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Amultispecies perspective on ecological impacts of

climatic forcing

CrispinM.Mutshinda1*, Robert B. O’Hara1,2 and Ian P.Woiwod3
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Summary

1. In the prevailing context of concerns over climate change and its potential impacts on

ecosystems, evaluating ecological consequences of climatic forcing has become a critical issue.

2. Historical data on the abundance of organisms have been extensively used to characterize the

ecological effects of climatic forcing through specific weather and ⁄or climatic variables, with most

of the studies confined to single populationmodels.

3. However, population responses to environmental fluctuations typically depend upon positive

and negative feedbacks induced by interactions with other species. It is therefore important to

integrate the insights gained from single population approaches into amultispecies perspective.

4. Here we combine the hierarchical Bayesian modelling approach with the state-space formula-

tion to extend the scope of previously proposed models of population dynamics under climatic

forcing tomulti-species systems.

5. We use our model to analyse long-term macro-moth (Lepidoptera) community data from the

Rothamsted Insect Survey network in the UK, using winter rainfall and winter temperature as

environmental covariates.

6. The effects of the twoweather variables were consistent across species, being negative for winter

rainfall and positive for winter temperature. The two weather variables jointly explained 15–40%

of the total environmental variation affecting the dynamics of individual species, and could explain

up to 90%of covariances in species dynamics.

7. The contribution of interspecific interactions to community-level variation was found to be

weak compared to the contributions of environmental forcing and intraspecific interactions.

Key-words: Bayesian inference, biotic interactions, environmental forcing,Markov chainMonte

Carlo

Introduction

Evaluating population dynamical consequences of climatic

forcing has become a critical contemporary issue in ecology

with the rising concerns over climate change progress and its

potential ecological impacts (Woiwod 1997; Harrington,

Woiwod & Sparks 1999; Hughes 2000; McCarthy 2001; Hill

et al. 2002; Walther et al. 2002; Parmesan & Yohe 2003;

Root et al. 2003). Historical data on the abundance of organ-

isms have been extensively used for attempting to character-

ize the ecological impacts of climatic forcing through specific

weather variables such as temperature, rainfall, snow cover

etc., or large-scale climatic indices like the North Atlantic

oscillation (NAO) or the El Niño ⁄Southern Oscillation

(ENSO). For example, Saether et al. (2000) investigated pop-

ulation dynamical consequences of climate change for a small

songbird, using winter temperature and precipitation as envi-

ronmental covariates. Stenseth et al. (2004) examined the

effects of fluctuations in the North Atlantic Oscillation

(NAO) index on variation in Soay sheep counts. Henderson

& Seaby (2005) analysed the role of fluctuations in winter

NAO index and water temperature in determining temporal

variation in abundance, recruitment and growth of Solea

solea at Bridgwater Bay in the Bristol Channel, England.

Westgarth-Smith et al. (2007) investigated the association

between temporal variations in English populations of a for-

est insect pest, the green spruce aphid (Elatobium abietinum)

and the NAO index.

However, most studies concerned with ecological impacts

of climatic forcing have been confined to single population

models, even though population responses to environmental
*Correspondence author. E-mail: crispin.mutshindamwanza@

helsinki.fi
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fluctuations typically depend upon positive and negative

feedbacks induced by interactions with other species (Ives

1995; Kilpatrick & Ives 2003). The next stage is to integrate

the insights gained from single population approaches into a

multispecies perspective so we can understand the mecha-

nisms underlying fluctuations in species abundances and

community structure.

In this paper we combine the hierarchical Bayesian model-

ling approach (Berlinier 1996; Gelman et al. 2003; Clark

2005;Wikle &Hooten 2006) with the state-space formulation

(de Valpine & Hastings 2002; Buckland et al. 2004; Clark &

Bjørnstad 2004; Rivot et al. 2004; Gimenez et al. 2007), to

extend the scope of previously proposed models of popula-

tion dynamics under climatic forcing tomulti-species systems.

We demonstrate the implementation of our model with long-

termmacro-moth (Lepidoptera) light-trapping data from the

Rothamsted Insect Survey network in the UK, using two

weather variables, namely winter (December–February)

rainfall and winter temperature as environmental covariates.

We also evaluate the proportion of variation attributable to

different factors in the dynamics of individual species, as

well as the proportion of environmental variance and covari-

ance explained by the included environmental covariates.

Materials andmethods

DESCRIPTION OF DATA

We use replicated time series of yearly light-trapping catches for 12

most abundant noctuid (Noctuidae) macro-moths (Lepidoptera)

from the Rothamsted Insect Survey (RIS) network in the United

Kingdom (Woiwod & Harrington 1994). The data involve replicates

from two different sampling stations: Geescroft I and II, in woodland

on Rothamsted Farm in Hertfordshire, UK (Woiwod & Gould

2008). The data cover the period 1973–2003 for Geescroft I and

1973–1998 for Geescroft II. The scientific and common names of the

study species are given in Table 1, and time plots of observed species

abundances (on a natural logarithmic scale) are shown in Fig. 1.

Note that Mesapamea secalis is in fact a two species complex (secal-

is ⁄ didyma). These two species can only be separated on genitalia and

were not recognized as separate when the sampling started so they

are kept as one for consistency. We used winter (December–Febru-

ary) rainfall (F) in mm and winter temperature (T) in degrees Celsius

as climatic covariates. The two variables were standardized to have

zero-mean and unit variance. No significant correlation was observed

between these two climatic variables (q = 0Æ07) at Rothamsted, in

line with the suggestion of Westgarth-Smith et al. (2007). This

implies that the two variables can enter the model additively without

inducing multicollinearity issues which may lead to flawed inferences

(Silvey 1969; Graham 2003). Time plots of standardized scores of the

two environmental variables are shown in Fig. 2.

MODEL SPECIF ICATION

The model is developed and fitted with a hierarchical Bayesian

approach (Berlinier 1996;Gelman et al. 2003;Wikle &Hooten 2006).

A state-space formulation (de Valpine & Hastings 2002; Buckland

et al. 2004; Clark & Bjørnstad 2004; Rivot et al. 2004; Gimenez et al.

2007) is used to distinguish between the process model describing the

actual dynamics of the study system by conditional Markovian

transitions between successive states, and the observation model

intended tomap the observed data to the actual states of the process.

The processmodel

We assume aGompertz kernel for the underlying population dynam-

ics. The Gompertz model has been widely used in modelling popula-

tion and community dynamics (e.g. Saitoh, Stenseth & Bjonstad

1997; Jacobson et al. 2004; Dennis et al. 2006;Mutshinda, O’Hara&

Woiwod 2009), and has the advantage of being linear on a logarith-

mic scale. The model includes intra- and interspecific interactions, as

well as linear terms measuring the dynamical effects of climatic vari-

ables on the growth rates of the study populations, and is designed to

accommodate species covariations in response to latent environ-

mental factors.

More specifically, letNi;t denote the actual number of individuals of

species i in the community in year t (S species in total), and letFt andTt

designate respectively the averaged winter (December–February)

rainfall (in mm) and winter temperature (in degrees Celsius) in

year t, standardized as indicated above. The number of individu-

als of species i at time t in the community is described by

Ni;t¼Ni;t�1 exp ri 1�
XS

j¼1ai;j logNj;t�1=ki

� �
þbi;1Ftþbi;2Ttþei;t

n o
;

eqn1

where ri and ki are the intrinsic growth rate and the natural logarithm

of the carrying capacity of species i respectively; ai;j is the interaction

coefficient quantifying the effect of species j on the growth of species i

(interspecific interaction), with all coefficients of intraspecific interac-

tions, ai;i, set to 1 (Loreau & de Mazancourt 2008; Mutshinda,

O’Hara & Woiwod 2009); bi,1 and bi,2 quantify the effects of winter

rainfall and winter temperature on the growth rate of species i,

respectively. The random shocks, ei;t, representing the variability

resulting from demographic stochasticity and un-modelled (latent)

environmental factors are assumed to be serially independent and

normally distributed with mean zero, but are allowed to covary

across species at a specific time as discussed below. The normality

assumption allows us to separately model the mean and covariance

structures (Ripa & Ives 2003; Mutshinda, O’Hara & Woiwod 2009).

On the natural logarithmic scale, equation 1 becomes

ni;t¼ni;t�1þri 1�
XS

j¼1ai;jnj;t�1=ki

� �
þbi;1Ftþbi;2Ttþei;t; eqn2

where ni;t denotes the natural logarithm of Ni;t. Equation 2 can be

compactly written inmatrix form as

Table 1. Scientific and common names of the study moth species. All

species belong to the noctuid (Noctuidae) family

Scientific name Common name

Agrostis exclamationis Heart &Dart

Diarsia mendica Ingrailed Clay

Xestia xanthographa Square-spot Rustic

Noctua pronuba Large YellowUnderwing

Orthosia gothica HebrewCharacter

Hoplodrina alsines TheUncertain

Mesapamea secalis ⁄ didyma CommonRustic

Cosmia trapezina TheDun-bar

Agrochola macilenta Yellow-lineQuaker

Conistra vaccini The Chestnut

Hypena proboscidalis The Snout

Hermina grisealis Small Fan-foot
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nt ¼ nt�1 þ R 1S � Ant�1ð Þ þ BWt þ e t; eqn 3

where nt ¼ ðn1;t; :::; nS;tÞT is the S-dimensional vector of

log-transformed abundances of the S species at time t, R is a S-by-S

diagonal matrix with Ri;i ¼ ri, and 1S is the S-dimensional vector

with all elements equal to 1;Ai;j ¼ ai;j=ki,Wt ¼ ðFt;TtÞT, B is a n · 2

matrix with (bi1, bi2) as i
th row, and et ¼ ðe1;t; :::; eS;tÞT is the vector of

process disturbances affecting the community dynamics at time t,

with one element by species. The serially independent vectors et are
assumed to bemultivariate normally distributed around the zero-vec-

tor, with a covariance matrix denoted by Rt i.e. et �MNVð0; RtÞ.
The covariance matrix Rt is further decomposed into its environmen-

tal and demographic components as

Rt ¼ CþDt: eqn 4

The covariance matrix C represents the variability not explained

by intrinsic dynamics or by the included environmental covari-

ates, including the effect of interactions with un-modelled species

at the same trophic level as well as species at other trophic levels.

The matrix C is henceforth referred to as the environmental

covariance matrix. Species are also allowed to covary in their

response to latent (un-modelled) environmental factors by assum-

ing that the elements, Ci;i, on the main diagonal of C and the

off-diagonal elements, Ci,j (i „ j), represent species-specific and

joint responses to latent environmental factors, respectively.

Dt ¼ diagðd2i =Ni;t�1Þ, where d2i =Ni;t�1 denotes the (population-

level) demographic variance affecting the dynamics of species i

from time t)1 to t, which is scaled inversely with the population

size (Saether et al. 2000; Bjørnstad & Grinfell 2001; Lande,

Engen & Saether 2003). It is in fact the dependence of demo-

graphic variance on the population size that makes the demo-

graphic and environmental components of the process variance

involved in equation 4 statistically identifiable.
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Fig. 1. Time plots of observed species abundances on the natural logarithmic scale. Open circles represent catches fromGeescroft I over the per-

iod 1973–2003, and solid triangles represent catches fromGeescroft II over the period 1973–1998.
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Fig. 2. Time plots of (a) mean winter rainfall (in mm) and (b) mean

winter temperatures (in degrees Celsius) over the period 1978–2003 in

Hertfordshire UK, standardized to have zero mean and unit

variance.
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Following Saether et al. (2000), the total environmental vari-

ance, Ei, affecting the dynamics of species i can be split into a com-

ponent, b2
i;1varðFÞ þ b2

i;2varðTÞ, attributable to the included

environmental variables, and a residual environmental variance,

Ci,i, quantifying the variability not accounted for by the included

variables. That is,

Ei ¼ Ci;i þ b2
i;1varðFÞ þ b2

i;2varðTÞ: eqn 5

In particular, if the covariates F andT are standardized to unit var-

iance as is the case here, then equation 5 takes the simple form

Ci;i þ b2
i;1 þ b2

i;2 so that ðb2
i;1 þ b2

i;2Þ=Ei represents the proportion of

environmental variation attributable to the included weather vari-

ables. Additionally, the environmental covariance between the

dynamics of species i and j is given by

ðbi;1bj;1ÞvarðFÞ þ ðbi;2bj;2ÞvarðTÞ þ Ci;j; eqn 6

which is simply bi;1 bj;1 þ bi;2 bj;2 þ Ci;j with standardized covariates.

Moreover, if Ci;j>0 and the effects of the two covariates on the

dynamics of species i and j turn out to be of identical signs, then the

proportion of environmental covariance between species i and j that

is explained by the covariates is given by

ðbi;1bj;1 þ bi;2bj;2Þ=ðbi;1bj;1 þ bi;2bj;2 þ Ci;jÞ:

Weused the Bayesian variable selectionmethod known as stochas-

tic search variable selection (SSVS) (George & McCulloch 1993;

Mutshinda, O’Hara &Woiwod 2009) to constrain the coefficients of

spurious inter-species interactions to be close to zero so that they do

not affect the model results. The rationale of SSVS is to embed a

multiple regression set-up in a hierarchical normal mixture model,

and use latent indicators to identify promising sets of predictors. For

each coefficient of interspecific interaction, ai,j (i „ j), we introduced

an auxiliary indicator ci;j � Bernðpi;jÞ, 0 < pi,j < 1, such that

ci,j = 1 when species j is included in the dynamics of species i, and

ci,j = 0 otherwise. Conditionally on ci,j, we defined the prior

distribution of ai,j as a mixture of two Gaussians i.e.

aijjci;j � ð1� cijÞ �Nð0; c1Þ þ cij �Nð0; c2Þ. The positive constant

c1 was selected to be small and c2 to be large. This prior specification

constrains ai,j to be concentrated around zero when ci,j = 0 since the

ensuing prior corresponds to the spike part of the Gaussian mixture

prior placed on ai,j, which is confined around zero.On the other hand,

ai,j is freely estimated from the data when ci,j = 1 since the corre-

sponding prior, the slab part of the Gaussian mixture priors placed

on ai,j, is diffuse (flat).
A Gibbs sampling methodology is used to generate samples from

the joint posterior of all unknowns, including the inclusion indicators

ci,j. The relevance of a single interaction effect, ai,j, is evaluated

through the Bayes factor Bi;j ¼
Pðci;j¼1jDataÞ

1�Pðci;j¼1jDataÞ �
1�Pðci;j¼1Þ
Pðci; j¼1Þ

, which

quantifies the amount by which the prior odds of including vs. not

including ai,j into the model are changed into posterior odds by the

data. IfBi,j is larger than 1, we say that the data providemore support

in favour of including ai,j into the model than assumed a priori, and

vice-versa. Bayes factors for comparing two hypotheses (or models)

H1 and H2 are usually interpreted on the following scale due to Jeff-

reys (1961). B1,2 < 1: ‘Negative support for H1 (i.e. support for H2)’;

1 £ B1,2 < 3: ‘Barely worth mentioning evidence in favour of H1’;

3 £ B1,2 < 10: ‘Substantial support for H1’; 10 £ B1,2 < 100:

‘Strong support for H1’; B1,2 > 100: ‘Decisive support for H1’. For

us here H1 andH2 represent the inclusion and exclusion of individual

interaction coefficients into themodel, respectively.

The observationmodel

We took advantage of the replicated feature of our data (time series

from two light-traps: Geescroft I and Geescroft II on the same site)

to explicitly accommodate potential discrepancies in capture effi-

ciency across traps for different species. Our observation model was

also specified withGaussian errors.

More specifically, let Yi,t,k denote the observed number of individ-

uals of species i at time t from trap k, and let yi;t;k ¼ logðYi;t;kÞ. We

assume that

yi;t;kjni;t � Nðni;t þ bi;k; s
2
i Þ; eqn 7

where the random variable bi;k, intended to correct for differences in

capture efficiency between species across traps, is set to zero for one

of the traps (Geescroft I) to force identifiability. So we only estimate

bi,2, and consider negative values of it as implying lower capture effi-

ciency forGeescroft II compared toGeescroft I and vice-versa.

PRIOR SPECIF ICATION

Fitting a Bayesian model to the data requires explicit statements of

prior distributions for all unknown quantities. We placed on the

covariance matrix C an inverse Wishart prior with scale matrix X
and a number, q, of degrees of freedom set to the smallest possible

number, i.e. the rank of X, to convey vague prior information. We

then set X to the S-dimensional identity matrix, IS. For all species,

we independently placed diffuse Nð0; 15ÞIð0;1Þ on the log-carrying

capacities and Nð0; r2
r ÞIð0;þ1Þ on the intrinsic growth rate, where

I(.) denotes the indicator function. The parameters bi,1 and bi,2 repre-
senting the effects of winter rainfall and winter temperature were

independently assigned diffuseN(0, 100) priors, and all pi,j (the a pri-

ori inclusion probability of interspecific interactions) were set to 0Æ2.
Finally, we placed Unif(0, 10) priors on the standard deviations di, si
and rr. Gelman (2006) gives a justification for this approach to prior

specification for variance parameters.

MODEL FITT ING

We used Markov chain Monte Carlo (MCMC) simulation methods

(Gilks, Richardson & Spiegelhalter 1996) throughOpenBUGS (Tho-

mas et al. 2006) to sample from the joint posterior of the model

parameters.We ran 80 000 iterations of threeMarkov chains starting

from dispersed parameter values, and discarded the first 20 000 sam-

ples of each chain as burn-in, thinning the remainder to every 25th

sample. The convergence was assessed visually through the mixing of

the chains and the behaviour of the sample autocorrelation plots.

The BUGS code for the model fitting is provided in the Appendix S1

(Supporting information).

We used posterior predictive cross-validation to check the model

adequacy by omitting the last five observations from the Geescroft I

data set for each species, and forecasting them from the model to

determine how well the model predictions would approximate the

omitted data. In all cases, the model predictions were consistent with

the discarded data as illustrated by Fig. 3 where M. secalis ⁄ didyma

andH. proboscidalis are used for illustration.

Results

The multivariate normality assumption on the residuals

et ¼ ðe1;t; :::; eS;tÞT, was corroborated by the Shapiro–Wilks

multivariate normality test through the function mshapiro()

104 C.M.Mutshinda, R. B. O’Hara & I. P.Woiwod
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from the mvnormtest R package (the R Development Core

Team 2009), ruling out concerns aboutmodelmisspecification.

Environmental variation was the most important driver of

population dynamics in the focal community, accounting for

between 45 and 75% of variation in the dynamics of individ-

ual moth species. Intraspecific interactions (i.e. the effects of

density dependence) were found to be the second most

important source of variation in species abundances and

explained roughly 10–30% of temporal variation in species

abundances. However, the contribution of interspecific inter-

actions was minor, broadly explaining less than 10% of vari-

ation in the dynamics of individual species (Fig. 4c).

Effects of the two weather variables were consistent across

species, being negative for winter rainfall and positive for win-

ter temperature (Fig. 4a). When the environmental variance

was split into contributions from the two environmental cova-

riates and the residual (unexplained) variance, the twoweather

variables jointly explained 15–40% of the total environmental

variation. Individually, the two variables explained 10–20%

of the total environmental variation (Fig. 4d). Moreover, the

two environmental variables explained up to 90%of environ-

mental covariances between species. The highest environ-

mental covariances are given in Table 2.

The coefficients of interspecific interactions weremainly far

lower than one, with Bayes factors in favour of their inclusion

providing nomore than a barely worthmentioning support.

The contribution of demographic stochasticity to the tem-

poral variation in species abundances was estimated to be

weak, with posterior means of d2i lying between 1Æ5 and 3,

implying much lower population-level demographic vari-

ances, given that our data sets are limited to species occurring

in high numbers.

Figure 4b shows posterior means and 68% central credible

intervals for the variable b, implying slightly higher capture

efficiency for the Geescroft I trap for most species.

Discussion

In this paper we developed a hierarchical Bayesian model to

investigate the ecological impacts of climatic forcing from a

multispecies perspective. We applied the methodology to

macro-moth (Lepidoptera) light-trapping data from the

Rothamsted Insect Survey network in the UK, using winter

(December–February) rainfall and winter temperature as

environmental covariates. The results agree with our previous
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over the period 1998–2003 for Geescroft I. The black diamonds
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of our results.

−
0·

4
−

0·
2

0
0·

2
0·

4
0·

6
0·

8

Winter rainfall
Winter temperature

C
ov

ar
ia

te
 e

ffe
ct

s

A
. e

xc
.

D
. m

en
.

X
. x

an
.

N
. p

ro
.

O
. g

ot
. 

H
. a

ls
.

M
. s

ec
./d

id
.

C
. t

ra
.

A
. m

ac
.

C
. v

ac
.

H
. p

ro
.

H
. g

ri.−
1·

5
−

0·
75

0
0·

75

b

Proportion of variance explained

Intersp. interactions
Intrasp. competition
Env. forcing

0
0·

25
0·

5
0·

75
1

A
. e

xc
.

D
. m

en
.

X
. x

an
.

N
. p

ro
.

O
. g

ot
. 

H
. a

ls
.

M
. s

ec
./d

id
.

C
. t

ra
.

A
. m

ac
.

C
. v

ac
.

H
. p

ro
.

H
. g

ri.

Proportion of environmental
variance explained

Rainfall
Temperature
Total

0
0·

2
0·

4
0·

6
0·

8

Species

(a)

(b)

(c)

(d)

Fig. 4. (a) Posteriormeans and 68%credible intervals for the parameters representing the effects of winter rainfall (grey squares) andwinter tem-

perature (black circles) on the growth of individual species; (b) Posteriormeans and 68%credible intervals for the variable b representing the effi-

ciency of the Geescroft II trap relative to Geescroft I for each species, with all values corresponding to Geescroft I set to zero. Panel (c) shows

barplots for the proportions of environmental variance attributable to environmental stochasticity, as well as intra- ⁄ interspecific interactions in
the dynamics of individual species, whereas panel (d) shows barplots for the proportions of environmental variance explained by winter rainfall

and winter temperature, both individually and collectively.
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analysis of the same community (Mutshinda, O’Hara &

Woiwod 2009), although there are some small differences, as

this analysis included two replicate sampling stations.

The model was based on a loglinear (Gompertz) kernel

and included intra- and interspecific interactions, along with

linear termsmeasuring the effects of environmental variables,

and was designed to accommodate species covariation in

response to latent environmental factors.

The effects of winter rainfall and winter temperature on

the dynamics of the study species were consistently negative

for the former and positive for the latter (Fig. 4a). These

results are in line with the suggestions of previous studies of

the ecological impacts of weather on Lepidoptera (Beirne

1955; Pollard 1988; Crozier 2004).

Plausible explanations for negative effects of winter

rainfall on Lepidoptera include the fact that heavy rains are

usually accompanied by strong winds which might dislodge

larvae from their host plants, thereby disrupting their feeding

behaviour. In addition, wet weather might favour the inci-

dence and the spread of moth fungal pathogens which may

drastically affect larval and pupal survival.

The positive association between winter temperature and

the growth rate of the study species agrees with the gener-

ally accepted view that warm conditions are favourable to

larval survival for many Lepidoptera species (e.g. Crozier

2004).

Environmental stochasticity (not including the variation

due to interspecific interactions between the included spe-

cies) was the most important source of variation in species

abundances as it accounted for between 45 and 75% of the

total variance in the dynamics of individual species. Intra-

specific interactions were of secondary relative importance

and accounted between 10 and 30% of the total variance

in the dynamics of individual species. The influence of

interspecific interactions on community-level variation was

found to be minor with contributions to total variance in

the dynamics of individual species broadly less than 10%.

This result corroborates the previously suggested weak con-

tribution of interspecific interactions to explaining commu-

nity-level variation (Ives, Gross & Klug 1999; Kokkoris,

Troumbis & Lawton 1999; Houlahan et al. 2007;

Mutshinda, O’Hara & Woiwod 2009). Moreover, the Bayes

factors in favour of including inter-species interactions into

the model were found to be broadly less than one, except a

few of them whose values lay between 1 and 3, implying a

support that is not worth more than a bare mention on the

Jeffreys’ scale.

We further partitioned the total environmental variance

affecting the dynamics of individual species into the contribu-

tions from the included weather variables and the unex-

plained (residual) variance. Winter rainfall and temperature

jointly explained up to 40% of the total environmental varia-

tion in the dynamics of individual species.

The environmental covariances between species were

broadly positive, and the two environmental covariates

accounted for up to 90% of covariances between species. We

chose environmental covariates that we suspected, a priori,

would influence the community, and there are many other

covariates that might also have an effect. It is thus promising

that we can start to untangle the causes of these environmen-

tal correlations. The excess environmental covariation may

be ascribed to other factors not included in the model such as

extra-trophic interactions (e.g. predation pressure from

insectivorous birds or generalists parasitoids), or indirect cli-

matic effects. It is also well known that if two populations

have the same density-dependent structure, then correlated

density-independent factors can bring the population fluctu-

ations into synchrony, the ‘Moran effect’ (Moran 1953;

Royama 1992).

Synchrony in population fluctuations has implications for

the community viability, with positive correlations increasing

the probability of local and even global extinction. Palmquist

& Lundberg (1998) pointed out that synchronously fluctuat-

ing populations face a greater risk of global extinction than

do independently fluctuating populations. We have shown

that we can find some of the causes of these environmental

correlations, which then suggests that we can start to estimate

the effects of changes in these variables (e.g. due to anthropo-

genic climate change) on real communities, and assess their

viability.

The population-level signature of demographic variances

was found to be weak. This is not surprising given the inverse

scaling of the demographic variance with the population size

(Lande, Engen & Saether 2003) and the fact that the data sets

used here are confined to species occurring in high numbers.
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