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Abstract Biogeochemical cycling of elements largely occurs in dissolved state, but many elements may
also be bound to natural nanoparticles (NNP, 1–100 nm) and fine colloids (100–450 nm). We examined the
hypothesis that the size and composition of streamwater NNP and colloids vary systematically across Europe.
To test this hypothesis, 96 stream water samples were simultaneously collected in 26 forested headwater
catchments along two transects across Europe. Three size fractions (~1–20 nm, >20–60 nm, and >60 nm) of
NNP and fine colloids were identified with Field Flow Fractionation coupled to inductively coupled plasma
mass spectrometry and an organic carbon detector. The results showed that NNP and fine colloids
constituted between 2 ± 5% (Si) and 53 ± 21% (Fe; mean ± SD) of total element concentrations, indicating a
substantial contribution of particles to element transport in these European streams, especially for P and Fe.
The particulate contents of Fe, Al, and organic C were correlated to their total element concentrations, but
those of particulate Si, Mn, P, and Ca were not. The fine colloidal fractions >60 nm were dominated by
clay minerals across all sites. The resulting element patterns of NNP <60 nm changed from North to South
Europe from Fe- to Ca-dominated particles, along with associated changes in acidity, forest type, and
dominant lithology.

1. Introduction

Networks of small streams and large rivers transport mobile compounds over long distances and drive their
export from the continents to the oceans (Bishop et al., 2008; Dynesius & Nilsson, 1994). Environmental water
samples contain a wide variety of chemical species, including simply hydrated ions, molecules, colloidal
particles, and coarser grains (Stumm & Morgan, 1981). The partitioning between these species controls

GOTTSELIG ET AL. COLLOIDS IN EUROPEAN FOREST STREAMS 1592

PUBLICATIONS
Global Biogeochemical Cycles

RESEARCH ARTICLE
10.1002/2017GB005657

Key Points:
• Stream phosphorus is largely bound
to natural nanoparticles and colloids

• The chemical composition of colloids
varies systematically from Northern to
Southern European streams

Supporting Information:
• Supporting Information S1

Correspondence to:
E. Klumpp,
e.klumpp@fz-juelich.de

Citation:
Gottselig, N., Amelung, W., Kirchner,
J. W., Bol, R., Eugster, W., Granger, S. J.,…
Klumpp, E. (2017). Elemental
composition of natural nanoparticles
and fine colloids in European forest
stream waters and their role as
phosphorus carriers. Global
Biogeochemical Cycles, 31, 1592–1607.
https://doi.org/10.1002/2017GB005657

Received 23 FEB 2017
Accepted 29 SEP 2017
Accepted article online 5 OCT 2017
Published online 26 OCT 2017

©2017. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0002-4920-4667
http://orcid.org/0000-0001-6577-3619
http://orcid.org/0000-0001-6067-0741
http://orcid.org/0000-0001-6875-9978
http://orcid.org/0000-0001-6058-1466
http://orcid.org/0000-0001-7892-2708
http://orcid.org/0000-0003-3541-672X
http://orcid.org/0000-0002-2906-5954
http://orcid.org/0000-0002-5169-5717
http://orcid.org/0000-0003-0855-5994
http://orcid.org/0000-0002-8051-8517
http://orcid.org/0000-0002-4810-9414
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-9224
http://dx.doi.org/10.1002/2017GB005657
http://dx.doi.org/10.1002/2017GB005657
http://dx.doi.org/10.1002/2017GB005657
http://dx.doi.org/10.1002/2017GB005657
http://dx.doi.org/10.1002/2017GB005657
mailto:e.klumpp@fz-juelich.de
https://doi.org/10.1002/2017GB005657


elemental cycling, transport, and loss processes (Stolpe et al., 2010). Understanding the distribution of the
elements between different physicochemical binding forms is thus an important prerequisite for understand-
ing the mechanisms of aquatic and terrestrial ecosystem nutrition (Benedetti et al., 1996; Hasselloev et al.,
1999; Tipping & Hurley, 1992; Wells & Goldberg, 1991). This is especially important for those nutrients that
are frequently limiting like phosphorus (P) (Jarvie et al., 2012). Indeed, the recent review by Bol et al. (2016)
highlighted the (unexpected) scarcity of data on colloidal P fluxes in temperate forest ecosystems, which
severely limits accurate quantification of forest P nutrition and losses.

Research on nutrient acquisition and cycling processes in stream waters and terrestrial ecosystems has often
focused on the “dissolved fraction.” This fraction is frequently operationally defined as the aqueous phase
that passes a < 0.45 μm filter (Marschner & Kalbitz, 2003, and references therein). However, it is increasingly
recognized that naturally occurring nanoparticles (NNP, d = 1–100 nm), and also larger particles belonging to
the overall term “colloids” (d = 1 nm–1 μm), can be substantial components within this operational definition
of elements present in the dissolved fraction. Colloids smaller than 0.45 μm (≡450 nm) are in the present
study defined as fine colloids. In natural aqueous phases up to 100% of the total elemental concentrations
of metals, and also of specific nutrients like P, can be associated with such particles (Gottselig et al., 2014;
Hart et al., 1993; Hill & Aplin, 2001; Jarvie et al., 2012; Martin, Dai, & Cauwet, 1995). Hence, identifying NNP
and colloids in water samples is necessary to better understand the cycling and transport of elements in
catchments and to determine their biological availability. Headwater catchments are specifically interesting
for this analysis because their input variables can be closely defined, thereby facilitating data interpretation.
However, it is unknown how the composition and size distributions of NNP and fine colloids vary between
headwater catchments on a continental scale. Large-scale studies are advantageous in this context to identify
more overarching and broadly applicable principles of NNP and fine colloid composition, and their variations,
in natural waters.

Prior studies have performed pioneering investigations on particulate P pools in aqueous and terrestrial
systems (e.g., Binkley et al., 2004; Espinosa et al., 1999; Sharpley et al., 1995), yet through the applicability
of modern particle analysis/fractionation techniques, these functionally defined particulate fractions could
be examined more closely and thus allow a more accurate subcategorization of elements in the “particulate”
phase. Further, the focus of dissolved elements as being ions of (hydr)oxized elements in aqueous solution
needs to be reconsidered due to the presence of particles within the operationally defined dissolved range
(cf., e.g., Gimbert et al., 2003; Lyven et al., 2003; Regelink et al., 2011). In this regard, field flow fractionation
(FFF; Giddings et al., 1976) is a viable tool for these analyses, because it is a nearly nondestructive technique
for the fractionation of NNP and fine colloids, thus eliminating the need for pretreatments which can alter the
particle composition or size range.

The specific reactivity of nanoparticles is high, in comparison to larger-sized colloids, (Hartland et al., 2013;
Qafoku, 2010) rendering them potentially predominant carriers of nutrients in ecosystems. It has already
been shown that NNP can bind the majority of P present in soil solutions (Hens & Merckx, 2001) and stream
waters (Gottselig et al., 2014, 2017) and that they can even support plant uptake of P from solution (Montalvo
wt al., 2015). First results indicate that organic matter, Fe, and/or Al may be major binding partners for P in
NNP of an acidic forest river system and that the binding of P varies depending on the stream water compo-
sition (Baken, Regelink et al., 2016; Gottselig et al., 2014). Under the acidic conditions that characterize many
natural settings (particularly many coniferous forest soils), surfaces of metal (hydr)oxides are positively
charged and thus act as strong binding partners for negatively charged nutrients like P (Hasselloev & von
der Kammer, 2008; Richardson, 1985) and organic matter (Celi & Barberis, 2005). Adsorbed P and organic mat-
ter can even act as stabilizing agents for colloidal suspensions of particles (Ranville & Macalady, 1997; Six
et al., 1999). Organic matter associated with NNP and larger colloids also contains P (Darch et al., 2014).
Some authors even assume that in the smaller size ranges, organophosphorus compounds can also act as
the primary building blocks of NNP (Regelink et al., 2013), although these building blocks are more commonly
thought to be aluminosilicates, organic matter (org C) or oxides and/or hydroxides of iron (Fe), aluminum (Al),
and manganese (Mn) (Baken, Regelink et al., 2016; Hartland et al., 2013; Lyven et al., 2003; Regelink et al.,
2011). At elevated pH levels in stream water, calcium (Ca) is increasingly present in the colloids and asso-
ciated with P in the form of Ca phosphates. These Ca phosphate colloids can either be inmineral form or asso-
ciated on organic/organomineral complexes or clays. In the case of Ca colloids, Ca is enriched in the colloidal
phase in comparison to larger suspended matter (Ran et al., 2000), especially when surface waters drain
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carbonate-rich soils (Hill & Aplin, 2001). This highlights that Ca may also be a building block element of
colloids (Dahlqvist et al., 2004), depending on stream water chemistry. The pH-dependent speciation of
elements and their related affinity to particles give rise to the hypothesis examined in our study, which
states that the composition and size distribution of NNP and fine colloids may not be uniform across large
regions. If this is not the case, at least the speciation of elements and their presence in particle fractions
would be expected to differ between acidic and alkaline stream waters.

Despite their important role in element binding, NNP and fine colloids were not considered as a substantial
contributor to nutrient cycling in the past (e.g., Vitousek, 1982) and are still often neglected in pioneering stu-
dies on the analysis of influential factors on terrestrial nutrient availability (e.g., Fernández-Martínez et al.,
2014). Examining the significance of NNP and fine colloids as well as their composition as a function of forest
stream water pH on a continental scale can provide insights into their ecological relevance, particularly if one
can use basic water quality parameters to estimate the total elemental concentrations that are associated
with NNP and colloids. Better information on the chemical form and reactivity of elements in the putative
“dissolved” fraction, in turn, can improve estimates of nutrient availability to plants and microorganisms.

For this study, it was hypothesized that NNP and fine colloids are ubiquitous carriers for elements in forested
European river systems but that their composition varies along continental-scale gradients. The respective
variations in climate, vegetation, soil, and freshwater characteristics (e.g., pH) substantially influence the
physicochemical forms of P and other ecologically important constituents in forested freshwaters, thus,
potentially revealing systematic controlling effects on NNP and fine colloid concentrations and composition.
To test this hypothesis, 96 stream water samples from 26 forested sites from across Europe were
collected. These 26 sites cover a wide range of soil types and parent materials, under deciduous or coniferous
forests, over very differently sized catchments, and spanning different elevations and topographic gradients

Table 1
Characteristics of Each European Site

Site Abbr. MAT MAP Soil type Dominant forest type Bedrock type Catch Elev Slope Forest MAR

Aneboda AB 5.8 750 Podzol Coniferous Granitea 0.19 225 0.13 0.73 280
Agia AG 15.8 691 Cambisol Broadleaf Gneissb 0.75 916 0.28
Allt a’ Mharcaidh AM 5.8 1110 Podzol Coniferous Granitea 9.79 716 0.02
Bode BO 7.1 1600 Cambisol Coniferous Shale and Greywackea 1.27 515 0.07 1.00
Barranco de Porta Coeli BPC 14.5 450 Fluvisol Mixed sandstonea 3.20 523 0.21 0.50
Costiglione CO 15.9 1183 Cambisol Broadleaf Carbonaticb 11 563 0.32 1.00 225
Cotley Wood CW 10.1 1044 Cambisol Broadleaf Siltstone 0.50 146 0.08 1.00
Erlenbach EB 6.0 2294 Gleysol Coniferous Flysch 0.73 1330 0.24 0.39 1778
Franceschiello FR 15.9 1183 Cambisol Broadleaf Carbonaticb 11 563 0.32 1.00 225
Gårdsjön GS 6.7 1000 Podzol Coniferous Granitea 0.07 127 0.22 0.65 520
Krycklan KR 1.8 614 Podzol Coniferous Greywackea 679 260 0.87 311
Lettosuo LE 4.6 627 Histosol Coniferous Gneiss 1.25 111 0.01 1.00 413
Lägeren LÄ 8.4 930 Cambisol Broadleaf Limestoneb 680 0.35 1.00
Montseny MS 9.0 870 Inceptisol Coniferous Schist
La Peyne LP 12.0 818 Leptosols Broadleaf Schista 110 305 0.25 1.00
Lümpenenbach LÜ 6.0 2426 Gleysol Coniferous Flysch 0.88 1260 0.15 0.19 2001
Lourizela LZ 13.8 1300 Cambisol Coniferous Schista 0.65 365 0.37 1.00 775
Norunda NO 5.5 730 Regosol Coniferous Granitea 6084 45 1.00 250
Pallas PA �1.4 484 Podzol Coniferous Granitea 5.15 308 0.08 0.60 220
Piano Rabelli PR 15.9 1183 Cambisol Broadleaf Carbonaticb 11 563 0.32 1.00 225
Ribera Salada RS 15.6 800 Cambisol Broadleaf Carbonaticb 1483 1.00
Soroe SR 8.5 564 Mollisol Broadleaf (Glacial moraine)b 37 0.07 1.00
Strengbach SB 6.0 1400 Podzol Coniferous Granitea 0.80 1015 0.15 1.00 814
Serra de Cima SC 13.8 1300 Cambisol Broadleaf Schista 0.52 432 0.16 1.00 775
Vogelbach VB 6.0 2159 Gleysol Coniferous Flysch 1.58 1285 0.23 0.63 1601
Wüstebach WB 7.0 1220 Cambisol Coniferous Shalesa 3.85 612 0.04 1.00 280

Note. Climate data, bedrock and soil type, and dominant forest type provided by site operators. Abbr. = abbreviation, MAT = mean annual temperature (°C),
MAP = mean annual precipitation (mm), catch = catchment size (km2), elev = average elevation (m), slope = average slope, forest = proportion forest cover,
MAR = mean annual runoff (mm).
aSiliceous bedrock group. bCarlcareous bedrock group (see later Table 4).
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(Table 1). FFF (Giddings et al., 1976; Hasselloev et al., 1999; Regelink et al., 2014), coupled online to high-
precision elemental detectors, was used for the fractionation of NNP and colloids. To untangle the
importance of single factors, a correlation matrix between all particulate elemental concentrations, total
elemental concentrations, and the basic site parameters such as mean annual temperature (MAT), mean
annual precipitation (MAP), forest coverage, slope inclination, and runoff was also investigated.

2. Materials and Methods
2.1. Sampling

Twenty-six sites throughout Europe were selected along two transects, one from northern Finland to
Portugal and the other from Scotland to Greece (Figure 1 and Table 1). Each site is a forested headwater
catchment with low-intensity forest management practices, high tree coverage, and without inflows from
urban or agricultural settings (for site abbreviations, see Table 1). Mean annual temperatures ranged between
�1.4°C (PA, Finland) and +15.9°C (FR, CO, and PR, Italy) and mean annual precipitation ranged between
450 mm (BPC, Spain) and 2426 mm (LÜ, Switzerland) (Table 1). It was possible to assign a clear dominant for-
est type for 25 of the 26 sites (either coniferous or broadleaf), while the BPC site had 50% coniferous and 50%
broadleaf tree species. Additionally, data on catchment size, average elevation, average slope, percentage
forest cover, and mean annual runoff were collected where available (Table 1). All data were provided by
the current site operators. During sampling, the electrical conductivity, pH, and water temperature of the
water samples ranged substantially from 13 μS/cm (SB) to 1775 μS/cm (BPC), from 4.2 (GS) to 9.5 (RS), and

Figure 1. Location of the 26 sampling sites in Europe along two transects (green dashed lines). Site abbreviations are as
follows: Pallas (PA) and Lettosuo (LE), Finland; Krycklan (KR), Norunda (NO), Gårdsjön (GS) and Aneboda (AB), Sweden;
Soroe (SR), Denmark; Allt a’Mharcaidh (AM) and Cotley Wood (CW), United Kingdom; Wüstebach (WB) and bode (BO),
Germany; Lägeren (LÄ), Vogelbach (VB), Lümpenenbach (LÜ) and Erlenbach (EB), Switzerland; Franchesiello (FR),
Costiglione (CO) and Piano Rabelli (PR), Italy; Agia (AG), Greece; Strengbach (SB) and La Peyne (LP), France; Ribera Salada
(RS), Montseny (MS) and Baranco de Porta Coeli (BPC), Spain; Sierra de Cima (SC) and Lourizela (LZ), Portugal. Black
dotted lines indicate geographical separation between northern (north of 56°N), middle (between 48°N and 56°N) and
southern (south of 48°N) sites.
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from 1.0°C (PA) to 19.9°C (RS) (for complete data of all main stream and tributary samples, see supporting
information Table S1). Up to six samples were taken per site in May 2015 in order to derive a snapshot of
NNP and fine colloid composition and their relevance for P transport across Europe at a given time of the
year. The sampling locations were defined in consultation with the site operators to best reflect main and tri-
butary streams of each catchment, similar to the approach of Gottselig et al. (2014). Sampling was conducted
during base flow conditions. The sampling resulted in a total of 96 samples taken in duplicates in precleaned
PE and glass bottles and shipped cooled to the lab; analysis of NNP and fine colloids was completed within
1 week after sampling. Own unpublished data indicate that during 1 week there is no significant alteration in
the size distribution of NNP and fine colloids, despite selected risks of minor particle reaggregation in the
larger size range. Tominimize the risk of systematic errors due to sampling storage and pretreatment, all sam-
ples were handled, treated, and analyzed in equal manner.

2.2. Asymmetric Flow Field Flow Fractionation

Fractionation of the particles was performed with Asymmetric Flow Field Flow Fractionation (AF4). Briefly, a
0.5 mm spacer, a 1 kDa polyether sulfone membrane, and a 25 μM NaCl eluent solution were applied.
About 5 mL of the PE bottled samples was injected into the AF4 system at 0.3 mL/min tip flow and
3mL/min cross flow and focused for 30 min with 3.2 mL/min focus flow. Thereafter, a 30 min linear cross-flow
gradient down to 0 mL/min with subsequent 40 min constant elution at a detector flow of 0.5 mL/min was
applied. Reference materials (Suwanee River NOM, Humic Acid Standard II, and Fulvic Acid Standard II,
International Humic Substances Society, Denver, USA; Sulfate Latex Standards 8% w/v 21–630 nm;
Postnova Analytics, Landsberg, Germany) were used with the same AF4 conditions used for the samples
for calibration of the particle diameters included in each size fraction. No reference material exists that covers
the diverse particle morphologies and elemental concentrations of environmental samples. Therefore, the
specified hydrodynamic diameters of the particles are equivalent sizes based on the elution time of the refer-
ence materials (c.f. Neubauer et al., 2011; Regelink et al., 2013; Stolpe et al., 2010). The lower size range of the
first fraction was estimated according to the molecular weight cutoff (MWCO) of the membrane.

Online coupling of a UV detector (254 nm) served to initially determine peak elution and turbidity of the
particle fractions. A dynamic light scattering (DLS) device was coupled for online size measurements of
the largest size fraction. Blank runs inserted between sample runs in the measurement sequence showed
no pronounced peaks. A quadrupole inductively coupled plasma–mass spectrometer (ICP-MS) with helium
collision cell technology (Agilent 7500, Agilent Technologies, Japan) and for size-resolved detection of
organic carbon an Organic Carbon Detector (OCD; DOC Labor, Karlsruhe, Germany) was coupled online
to the AF4. The ICP-MS allowed size-resolved detection of Al, Si, P, Ca, Mn, and Fe, and the OCD allowed
size-resolved detection of organic carbon. The ICP-MS system was calibrated through a postcolumn
(Nischwitz & Goenaga-Infante, 2012) multipoint linear calibration injected via a T junction between the
AF4 and the ICP-MS at 0.5 mL/min AF4 injection flow (= detector flow; no cross flow). The standard solu-
tions (0 μg/L, 25 μg/L, 100 μg/L, 250 μg/L, and 500 μg/L) and the internal standards Rh and Y were dis-
solved in 0.5 mol/L HCl. This calibration technique is more complex than injecting the calibration
standards directly into the AF4 syste, but allows more precise correction of instrumental drift and calibra-
tion to higher concentrations without potentially contaminating the following sample (because the stan-
dards do not pass through the AF4). The variations of the ICP-MS peak areas for triplicate measurements
of a representative sample were calculated to be 5.9% for P, 7.6% for Al, 14.0% for Si, 5.3% for Mn, and
15.6% for Fe. The limit of detection was 0.1 μg/L for P, 0.01 μg/L for Al, 3.3 μg/L for Si, 0.01 μg/L for Mn,
and 0.02 μg/L for Fe. Quantitative atomization of the particles in the plasma has already been shown by
Schmitt et al. (2002).

For the OCD coupling, 1 mL sample volume from the glass bottles was injected and focused for 10 min; the
remaining parameters were the same as for ICP-MS coupling. The OCD system was calibrated using dilutions
of Certipur® liquid TOC standard (EN 1484-H3/DIN 38409-H3, potassium hydrogen phthalate in water, stabi-
lized, 1,000 mg/L; Merck Millipore 109017) in double-distilled water at concentrations of 0.05 mg/L, 0.1 mg/L,
0.5 mg/L, 1.0 mg/L, 3.0 mg/L, and 5.0 mg/L. The same calibration standards were also used in determining the
total organic carbon in the stream water samples. For this determination, the AF4 channel was bypassed by
connecting the tip inflow tubing to the detector outlet tubing of the channel. The runtime of the AF4 method
for this data acquisition was 20 min at 0.5 mL/min tip flow. The relative standard deviation of the organic
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carbon concentration for triplicate measurements of a representative sample was calculated to be 2.2%. The
limit of detection for organic C was 0.01 mg/L.

2.3. Quality Control

First investigations on the stability of NNP and colloids were conducted prior to the sampling campaign to
elucidate which sampling, storage, and transport procedures best reflect natural conditions at the time of
measurement. This resulted in a sampling of unprocessed stream water with polypropylene containers; only
samples for organic carbon analysis were taken with precleaned and preequilibrated glass vials. Samples
were always taken in order moving upstream, from the catchment outlet to the headwaters. Containers were
preconditioned in triplicates with stream water before the sample was taken from the center of the flowing
stream without disturbing the sediment. Larger-sized particulates (e.g., visible parts of leaves) were not
included in the water sample. For transport and storage, the samples were kept at a cool to ambient tempera-
ture, but neither were they frozen nor did their temperature ever exceed the stream temperature at sampling.
Sample analysis was conducted as soon as possible after sampling, especially for organic carbon analysis. The
analyses were performed in the order the samples arrived. For a more detailed discussion of circumstances
affecting colloidal stability, see Buffle and Leppard (1995).

Immediately prior to analysis, samples were homogenized through agitation then filtered through 5 μm cel-
lulose nitrate filters (GE Healthcare, Munich, Germany) to avoid clogging of the micrometer-sized AF4 tubing.
No interference of cellulose and/or cellulose nitrate compounds with the org C signal was expected because
both are insoluble in water (Hagedorn, 2006; Roth, 2011). Still, the filters were prerinsed with 15 mL double-
deionized water to eliminate eventual bleeding compounds. Caking was prevented by filtering only small
sample volumes up to 15 mL. Additionally, more than one filter was available per sample, but this was not
needed due to the low turbidity of the samples. Filtration at 0.45 μm was purposely not performed, to avoid
the risk of excluding particles not specific to the given size due to unknown morphological heterogeneity of
the natural particles. Avoiding filtration also avoided the risk of membrane clogging when filtering occurs
close to target size ranges of the analytes, which can result in a severe risk of underestimating NNP and fine
colloidal concentrations (Zirkler et al., 2012).

The recovery of NNP and fine colloids fractionated by AF4 is greatly influenced by interactions of the natural
particles with the membrane, particularly during focus time and at long and/or high cross flows. For natural
samples, a portion of the sample was thus withdrawn from the fractionation process and measured by inde-
pendent ICP-MS analysis (cf. section 3.1), thereby allowing us to relate element yields after fractionation to
those without AF4 treatment. This analysis showed that the different elements associated to NNP and fine
colloids ranged up to 99.5% of total elemental concentration, showing that generally there was no major par-
ticle loss. A more in-depth investigation of the AF4 recoveries with synthetic iron oxyhydroxide colloids
revealed recoveries between 70 and 93% (Baken, Moens et al., 2016). These results are encouraging also
for natural samples due to the similarity of the particle constituents.

2.4. Analysis of Raw Data

ICP-MS raw data were collected in counts per second (cps) using the MassHunter Workstation Software
(Agilent Technologies, Japan), and OCD raw data were recorded in volts detector signal (V) with the AF4 ana-
lytical software (Postnova Analytics, Landsberg, Germany). Raw data were exported to Excel® (Microsoft
Corporation, Redmond, USA) for baseline correction, peak integration, and conversion of peak areas to con-
centrations through multipoint linear calibration. Different pools of elements were considered in this study:
(a) elemental concentrations assigned to the first, second, or third size fraction of NNP and fine colloids (see
section 3.1 for explanation), (b) all particulate elemental concentrations, reflecting the sum of (e.g.) Fe con-
centrations in the first, second, and third fractions combined, and (c) the total concentration of an element
in the sample prior to fractionation. The collective term colloids is occasionally used in our study as an encom-
passing term for the whole size range of nanoparticles and colloids. Concentrations are primarily given in
μmol/L for Al, Si, P, Ca, Mn, and Fe and in mmol/L for org C.

Stream water pH at sampling time was classified according to the Soil Survey Division of the Natural
Resources Conservation Service, U.S. Department of Agriculture (U.S. Department of Agriculture, 1993), in
order to clarify the influence of stream water pH and associated covariates on the relationships between
NNP and fine colloid concentrations and total concentrations. According to this classification, acidic is
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defined as pH < 6.6, neutral pH between 6.6 and 7.3, and alkaline pH values>7.3. Thus, pH was transformed
into a semiquantitative variable, where each range of values is assigned to a given category.

Predictability of elemental concentrations through total concentrations was assessed through log10 transfor-
mation of the elemental concentrations in the fractions and the total sample concentrations. Here we only
considered regressions that achieved an r ≥ 0.71. Further, sites were classified according to location (north,
middle, and south) in Europe. To test if this zoning was able to differentiate element distributions of the
NNP and other fine colloidal fractions, we focused on particulate Fe as redox-sensitive element and particu-
late Si as an indicator of siliceous bedrock and clay minerals. Also, we classified the study sites by major soil
types (dystrophic, eutrophic, and semiterrestrial) and bedrock lithologies (siliceous, calcareous, and flysch), as
well as two main forest types (coniferous/needle versus broadleaf versus mixed; see Table 1). Dystrophic soils
included Podzols, as well as coniferous Cambisols, Leptosols, and Regosols; eutrophic soils were deciduous
Cambisols, Leptosols, and Mollisols; semiterrestrial soils were Fluvisols and Gleysols (the sole Histosol was
not included in this group comparison). Siliceous bedrock included all bedrock types except calcareous stone,
limestone, and flysch. Flysch was assigned to a specific bedrock group, because it usually contains both car-
bonates and silicate minerals; the respective soils sampled were Gleysols (Table 1).

Further, the dependency of elements in the NNP and fine colloid fractions on the total elemental concentra-
tion and the potential predictability of NNP and fine colloidal composition were analyzed through correlation
analysis with Pearson r coefficients, pairwise deletion of missing data (JMP 12.2.0, SAS Institute Inc., USA), and
significance testing using nonparametric group comparisons with the Mann-Whitney U test for comparisons
between two sample sets and with the Kruskal-Wallis analysis of variance (ANOVA) for comparisons among
more than two sample sets (Statistica, Version 13, Dell Inc., Tulsa, USA). To facilitate the examination of con-
trolling factors of NNP and fine colloid composition, correlation matrices followed by principal component
analysis (Statistica, Version 13, Dell Inc., Tulsa, USA) served as an additional tool to reduce the number of vari-
ables and reveal a first structure in the relationships between the variables. Through this, we aimed at an
identification of the site parameters, which are influential on particulate elemental concentrations. Varimax
raw was applied as the rotational strategy for the analysis, to maximize the variances of the squared raw fac-
tor loadings across variables for each factor. Here casewise deletion of missing data was undertaken to ensure
that the same number of cases entered into every analysis. Initially, calculations of the Kaiser-Meyer-Olkin
Measure of Sampling Adequacy (KMO value; IBM SPSS Statistics 22) were performed to extract site para-
meters suitable for PCA analysis. When using all data, KMO was 0.5 and the PCA result was not stable against
random elimination of input data; only with selected input variables, a KMO> 0.6 was achieved and the PCA
was stable against variations in input data. As a follow-up tool, stepwise multiple regression was used, but it
did not yield meaningful results due to the remaining complex interplay of the data.

3. Results and Discussion
3.1. Fractionation of Nanoparticles and Fine Colloids

Similar to findings for a forested watershed in Germany (Gottselig et al., 2014), the application of the AF4 tech-
nique to other forested sites across Europe revealed distinct fractions of nanoparticles and fine colloids
depending on the element investigated (Figures 2a and 2b; cf. supporting information Table S2). In total,
three fractions of NNP and/or fine colloids were distinguishable for most (out of 96 samples, in 58.3% org
C and Si were found in all three fractions, in>85% for Ca and P, and in>95% for Al, Mn, and Fe; cf. supporting
information Table S2) samples. The fractograms included a peak of small-sized nanoparticles (first fraction), a
second peak consisting of intermediate-sized nanoparticles (second fraction), and a third peak containing the
largest-sized nanoparticles and fine colloidal matter (see also peak separation by dashed lines on the x axis in
Figure 2). The peak pattern for each sample is represented by the fractograms of each element (see Figure 2).
The second peak as shown for Krycklan, Sweden, was mainly defined through the Ca signal (violet; Figures 2a
and 2b) due to the absence of other elemental peaks in the second fraction. P was variably detected in one,
two, or three size fractions (Figures 2c and 2d; cf. supporting information Table S2). Hence, three different size
fractions were isolated in this work, in close agreement with Stolpe et al. (2010), who also found three to four
fractions of NPP and fine colloids in the lower Mississippi River, the largest river in North America.

Nanoparticles were the exclusive constituent of the first two fractions and, based on hydrodynamic dia-
meters, accounted for approximately 20% in the third fraction. The first and second fractions consisted of
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nanoparticles with standard equivalent hydrodynamic diameters ranging from 1 kDa (equivalent to 0.66 nm,
equation 2.2, Erickson, 2009) to 20 nm and from above 20 nm to 60 nm, respectively. The third fraction
included nanoparticles larger than 60 nm up to fine colloids of approximately 300 nm in diameter. The DLS
measurements revealed this maximum particle size for all measured samples (c.f. Gottselig et al., 2014, 2017).
Hence, all detected NNP and fine colloids fell into the operationally defined “dissolved phase” (< 0.45 μm).
Substantial signals of the elements Fe, P, Mn, Al, C, and Si were recorded in all three size fractions with
varying intensities, confirming widespread occurrence of NNP and fine colloids in the size range < 450 nm.

The fractograms for P aremarkedly different among three sites spanning across one transect in Europe (Pallas
in North Europe, Bode in Middle Europe, and Ribera Salada in South Europe; PA, BO, and RS in Figure 2c), con-
sistent with the hypothesis that NNP and fine colloid composition and size distribution vary across the

Figure 2. AF4-ICP-MS and AF4-OCD raw data fractograms. (a) Fractogram of Al, Ca, Fe, and org C of one sampling point at Krycklan, Sweden. (b) Fractogram of P,
Si and Mn of same sampling point as a) at Krycklan, Sweden. (c) Fractogram of P of three sampling points at sites in South, Middle, and North Europe (increasing
°N, y axis), North: PA = Pallas, Finland, Middle: BO = Bode, Germany, South: RS = Ribera Salada, Spain. (d) Fractogram of P of three sampling points at sites in
South, Middle, and North Europe (increasing °N, y axis), North: AM = Allt a’Mharcaidh, Scotland, Middle: SB = Strengbach, France, South: FR = Franchesiello, Italy,.
X axes represent the method time in minutes. Focus time was partially cut off. Y axes for Al, Si, P, Ca, Mn, and Fe reflect mass flow in μg/min and for org C
detector signal in V. Fraction borders apply to the ICP-MS signal; for the OCD evaluation these borders were modified because OCD peaks exhibit peak broadening
due to the high volume of the OCD reactor.
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continental scale. More generally, we observed differences in the P distribution within NNP and fine colloids
among the various forested headwater catchments in Europe, that is, sometimes the particulate P was asso-
ciated with clearly distinct fractions (e.g., PA; Figure 2c), whereas for other samples a less distinct fractionation
of P (e.g., BO; Figure 2c) was observed. This exemplary described variation of elemental concentrations in the
three fractions was observed for all recorded elements, supporting the general hypothesis that there are dif-
ferences in the elemental composition between fractions and among the selected European streams. These
patterns were found to be related to site-specific properties such as climate, water chemistry, soil type, and
total streamwater elemental concentrations, that is, we tested in the following to systematize the differences
according to element composition and site properties.

3.2. Significance of NNP and Fine Colloids for Element Partitioning in Water Samples

The percentages of elements bound to NNP and fine colloids (i.e., percentage of all particulate elemental to
total elemental concentration) demonstrated the substantial contribution of NNP and fine colloids to ele-
ment fluxes in natural waters. The average percentages of elements found in the NNP and colloid phases
were 53% for Fe (within the bounds for an interquartile range of 42–65%), 50% for P (36–70%), 26% for
Mn (4–47%), 41%, for Al (28–56%), and 20% for organic C (5–28%) but only 2% for Si (0.1–0.4%) and 4%
for Ca (0–5%; n = 96). The respective median values were 55% (Fe), 51% (P), 10% (Mn), 37% (Al), 11% (org
C), 0.2% (Si), and 1% (Ca). Further, up to 99% of Fe, 96% of P and Mn, 95% of Al, 92% of org C, 46% of Si,
and 27% of Ca were found associated with NNP and fine colloids, relative to the bulk elemental concentra-
tions measured offline in the untreated samples. Overall, the percentages reflected a substantial contribution
of the NNP and fine colloidal fractions within the operationally defined dissolved elements Fe, P, Al, org C, and
Mn (in descending order). Previous research on the significance of colloid-bound elements within the oper-
ationally defined dissolved fraction also indicatedmaximum Fe binding in fine colloidal form between 80 and
100%with averages between 50 and 90% (Hill & Aplin, 2001; Jarvie et al., 2012; Martin et al., 1995), for organic
C between 40 and 80% with averages between 20 and 60% (Jarvie et al., 2012; Martin et al., 1995; Wen et al.,
1999), and for Al around 40 to 50% with averages around 45 to 55% (Hill & Aplin, 2001; Jarvie et al., 2012). Hill
and Aplin (2001) determined that the fine colloidal fraction accounted for up to 50% of Mn (average 23%) and
up to 30% of Ca (average 20%) but only up to 10% of Si (average 0%). Dahlqvist et al. (2004) found an average
of 16% fine colloidal Ca in an Arctic river and in Amazonian rivers (also assessed with FFF). Data on total P are
scarce, but Jarvie et al. (2012) reported that a fraction of up to 90% (averaging 66%) of organophosphorus
compounds was associated with fine colloids in mixed land use sites, and Missong et al. (2016) and Jiang
et al. (2015) also detected organophosphorus in the NNP and fine colloid fractions in soil samples. In sum-
mary, the present data indicate that the particulate form of elements is substantial in streams and that there
are varying contributions of NNP and fine colloids to overall element fluxes across Europe.

3.3. Predictability of NNP and Fine Colloid Elemental Composition

The discrepancy between NNP and fine colloid and total elemental concentrations is potentially due to dis-
solved species in size ranges below the membrane MWCO when excluding the presence of larger particles.
Two types of relationships between NNP and fine colloid concentrations and total concentrations could be
observed, independent of the fraction in question. For Si, P, Ca, and Mn, we found scattered relationships
between total concentrations and NNP/fine colloid concentrations (Figure 3, top left and bottom left). The
concentrations of these elements that were bound to NNP and fine colloids did not change systematically
with total elemental concentrations. All three size fractions of these elements showed such scattered rela-
tionships, although their median concentration varied (Table 2). By contrast, for Fe, Al, and org C, we found
positive log-log relationships between total concentrations and colloidal concentrations (Figure 3, top right
and bottom right).

The regression slopes of the log-log relationships between the particulate and total element concentrations
differed among the three size fractions of Fe, Al, and org C (Table 2), which could reflect differences in Fe, Al,
and org C speciation as stream water variables change but could also be related to site differences in the sur-
face properties of mineral binding partners (which were not investigated here). Most interestingly, the log-
log slope of the first size fraction Fe was 1.0 (Table 2 and Figure 3, top right and bottom right). This implied
that across all European sites, on average, a constant proportion of total Fe was present in this very fine nano-
particulate fraction (<20 nm) and thus was independent of their stream water pH. This proportion was esti-
mated to be 15%. Slopes for Fe in the second and third fractions, as well as for Al and org C for of all three
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fractions, were not parallel to the 1:1 line (not shown), instead indicating power law relationships (rather than
a fixed NNP or fine colloid fraction). In contrast, for the elements that did not change systematically with total
elemental concentrations (Ca, Si, Mn, and P) the median varied among the different size fractions as well as
the percentage of particulate elemental concentration present in the fractions (cf. Table 2). The reasons for
the different regression slopes and medians are still unclear and warrant investigation in future studies,
potentially in combination with measurements of discharge-dependent concentration variations as shown
in, for example, Trostle et al. (2016).

The majority of acidic sites were located in Northern Europe, neutral sites in Middle Europe, and alkaline sites
in Southern Europe (Table 3). These three geographical regions are shown in Figure 1, with borders at around
56 and 48°N. Most of the sampling sites in the Middle Europe region, that is, between these latitudes, had
neutral pH. A fairly equal amount of Middle Europe sampling sites could be involved among the three pH
classes (Table 3); however, they may not constitute a grouping by themselves but rather a transition zone
between the Northern and Southern European regions.

Figure 3. Examples for the two relations of particle concentration as function of the total element concentrations. (top left)
Scatter diagram of log10-transformed data of second fraction Ca, as an example of the behavior of Si, P, Ca, and Mn
across all fractions. (top right) Linear distribution of log10-transformed data for first fraction Fe, as an example of the
behavior of Fe, Al, and org C across all fractions; color coding represents pH class of the site (cf. Table S1); acidic pH <6.6,
neutral pH 6.6–7.3, alkaline pH >7.3. (bottom left and right) Same data as Figure 3 top left and top right but with color
coding according to geographic regions (cf. Figure 1). Second fraction Ca was chosen opposed to first fraction Ca for the left
diagram because the second fraction often exhibited a Ca peak (cf. Figure 2a). Dashed line represents 1:1 line and
dotted line average proportion of total Fe present in the first fraction. n = 96.

Table 2
Fraction-Specific Median, Slope, and Intercept Values for Predictability of Elements (cf. Figure 3); Si/P/Ca/Mn: Fraction Specific Median Concentrations Represent Midpoint
of the Data Point Distribution, and Numbers in Parentheses Represent the Percentage of, for Example, First Fraction Si as SumOver All Samples Relative to All Particulate Si,
Fe/Al/org C: Linear Regression Slope (m) and Intercepts (b) of log10 Transformed Data. n = 96; unit: μmol/L, org C: mmol/L

Si P Ca Mn Fe Al Org C

Median m b m b m b

First 0.03 (6.1) 0.04 (18.3) 0.67 (42.1) 0.001 (32.9) 1.00 �0.83 0.76 �0.55 1.71 �1.72
Second 0.02 (3.1) 0.12 (53.2) 1.32 (49.5) 0.003 (37.3) 0.85 �0.47 0.65 �0.57 0.88 �1.55
Third 0.08 (90.8) 0.08 (28.6) 0.24 (8.4) 0.002 (29.7) 0.72 �0.26 0.50 �0.07 0.56 �1.23
All part. 0.17 0.28 2.38 0.007
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With some overlaps, the pH differences and the North-Middle-South
groupings were reflected in the distribution patterns of elements
among NNP and fine colloids (Figure 3). The elements with positive
log-log relationships (e.g., Figure 3, top right and bottom right) exhib-
ited some data point stratification, with lower elemental NNP and fine
colloid concentrations at the Southern European and alkaline sites (red
dots in Figure 3) and higher concentrations at the Northern European
and acidic sites (green dots in Figure 3). Whether the main driver of this
variation was really pH or a covariate related to pH warrants further
attention (see also discussion below). The total concentrations of Ca, Si,

Mn, and P increased from the Northern, acidic sites to the more alkaline streams in the South (Figure 3, top
right and bottom left). Such behavior could well be expected for Ca but not necessarily for the other three ele-
ments (e.g., Song et al., 2002). The concentrations of Ca, Si, Mn, and P within NNP and fine colloid fractions did
not vary systematically with total concentration but were roughly constant in their median value as the total
concentrations increased from the Northern, acidic, sites to themore alkaline, Southern, sites. This implies that
the elemental proportions that were bound to NNP and fine colloids decreased from North to South.

Eleven data points at three sites did not follow the clear regional stratification in the relationships between
total and NNP/fine colloid concentrations (Figure 3); six Southern water samples for Ca (scattered relation-
ship; two at SC and four at LZ) and five Northern water samples for Fe (all at AM; see Table 1 for site abbrevia-
tions). A concise explanation of their anomalous behavior could not be found, especially because the other
elements did not exhibit this anomalous behavior, either in these samples or in any other samples. Site char-
acteristics (Table 1) and stream water parameters at sampling (supporting information Table S1) showed no
evident outliers in comparison to other sites within the same geographical region, with the exception of the
three sites closest to the coast.

The presented data clearly showed the possibility to predict the concentrations of particle-bound elements,
as somewere independent of total concentrations (Ca, Si, Mn, and P) while others were linked (Fe, Al, and org C).
Future research should address potential temporal patterns of NNP and fine colloid composition across an
even larger, global scale.

3.4. Controlling Factors of NNP and Colloid Composition

The variable composition of NNP and fine colloids between sites and between sampling locations of one site
can potentially be linked to differences in site parameters on larger (e.g., MAT or forest cover) or smaller (e.g.,
pH value or electrical conductivity) scale. As would be expected for large data sets, many statistically signifi-
cant (p < 0.05) correlations for, for example, all particulate org C, Al, Ca, and Fe concentrations were found,
but few strong correlations (r > 0.71) were found with site parameters (supporting information Table S3).
Total Ca concentrations were tightly correlated with electrical conductivity (r = 0.96), which is unsurprising
because Ca is often a significant fraction of total ionic strength, while all particulate Ca showed strong corre-
lations to all particulate org C (r = 0.84) followed by catchment size (r = 0.81). In contrast, correlations between
all particulate Si, P, Ca, and Mn and their total concentrations were weak (r < 0.02; partially negative values),
as were the correlations between total element concentrations of, for example, Si andMn and concentrations
of other elements or site parameters (r < 0.49). However, concentrations of all particulate Si were positively
related to concentrations of all particulate Al (r = 0.72) and especially strongly (r = 0.98) for Si and Al in the
third size fraction, reflecting the presence of both elements in layer silicates such as clay minerals.

When particulate concentrations were correlated with site parameters, these correlations were rarely
consistent among all size fractions. Marked differences were observed, for instance, between correlations
of site parameters with the first and second fractions versus third fractions for Al and Si (supporting informa-
tion Table S4). The correlations thus showed that relationships between site parameters and NNP and fine
colloid concentrations differed, depending on the fraction in question, and that NNP and fine colloid concen-
trations cannot be explained through linear relationships alone.

At a KMO criterion>0.6, we did not observe significant alterations in factor loadings with random elimination
of data, and PCA was run stably with all particulate elemental concentrations, pH, MAT, conductivity, water
temperature, and elevation, for instance. The PCA extracted four factors with eigenvalues >1 that jointly

Table 3
Number of Sampling Points in Each pH Class (Acidic pH <6.6, Neutral pH 6.6–
7.3, and Alkaline pH >7.3) per GEOGRAPHIC Region (Figure 1)

Acidic Neutral Alkaline Total sampling points

North 24 7 0 31
Middle 5 10 8 23
South 8 2 32 42

Note. n = 96.
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explained 75% of the total variance. The resulting factor loadings revealed four distinct groupings of
variables: (1) site parameters such as pH, water temperature, and MAT; (2) particulate Al and Si; (3)
particulate org C, Ca, and Fe; and (4) particulate P (see supporting information Table S5).

Mattsson et al. (2009) showed a link between DOC and climatic and topographic factors through the strong
positive correlation between DOC and latitude; here, however, the colloidal org C was rather related to that of
Ca and Fe; this grouping even remained stable when including other site parameters into PCA at worse KMO
test results. Fe (and Ca) are known to be key elements in reacting with soil C during microaggregation pro-
cesses (see, e.g., Kögel-Knabner & Amelung, 2014), that is, our data would be in line with particles being
released from riparian soils during riverbank erosion. Besides, our data showed that the NNP and fine colloid
concentrations of Al and Si loaded highest at onto factor 2, thus supporting the results from above men-
tioned correlation analyses (supporting information Table S3) and indicating that clay minerals are always
present within the third fine colloid fraction. Finally, the PCA analyses revealed that one factor can solely
be assigned to particulate P. This is congruent with the simple correlation analyses and confirms that P can-
not be predicted by simple linear statistical approaches across different geographic regions (see section 3.2).
Overall, the factor loadings thus confirmed that different processes controlled the fate of different elements,
while there was apparently no simple linear relation to site factors. Hence, we elucidated the contribution of
soil, geology, vegetation, and pH class as additional controls of NNP and FC properties.

The pH value is often a master variable controlling chemical forms in solution (Perry et al., 2008) and may also
determine the size and elemental composition of NNP and fine colloids (Neubauer et al., 2013). pH-
dependent element abundances in a dissolved state are well understood in the context of nutrient availabil-
ity (Perry et al., 2008) but not yet with respect to NNP and fine colloids. The geographic zoning of the streams
more or less coincided with three dominant stream water pH classes (Figure 1 and Table 3). As shown for the
third size fraction in Figure 4a, though also valid for all particulate Si (supporting information Figure S1), plot-
ting Fe against Si clearly separated the acidic (Northern) streams from the alkaline (Southern) ones. Similar
results were also obtained when, for example, plotting particulate Fe against particulate Ca as an indicator
of calcareous bedrock (Figure 4b; illustrated for the second fraction; valid also for the first fraction but not
for the third one; supporting information Figure S1). The findings can be reconciled with a study on Fe in

Figure 4. Example data plots of (a) third fraction Fe over third fraction Si and (b) second fraction Fe over second fraction Ca
with zoom window. Color coding according to site pH class, acidic pH = green dots (pH <6.6), neutral pH = blue dots
(pH 6.6–7.3), and alkaline pH = red dots (pH >7.3). n = 96.
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boreal catchments across different pH values (Neubauer et al., 2013). Fe entering stream waters is instantly
oxidized and forms Fe(oxy)hydroxides or complexes with organic matter (Ekstrom et al., 2016), while
formation of Ca- or Si-rich particles is likely independent from such processes. Overall, and despite the
many complex factors regulating specific element concentrations in NNP and larger colloids, there are
thus strong indicators of a geographic (or pH dependent) zoning of the composition of these particles.
Forest biomass and soils, for instance, covary along our geographic transects, potentially affecting the
pools and formation of humus and secondary minerals. Relevant factors could also be any covariates
that induce nonlinear variations in element speciation across the pH range of 4.2 to 9.5 (Figure 4 and
supporting information Table S1).

3.5. Impact of Specific Soil Types and Land Use on Element Concentrations

When grouping the sites, for example, according to soils, bedrock, and dominant forest type, at least
one particulate elemental concentration was affected (Table 4), and the effects found for total particulate
elemental concentrations were largely reflected in the individual size fractions as well (supporting infor-
mation Tables S6–S8).

Sites characterized by semiterrestrial soils with better hydraulic connectivity to the streams showed signifi-
cantly higher concentrations of colloidal Si than their counterparts with terrestrial soils (Kruskal-Wallis
ANOVA; p < 0.05; Table 4). However, the more frequent redox cycles at the semiterrestrial sites (Blume et al.,
2009) did not correlate with higher concentrations of redox-sensitive elements, at least as this particular
sampling time. Since semiterrestrial soils are usually poor in soil structure (Blume et al., 2009), higher particu-
late Si concentrations in the streams could be related to riverbank erosion, but more data at higher temporal
resolution would be needed to investigate this hypothesis.

Stream composition frequently correlates to the dominant bedrock (Krám et al., 2012). For the elements with
positive log-log relationships (org C, Al, Fe; Figure 3, top right and bottom right), a significant differentiation
between siliceous and calcareous rocks was found. The concentrations of org C, Al, Si, and Fe were higher for
the siliceous sites (Table 4). Overall, it appeared that element release from siliceous sites was facilitated rela-
tive to the calcareous counterparts, which was accompanied by the release of these elements in all fractions
of NNP and fine colloids (supporting information Table S6–S8). Particularly, high concentrations of Al and Si
were found in the streams with flysch (Table 4), likely reflecting riverbank erosion of clay minerals (third col-
loidal fraction; supporting information Table S8) from the Gleysols in vicinity of the rivers. Note, however, that
among our sites, bedrock classification yielded substantially more data points for siliceous than for calcareous
rocks and flysch.

When the data were grouped according to the dominant forest type, the coniferous class differed signifi-
cantly from the broadleaf class for all particulate org C, Al, P, Ca, and Fe concentrations, even for those of
Si and Mn (Table 4; the one mixed stand was not included in this analysis). Notably, the element concentra-
tions were generally larger in the coniferous tree stands than the broadleaved ones, consistent with the

Table 4
Mean Values of All Particulate Molar Elemental Concentrations (mmol/L for org C, μmol/L for Al, Si, P, Ca, and Mn) Across Classes Representing Groupings of
Site Characteristics

Org C Al Si P Ca Mn Fe Number of sampling points

Soil class Dystrophic 0.44 a 0.59 a 0.36 a 0.32 a 6.14 a 0.03 a 3.72 a 45
Eutrophic 0.03 b 0.04 b 1.12 b 0.21 a 1.80 a 0.03 b 0.54 b 34

Semiterrestrial 0.08 ab 0.05 ab 4.14 c 0.39 b 3.80 b 0.01 ab 1.04 ab 12
Bedrock class Siliceous 0.37 a 1.77 a 0.35 a 0.32 a 5.50 a 0.03 a 3.12 a 54

Calcareous 0.03 b 0.15 b 0.08 b 0.24 a 2.06 ab 0.04 a 0.09 b 22
Flysch 0.08 b 3.36 c 4.96 c 0.30 a 3.89 b 0.01 a 1.24 a 10

Dominant forest type Coniferous 0.47 a 2.50 a 1.13 a 0.30 a 6.64 a 0.031 a 5.11 a 54
Broadleaf 0.03 b 1.02 b 1.16 b 0.20 b 1.77 b 0.028 b 0.56 b 26

pH class Acidic 0.59 a 2.46 a 0.25 a 0.24 a 5.65 a 0.03 a 6.79 a 31
Neutral 0.39 a 1.71 ab 0.47 a 0.39 a 7.89 a 0.03 a 3.47 ab 24
Alkaline 0.04 b 1.62 b 2.11 a 0.29 a 2.47 a 0.03 a 0.76 b 41

Note. Significantly different classes per category and per element are marked by a, b and c; p < 0.05.
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tendency for coniferous stands to have more acidic stream waters (Allaby, 2006) and usually siliceous
bedrocks (Table 1). In fact, almost 90% of the acidic sites were associated with dominant coniferous forest
types (cf. Table 1 and supporting information Table S1). These conditions might generally favor NNP and
fine colloid formation because low pH increases the density of positive charges of metal oxides and
organic matter, which can then bind to negatively charged surfaces such as fine clay minerals as also
outlined before (see also Tombácz et al., 2004). Indeed, when grouping our sites according to main pH
classes as outlined above, the concentrations of particulate org. C, Al, and Fe were generally larger for the
acidic sites (in Northern Europe) than for the alkaline ones (in Southern Europe). Interestingly, however, P
did not exhibit this pH effect despite pH is the main variable affecting P availability and mobility in soils;
hence, further analyses are necessary to help explain this effect.

4. Conclusions

Stream water sampling at 26 forested headwater catchments across Europe revealed substantial binding of
Fe, P, Al, Mn, and org C to NNP and fine colloids. Overall, up to an average of 53 ± 21% of the total content of
these elements in the stream waters occurred in three distinct particulate size fractions (first: < 20 nm, sec-
ond: 20–60 nm, and third size fraction:>60–300 nm). Particulate concentrations of org C, Fe, and Al increased
with total concentrations of these elements from the south to the north, coincident with decreasing pH
values and increasing portions of coniferous forests and siliceous bedrock. The sampled sites could be
divided into sites that were characterized by the presence of Ca-containing NNP and fine colloids in alkaline
stream waters and sites with an increasing predominance of Fe-NNP and fine colloids (acidic stream waters)
because the Fe concentration superimposed Ca. This distinction was found for the first and second NNP frac-
tions, whereas third size fraction (larger NNP and fine colloids) mainly consisted of Al- and Si-bearing clay
minerals at all sites.

Interestingly, substantial amounts of P, which previously had been assigned to the operationally defined
dissolved phase, were found to be associated with NNP and fine colloids. While P was mainly bound to Fe-
containing particles of the first size fraction in more acidic Northern European headwaters, it was associated
with Ca-bearing particles of the second size fraction in Southern European headwaters. Also, variations of
total P were not correlated straightforwardly with variations of site characteristics across our sampling sites.
Further efforts will be needed to better understand the complex interplay between total and colloidal P fluxes
across the globe.
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