
and not the underlying implementation.   

1. Introduction 

On-farm studies have and always will form a critical part of agri-
cultural research. Not only do they enable a broader spectrum of envi-
ronmental conditions to be exploited than otherwise available in on- 
station field trials, but they are also more representative of the practi-
calities of real-life implementation. This is particularly pertinent when 
studying farming systems in sub-Saharan Africa as they largely consist of 
smallholder farms crossing diverse cultural and landscape contexts 
(Giller et al. 2011). It is well-recognised that a “one-size fits all” 
approach is misplaced in these highly heterogeneous landscapes. 
Nonetheless, such heterogeneity can be efficiently captured through the 
construction of simplified typologies. Specifically, by allocating farms to 
a certain typology, farming systems can be grouped into similar classes 
according to a set of diverse characteristics as measured by multiple 
indicators consisting of environmental, socio-economic, demographic 
and agronomic factors. The resulting typologies can then be used in 
multiple ways including designing efficient sampling schemes that 
capture the diversity in smallholder farms, prescribing the selection of 
certain farm types to which interventions can be targeted or upscaled, or 

to give context into derived relationships and aid interpretation of 
observed responses to interventions (Alvarez et al. 2014). 

Applications of farm typologies have been broad with many different 
foci. For example, resource endowment typologies have been used to 
group households into those with more or less resources available, to 
help understand differences between farms in terms of productivity, 
poverty and constraints (Rusere et al. 2019, Hammond et al. 2020, 
MacLaren et al. 2022). Functional typologies of livelihood strategies 
have been used to understand differences in soil fertility management 
and nutrient resource flows (Tittonell et al. 2005, Tittonell et al. 2010), 
to assess resource use efficiency to target agricultural interventions 
(Kansiime et al., 2018), to understand differences in food security and 
farm incomes (MacLaren et al. 2022), and to understand diversity across 
regions of Zambia (Alvarez et al. 2018, Silva et al. 2023). Combined 
structural and functional typologies have been used to identify farm 
types based on household opportunities and constraints for the targeting 
of agricultural interventions and innovations (Kuivanen et al., 2016a; 
Berre et al., 2019), to what extent ecological intensification practices 
need to be focussed on specific farm types (Kansiime et al., 2021), to 
understand diversity in small wetland farming systems (Sakané et al., 
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2013), to understand diversity in African farming systems in the context 
of soil fertility management (Giller et al. 2011), and in scaling-up of field 
and farm-level model results to a regional level (Righi et al. 2011). 
Hammond et al. (2020) used typologies to identify farm types for pri-
oritising engagement and geographical locations for investment and 
targeting decision support systems whilst Rusere et al. (2019) used them 
to identify and link specific ecosystem services with suitable ecological 
intensification options. In each case, typologies have given context to 
the wider research question by simplifying the highly heterogeneous 
landscape of farming systems and farms. 

However, along with the broad application of typology construction, 
is the wide array of methods available to construct such typologies. In 
many cases, on-farm studies need to be representative of a wide range of 
different characteristics. Established survey protocols have addressed 
this issue by using multivariate statistical techniques to define distinct 
farm typologies (Alvarez et al. 2014). The most common approach is to 
apply a principal components analysis to derive a reduced dimensional 
representation of the data followed by a hierarchical cluster analysis to 
identify the distinct typologies (Kansiime et al., 2021; Sakané et al., 
2013; Alvarez et al. 2018, Blazy et al. 2009, Rueff et al. 2012). Variations 
on this approach have included the use of non-hierarchical cluster 
methods such as k-means (Kansiime et al., 2018; Kuivanen et al. 2016b) 
or PAM (partitioning around mediods) (Kuivanen et al., 2016a). Addi-
tional post-hoc refinement of the identified clusters has been done 
manually (Tittonell et al. 2010) through e.g. additional categorical 
variables such as gender of the household head (Kansiime et al., 2021). 
Alternatively, variations on the dimension reduction step include using 
multiple correspondence analysis (for categorical variables) or multi- 
dimensional scaling (MDS) (Pacini et al., 2014; Righi et al. 2011), or 
to bypass the dimension reduction step entirely (MacLaren et al. 2022, 
Hammond et al. 2020). The latter two (MDS or no dimension reduction) 
have the advantage of allowing both quantitative and qualitative data to 
be included in the typology definitions. Despite this, for those studies 
that could include qualitative variables, they have often been relegated 
to ancillary roles in refining clusters rather than in the primary con-
struction step (Kansiime et al., 2021; Pacini et al., 2014). 

In contrast to the statistical definition of typologies, farm typologies 
have also been defined through expert knowledge with the intention to 
picking out nuanced relationships and capturing the dynamic nature of 
farming characteristics (e.g., farm and herd size may vary year-to-year, 
Rusere et al. 2019, Kuivanen et al. 2016b). In both the expert derived 
typologies and those defined through statistical techniques, the litera-
ture emphasises the importance of variable selection and ensuring this is 
related to the driving hypotheses of interest. We do not focus on variable 
selection in this paper but refer the reader to e.g., Hammond et al. 
(2020), Alvarez et al. (2014) and Kuivanen et al. (2016b). 

Despite the emphasis on the importance of variable selection in the 
construction of typologies, established methods are primarily focussed 
on quantitative variables. There are many qualitative variables that 
might be of interest and, importantly, quantitative proxies for such 
variables may not exist, such as the gender of the farm manager (Molua 
2011, Cairns et al. 2021). Furthermore, not all variables will have equal 
importance in distinguishing farm types. If an on-farm study explicitly 
aims to investigate gender differences (perhaps as a secondary outcome 
measure) then such a variable will be highly important compared to 
others. In contrast, for other studies it might only be of peripheral in-
terest and in such cases one would not wish for this to be a main driving 
factor in the typology definition. Consequently, in this paper, we extend 
established protocols to a) include both qualitative and quantitative 
variables and b) incorporate a weighting structure to give a priori ranks 
of each variable in the typology definition. Furthermore, we highlight 
the need for typologies to be constructed through an iterative approach 
and therefore present an R-shiny application: TypologyGenerator (Has-
sall, 2023) to implement the methods. The proposed methods for con-
structing typologies are demonstrated on a case study of maize 
production in Murehwa District of Zimbabwe. 

2. Materials and methods 

2.1. Case study: Maize production in Murehwa District, Zimbabwe 

This section describes a case study related to the project “Addressing 
malnutrition with biofortified maize in Zimbabwe: from crop manage-
ment to policy and consumers” (IATI Identifier: GB-GOV-13- 
FUND–GCRF-BB_T009047_1). The District of Murehwa was selected for 
the implementation of this project, as maize is the predominant crop and 
malnutrition has remained high in this district, despite significant 
reduction in other districts (ZimVac, 2020). Further, two contrasted 
wards – in particular in terms of soil texture and elevation – were 
selected within the District of Murehwa: Ward 4 and Ward 27. In 
September 2020, a total of 306 farmers representing around 7.5% of the 
population were selected at random, using an adaptation of the Y sam-
pling, in Ward 4 and Ward 27 of Murehwa, and heads of households 
interviewed by a team of 10 trained enumerators using a structured 
questionnaire programmed with the software KoboToolbox (https 
://support.kobotoolbox.org/welcome.html) and uploaded on remotely 
controlled mobile devices (model Famoco FX100, https://www.famoco. 
com/android-devices/handheld-devices/fx100/). The questionnaire 
addressed the following: characteristics of the head of the household, 
size and composition of the household, production capital (e.g., land, 
equipment), land allocation, livestock numbers, livestock production 
and management, crop production and management in homefields and 
outfields, food security and dietary diversity, and income generating and 
food producing activities. The full questionnaire is provided as a sup-
plementary file. 

The goal of the typology was to delineate between relatively ho-
mogeneous groups of farms in terms of their structures, their func-
tioning, and their diet to target interventions around biofortified maize. 
For the analysis, we used: 

- five continuous structural variables (age of the head of the house-
hold, family size, total cropped area, cattle ownership, and sheep and 
goats ownership)  

- two discrete structural variables each with a binary yes/no outcome 
(female-headed household, and education of the head of the house-
hold higher than primary level)  

- three continuous functional variables (total maize produced during 
the 2019–20 season, total area cultivated to maize during the 
2019–20 season, and total quantity of fertilizer applied to maize 
during the 2019–20 season)  

- four discrete functional variables each with a binary yes/no outcome 
(own production as main source of food, crop sales as main source of 
income, use of intercropping, and use of manure)  

- two continuous variables related to nutrition (total number of 
months during which food security was assessed as medium or high 
over the 12 months preceding the interview, and the household di-
etary diversity score in the 24 h preceding the interview)  

- three discrete variables related to nutrition each with a binary yes/ 
no outcome (consumption of plant-based vitamin A rich food in the 
24 h preceding the interview, consumption of animal-based vitamin 
A rich food in the 24 h preceding the interview, and consumption of 
iron rich food in the 24 h preceding the interview) 

All continuous variables except age of the head of the household and 
family size had a skewed distribution and were log-transformed to 
approximately follow a symmetric distribution. 

3. Typology formation 

Typology formation consists of four key steps; variable selection, 
dimension reduction, cluster formation and validation. The main pro-
cess as implemented in TypologyGenerator is outlined in Fig. 1 and 
described below. 
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R-shiny web app: Typology Generator. We have developed an open- 
source R-shiny application (Hassall, 2023) implementing the workflow 
in Fig. 1 as described below. In brief, data can be loaded into the app 
from a standard CSV file. It is assumed that the data have been appro-
priately processed, i.e., any transformation has been performed and for 
categorical variables, appropriate amalgamation of categories has been 
done, etc. 

Variable Selection. With the ever-increasing availability of data, the 
number of potential variables to include in typology construction seems 
limitless. By weighting the input variables, a user can emphasise 
different features in the typology. Variables can generally be grouped 
into similar “types” or categories. These might include, for example, 
structural versus functional variables. Weights can take two forms; i) 
weight variables based on the type of variable and ii) weight individual 
variables within each type. For instance, in the first case, if a typology 
definition was to focus on structural aspects, one might weight these 
components higher than functional variables in a e.g., 2:1 ratio. Addi-
tionally, weights may be defined for individual variables, for instance of 
the structural variables gender may be of most interest and therefore 
have higher weight than the other components. It is typical in the 
literature to discard highly correlated variables to prevent over- 
emphasising certain characteristics. Instead, one can simply down-
weight the correlated variables and retain all components and associ-
ated nuances. 

Both the high-level weighting of categories of variable, the “main 
weights”, and the low-level “individual weighting” are implemented in 
TypologyGenerator. A screenshot of the weights used for the Murehwa 
case study is given in Fig. 2 along with the graphical visualization. 

Dimension Reduction enables a simplification of the, potentially 
many, variables used to define the resulting typologies. To proceed with 
dimension reduction, a dissimilarity or distance matrix is constructed. 
For generality, let sk

ij be the similarity measure between observations i 
and j for variable k and dk

ij the corresponding distance defined by, 
(

dk
ij

)2
= 2

(
1 − sk

ij

)

The overall distance between two observations is then given by the 
weighted sum, 

Dij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

k
wk

(
dk

ij

)2
√

where wk is the associated weight to variable k and 
∑

kwk = 1. Given 
matrix D, multidimensional scaling (MDS) can be used to reduce the 
dimensionality. Where all individual distance measures are metric, 
classical multi-dimensional scaling (principal coordinates analysis) can 
be used. If non-metric measures, such as Bray-Curtis dissimilarities, are 
included, non-metric multidimensional scaling should be used instead. If 
D is given by a matrix of squared (not scaled) Euclidean distance, the 
resulting classical MDS is equivalent to a principal components analysis. 
Choosing the number of dimensions to retain is subjective, but generally 
it is preferable to keep a relatively small number that captures the ma-
jority of the variation of the original data. In addition, if multi- 
collinearity has not been addressed in the weighting options of the 
previous step, a user may wish to scale the resulting orthogonalized 
variables. Let D′ be the Euclidean distance of the reduced dimensional 
representation of the data. 

Multiple dissimilarity measures are available in TypologyGenerator 
and can be selected for each variable in turn (Fig. 1). The dimension 
reduction options as implemented in the Murehwa case study are 
illustrated in Fig. 3. 

Cluster formation. A plethora of clustering methods exist within the 
literature. Here, we have implemented two distinct methods; hierar-
chical clustering and k-means. For hierarchical clustering either the 
matrix D or D′ are used as inputs. The resulting typologies are obtained 
by “cutting” the associated dendrogram at a user defined point to define 
distinct clusters. For k-means, either the original variables or the 
reduced dimensional representation of them are used as inputs. For k- 
means clustering, the number of groups is defined in advance of the 
clustering. This is again a subjective choice and different values can be 
inputted to investigate how the allocations differ. The aim of k-means 
clustering is to minimise the within group sums of squares (equivalently 
to maximise the between group sums of squares) which is displayed in a 
diagnostic plot within TypologyGenerator (Fig. 4). 

Validation is the final step to define the typologies. ANOSIM (analysis 
of similarity) can be used to measure the degree of separation between 
groups (Righi et al. 2011; Pacini et al., 2014. ANOSIM provides an 
analogous approach to ANOVA where the response variable is itself the 
dissimilarity matrix. Here, we implement the approach of permutation 
MANOVA (multivariate analysis of variance) as implemented by the 
adonis2 function in the vegan R package (Oksanen et al. 2022 and 
Anderson, 2001). The result is an ANOVA-like table with statistical 
significance assessed by permutation of whether the groups are statis-
tically different or not. 

In addition, a number of visual assessments can be made to a) 
investigate how well each variable is represented in the reduced 
dimensional space (if a dimension reduction step is chosen) b) investi-
gate how well each variable is separated between clusters and c) what 
the clusters represent in terms of the original variables. These are 
illustrated in Figs. 7 and 8 for the Murehwa case study with a full set of 
graphical assessments given in Appendix A2. 

For the purposes of the typology comparison study, two quantitative 
assessments regarding the cluster definition are made. These are i) the 
evenness of the resulting groups and ii) the “clarity” of the groups. To 
calculate the evenness, we used Pielou’s evenness index often used as a 
measure of species evenness in biodiversity studies. This is given by, 

J =
H

Hmax
,

where H is the Shannon diversity index given by H = −
∑

ipilnpi where pi 
is the proportion of observations belonging to group i and Hmax is given 
by the maximum possible value of H (i.e., if every group was of equal 
size). J is constrained between 0 and 1. The less even the clustering, i.e., 

Fig. 1. Schematic of typology formation.  
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Fig. 2. Screenshots from TypologyGenerator illustrating how variables can be categorised and individually weighted. The variables can be assigned to each of the 3 
defined categories. In addition, the individual variables can be weighted differently within each category. The overall weight of each variable is updated auto-
matically to show the relative weights between all variables in the data. 
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more dominated by 1 group, the lower the value of J. To calculate the 
“clarity”, we calculate the range of dendrogram heights for which the 
chosen number of clusters would be obtained. 

4. Results 

Here we investigate the effect of different options on the construction 
of typologies for the Murehwa sampling survey. In total, 36 different 
parameter sets were explored investigating the effect of variable cate-
gorisation (3 categories vs 1 category), high level weighting of the cat-
egories (equal weight vs doubling the impact of structural variables), 
binary variables (included or not), low level individual weighting of the 
binary variables (equal to continuous variables or downweighted by a 
factor of 2 or 3) and dimension reduction (either no reduction, or a PCO 
reduction satisfying a 40% or 50% variance explained threshold). In all 
cases, a hierarchical clustering approach with complete linkage was 
used with a visual assessment of the dendrogram to define the final 
number of clusters. The results are shown in Table 1 and summarised in 
Fig. 5. 

It is clear that the impact of different typology options differs 
depending on the input data and in combination with other options. For 
instance, where binary variables are included, in general greater sepa-
ration between groups (larger F-statistics) is obtained when binary 
variables are given equal weighting to continuous variables. The 
exception, however, occurs when a PCO is used and dimensions are 

retained that explain 40% of the total variation. Here, it is preferable to 
downweight binary variables but this in turn seems to depend on the 
overall weighting chosen for the variable categories. It is also interesting 
to note that the impact of the high-level weighting differs in each sce-
nario (e.g., to include or exclude a dimension reduction step). This is 
perhaps unsurprising due to the different amounts of data being fed into 
the algorithms in each case and highlights the need to investigate the 
typology options each time. In general, including a categorisation of the 
different input variables improves the distinctness of the typology 
definition, certainly when the binary variables are included. It is 
tempting to conclude that including a dimension reduction step im-
proves the distinctness of the typology groups, however, direct quanti-
tative comparisons using the F-statistics from an analysis of similarity 
cannot be made as the input data are different. Having said this, the fact 
the F-statistics increase as the dimension reduction is included implies 
that more background noise is being removed and the algorithms are 
finding it easier to define the clusters. This does, however come at the 
cost of interpretation as it can be difficult to identify the variables that 
are principally responsible for the resulting classification due to the 
additional step of dimension reduction. 

Although the F-statistics give an assessment of whether the identified 
typologies are statistically distinct, one may also wish to have other 
features in the typologies. For instance, the cluster evenness gives an 
indication of how equal the group sizes are in the resulting typologies 
and the cluster clarity indicates how “easy” it was to define the 

Fig. 3. Screenshot from TypologyGenerator 
illustrating the options available for dimen-
sion reduction. Once a user has decided to 
implement the dimension reduction step 
along with whether metric or non-metric 
multi-dimensional scaling is to be used, a 
diagnostic plot showing the accumulated 
variance accounted for by each dimension is 
shown allowing the user to select an appro-
priate number of dimensions for downstream 
analysis. The user can choose to scale the 
resulting orthogonalized variables.   
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appropriate cut point on the dendrogram. These are shown in Fig. 6. 
Cluster evenness is generally best when more data (binary variables 
included and no dimension reduction) is used. Cluster clarity appears to 
be greater when binary variables are excluded but when they are 
included, clarity is generally improved under a dimension reduction 

step. Examples of different dendrograms exhibiting different levels of 
evenness and clarity are shown in Appendix A3. 

Fig. 4. Screenshots from TypologyGenerator illus-
trating the options for clustering. Two methods of 
clustering are currently available in the software i) 
hierarchical clustering (with four possible linkage 
methods) and ii) k-means clustering. In each case, 
figures are produced to aid the user in selecting an 
appropriate number of clusters. For the hierarchical 
clustering, a dendrogram is shown indicating how 
the observations are grouped. For k-means clus-
tering, the between group sums of squares and 
within group sums of squares criteria are shown. 
The user then selects an appropriate number of 
clusters, ideally identifying an ’elbow’ in the 
criteria as the number of clusters change.   
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5. Case study 

To understand farming household heterogeneity in Murehwa, we 
developed a delineation through the TypologyGenerator. The final ty-
pology selected for the Murehwa case study consisted of the following 
options. Within each category of variables (functional, nutritional and 
structural), continuous variables were given three times as much weight 
as binary variables. A PCO was done to retain three dimensions and four 
cluster were delineated from the resulting dendrogram (Fig. 7). 

As seen in Fig. 8, the four identified typologies represent different 
characteristics of the farming landscape. Specifically,  

- Type 1 are relatively large farms, with relatively large herds, 
depending on crop production for both food and income  

- Type 2 are medium-sized farms with diversified livelihoods (crop 
production is not the main source of food and income for a large 
proportion of farms in that category)  

- Type 3 are relatively small farms, with a high proportion of female- 
headed household, depending on crop production for both food and 
income  

- Type 4 are vulnerable households, with small farms and small herds, 
dependent on off-farm activities. 

Thus, although wealth is a clear demarcation between typologies, we 
see a much more nuanced description of resource endowment through 
these typologies. In particular, Type 1 and 2 are relatively food secure 
but it is only Type 1 that demonstrates a high dietary diversity score with 
food rich in iron or animal sourced vitamin A. Education scores are 

relatively consistent across the four Types although a greater propensity 
for male-headed households is seen in Types 1 and 2. Type 1 tends to 
have quite distinct agronomical characteristics compared to Types 2–4 
with higher use of manure, compost and fertilizer and larger herds of 
both cattle and small ruminants. 

These typologies formed the basis of a stratified random sampling 
scheme where participants were selected for a program of targeted in-
terventions around biofortified maize. The results of this study will be 
the focus of separate papers and it is anticipated that the derived ty-
pologies will give context to the wider research question by simplifying 
the highly heterogeneous landscape of smallholder farms. 

6. Discussion 

The selection of variables to be used in the construction of farm ty-
pologies will primarily be context driven and it is the belief of the au-
thors that the mathematical constraints of the typology construction 
should have as little impact on the choice of variables as possible. Spe-
cifically, no constraint on whether data should be quantitative or 
qualitative should be imposed. It is the experience of the authors that 
choosing to exclude qualitative variables can have large impact on the 
resulting typologies and as such, the decision to exclude or include them 
should be done in an informed way as implemented in the 
TypologyGenerator. 

Of course, not all variables may be suitable candidates for selection. 
Data quality, as ever, remains one of the most critical assessments for 
inclusion. More subtly, variables may need editing in various ways; 
examples include combining categories of a qualitative variable if 

Table 1 
Results of typologies constructed under varying parameterisations. The number of dimensions retained in the PCO was defined by the number taken to explain a 
specific threshold of variance (either 40 or 50%). F-values and associated p-values were obtained from an analysis of dissimilarity of the resulting clusters.  

Binary 
Variables 

Binary weights 
(downweighted 
factor) 

Variable 
categorisation 

Category 
weights 

Dimension 
Reduction 

Threshold for 
dimension 
reduction 

Number of 
dimensions 
retained 

Number 
of 
clusters 

F value 
(Analysis of 
dissimilarity) 

P value 
(Analysis of 
dissimilarity) 

excluded NA No NA No NA NA 3  41.30  0.001 
excluded NA Yes 1 No NA NA 4  44.26  0.001 
excluded NA Yes 2 No NA NA 4  37.61  0.001 
excluded NA No NA Yes exceed 40% 2 4  196.62  0.001 
excluded NA Yes 1 Yes exceed 40% 2 3  168.35  0.001 
excluded NA Yes 2 Yes exceed 40% 2 3  208.56  0.001 
excluded NA No NA Yes exceed 50% 3 4  88.05  0.001 
excluded NA Yes 1 Yes exceed 50% 2 3  168.35  0.001 
excluded NA Yes 2 Yes exceed 50% 3 3  91.76  0.001 
included 1 No NA No NA NA 5  26.52  0.001 
included 1 Yes 1 No NA NA 3  32.19  0.001 
included 1 Yes 2 No NA NA 4  33.50  0.001 
included 2 No NA No NA NA 3  22.60  0.001 
included 2 Yes 1 No NA NA 4  21.59  0.001 
included 2 Yes 2 No NA NA 3  25.05  0.001 
included 3 No NA No NA NA 4  18.11  0.001 
included 3 Yes 1 No NA NA 3  26.78  0.001 
included 3 Yes 2 No NA NA 4  23.35  0.001 
included 1 No NA Yes exceed 40% 3 4  99.36  0.001 
included 1 Yes 1 Yes exceed 40% 3 4  92.42  0.001 
included 1 Yes 2 Yes exceed 40% 3 3  125.14  0.001 
included 2 No NA Yes exceed 40% 3 5  104.47  0.001 
included 2 Yes 1 Yes exceed 40% 3 4  98.32  0.001 
included 2 Yes 2 Yes exceed 40% 3 4  80.37  0.001 
included 3 No NA Yes exceed 40% 4 3  61.46  0.001 
included 3 Yes 1 Yes exceed 40% 3 4  113.43  0.001 
included 3 Yes 2 Yes exceed 40% 4 3  62.66  0.001 
included 1 No NA Yes exceed 50% 4 4  60.78  0.001 
included 1 Yes 1 Yes exceed 50% 4 4  69.59  0.001 
included 1 Yes 2 Yes exceed 50% 4 4  68.39  0.001 
included 2 No NA Yes exceed 50% 5 3  44.31  0.001 
included 2 Yes 1 Yes exceed 50% 5 3  50.40  0.001 
included 2 Yes 2 Yes exceed 50% 5 3  41.59  0.001 
included 3 No NA Yes exceed 50% 5 3  40.81  0.001 
included 3 Yes 1 Yes exceed 50% 5 4  54.58  0.001 
included 3 Yes 2 Yes exceed 50% 5 5  45.52  0.001  
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individual group sizes are too small or transforming variables to ensure 
efficient representation of the spread. These edits will result from a 
thought-driven process and several iterations, influenced by the impact 
on the downstream analysis, are likely to be needed. One further 
consideration is the presence of (multi-)collinearity between variables. 
Where multiple variables are highly co-linear, a greater emphasis is 
placed on this feature in the resulting cluster analysis. For example, 
consider the extreme case where two variables are perfectly correlated, 
then the same feature will have twice as much contribution to the dis-
tance measure used for clustering compared to any variable to which it is 
not correlated. To address this, studies often run a pre-processing step to 
identify correlated variables (e.g., via PCA) and to select a subset that 
are independent. By providing a framework of weighting variables, we 
allow users to input all variables (collinear or not) with equal weight, i. 
e., each of two collinear variables should be given an individual weight 
of 0.5. Note, a direct replacement of these variables with an orthogo-
nalized version (e.g., the PC scores) will not address the underlying issue 
unless the orthogonalized variables are also subsequently standardised. 

More generally, selection of weights will be driven by a priori 
knowledge of what the typologies should represent but as it is a sub-
jective decision, an iterative procedure should be implemented to un-
derstand the sensitivity of the resulting typologies. There are many 
subjective choices in the process to reach a typology definition, some of 
which will be more clearcut than others. A thorough validation process 
will give an assessment of the robustness of the resulting typologies to 
these decisions. Validation will consist of i) investigating how well each 
variable is represented in the dimension reduction step, ii) investigating 
how robust the cluster groups are defined, and iii) what the clusters 
represent in terms of the original variables. TypologyGenerator allows a 
user to investigate these features through a visual assessment and it 
remains an open challenge to provide a more automated quantitative 
assessment. 

Creating farm typologies involves a series of both subjective and 
objective decisions as well as the use of multiple statistical methods 
(dimension reduction, clustering, and multivariate significance testing). 

Consequently, typologies may be a somewhat intimidating undertaking 
for many researchers in agriculture, who are often expert agronomists, 
ecologists, and/or social scientists (among others). Similarly, to readers 
of published typology studies who are unfamiliar with the approach, it 
may be difficult to disentangle the subjective from objective steps when 
considering the strength and relevance of a study’s findings. To help 
overcome these challenges, this paper and the associated TypologyGen-
erator lay out a clear framework of the steps involved in typology gen-
eration and the possible options at each step, alongside visualisations 
and diagnostic tools to help researchers validate their decisions. We 
therefore hope to help researchers both utilise the full potential of the 
typology method and to report their steps taken and decisions made in a 
systematic way that ensures robust conclusions. 

Deriving farm typologies remains a highly relevant technique for 
describing the highly heterogeneous landscape of small-holder farmers 
in rural sub-Saharan Africa. Previous studies have demonstrated that 
different farm types in the study area (and in other areas in rural sub- 
Saharan Africa) have different soil fertility management practices, 
leading to different level of crop productivity (Chikowo et al. 2014). In 
particular, through the delineation of a farm typology we are able to 
target interventions (different farm types being characterized by 
different resources, constraints and opportunities, potentially affecting 
their adoption of technologies) and to scale technologies (i.e., to un-
derstand how representative a particular farm is of the larger farm 
population). 

7. Conclusion 

This paper has described a unified framework for constructing ty-
pologies and provided an open-source software application that imple-
ments this framework. By doing so, we provide the research community 
with an easily accessible route to develop typologies, emphasising the 
need for an iterative approach investigating the impact of individual 
methodologies, e.g. to include a dimension reduction step or not. We 
have demonstrated how the myriad of options available in the steps of 

Fig. 5. F-statistics as obtained from the analysis of similarity for each combination of input options to the TypologyGenerator. Note, F-statistics are only directly 
comparable for typologies based on the same input data and should therefore only be compared within each panel. 
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constructing farm typologies can have great influence on the resulting 
groups through the use of statistical summaries describing the separa-
tion of clusters. 

Defining a small number of distinct farm typologies can be very 
efficient for capturing the main sources of diversity between different 
farming systems and we have applied our methods to defining a four- 

group typology over 306 households in Murehwa district of 
Zimbabwe. The four groups provide a nuanced separation based pri-
marily on resource endowment but with additional emphasis on gender, 
diet and agronomy. This typology has formed the basis of a stratified 
random sampling scheme that was utilised in a subsequent on-farm 
study of maize variety performance, the results of which will be 

Fig. 6. Cluster evenness (top panel) and clarity (bottom panel) for each of the scenarios listed in Table 1.  
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presented in a subsequent manuscript. 

8. Software and/or data availability section 

All methods described in this paper have been incorporated into an 
open source software TypologyGenerator, freely available at https://gith 
ub.com/KirstyLHassall/TypologyGenerator with DOI https://doi. 

org/10.5281/zenodo.7727862(Hassall, 2023). Alternatively, the users 
can access the app directly at https://kirstylhassall.shinyapps.io/Typolo 
gyGenerator/. 

The Murehwa case study data is available to download from the 
GitHub repository under the file TP.csv. 

Fig. 7. (A) Dendrogram representing the hierarchical agglomerative clustering using Ward’s method (four clusters were identified), and representation of the four 
farm types identified (B) on the plane defined by the first two principal components, (C) on the plane identified by the first and the third principal component, and 
(D) on the plane identified by the second and the third component. 

Fig. 8. Heatmap representing the mean value (age of the head of the household, number of cattle, cultivated area, family size, quantity of fertilizer used on maize, 
household dietary diversity score, maize area, maize production, quantity of manure used on maize, and number of small ruminants) and the proportion of 
households concerned (consumption of animal-based vitamin A-rich food, crop sales as the main source of income, education of the head of the household higher 
than primary level, female-headed household, proportion of the year the household as adequate food security, consumption of iron-rich food, own production as the 
main source of food, consumption of plant-based vitamin A-rich food, and use of manure and compost) for key variables. 
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