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Abstract (max 150 words) 40 
 41 
Sustaining ecosystem services (ES) critical to human wellbeing is hindered by many practitioners 42 
lacking access to ES models (‘the capacity gap’) or knowledge of the accuracy of available models (‘the 43 
certainty gap’), especially in the world’s poorer regions. We developed ensembles of multiple models 44 
at an unprecedented global scale for five ES of high policy relevance. Ensembles were 2-14% more 45 
accurate than individual models. Ensemble accuracy was not correlated with proxies for research 46 
capacity – indicating accuracy is distributed equitably across the globe and that countries less able to 47 
research ES suffer no accuracy penalty. By making these ES ensembles and associated accuracy 48 
estimates freely available, we provide globally consistent ES information that can support policy and 49 
decision making in regions with low data availability or low capacity for implementing complex ES 50 
models. Thus, we hope to reduce the capacity and certainty gaps impeding local to global-scale 51 
movement towards ES sustainability.  52 
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 56 
Introduction 57 
 58 
There is a burgeoning number of ecosystem service (ES) maps delineating an ever-growing 59 
understanding of the ways in which nature benefits people (e.g. 1, 2). However, when ES data are 60 
available, they are typically inconsistent between countries, making standardized measurement or 61 
reporting difficult (3).  Global maps (based on satellite and other data integrated in a variety of models) 62 
can provide readily-available information when more locally relevant data are lacking (4). Though, it is 63 
questioned whether global maps provide accurate or useful information given their lack of sensitivity 64 
to local context (5). It is difficult to answer this question for most large-scale ES modelling exercises 65 
due to the lack of information on model accuracy - the closeness of the agreement between the 66 
modelled value and a reference value (6), the latter being considered ‘true’ (7) even though the 67 
validation data are also often uncertain (8). Individual model performance varies, validation with 68 
empirical data is sometimes lacking, and results are typically reported without estimates of accuracy 69 
(8). Two key advantages of global maps are that they can fill gaps in data-poor contexts until local data 70 
can be collected or created, and they are consistent among countries (4). For example, at a local level, 71 
the Critical Ecosystem Partnership Fund made conservation investment decisions in Madagascar 72 
based, in part, on local information on the relative importance of sites for ES derived from models and 73 
globally available data (9). At a global scale, consistent data can be used for international policy and 74 
decision making [e.g. informing targets and investments in the united Nations (UN) Sustainable 75 
Development Goals, the Convention on Biological Diversity post-2020 Biodiversity Framework, the 76 
UN’s System of Environmental-Economic Accounting-Ecosystem Accounting (10)]. Global data can also 77 
provide consistent and comparable local reporting for these international agreements, as well as 78 
broader context for local decisions by revealing wider regional, continental and global patterns in ES 79 
status and trends (4). 80 
 81 
Several studies have validated models of single ES (e.g. 11, 12), and rarely multiple ES (e.g. 8, 13). 82 
Independent evaluations of models have often been unable to demonstrate the consistently superior 83 
accuracy of any individual model (8, 13). While a few studies find that, on average, more complex ES 84 
models show better fit to validation data, the best-fit model varies regionally and often according to 85 
the validation data used (8, 13). Thus, decisions based on a single model for an ES are less likely to be 86 
robust and, when models are in disagreement, it is difficult for practitioners (those engaging with 87 
information from ES models) to know which model should be used to support decisions (14). In fact, 88 
projections by alternative models can be so variable as to compromise even the simplest assessment 89 
and therefore challenge the common practice of relying on a single method (15). This ‘certainty gap’ 90 
greatly reduces the confidence that practitioners have in projections from ES models (16).  91 
 92 
The certainty gap is unlikely to be uniformly distributed across the globe. In developing countries, 93 
reliable information about ES is critically important because the rural and urban poor are often the 94 
most dependent on ES (directly or indirectly), both for their livelihoods and as a coping strategy for 95 
buffering shocks (17). ES declines driven by over-exploitation, habitat conversion or climate change 96 
therefore undermine 80% (35 of 44) of the Sustainable Development Goals (SDGs) (18). However, ES 97 
data and accuracy estimates are often unavailable in developing nations, or in less affluent regions 98 
within nations, where they are most needed (17). There is an urgent need for evaluations of model 99 
accuracy to better inform decision making – a need that has been emphasised by the 100 
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) (19). To 101 
address this, researchers have established standards for best practice using model-data (8) and model-102 
model (13, 20) comparisons to provide robust and transparent evaluations of accuracy. For example, 103 
an ensemble of models is more accurate, on average, than one model for any location, although the 104 
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amount of improvement depends on the local context and the models used (13, 15, 20). However, 105 
whilst model ensembles are common in climate modelling and other disciplines (15, 21), they have 106 
been largely neglected in ES studies (22). Indeed, simple (‘committee average’) ensembles have been 107 
found to be at least 5% more accurate than individual ES models (13), while more complex, weighted 108 
ensembles provide even better predictions (up to 27% more accurate) (20). Furthermore, variation 109 
among models can provide an indicator of the uncertainty of the modelled ES estimate when no other 110 
information is available (13). 111 
 112 
Whilst using ensembles of ES models is possible, there are barriers that need to be overcome before 113 
it can become standard practice within ES science. Implementing multiple ES models remains a difficult 114 
undertaking for many researchers and practitioners (13). Barriers include lack of input data, resources, 115 
and capacity for data collection or collation and for modelling (13, 14). As with the certainty gap, these 116 
barriers are typically more substantial in poorer nations. For example, to create ensembles of carbon 117 
storage models across three major platforms – ARIES (23), InVEST (24) and Co$ting Nature (25) – 118 
requires access to the internet, high quality input data, computational power and GIS proficiency, as 119 
well as funds to support model subscription fees (where required) and the person-time required to 120 
learn and run three different models (13). Such resources can be out of reach for many researchers 121 
and practitioners. Furthermore, if practitioners must choose between running multiple models for a 122 
single service versus modelling additional services, the former may be of low priority; thus the 123 
widespread use of ES ensembles may be an unrealistic goal (13, 14, 20). We refer to the lack of these 124 
resources as the ‘capacity gap’. One potential solution to the capacity gap is that those who have the 125 
resources to create ES ensembles make the resulting data, as well as estimates of uncertainty, freely 126 
available (e.g. 13, 20).  127 
 128 
To address the certainty and capacity gaps, we developed ensembles of models for five ES (Figure 1) 129 
of high global and local policy relevance (14), and for which there are both: i) a variety of models 130 
available that are feasible to run at a global scale; and ii) accessible, independent validation data to 131 
assess ensemble accuracy. We included three material services (water supply: eight available models; 132 
fuelwood production: nine models; and forage production: 12 models); one regulating service (above 133 
ground [AG] carbon storage: 14 models); and one non-material service (recreation: five models). Some 134 
of these ES are potential services (e.g. water, fuelwood, forage) and some are realised (e.g. carbon 135 
recreation); where potential ES are ‘the outcomes from ecosystems that directly lead to good(s) that 136 
can be used and valued by people (e.g. harvestable products, water supply), noting that some 137 
ecosystem services can be both ecosystem processes and potential ecosystem services’, and realised 138 
ES are 'all use and non-use, material and non-material outputs from ecosystems that are used and 139 
valued by people’ (26, 27). Both potential and realised service metrics are useful to support decision 140 
making; with the latter providing insight into how the wellbeing of people is improved by nature, and 141 
the former indicating the maximum capacity of these potential wellbeing increases (14). We used 142 
model output predictions and created ES ensembles at an unprecedented global extent and at a 143 
0.008333° resolution (approximately 1 km at the equator). We address the capacity gap by making the 144 
ensemble model outputs freely available (https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-145 
161f3dfe8e86), as well as providing the code (github.com/GlobalEnsembles) to make the overall 146 
approach more accessible. To address the certainty gap, we tested the accuracy of these ensembles 147 
against independent validation data (including country-level statistics and actual biophysical 148 
measurement), and investigated spatial patterns in ensemble accuracy.  149 

https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86
https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86
https://github.com/GlobalEnsembles
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 150 
Figure 1: Schematic overview of the model flow, ensemble creation and validation processes implemented in this study. We modelled five 151 
ecosystem services (ES): potential water supply as flow in rivers, recreation as the number of visitors, potential above ground (AG) carbon 152 
stock, potential fuelwood, and potential forage production capacity (A). We used models for these ES from five multi-service frameworks 153 
(i.e. multiple ES per modelling framework) and 17 individual ES models (Table 2; B). These models are combined into model ensembles 154 
following Hooftman et al. (20), with the number of models in the ensemble for each ES shown in C. We use validation data on each ES to test 155 
accuracy of the ensembles to both their own service and as proxy for other services (D). Symbol key: †Including choice of input data; ‡ 156 
Including models created by masking of above ground (AG) carbon models with woody (fuelwood) or grassland land use masks [see (8); SI-157 
3]; § combined pan-tropical biomass reference data (28) and United Kingdom (temporal) AG biomass stocks in forest estates (20). See 158 
Methods for full details.  159 
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Results 160 

  161 
Figure 2: Left) Median ensembles values from models for five ecosystem services (ES) of high policy relevance (14). We created ensembles 162 
for water, recreation, AG carbon, fuelwood, and forage production at global scale and at an 0.008333° resolution by taking the median value 163 
of multiple models for each grid cell. Addressing the capacity gap, we make these freely available via https://doi.org/10.5285/bd940dad-164 
9bf4-40d9-891b-161f3dfe8e86, as well as maps produced using alternative ensemble approaches (including mean, PCA, correlation 165 
coefficient, and regression to the median and leave-one-out cross validation log-likelihood approaches – see SI). Right) Addressing the 166 
certainty gap, we show the standard error of the mean associated with each ES ensemble output which, in accordance with previous 167 
research (13), our investigations show can be used a proxy for ensemble accuracy in absence of validation data (Figure S4). All maps scaled 168 
in deciles 0-100%. True zero values (coloured) are distinguished from no-data (white). Selected case study regions are shown in SI-6. The 169 
figures are available via https://github.com/GlobalEnsembles/Maps, and the data are available via https://doi.org/10.5285/bd940dad-9bf4-170 
40d9-891b-161f3dfe8e86 .  171 

https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86
https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86
https://github.com/GlobalEnsembles/Maps
https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86
https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86
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Here, we present results using an unweighted median ensemble (8) approach (i.e. taking the median 172 
value of multiple models for each grid cell; Figure 2). Other ensemble approaches, including 173 
unweighted (mean), and weighted (deterministic consensus: PCA & correlation coefficient; iterated 174 
consensus: regression to the median and leave-one-out cross validation log-likelihood) approaches) 175 
(20), which give consistent conclusions, are described in the SI. When compared to independent 176 
validation data (Figure 1, Table 3), global ES ensembles were more accurate than an individual model 177 
chosen at random (Table 1, Figure 3). Median ensemble improvement per validation data point for 178 
each ES was 14% for water (resolution of the validation data: weir defined watersheds), 6% for 179 
recreation (national-scale), 6% for above ground (AG) carbon (plot-scale), 3% for fuelwood (national-180 
scale), and 3% for forage production (national-scale; Table 1, Figure 3). Thus, using global ES ensembles 181 
rather than an individual ES model reduces the certainty gap for practitioners with no a priori 182 
information on model accuracy. In general, the weighted ensembles provided more accurate 183 
predictions than unweighted ensembles (Figure S15 and S16), and so should be favoured by 184 
practitioners. Ensembles further address the certainty gap by transparently conveying any spatial 185 
variation in accuracy. For example, the standard error of the mean associated with each ES ensemble 186 
(Figure 2) correlates with the accuracy of the ensemble and so can be used as a proxy for ensemble 187 
accuracy in absence of validation data [(13) and Figure S4], indicating the accuracy of the ensembles 188 
in any specific geographic location. Our results are consistent when using alternative accuracy metrics 189 
(e.g. Spearman’s ρ; see SI-5).   190 

 191 
Figure 3: Ecosystem service (ES) ensembles show increased accuracy when compared to individual models. Shown are the median 192 
ensembles for: A) water, B) recreation, C) AG carbon, D) fuelwood, E) forage production. ES theory on bundles suggest that values for different 193 
ES can be spatially related to each other, either positively or negatively (2). However, spatial correlations among ES, while they do occur, may 194 
vary geographically, meaning there is no consistent correlative relationship among ES over large spatial scales (29). To test this, we spatially 195 
correlated each global ES ensemble output with the output of all other ES ensembles, both as a group (or ‘bundle’; i.e. for all ES ensembles 196 
combined) and for each ES individually. Our results showed ES ‘bundles’ to be a relatively poor predictor of an additional ES and that most 197 
ES ensembles were not well correlated with other ES on an individual ES basis. Vertical dashed lines indicate the among-run median accuracy 198 
of an individual model chosen with no a priori information (i.e. at random). Blue bars indicate a model (or ensemble) accuracy was 199 
significantly higher than the median accuracy of the models (length of bars represent among-model standard deviation). Red bars indicate 200 
accuracy was significantly lower than the median of the models.  201 
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 202 
Whilst the results presented here show ES ensembles reduce the certainty gap, differences in 203 
ensemble performance between regions or countries might be expected. For example, nations 204 
investing more in research capacity might have better input data or have more researchers who 205 
develop and test ES models, potentially resulting in model outputs that are more locally relevant in 206 
those areas (30). Thus we might expect that ES ensembles perform better in countries with higher GDP, 207 
Human Development Index scores, or research capacity. After accounting for spatial autocorrelation 208 
(see Methods) and applying the Hoghberg correction to account for multiple tests, we found no 209 
evidence that ensembles are more accurate in countries with higher GDP (even when accounting for 210 
within-country variability using Gini metrics of inequality), with higher Human Development Index, or 211 
with higher research capability (expressed as the percentage of people who are researchers and 212 
proportion of GDP invested in research; Table 1). The results are consistent when using alternative 213 
statistical approaches (Tables S7-9). These findings suggest global consistency in ensemble accuracy, 214 
in relation to the potential drivers of variation that we tested (Table 1). A potential caveat is that if the 215 
validation data themselves are biased (for example, less accurate across developing countries) then 216 
true patterns in ensemble model accuracy could exist undetected.  217 
 218 

 219 
Finally, whilst the five ES ensembles made available here contribute to addressing the capacity gap, 220 
practitioners will often require accurate ES information on many additional services, including many 221 
for which there are no models (14). ES theory on bundles suggest that values for different ES can be 222 
spatially related to each other, either positively or negatively (2). However, spatial correlations among 223 

Table 1: One tailed correlations as F-values with significance of the inverse of deviance per validation datapoint (where increasing 
accuracy is represented by increasing the inverse of deviance) of the five ecosystem service (ES) ensembles against globally available 
metrics that could potentially impact model accuracy. One-tailed tests were applied to test the hypothesis that the ensemble accuracy 
increases with higher values of  each development/equality measure (two-tailed is presented in Table S7, including effect sizes). Degrees 
of freedom were standardised at 178 following a bootstrap convergence model for all services.  Significance of the presented F-values 
were assessed taking account of multiple tests, using Hochberg’s step-up correction with 8 tests per ES. An interaction model is added 
testing for interactions between GDP per capita and income equality, reflecting that income may be better represented using both mean 
and variance. To conform to the normality assumptions of the analysis, all metrics were arcsine transformed, with the exception of GDP 
per capita, which was log10-transformed, and the Human Development Index, which was not transformed. See Table 3 for the sources 
of each validation dataset. 

  Water 
Supply 

Recreation 
 

 

AG 
Carbon 

 

Fuelwood 
Production 

 

 

Forage 
Production 

 
 

Accuracy Improvement 
(inverse of deviance) 
Ensemble vs. a random 
selected model (median 
among models)† 

14% 6.1% 6.1% 3.4% 2.7% 

Spatial Autocorrelation‡ 15.3*** 14.6*** 211*** 0.47 0.14 

Development/Equality per country     

    GDP per capita 1.38 <0.01 1.21 3.58 0.24 

    Human Development Index 1.51 <0.01 0.14 6.43 0.25 

    Income Equality (Gini index) 0.17 6.69 1.37 <0.01 0.71 

    % People in R & D 1.44 <0.01 0.15 4.85 0.08 

    % GDP to R & D 0.08 <0.01 0.14 3.79 0.37 

Interaction model      

     GDP per capita  1.76 0.18 0.16 1.29 0.02 

     Income Equality 1.67 0.22 0.16 0.50 0.02 

      GDP x Income Equality 0.06 0.34 1.04 0.16 2.67 

†Mean of pairwise comparisons per 1000 bootstrap runs; ‡Two sided tested without direction; *** P <0.001 corrected. 
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ES, while they do occur, may vary geographically, meaning there is no consistent correlative 224 
relationship among ES over large spatial scales (29). To test this, we spatially correlated each global ES 225 
ensemble output with the output of all other ES ensembles, both as a group (or ‘bundle’; i.e. for all ES 226 
ensembles combined) and for each ES individually. Our results showed ES ‘bundles’ to be a relatively 227 
poor predictor of an additional ES (Figure 3). Similarly, most ES ensembles were not well correlated 228 
with other ES on an individual ES basis.  229 
 230 
Discussion 231 
To help fill a major capacity gap in terms of available ES information for many countries, we have 232 
provided globally consistent ensemble data on five ES (https://doi.org/10.5285/bd940dad-9bf4-40d9-233 
891b-161f3dfe8e86), as well as the code required to produce them (github.com/GlobalEnsembles). 234 
Finding increased performance through use of ensemble approaches is common in other fields (20), 235 
although an increase is not universal (31). Due to underlying assumptions, model predictions (including 236 
those from ES models) are all potentially biased in direction and amount, with biases varying among 237 
models due to their specific construction and available input data (20). The improvement in accuracy 238 
when using ensembles likely derives from suppression of idiosyncratic differences by inclusion of 239 
multiple possible system representations (termed a ‘portfolio effect’), providing a more reliable 240 
average estimate (20, 32). However, this effect is lessened if assumptions, and therefore concomitant 241 
biases, are shared across models (20). This highlights the importance of including: i) multiple model 242 
outputs in model ensembles (33), including from models not explicitly identified as ES models, such as 243 
hydrological models (20); and, ii) where data are available, model validation (8) - see Dormann et al. 244 
(32) and Hooftman et al. (20) for further theoretical explorations. Using ensembles also improves 245 
consistency across independent studies. For example, considering two studies applying different 246 
models in different locations, it is uncertain how comparable the findings are (4). However, if both 247 
studies use model ensembles, even if the ensemble approaches are not identical, results will be more 248 
comparable. This is because variation among ensemble approaches is substantially lower than among 249 
individual models (20) - resulting in greater consistency and coherence. Thus, potential applications of 250 
ES ensembles include supporting nations’ efforts to implement natural capital accounting (3). 251 
 252 
Our finding that global ES ensembles perform just as well in less wealthy regions with lower research 253 
capacity, where this information is often most needed, emphasises the utility of these modelled data. 254 
This might reflect that ES models are increasingly tested and parameterized using global-scale Earth 255 
Observation data. In addition to the ensemble maps themselves, we provide estimates of accuracy 256 
(https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86). The ability to quantify accuracy 257 
when it comes to ES is often lacking and, at worst, this can result in perverse outcomes – with the ‘pot 258 
luck’ associated with model selection (i.e. without a priori accuracy information) sometimes resulting 259 
in implementation of low-accuracy outputs and suboptimal decisions (8, 19). For policy and decision 260 
making, accuracy estimates are as important as the ES maps themselves, and the lack of information 261 
about uncertainty is one driver of the ‘implementation gap’ between ES research and its incorporation 262 
into policy and decision making (16). By providing accuracy maps we are directly addressing this 263 
certainty gap. However, future work should seek to improve on these accuracy maps, particularly 264 
through the collection and inclusion of additional validation data at local scales, as using the national- 265 
and watershed-scale validation data that is currently available may be a poor proxy of model accuracy 266 
at local-scales. 267 
 268 
Important capacity gaps remain. Most ES research predominantly focusses on a limited set of material 269 
and regulating services because the data are widely available, and their underlying processes are 270 
relatively well understood (34). This means our current ability to assess or predict unmodelled ES is 271 
low. We found that ensembles, whether as an individual ES or as a bundle, do not accurately predict 272 
other ES at global scales. It could be that as more ES are included in a bundle, predictive power of the 273 
bundle for unmodelled ES improves; in a recent analysis global maps resulting from individual models 274 
for 12 ES show high correlations between any one service and the remaining 11 (2). This is possibly 275 

https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86
https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86
https://github.com/GlobalEnsembles
https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86
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because the more and more diverse ES that are included, the more likely that unmodelled ES will also 276 
be represented by the same set of ecosystems, either because they are similar to modelled ES or simply 277 
by chance. In general, the utility of the bundle approach is debated, with Spake et al (29) suggesting 278 
that a hypothesis-driven approach is required to predict relationships between ES. Ultimately, whilst 279 
individual models are available for more ES than are presented here, model development is urgently 280 
required before ensembles of additional ES can be assessed. 281 
 282 
Practitioners show both capacity and willingness to engage with accuracy information when it is made 283 
available (14). Accuracy estimates allow practitioners to determine what level of confidence is 284 
acceptable to them and to use their own expertise to make potentially contentious decisions (35). 285 
Given limited resources, accuracy information can play an important role in prioritisation. For example, 286 
the accuracy of estimates may be vital in distinguishing between two sites with high levels of ES 287 
production. Another example could be a decision to give a site with high accuracy of medium ES levels 288 
lower priority over a potentially high-value site with medium or low accuracy; this is contentious, but 289 
defensible if accuracy information is transparently conveyed to practitioners. Thus, providing 290 
estimates of accuracy should become standard practice within the ES community (22). High levels of 291 
inaccuracy or uncertainty of ES estimates should not lead to inaction, but instead highlights the risks 292 
of making decisions using poor data, what data may need to be gathered to improve model inputs, or 293 
the need to develop new or improve existing ES models. The model-estimated quantity of ES and its 294 
accuracy should not be the only metrics considered in decision-making. For example, as the wellbeing 295 
of some marginalised groups may depend on ES where models or data are lacking, or uncertainty is 296 
high, therefore it is critical to incorporate local knowledge and values in any decision making process 297 
(2). Indeed, model accuracy is one of a range of metrics considered by practitioners when determining 298 
whether model outputs can be used to support decision-making, with others including spatial 299 
resolution and the ability to incorporate scenarios (14). Thus, simply reducing uncertainty is not 300 
necessarily going to lead to better policy decisions. However, in regions with a large capacity gap, 301 
practitioners lack any comprehensive spatial data on most ecosystem services. For these regions, our 302 
1 km2 resolution ES ensemble outputs provide, at a minimum, some data with a level of validation and 303 
associated accuracy at little to no cost to the practitioner (14).  304 
 305 
We conclude that ensemble modelling of ES can help reduce capacity and certainty gaps by, for 306 
example, making more accurate ES estimates freely available. We suggest ES scientists adopt ensemble 307 
approaches (shown here to be, on average, a more accurate approach than using individual models), 308 
and accompany model outputs with estimates of uncertainty. These changes may help reduce the 309 
implementation gap between ES research and policy and decision making (14, 34), in particular for 310 
assessments by IPBES and the Intergovernmental Panel on Climate Change.  311 
 312 

Materials and Methods 313 

 314 
We developed and tested (against validation data) ensembles of models for five ecosystem services 315 
(ES; Figures 1 & 4) for which there are both a variety of models which are feasible to run at a global-316 
scale (8, 20) and accessible independent validation data. We used model output estimates of ES (listed 317 
in Table 2) to create ensembles, and then validated them against independent data (Table 3) using 318 
methods developed previously for the UK (20) and sub-Saharan Africa (8). To ensure comparability 319 
among model outputs, we standardised them by normalising outputs from individual models prior to 320 
creating ensembles, following the same procedure for the validation data. We explored the spatial 321 
variation in accuracy of ES ensembles, using a variety of metrics. Finally, we investigated the use of ES 322 
ensemble ‘bundles’ as proxies for other ES. We depict our overall process in Figure 4 in 6-steps. Our 323 
calculations were performed using Matlab v7.14.0.739, ArcMap 10.7 and ArcPro 2.7, employing Arcpy 324 
coding for loops. Relevant code can be found at github.com/GlobalEnsembles. 325 
 326 

https://github.com/GlobalEnsembles
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 327 
Figure 4: Schematic representation of our analysis, with arrows showing information flows. Numbers represent the steps within our 328 
methods; input tables and result figures are indicated.  329 
 330 
1. Run and collate models 331 
 332 
We collated models for this study according to their availability and feasibility to be run at a global 333 
scale, and to reflect different approaches to modelling ES, obtaining appropriate registrations and 334 
licenses if necessary. The collated models are summarised in Table 2, including their output grid sizes 335 
(spatial resolution) – as well as whether the model outputs are existing (i.e. can be found online; e.g. 336 
10, 31), are generated online (ARIES, Co$ting Nature, WaterWorld), or can be calculated with a desktop 337 
tool (InVEST) or in local ArcGIS environment (Scholes, TEEB). For models that require input data choices 338 
(InVEST, Scholes, TEEB), we refer to SI-1 for details and supporting data. For models that were taken 339 
from Willcock et al. (8) and Hooftman et al. (20), we refer to the descriptions in those papers.  340 
 341 
Table 2: Summary information for the individual ecosystem service models used in this study.  342 

Model 
Ecosystem 

Service 
Details 

Model 
Output 

Resolution 

Multi service frameworks 

ARIES k.explorer (23) for year = 2020 
integratedmodelling.org/modeler  

- Recreation† 
- AG carbon 
- Forage 

production‡ 
- Fuelwood 

production¶ 

Recreation run online per country;  
carbon follows (36); all in tonnes per 
hectare, except recreation in 
normalised # of people (SI-1-4) 

0.008333° 
Mostly 
worldwide 

Co$ting Nature (25)  
policysupport.org/costingnature  

- Water 
Supply 

- AG carbon 
- Recreation†§ 
- Forage 

production 
- Fuelwood 

production 

Run online as 10° tiles; subsequent 
among tile normalisation; all unitless 
normalised indexes, except water in 
m3 per year. 

0.008333° 
Not above 
60° North 

InVEST v3.8.7 (24)  
naturalcapitalproject.stanford.edu/-
software/invest  

- Water 
Supply 

- AG carbon 
- Recreation§ 
- Forage 

production‡ 
- Fuelwood 

production ¶ 

Desktop tool, parameterised for this 
project (SI-1-1). Water supply in m3 
per gridcell; recreation in number of 
photo uploads; 
carbon/forage/fuelwood in tonnes 
per hectare. 

0.008333° 
Worldwide 

Lund-Potsdam-Jena General 
Ecosystem Simulator (LPJ-GUESS) (37)  

- Water 
Supply 

Data set from (8) and run as 
described therein. Water supply in 

0.5° 
Worldwide 

https://integratedmodelling.org/modeler/#/login
http://www.policysupport.org/costingnature
https://naturalcapitalproject.stanford.edu/software/invest
https://naturalcapitalproject.stanford.edu/software/invest
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- AG carbon 
- Forage 

production© 
- Fuelwood 

production ¶ 

m3 per gridcell; carbon/forage/ 
fuelwood in tonnes per gridcell. 

TEEB via Costanza et al. (38)  

- Water 
Supply 

- AG carbon 
- Recreation 
- Forage 

production‡ 
- Fuelwood 

production 

In local GIS environment (SI-1-2) , 
all in US-$ for the year 2007 as 
provided by (38) 

0.002778° 
Worldwide 
 

Scholes(39) via Willcock et al. (8), livestock 
distributions extended worldwide  

- Water 
Supply 

- Forage 
production 

In local GIS environment extended 
from (8); SI-1-3. Water supply in 
positive growth days; forage in 
livestock units per hectare. 

0.008333° 
Worldwide 

Single service models 

Aqueduct Global Maps 2.1 (WRI) (40): 
accumulated water run-off 
wri.org/data/aqueduct-global-maps-21-data  

- Water 
Supply 

Existing data; as available blue 
water (m3) per catchment outlet 

Watershed 
Polygons  
Worldwide 

European map of above ground biomass stocks 
(41) 

- AG carbon 
Existing data, from (20); as tonnes 
per hectare 

0.008333°  
Europe only 

ESA CCI Biomass Climate Change Initiative (42)  
data.ceda.ac.uk/neodc/esacci/-
biomass/data/agb/maps/v2.0/geotiff/2018  

- AG carbon Existing data; as tonnes per hectare 
0.0008888° 
Worldwide  
Forest only 

FAO combined gridded livestock distributions 
fao.org/livestock-systems/globaldistributions  

- Forage 
production 

Existing data, summed LSUs 
among types (SI-2) per gridcell 

0.08333° 
Worldwide 

Integrated GEOCARBON global forest biomass 
(28) 
lucid.wur.nl/datasets/high-carbon-ecosystems  

- AG carbon Existing data; as tonnes per hectare 
0.01° 
Worldwide.  
Forest only 

Gilbert et al. (43); Combined gridded livestock 
distributions  
dataverse.harvard.edu/dataverse/glw_3  

- Forage 
production 

Existing data, summed LSUs 
among types (SI-2) per gridcell 

0.08333° 
Worldwide 

Global Forest Watch, above ground biomass (44) 
data.globalforestwatch.org/-datasets/above-
ground-live-woody-biomass-density/data  

- AG carbon Existing data; as tonnes per hectare 
0.00025° 
Worldwide 
Forest only 

JRC Above ground Biomass (45) 
data.jrc.ec.europa.eu/dataset/biomass 

- AG carbon Existing data; as tonnes per hectare 
0.0008333°  
Europe only 

Chaplin-Kramer et al. (2)  - Recreation 
Existing data in number of people 
per gridcell 

0.01667°  
Not above 
60° North 

WaterWorld (46): Accumulated water run-off 
policysupport.org/waterworld  

- Water 
Supply 

Run online per available catchment 
in m3 per catchment outlet 

0.008333° 
Partially 
Worldwide 

WaterWorld (46): Water Budget per cell 
policysupport.org/waterworld 

- Water 
Supply 

Run online per available catchment 
in m3 per gridcell 

0.008333° 
Partially 
Worldwide 

Single service Carbon models with masked use for Grazing and Fuelwood 

Avitabile et al. (28): carbon in vegetation 
lucid.wur.nl/datasets/high-carbon-ecosystems  

- AG carbon 
- Forage 

production‡ 
- Fuelwood 

production ¶ 

Existing data; as tonnes per hectare 
0.008333°  
Tropics only 

Conservation International Total Carbon in 
vegetation (47) conservation.org/projects/-
irrecoverable-carbon  

- AG carbon 
- Forage 

production‡ 
- Fuelwood 

production ¶ 

Existing data; as tonnes per hectare 
0.002695° 
Worldwide 

Kindermann et al. (48) above ground biomass 
stocks 

- AG carbon 
- Forage 

production‡ 
- Fuelwood 

production ¶ 

Existing data, from (20) ; as tonnes 
per hectare 

0.008333° 
Worldwide 

ORNL DAAC (NASA), above ground biomass 
density (49) daac.ornl.gov/cgi-bin/  

- AG carbon 
- Forage 

production‡ 
- Fuelwood 

production ¶ 

Existing data; as tonnes per hectare 
0.002778° 
Worldwide 

†including post-processing with a further data set (SI-1-4); based on above ground (AG) carbon with an ‡grassland and ¶woodland MODIS 343 
land cover mask following9 (SI-3); §realised service based on photo uploads; © combined C3 and C4 carbon. 344 
 345 

https://www.wri.org/data/aqueduct-global-maps-21-data
https://data.ceda.ac.uk/neodc/esacci/biomass/data/agb/maps/v2.0/geotiff/2018
https://data.ceda.ac.uk/neodc/esacci/biomass/data/agb/maps/v2.0/geotiff/2018
https://www.fao.org/livestock-systems/global-distributions
http://lucid.wur.nl/datasets/high-carbon-ecosystems
https://dataverse.harvard.edu/dataverse/glw_3
https://data.globalforestwatch.org/datasets/aboveground-live-woody-biomass-density/data
https://data.globalforestwatch.org/datasets/aboveground-live-woody-biomass-density/data
https://data.jrc.ec.europa.eu/dataset/d1fdf7aa-df33-49af-b7d5-40d226ec0da3
http://www.policysupport.org/waterworld
http://www.policysupport.org/waterworld
http://lucid.wur.nl/datasets/high-carbon-ecosystems
https://www.conservation.org/projects/irrecoverable-carbon
https://www.conservation.org/projects/irrecoverable-carbon
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763
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All model outputs were projected to WGS 1984 (EPSG 4326) and rescaled to a 0.008333° grid 346 
(approximately 1km at the equator), resampling models where necessary (Table 2). Generally, when 347 
upscaling, cells were aggregated by calculating the mean of the grid cell values with no-data cells 348 
ignored; when downscaling ArcPro’s bilinear recalculation algorithm was used for resampling. This 349 
latter resampling resulted in a smooth transition by assuming values of smaller cells via linear 350 
extrapolations from neighbouring cells  (e.g. for LPJ, gridded livestock). Small-scale non-linearity (e.g. 351 
as a result of unmodelled features) is not included in this downscaling, as such an output would heavily 352 
depend on post-processing assumptions and inputs and be a model in its own right. Rescaling factors 353 
are not needed during these calculations since these will not change relative values (i.e. resulting from 354 
subsequent normalisation; Step 3). All outputs were clipped and aligned to the exact same extent with 355 
standard number of rows and columns (43,200 x 18,600), using ArcPro’s bilinear recalculation 356 
algorithm. 357 
 358 
Whilst all model outputs were obtained at global scale, not all cover the entire globe (Table 2). Only 359 
the terrestrial globe was considered, but there were other specific constraints. For example, servers 360 
for certain online models restricted overly large data flows. Specifically, ARIES k.explorer was not able 361 
to run the recreation module per country for North America and parts of Europe because of the high 362 
level of detail in the supporting maps (23); WaterWorld was not able to run the largest watersheds 363 
such as the Amazon basin, the Mississippi and the Yangtze (46). Furthermore, Co$ting Nature is limited 364 
to latitudes below 60° north due to lack of input data for northern regions (25). We used above ground 365 
(AG) carbon models that were region specific; two for Europe (41, 45), one for the tropics (28) and 366 
three that were forest vegetation specific (28, 42, 44).  367 
 368 
2. Validation data sets 369 
 370 
Our validation data sets are listed in Table 3 (and mapped in SI-4). Broadly, they include either informed 371 
expert statistics (such as country-level statistics from the FAO [forage production and fuelwood] and 372 
recreation values from the World Travel and Tourism Council), or actual biophysical measurement 373 
(tree inventory plots for AG carbon, and weir data for water flow): 374 

• Our water supply validation data set is catchment-based. Specifically, we used a Global Runoff 375 
Data Centre (GRDC) data set with 3746 weirs (Table 3; Figure S1), covering all regions but not 376 
all land area. For each weir, bespoke catchments polygons were delineated using the a 90m 377 
SRTM Digital Elevation Map (50), following Willcock et al. (8). 378 

• The recreation validation data consisted of the 178 available country sheets for economic and 379 
employment impact of travel & tourism of the World Travel and Tourism Council for 2019 (i.e. 380 
pre-Covid), providing the estimated total GDP of Tourism and Travel in US$. It also contains 381 
estimates for the proportion spent on business and leisure, and the proportion that is from 382 
domestic and international tourism. Three of the five recreation models represent leisure-383 
oriented local access to nature, including gravity models (51). Therefore, to use validation data 384 
comparable to our modelled outputs, we multiplied the Tourism and Travel GDP with the 385 
proportions for leisure and domestic to get to ‘GDP of domestic recreation for leisure’. 386 

• The AG carbon validation data is a combination of pan-tropical biomass in forest plots from 387 
ForestPlots.Net (28), and from the United Kingdom assessment of carbon in all forest estates 388 
(20). By using both data sets, we are able to validate the models in both temperate and tropical 389 
contexts. See Avitabile et al. (28) and Hooftman et al. (20) for further details.  390 

• The fuelwood and forage production validation data are country-level statistics from FAO for 391 
2019 (195 countries available) and 2018 (208 countries) respectively (Figure S2). 392 

 393 
Each data set has associated uncertainties (8) but after an extensive review of data, we identified these 394 
as the best-suited reference values for validation (i.e. metrics that corresponded most closely to those 395 
modelled, have been published in the peer-reviewed literature and/or widely accepted as an 396 
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authoritative source [e.g. FAO statistics], and are available globally or for a large number of countries). 397 
Both model and validation data are normalised (see below) to ensure comparability and remove 398 
unavoidable differences in exact units. The validation data are as independent as feasibly possible from 399 
the models; however, due to data deficiency, some aspects of an individual model may have been 400 
trained with local census data which could, in part, relate to validation data. For example, gridded 401 
livestock from FAO and Gilbert et al. (43) are trained on various regional census data, some of which 402 
may have been included in the national-scale forage production validation data, and some of the plots 403 
from Avitabile et al. (28) may have been used to estimate the carbon stocks per land cover class per 404 
ecofloristic zone as used in ARIES (23). 405 
 406 

Table 3: The empirical validation data sets used in this study (mapped in SI-4). ES models need to be evaluated against the real world to 
determine if they are able to provide sufficiently accurate information for regional- or local-scale policy- and decision-making. Since the 
‘true value’ can never be absolutely determined, acceptable reference values must be used. Empirical data can be used as reference 
values to evaluate ES model accuracy (8). Although such reference values are likely to have errors associated with them and may not be 
totally representative of the true values (8), this approach is widely accepted in environmental sciences (52). 

Service Validation Set Description Original 
Resolution 

Details 

Water Supply 
 

Global Runoff Data 
Centre: river 
discharges 

3746 selected stations. 
Mean annual water flow 
per hectare catchment 
(m2 ha-1) 

Catchments as 
polygons (SI-4) 

Selected on still running after 2000 
and containing at least 25 years of 
data. bafg.de/GRDC/EN/Home 

Recreation 
 

WTCC: Tourism 
Economic Impact 
Reports per country 

Total GDP of domestic 
recreation for leisure in 
US$ for 178 countries 

Country (GAUL-2) 
polygons. 

Country sheets for 2019, calculated 
as recreation GDP contribution (US$) 
x [% domestic spending x % leisure 
spending]. 
wttc.org/Research/Economic-
Impact.  

AG carbon 
 

1. Pan-tropical 
biomass in 
forest plots 

ABG stock in tonnes per 
hectare for 14,478 forest 
plots35 

Point data 

Tropical region. Pan-tropical biomass 
reference data 
lucid.wur.nl/datasets/high-carbon-
ecosystems.  

2. United 
Kingdom 
carbon in forest 
estates  

Mean ABG stocks in 
tonnes per hectare from 
1606 estates. 

Forest polygons  
Temperate region. Modified data 
taken from (20), original data from 
UK Forest Research 

Fuelwood 
production 
 

FAOStat: Wood fuel 
per country 

Wood fuel in m3, 
summed non-coniferous 
& coniferous for 2019 for 
195 countries 

Country (GAUL-2) 
polygons. 

fao.org/faostat/en/#data/FO  

 
Forage production  

FAOStat: Livestock 
per country 

Summed livestock units 
per country for 2018 for 
208 countries 

Country (GAUL-2) 
polygons. 

Animals are: Asses, Buffaloes, 
Camels, Cattle, Chickens, Goats, 
Horses, Mules, Pigs & Sheep. 
fao.org/faostat/en/#data/EK  

 407 
3. Model postprocessing and normalisation 408 
 409 
General model output postprocessing included projecting to WGS 1984, rescaling and clipping to the 410 
specified extent (step 1), as well as detecting and masking no-data values. The latter was especially 411 
applicable for forest only biomass/carbon data sets (Table 2), as well for sea/large water bodies in 412 
various model outputs. In making ensembles, true zeros contribute to the average, whereas no-data 413 
are ignored. Postprocessing of ARIES and Co$ting Nature model outputs with additional data (marked 414 
† in Table 2) is discussed in SI-1-4. This includes the procedure of among tile rescaling of Co$ting 415 
Nature, as the framework produces outputs in 10°-tiles which are individually normalised. Therefore, 416 
tiles need to be rescaled using other global-scale estimates (SI-1-4). AG carbon model output 417 
postprocessing with MODIS land cover (53) masks into forage production and fuelwood outputs 418 
following (8) as detailed in SI-3. 419 
 420 
To ensure comparability among model outputs, we standardised by normalising each individual model 421 
output prior to making ensembles. This normalisation followed (13, 20) and allowed us to address 422 
differences in units among models, such as monetary benefit transfer vs. satellite-based tree cover 423 

https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://wttc.org/Research/Economic-Impact
https://wttc.org/Research/Economic-Impact
http://lucid.wur.nl/datasets/high-carbon-ecosystems
http://lucid.wur.nl/datasets/high-carbon-ecosystems
http://www.fao.org/faostat/en/#data/FO
http://www.fao.org/faostat/en/#data/EK
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densities or water run-off, and negates the need for conversion factors (e.g. between biomass and AG 424 
carbon). To avoid impacts of extreme values without eliminating these data-points, we employed a 425 
double-sided Winsorising protocol for normalisation (20), using the values associated with the 2.5% 426 
and 97.5% percentiles to define the minimum (0) and maximum (1) values (values below or above 427 
these percentiles became 0 or 1 respectively). Winsorising loses the extremes and so does curtail skew, 428 
but avoids influences of very large and very small values (20). The Winsorising procedure can be found 429 
can be found at our GitHub account (github.com/GlobalEnsembles/Winsorising), both as Matlab and 430 
arcpy coding. The validation data sets were subjected to the same Winsorising protocol. It must be 431 
noted that, even when modelling the same ES, many of the ES models estimate different constructs to 432 
some extent, often with varying units (Table 2). However, since our statistical analyses focused on 433 
relative ranking, it is unlikely that these uncertainties impacted our findings greatly [see (8) for a full 434 
discussion]. 435 
 436 
4. Generating spatial ecosystem service ensembles. 437 
 438 
The procedures to generate different types of ES model ensembles are discussed in Hooftman et al. 439 
(20). Here we focus on an unweighted ensemble, which is the median value of the model outputs 440 
calculated per grid cell. A selection of weighted methods developed by (20) (including mean, PCA, 441 
correlation coefficient, regression to the median, leave-one-out cross validation, and log-likelihood 442 
approaches) are reported in SI-7. These alternative ensemble approaches show consistent patterns 443 
and comparable accuracy to the relatively simple median ensemble. 444 
 445 
For recreation, AG carbon, fuelwood and forage production our ensembles were based on per-grid cell 446 
estimates of the respective model outputs. Here, models for AG carbon, fuelwood and forage 447 
production are comparable point-based estimates of local resources, although differing in complexity 448 
and initial assumptions (8, 20). Additionally, our recreation ensemble comprises different modelling 449 
methods which provide comparable predictions of potential recreational pressure: observations 450 
[Photo uploads: (24) and (25)], population movement through gravity functions [(2) and (23)], and 451 
benefit transfer (38); see SI-1-4 for a full discussion. For water supply, our ensembles are accumulated 452 
flow estimates following the global HydroSHEDS catchments definition (54). For grid cells, ensembles 453 
were created using ArcPro Cell Statistics module – with the median or standard deviation as the input 454 
statistic. Due to the way certain models accumulated water flows (WaterWorld, Aquastat) a per-grid 455 
cell approach was not possible for water supply, so the sum of grid values within catchment polygons 456 
was calculated for each catchment. In the case of accumulated flow models (WaterWorld, Aquastat), 457 
we used the maximum value per polygon assumed to be the flow out of the HydroSHED pour point. 458 
Since HydroSHEDS information do not contain the spatial location of the exact pour point we could not 459 
correct for differences in routing information as we do for the GRDC validation catchments (Step 5). 460 
We employed a forced 0.001° grid size to minimise edge effects.  461 
 462 
As all models are normalised to the same 0-1 scale, calculations do not require any additional scaling 463 
factors. The spatial representation of the ensembles and variation are generated on the same extent 464 
and grid as described under Step 1, and can be downloaded from the Environmental Informatics Data 465 
Centre (https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86). The water ensembles are 466 
there available as HydroSHED (54) defined accumulated water flow (vector format), the other four ES 467 
as geotiffs (raster format). Since not all model outputs are globally comprehensive, variation is 468 

expressed by a standard error of means as (
𝜎(𝑥)

√𝑛(𝑥)
), instead of standard deviation (σ), with n the number 469 

of models per grid cell x. The ensembles are renormalised to represent the full 0-1 range.  470 
 471 
5. Validation of accuracy 472 
 473 

https://github.com/GlobalEnsembles/Winsorising
https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86
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After creating the ensembles, the model and ensemble outputs were calculated at the spatial 474 
resolution of the validation data. For recreation, fuelwood and forage production, the validation data 475 
are available on a per-country basis, so this was done by calculating the sum of all model ensemble 476 
grid cells within countries. Country definitions followed FAO Global Administrative Unit Layers (GAUL) 477 
level 2 with 2014 definition. This map includes separate polygons for overseas territories. When 478 
overseas territories were treated separately in one of the validation data sets (e.g. Martinique [FR] or 479 
British Virgin Island [UK]) those values were extracted as separate data-points from the ensembles. 480 
We refer to all these spatial units as ‘countries’, although not all units have that designation. For each 481 
individual model, outputs were obtained for each country polygon with the ArcGIS Zonal tool with a 482 
forced 0.001° grid size to minimise edge effects – i.e. all predicted values were obtained by down-483 
sampling into 0.001° grid cells. For AG carbon plots, the point-based location of the forest plot was 484 
used as the mean value of underlying 0.001° gridcells. For grid-based water supply estimates the sum 485 
of grid values per watershed polygon was employed. In the case of accumulated flow models 486 
(WaterWorld, Aquastat), we corrected for potential small scale differences in flow routing among 487 
these models by taking the maximum flow value within a 0.041665° range (5 cell widths) of the GRDC 488 
reported location of the weir station (20), without exceeding the aligned watersheds. We note that, 489 
these validation data are diverse (Table 3), being collected using a range of methods of varying 490 
reliability, including: expert opinion (e.g. country-level statistics from the FAO) and biophysical 491 
measurement (e.g. tree inventory plots, and weir data on water flow). As such, each dataset has 492 
associated uncertainties (55) but, since the ‘true value’ can never be absolutely determined, provides 493 
useful reference values for validation (8, 13, 52). However, given that the datasets covered a wide 494 
range of methods and our focus was on ranked correlative relationships (below), there is unlikely to 495 
be systematic bias and so data quality issues should have a low impact on our results. We refer to 496 
references (8) and (13) for a full discussion of ES model validation. 497 
 498 
To create ES ensemble proxy services, we followed the procedure as above – e.g.  AG carbon summed 499 
per country to compare to national-scale validation data; recreation, forage production and fuelwood 500 
summed within catchments (for comparison to global runoff data) and at the point location of the 501 
forest plots (for comparison to AG carbon data). To be able to use accumulated water flow as proxy 502 
for country-validated services we split the HydroSHEDS by countries, generating sub-catchments 503 
where they crossed borders. Following this, data extraction and ensemble procedure was followed 504 
anew as described above. Similarly, for forest plot locations water flow ensembles were generated for 505 
the plot locations only. 506 
 507 
Ensemble, bundle and model output accuracy was assessed following the inverse of the deviance (D↓) 508 
as was developed in (8) following: 509 

 𝐷↓ = 1 − (
1

𝑛
× ∑ |𝑋(𝑥) − 𝑌(𝑥)|𝑛

𝑥 )        Eqn. 1 510 

in which n = the number of spatial data points, x a spatial data point, X(x) the normalised 511 
validation value for x, and Y(x) the normalised value for the model or ensemble tested. 512 

We also conducted rank-order comparisons using Spearman’s ρ as an accuracy measure, which 513 
showed consistent results (SI-5). 514 
 515 
To allow statistical comparisons we bootstrapped with 1000 runs for 10% of the data sets (AG carbon, 516 
water supply) or 100 data-points (country validations) reporting the mean and standard deviation 517 
across these bootstraps. We tested all accuracies within the same bootstrap run, allowing pairwise 518 
comparisons. We assessed accuracy differences with pairwise t-tests (Matlab ttest-tool). The mean of 519 
pairwise differences per run is generally larger than the difference between the averaged accuracies 520 
as shown in Figure 3. The pairwise combinations included median accuracy among models [i.e. 521 
indicating a random pick among models (20)], the median ensemble and the median ensembles of the 522 
other four service as proxies. Since we used the same statistical test five times per service per 523 
comparison, we employed a Hochberg's step-up correction (56) to account for multiple tests on the 524 
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resulting average p-values. Hochberg's step-up correction is seen as more powerful than Sidak, 525 
Bonferroni and Holms correction methods, which are known to underestimate true effects (56). A 526 
comparison with six other approaches to creating ensembles from (20) are reported in SI-7. 527 
 528 
6. Spatial comparison of ensemble accuracy with development and equality per country  529 
 530 
We explored possible drivers of the spatial variation of ES ensemble accuracy, testing if ensembles are 531 
more accurate in more economically developed countries with relatively higher levels of data, research 532 
and model development. We used the following metrics: 533 

• The Human Development Index (HDI) of 2019, as metric developed by the United Nations 534 
Development Programme being a summary measure of proxies for three important ends of 535 
development: access to health, education, and goods (57). Downloaded from 536 
hdr.undp.org/en/indicators/137506. 537 

• The following World Development indicators were downloaded from The World Bank 538 
(databank.worldbank.org/home.aspx) using 2018 data (except GDP per capita) or the latest 539 
available entry before: 540 

o GDP per capita downloaded from World Bank 2019 in US$ Purchasing Power Parity, 541 
supplemented for missing countries by CIA data for 2018 (cia.gov/the-world-542 
factbook/field/real-gdp-per-capita/country-comparison). 543 

o Income Equality following the Gini index measuring the extent to which the 544 
distribution of income among households within an country deviates from an equal 545 
distribution.    546 

o The number of researchers engaged in research and development (R&D), expressed 547 
as per million. 548 

o Gross domestic expenditures on research and development (R&D), expressed as a 549 
percent of GDP. 550 

 551 
After exporting all above outputs to Matlab v7.14.0.739 we correlated these metrics one by one 552 
(Metric) with the per-validation point accuracy of the median ensemble, calculated as the inverse of 553 

deviance per point (𝐷(𝑥)
↓ = (1 − |𝑋(𝑥) − 𝑌(𝑥)|)), using a SS-type I model with the Matlab Anovan tool: 554 

 𝐷(𝑥)
↓ ~ 𝛽0 + 𝛽1𝐴𝑢𝑡𝑜(𝑥) + 𝛽2𝑀𝑒𝑡𝑟𝑖𝑐(𝑥) + 𝜀     Eqn. 2 555 

in which D↓
(x) is the accuracy for polygon x, with effect sizes β and error ε. 556 

 557 
We incorporated a correction for potential spatial autocorrelation through inclusion of a covariate 558 
(Auto) prior to estimating the correlation of the metric of interest, describing relatedness between 559 
individual outputs in deviance with the Euclidean distances among centroids of polygons/points (13, 560 
58). We used a maximum spatial autocorrelation effect range of 5°. To equalise degrees of freedom 561 
across services and avoid high degrees of freedom (df) inflation of F-values for AG carbon and water 562 
supply – resulting in near-zero p-values even for very weak effects – an iteration method was used 563 
taking a standard sample size of 178 datapoints (the minimum N across services). Not setting a default 564 
number of bootstraps, we used a convergence iterations method, stopping the iterations after the 565 
mean Sum of Squares of each factor over all iterations will not have changed by more than 0.05% with 566 
an extra iteration, consistently for 25 tries sequentially (see codes on github.com/GlobalEnsembles). 567 
Furthermore, we explicitly test for potential higher accuracy in more economically developed countries 568 
using a one-sided p-value distribution (two-sided is reported in SI-5). The presented F-values 569 
themselves are mirrored accordingly to represent the one-sided significance distribution. Since, for 570 
each ES, all metrics and the interaction (Eqn. 3) are calculated for the identical set of D↓

(x) per point 571 
and hence the spatial autocorrelation among those, we employed a Hochberg's step-up correction (56) 572 
of significance to account for the use of 8 tests, as in step 5. Identical tests using Spearman’s ρ as 573 
accuracy measure are reported in SI-5. 574 
 575 

https://hdr.undp.org/en/indicators/137506
https://databank.worldbank.org/home.aspx
https://www.cia.gov/the-world-factbook/field/real-gdp-per-capita/country-comparison
https://www.cia.gov/the-world-factbook/field/real-gdp-per-capita/country-comparison
https://github.com/GlobalEnsembles
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Since individual wealth may be better represented by the distribution of wealth around the mean (i.e. 576 
GDP per capita), we also ran Eqn. 2 as a two factor interaction model for GDP per capita and income 577 
equality with type I Sum of Squares between spatial autocorrelation and the tested factors and type III 578 
among factors and interaction following:  579 

 𝐷(𝑥)~𝛽0 + 𝛽1𝐴𝑢𝑡𝑜(𝑥) + {𝛽2𝐸𝑞𝑢𝑖𝑡𝑦(𝑥) + 𝛽2𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦(𝑥) + 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝜀 }          Eqn. 3 580 
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