(19)

(11)

EP 2585603 B1

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
20.12.2017 Bulletin 2017/51
(21) Application number: 11731295.9
(22) Date of filing: 21.06.2011
(51) Int CI.:

C12N 15/82 ${ }^{(2006.01)} \quad$ C12P 7/64 ${ }^{(2006.01)}$
(86) International application number:

PCT/EP2011/060315
(87) International publication number: WO 2011/161093 (29.12.2011 Gazette 2011/52)
(54) ACYLTRANSFERASES AND USES THEROF IN FATTY ACID PRODUCTION

ACYLTRANSFERASEN UND DEREN VERWENDUNG IN DER FETTSÄURENHERSTELLUNG
ACYLTRANSFERASES ET SES UTILISATION DANS LA PRODUCTION DES ACIDES GRAS
(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
(30) Priority: 25.06.2010 EP 10167342
25.06.2010 US 358431 P
(43) Date of publication of application: 01.05.2013 Bulletin 2013/18
(73) Proprietor: BASF Plant Science Company GmbH 67056 Ludwigshafen (DE)
(72) Inventors:

- SENGER, Toralf 69126 Heidelberg (DE)
- MARTY, Laurent 69124 Heidelberg (DE)
- STYMNE, Sten

26132 Landskrona (SE)

- LINDBERG YILMAZ, Jenny 23737 Bfärred (SE)
- NAPIER, Johnathan A.

Preston
Hertfordshire AL5 2JQ (GB)

- SAYANOVA, Olga

Redbourn
St. Albans AL3 7HF (GB)

- HASLAM, Richard

Aylesbury
Buckinghamshire HP18 OLX (GB)

- NOEMI, Ruiz Lopez

Harpenden AL5 5NX (GB)
(74) Representative: BASF IP Association

BASF SE
G-FLP-C006
67056 Ludwigshafen (DE)
(56) References cited:

WO-A1-2009/143398
WO-A2-2007/106905
WO-A2-2009/085169 WO-A2-2009/143401
WO-A2-2011/161678

- C. Zhang ET AL: "A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds", Journal of Experimental Botany, vol. 64, no. 11, 1 August 2013 (2013-08-01), pages 3189-3200, XP055082800, ISSN: 0022-0957, DOI: 10.1093/jxb/ert156
- IIDA IET AL: "Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization", JOURNAL OF FERMENTATION AND BIOENGINEERING, SOCIETY OF FERMENTATION TECHNOLOGY, JP, vol. 81, no. 1, 1 January 1996 (1996-01-01), pages 76-78, XP002327281, ISSN: 0922-338X, DOI: 10.1016/0922-338X(96)83125-4

[^0]
Description

[0001] The present invention relates to the recombinant manufacture of polyunsaturated fatty acids. Specifically, it relates to acyltransferase polypeptides, polynucleotides encoding said acyltransferase polypeptides as well to vectors, host cells, non-human transgenic organisms containing said polynucletides. Moreover, the present invention contemplates methods for the manufacture of polyunsaturated fatty acids as well as oils obtained by such methods.
[0002] Fatty acids and triacylglycerides have a various applications in the food industry, in animal feed, supplement nutrition, and in the cosmetic and pharmacological and pharmaceutical field. The individual applications may either require free fatty acids or triacylglycerides. In both cases, however, polyunsaturated fatty acids either free or esterified are of pivotal interest for many of the aforementioned applications. In particular, polyunsaturated omega-3-fatty acids and omega-6-fatty acids are important constituents in animal and human food. These fatty acids are supposed to have beneficial effects on the overall health and, in particular, on the central nervous system, the cardivovascular system, the immune system, and the general metabolism. Within traditional food, the polyunsaturated omega-3-fatty acids are mainly found in fish and plant oils. However, in comparison with the needs of the industry and the need for a beneficial diet, this source is rather limited.
[0003] The various polyunsaturated fatty acids (PUFA) and PUFA-containing triglycerides are also mainly obtained from microorganisms such as Mortierella and Schizochytrium or from oil-producing plants such as soybean or oilseed rape, algae such as Crypthecodinium or Phaeodactylum and others, where they are usually obtained in the form of their triacyl-glycerides. The free PUFA are usually prepared from the triacylglycerides by hydrolysis. However, long chain polyunsaturated fatty acids (LCPUFA) having a C-18, C-20, C-22 or C-24 fatty acid body, such as docoahexaenoic acid (DHA), eicosapentaenoic acid (EPA), arachidonic acid (ARA), dihomo-gamma-linolenic acid or docosapentaenoic acid (DPA) can not be efficiently isolated from natural oil crop plants such as oilseed rape, soybean, sunflower or safflower. Conventional natural sources of these fatty acids are, thus, merely fish, such as herring, salmon, sardine, redfish, eel, carp, trout, halibut, mackerel, zander or tuna, or from algae.
[0004] Especially suitable microorganisms for the production of PUFA in industrial scale are microalgae such as Phaeodactylum tricornutum, Porphoridium species, Thraustochytrium species, Nannochloropsis species, Schizochytrium species or Crypthecodinium species, ciliates such as Stylonychia or Colpidium, fungi such as Mortierella, Entomophthora or Mucor and/or mosses such as Physcomitrella, Ceratodon and Marchantia (Vazhappilly 1998, Botanica Marina 41: 553-558; Totani 1987, Lipids 22: 1060-1062; Akimoto 1998, Appl. Biochemistry and Biotechnology 73: 269-278). Strain selection has resulted in the development of a number of mutant strains of the microorganisms in question which produce a series of desirable compounds including PUFA. However, the mutation and selection of strains with an improved production of a particular molecule such as the polyunsaturated fatty acids is a time-consuming and difficult process. This is why recombinant methods as described above are preferred whenever possible. However, only limited amounts of the desired PUFA or LCPUFA and, in particular, DHA or EPA, can be produced with the aid of the above mentioned microorganisms, and, depending on the microorganism used, these are generally obtained as fatty acid mixtures of, for example, EPA, DPA and DHA.
[0005] Many attempts in the past have been made to make available genes which are involved in the synthesis of fatty acids or triglycerides for the production of oils in various organisms. Various desaturases have been described in the art; see, e.g., documents WO 91/13972, WO 93/11245, WO 94/11516, EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey 1990, J. Biol. Chem., 265: 20144-20149, Wada 1990, Nature 347: 200-203, Huang 1999, Lipids 34: 649-659, WO 93/06712, US 5,614,393, WO 96/21022, WO 00/21557, WO 99/27111, WO 98/46763, WO 98/46764, WO 98/46765, WO 99/64616 or WO 98/46776. These enzymes can be used for the production of unsaturated fatty acids. Thus, due to modern molecular biology, it has become possible to increase at least to some extent the content of the desired polyunsaturated fatty acids and, in particular, the PUFA or LCPUFA in a given organism. Elongases for the production of fatty acids are disclosed in the document WO2009/016202.
[0006] The biosynthesis of LCPUFA and the incorporation of LCPUFA into membrane lipids or triacylglycerides proceeds via various metabolic pathways (Abbadi 2001, European Journal of Lipid Science \& Technology 103:106-113). In bacteria such as Vibrio, and microalgae, such as Schizochytrium, malonyl-CoA is converted into LCPUFA via an LCPUFA-producing polyketide synthase (Metz 2001, Science 293: 290-293; WO 00/42195; WO 98/27203; WO 98/55625). In microalgae, such as Phaeodactylum, and mosses, such as Physcomitrella, unsaturated fatty acids such as linoleic acid or linolenic acid are converted in a plurality of desaturation and elongation steps to give LCPUFA (Zank 2000, Biochemical Society Transactions 28: 654-658). Desaturation takes place either on acyl groups bound to Coenzyme A (acyl-CoA) or on acyl groups of membrane lipids, whereas elongation is biochemicaly restricted to acyl chains bound to CoA. In mammals, the biosynthesis of DHA comprises a chain shortening via beta-oxidation, in addition to desaturation and elongation steps. In microorganisms and lower plants, LCPUFA are present either exclusively in the form of membrane lipids, as is the case in Physcomitrella and Phaeodactylum, or in membrane lipids and triacylglycerides, as is the case in Schizochytrium and Mortierella. Incorporation of LCPUFA into lipids and oils, as well as the transfer of the fatty acid moiety (acyl group) between lipids and other molecular species such as acyl-CoA, is catalyzed by various acyl-
transferases and transacylases. These enzymes are, known to carry out the incorporation or interexchange of saturated and unsaturated fatty acids (Slabas 2001, J. Plant Physiology 158: 505-513, Frentzen 1998, Fett/Lipid 100: 161-166, Cases 1998, Proc. Nat. Acad. Sci. USA 95: 13018-13023). One group of acyltransferases having three distinct enzymatic activities are enzymes of the "Kennedy pathway", which are located on the cytoplasmic side of the membrane system of the endoplasmic reticulum (ER). The ER-bound acyltransferases in the microsomal fraction use acyl-CoA as the activated form of fatty acids. Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the incorporation of acyl groups at the sn-1 position of glycerol-3-phosphate. 1-Acylglycerol-3-phosphate acyltransferase, also known as lysophosphatidic acid acyltransferase (LPAAT), catalyze the incorporation of acyl groups at the sn-2 position of lysophosphatidic acid (LPA). After dephosphorylation of phosphatidic acid by phosphatidic acid phosphatase (PAP), diacylglycerol acyltransferase (DGAT) catalyzes the incorporation of acyl groups at the sn-3 position of diacylglycerols. Further enzymes directly involved in TAG biosynthesis - apart from the said Kennedy pathway enzymes - are the phospholipid diacylglycerol acyltransferase (PDAT), an enzyme that transfers acyl groups from the $s n-2$ position of membrane lipids to the sn-3 position of diacylglycerols, and diacylglyceroldiacylglycerol transacylase (DDAT), an enzyme that transfers acylgroups from the sn-2 position of one diacylglycerol-molecule to the sn-3 position of another diacylglycerol-molecule. Lysophospholipid acyltransferase (LPLAT) represents a class of acyltransferases that are capable of incorporating activated acyl groups from acyl-CoA to membrane lipids, and possibly catalyze also the reverse reaction. More specifically, LPLATs can have activity as lysophosphophatidylethanolamine acyltransferase (LPEAT) and lysophosphatidylcholine acyltransferase (LPCAT). Further enzymes, such as lecithin cholesterol acyltransferase (LCAT) can be involved in the transfer of acyl groups from membrane lipids into triacylglycerides, as well.
[0007] The documents WO 98/54302 and WO 98/54303 disclose a human LPAAT and its potential use for the therapy of diseases, as a diagnostic, and a method for identifying modulators of the human LPAAT. Moreover, a variety of acyltransferases with a wide range of enzymatic functions have been described in the documents WO 98/55632, WO 98/55631, WO 94/13814, WO 96/24674, WO 95/27791, WO 00/18889, WO 00/18889, WO 93/10241, Akermoun 2000, Biochemical Society Transactions 28: 713-715, Tumaney 1999, Biochimica et Biophysica Acta 1439: 47-56, Fraser 2000, Biochemical Society Transactions 28: 715-7718, Stymne 1984, Biochem. J. 223: 305-314, Yamashita 2001, Journal of Biological Chemistry 276: 26745-26752, and WO 00/18889.
[0008] Higher plants comprise PUFA, such as linoleic acid and linolenic acid. However, the LCPUFA ARA, EPA and DHA are not present in the seed oils of higher plants or only in traces (Ucciani: Nouveau Dictionnaire des Huiles Végétales. Technique \& Documentation-Lavoisier, 1995. ISBN: 2-7430-0009-0). It is nevertheless highly desirable to produce LCPUFA in higher plants, preferably in oil seeds such as oilseed rape, linseed, sunflower and soybean, since large amounts of high-quality LCPUFA for the various aforementioned applications may be obtained thereby at low costs.
[0009] WO 2009/085169 describes a sequences encoding an acyltransferase in SEO.ID.NO.54. WO2009/143398 describes a sequence encoding an lysophosphatidic acid acyltransferase protein (SEO.ID.NO. 159 and example 24) and further a sequence encoding a protein with acyltransferase activity (cf. example 24 and SEO.ID.No. 156). WO2007/106905 describes a sequence which encodes a diacylglycerolacyltransferase (cf. claim 34 and SEO.ID.NO. 119) and also a sequence which encodes an acyltransferase (cf. example 11 and SEO.ID.NO. 101). WO2009/143401 describes a sequence which encodes a polypeptide having diacylglycerol acyltransferase activity (cf. example 39 and SEO.ID.NO. 361).
[0010] However, one drawback of using transgenic plants expressing various of the aforementioned desaturases and elongases involved in the synthesis of PUFA and LCPUFA is that the latter are not efficiently incorporated into triacylglycerides, but rather into membranes. Furthermore, efficient processing of a given acyl molecule-substrate, e.g. linoleic acid, by a plurality of desaturation and elongation steps towards the desired LCPUFA, e.g. ARA, EPA and/or DHA, is hindered by the requirement to transfer the acyl molecule and its derivatives generated by the elongation and desaturation reactions back and forth between membrane lipids and acyl-CoA. For this reason, intermediates towards desired LCPUFA are incorporated into oil before the synthesis of the desired LCPUFA is complete. These two problems are undesired for the following reasons: First, the main lipid fraction in oil seeds are triacylglycerides. This is why, for economical reasons, it is necessary to concentrate LCPUFA in triacylglycerides. Second, LCPUFA which are incorporated into membranes can modify the physical characteristics of the membranes and thus have harmful effects on the integrity and transport characteristics of the membranes and on the stress tolerance of plants. Third, for efficient LCPUFA synthesis, it is desirable to increase the flux of intermediate-LCPUFA between the two sites of biosynthesis -that are membrane lipids and acyl-CoA - and/or decrease the flux of intermediate-PUFA/-LCPUFA into oil. Transgenic plants which comprise and express genes coding for enzymes of LCPUFA biosynthesis and produce LCPUFA have been described, e.g., in DE 10219203 or WO2004/087902. However, these plants produce LCPUFA in amounts which require further optimization for processing the oils present in said plants. Moreover, it was proposed that delta 6 desaturated fatty acids may be shifted into the acyl-CoA pool for increasing efficiency of fatty acid elongation in plants (Singh 2005, Curr. Opin. Plant Biol., 8: 197-203). Another publication demonstrated in Arabidopsis, that the additional expression of RcDGAT2 from Ricinus communis increase the storage of hydroxyfatty acids produced by a Ricinus communis fatty acid hydroxylase 12 (FAH12) from 17% to 30% in the seed oil.

EP 2585603 B1

[0011] Accordingly, means for increasing the content of PUFA or LCPUFA, such as EPA and DHA, in triglycerides in, e.g., plant seed oils, are still highly desirable.
[0012] Thus, the present invention relates to a polynucleotide comprising a nucleic acid sequence selected from the group consisting of:
a) a nucleic acid sequence consisting of the nucleotide sequence as shown in any one of SEQID NOs: 52, 7, 46 and 49; b) a nucleic acid sequence encoding a polypeptide having an amino acid sequence as shown in any one of SEQ ID NOs: 53, 8, 47 and 50;
c) a nucleic acid sequence being at least 60% identical to the nucleic acid sequence as shown in any one of SEQ ID NOs: 52, 7, 46 and 49or encoding a polypeptide having an amino acid sequence at least 60% identical to in any one of SEQ ID NOs: $53,8,47$ and 50 ,
and wherein said nucleic acid sequence of (a) to (c) encodes a polypeptide having acyltransferase activity.
[0013] Matsuda et al. (Journal of Lipid Research, 2012, p1210ff, analysed the delta-12 fatty acid desaturase funcition of T . aureum and found that two disctinct pathways are active in T. aureum for the synthesis of PUFAs. Zhang et al (Journal of Experimental Botany, 2013, Vol. 64, No. 11, pp 3189-3200) found that that the diacylglycerol acyltransferase 2 from T. aureum, has a broad substrate specificity and increases the oleic acid content in A. thaliana expressing said gene.
[0014] Herein also described is a polynucleotide comprising a nucleic acid sequence elected from the group consisting of:
a) a nucleic acid sequence having a nucleotide sequence as shown in any one of SEQ ID NOs: $1,4,10,13,16,19$, $22,25,28,31,34,37,40,43$, and 55 ;
b) a nucleic acid sequence encoding a polypeptide having an amino acid sequence as shown in any one of SEQ ID NOs: $2,5,11,14,17,20,23,26,29,32,35,38,41,44$, and 56 ;
c) a nucleic acid sequence being at least 40% identical to the nucleic acid sequence of a) or b), wherein said nucleic acid sequence encodes a polypeptide having acyltransferase activity;
d) a nucleic acid sequence encoding a polypeptide having acyltransferase activity and having an amino acid sequence which is at least 45% identical to the amino acid sequence of b); and
e) a nucleic acid sequence which is capable of hybridizing under one of the following sets of conditions to any one of a) to d), wherein said nucleic acid sequence encodes a polypeptide having acyltransferase activity:
f) hybridization in 50 mM Tris, $\mathrm{pH} 7.6,6 \times \mathrm{SSC}, 5 \times$ Denhardt's, 1.0% sodium dodecyl sulfat (SDS) $100 \mu \mathrm{~g}$ denaturated calf thymus DNA at $34^{\circ} \mathrm{C}$ overnight and wash twice with $2 x S S C, 0.5 \%$ SDS at room temperature for 15 min each, repeat twice with $0.2 x$ SSC $, 0,5 \%$ SDS at room temperature for 15 min each and then repeat twice with 0.2 SSC, 0.5% SDS at $50^{\circ} \mathrm{C}$ for 15 min ;
g) hybridization in 6xSSPE (Sodium chloride Sodium Phosphate-EDTA), $5 x$ Denhardt's solution, 0.5% SDS $100 \mu \mathrm{~g}$ denaturated calf thymus DNA at $34^{\circ} \mathrm{C}$ overnight and wash twice with $2 \times$ SSC, 0.5% SDS at room temperature for 15 min each, repeat twice with $0.2 \times S S C, 0,5 \%$ SDS at room temperature for 15 min each and then repeat twice with $0.2 \mathrm{SSC}, 0.5 \% \mathrm{SDS}$ at $50^{\circ} \mathrm{C}$ for 15 min ;
h) hybridization in 20-30\% formamide, $5 x$ SSPE, $5 x$ Denhardt's solution, 1% SDS $100 \mu \mathrm{~g}$ denaturated salmon sperm DNA at $34^{\circ} \mathrm{C}$ overnight and wash twice with $2 x$ SSPE, 0.2% SDS at $42^{\circ} \mathrm{C}$ for 15 min each, repeat twice with $2 \times$ SSPE, 0.2% SDS at $55^{\circ} \mathrm{C}$ for 30 min each and repeat twice with $0.2 \mathrm{SSC}, 0.5 \%$ SDS at $50^{\circ} \mathrm{C}$ for 15 min ;
i) hybridization in 7% SDS, $0.5 \mathrm{M} \mathrm{NaPO} 4,1 \mathrm{mM}$ EDTA at $50^{\circ} \mathrm{C}$ overnight and wash in $2 \times \mathrm{SSC}, 0.1 \%$ SDS at $50^{\circ} \mathrm{C}$ or $65^{\circ} \mathrm{C}$;
j) hybridization in 7% SDS, $0.5 \mathrm{M} \mathrm{NaPO} 4,1 \mathrm{mM}$ EDTA at $50^{\circ} \mathrm{C}$ overnight and wash in $1 \mathrm{XSSC}, 0.1 \%$ SDS at $50^{\circ} \mathrm{C}$ or $65^{\circ} \mathrm{C}$; or
k) hybridization in 7% SDS, $0.5 \mathrm{M} \mathrm{NaPO} 4,1 \mathrm{mM}$ EDTA at $50^{\circ} \mathrm{C}$ overnight and wash in $0,1 \times \mathrm{SSC}, 0.1 \%$ SDS at $50^{\circ} \mathrm{C}$ or $65^{\circ} \mathrm{C}$
[0015] The term "polynucleotide" as used in accordance with the present invention relates to a polynucleotide comprising a nucleic acid sequence which encodes a polypeptide having acyltransferase activity.
[0016] Preferably, the polypeptide encoded by the polynucleotide of the present invention having acyltransferas activity upon expression in a plant shall be capable of increasing the amount of PUFA and, in particular, LCPUFA esterified to triglycerides in, e.g., seed oils or the entire plant or parts thereof. Such an increase is, preferably, statistically significant when compared to a LCPUFA producing transgenic control plant which expresses the minimal set of desaturases and elongases requiered for LCPUFA synthesis but does not express the polynucleotide of the present invention. Such a transgenic plant may, preferably, express desaturases and elongases comprised by the vector LJB765 listed in table 11 of example 5 in WO2009/016202 or a similar set of desaturases and elongases required for DHA synthesis. Whether an increase is significant can be determined by statistical tests well known in the art including, e.g., Student's t-test.

More preferably, the increase is an increase of the amount of triglycerides containing LCPUFA of at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, atleast 45% or at least 50% compared to the said control. Preferably, the LCPUFA referred to before is a polyunsaturated fatty acid having a C-20, C-22 or C24 fatty acid body, more preferably, EPA or DHA, most preferably, DHA. Suitable assays for measuring the
[0017] The term "acyltransferase activity" or "acyltransferase" as used herein encompasses all enymatic activities and enzymes which are capable of transferring or are involved in the transfer of PUFA and, in particular; LCPUFA from the acly-CoA pool or the membrane phospholipis to the triglycerides, from the acyl-CoA pool to membrane lipids and from membrane lipids to the acyl-CoA pool by a transesterification process. It will be understood that this acyltransferase activity will result in an increase of the LCPUFA esterified to triglycerides in, e.g., seed oils. In particular, it is envisaged that these acyltransferases are capable of producing triglycerides having esterified EPA or even DHA, or that these acyltransferases are capable of enhancing synthesis of desired PUFA by increasing the flux for specific intermediates of the desired PUFA between the acyl-CoA pool (the site of elongation) and membrane lipids (the predominant site of desaturation). Specifically, acyltransferase activity as used herein relates to lysophospholipid acyltransferase (LPLAT) activity, preferably, lysophosphatidylcholine acyltransferase (LPCAT) or Lysophosphophatidylethanolamine acyltransferase (LPEAT) activity, lysophosphosphatidic acid acyltransferase (LPAAT) activity, glycerol-3-phosphate acyltransferase (GPAT) activity or diacylglycerol acyltransferase (DGAT), and, more preferably, to LPLAT, LPAAT, DGAT or GPAT activity.
[0018] More preferably, polynucleotides having a nucleic acid sequence as shown in SEQ ID NOs: 1, 4, and 7, encoding polypeptides having amino acid sequences as shown in SEQ ID NOs: 2,5 , and 8 or variants thereof, preferably, exhibit LPLAT activity. Polynucleotides having a nucleic acid sequence as shown in SEQ ID NOs: 10, and 13, encoding polypeptides having amino acid sequences as shown in SEQ ID NOs: 11, and 14 or variants thereof, preferably, exhibit LPAAT activity. Polynucleotides having a nucleic acid sequence as shown in SEQ ID NOs: 16, 19, 22, 25, 28, 31, 34, 37, 40, $43,46,49,52$, and 55 , encoding polypeptides having amino acid sequences as shown in SEQ ID NOs: 17, 20, 23, 26, $29,32,35,38,41,44,47,50,53$, and 56 or variants thereof, preferably, exhibit DGAT activity. A polynucleotide having a nucleic acid sequence as shown in SEQ ID NO: 55, encoding a polypeptide having amino acid sequences as shown in SEQ ID NO: 56 or variants thereof, preferably, exhibit GPAT activity.
[0019] A polynucleotide encoding a polypeptide having a acyltransferase activity as specified above has been obtained in accordance with the present invention, preferably, from Nannochloropsis oculata and/or Thraustochytrium aureum. However, orthologs, paralogs or other homologs may be identified from other species.
[0020] Thus, the term "polynucleotide" as used in accordance with the present invention further encompasses variants of the aforementioned specific polynucleotides representing orthologs, paralogs or other homologs of the polynucleotide of the present invention. Moreover, variants of the polynucleotide of the present invention also include artificially generated muteins. Said muteins include, e.g., enzymes which are generated by mutagenesis techniques and which exhibit improved or altered substrate specificity, or codon optimized polynucleotides.
[0021] The polynucleotide variants, preferably, comprise a nucleic acid sequence characterized in that the sequence can be derived from the aforementioned specific nucleic acid sequences shown in any one of SEQ ID NOs: 52, 7, 46 and 49 or by a polynucleotide encoding a polypeptide having an amino acid sequence as shown in any one of SEQ ID NOs: $53,8,47$ and 50 by at least one nucleotide substitution, addition and/or deletion, whereby the variant nucleic acid sequence shall still encode a polypeptide having a acyltransferase activity as specified above.
[0022] Other polynucleotide variants, decribed herein, can preferably, comprise a nucleic acid sequence characterized in that the sequence can be derived from the aforementioned specific nucleic acid sequences shown in any one of SEQ ID NOs:, $1,4,10,13,16,19,22,25,28,31,34,37,40,43$, and 55 or by a polynucleotide encoding a polypeptide having an amino acid sequence as shown in any one of SEQ ID NOs: $2,5,11,14,17,20,23,26,29,32,35,38,41,44$, and 56 by at least one nucleotide substitution, addition and/or deletion, whereby the variant nucleic acid sequence shall still encode a polypeptide having a acyltransferase activity as specified above.
[0023] Variants also encompass polynucleotides comprising a nucleic acid sequence which is capable of hybridizing to the aforementioned specific nucleic acid sequences, preferably, under stringent hybridization conditions. These stringent conditions are known to the skilled artisan and can be found in Current Protocols in Molecular Biology, John Wiley \& Sons, N. Y. (1989), 6.3.1-6.3.6. A preferred example for stringent hybridization conditions are hybridization conditions in $6 \times$ sodium chloride/sodium citrate ($=$ SSC) at approximately $45^{\circ} \mathrm{C}$, followed by one or more wash steps in $0.2 \times$ SSC, 0.1% SDS at 50 to $65^{\circ} \mathrm{C}$. The skilled artisan knows that these hybridization conditions differ depending on the type of nucleic acid and, for example when organic solvents are present, with regard to the temperature and concentration of the buffer. For example, under "standard hybridization conditions" the temperature differs depending on the type of nucleic acid between $42^{\circ} \mathrm{C}$ and $58^{\circ} \mathrm{C}$ in aqueous buffer with a concentration of 0.1 to $6 \times \mathrm{SSC}(\mathrm{pH} 7.2)$. If organic solvent is present in the abovementioned buffer, for example 50% formamide, the temperature under standard conditions is approximately $42^{\circ} \mathrm{C}$. The hybridization conditions for DNA: DNA hybrids are, preferably, $0.1 \times \mathrm{SSC}$ and $20^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$, preferably between $30^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$ and more preferably between $45^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$. The hybridization conditions for

EP 2585603 B1

DNA:RNA hybrids are, more preferably, $0.1 \times \mathrm{SSC}$ and $30^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, most preferably between $45^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$. The abovementioned hybridization temperatures are determined for example for a nucleic acid with approximately 100 bp (= base pairs) in length and a G + C content of 50% in the absence of formamide. The skilled artisan knows how to determine the hybridization conditions required by referring to textbooks such as the textbook mentioned above, or the following textbooks: Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Hames and Higgins (Ed.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Ed.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford.
[0024] In detail variants of polynucleotides still encode a polypeptide having a acyltransferase activity as specified above comprising a nucleic acid sequence which is capable of hybridizing preferably under conditions equivalent to hybridization in 50 mM Tris, $\mathrm{pH} 7.6,6 x S S C, 5 x$ Denhardt's, 1.0% sodium dodecyl sulfat (SDS) $100 \mu \mathrm{~g}$ denaturated calf thymus DNA at $34^{\circ} \mathrm{C}$ overnight, followed by washing twice with $2 x$ SSC, 0.5% SDS at room temperature for 15 min each, then wash twice with $0.2 x$ SSC, $0,5 \%$ SDS at room temperature for 15 min each and then wash twice with $0.2 \mathrm{SSC}, 0.5 \%$ SDS at $50^{\circ} \mathrm{C}$ for 15 min each to a nucleic acid described by any one of SEQ ID NOs: $52,1,4,7,10,13,16,19,22,25$, $28,31,34,37,40,43,46,49$, and 55 or the complement thereof.
[0025] More preferably, said variants of polynucleotides comprising a nucleic acid sequence which is capable of hybridizing under conditions equivalent to hybridization in 6xSSPE (Sodium chloride Sodium Phosphate-EDTA), $5 x$ Denhardt's solution, 0.5% sodium dodecyl sulfat (SDS) $100 \mu \mathrm{~g}$ denaturated calf thymus DNA at $34^{\circ} \mathrm{C}$ overnight, followed by washing twice with $2 x S S C, 0.5 \%$ SDS at room temperature for 15 min each, then wash twice with $0.2 x$ SSC, $0,5 \%$ SDS at room temperature for 15 min each and then wash twice with $0.2 \mathrm{SSC}, 0.5 \%$ SDS at $50^{\circ} \mathrm{C}$ for 15 min each to a nucleic acid described by any one of SEQ ID NOs: $1,4,10,13,16,19,22,25,28,31,34,37,40,43$, and 55 or the complement thereof.
[0026] Most preferably, said variants of polynucleotides comprising a nucleic acid sequence which is capable of hybridizing under conditions equivalent to hybridization in 20-30\% formamide, 5xSSPE (Sodium chloride Sodium Phos-phate-EDTA), $5 x$ Denhardt's solution, 1% sodium dodecyl sulfat (SDS) $100 \mu \mathrm{~g}$ denaturated salmon sperm DNA at $34^{\circ} \mathrm{C}$ overnight, followed by washing twice with $2 x$ SSPE, 0.2% SDS at $42^{\circ} \mathrm{C}$ for 15 min each, then wash twice with $2 x S S P E$, 0.2% SDS at $55^{\circ} \mathrm{C}$ for 30 min each and then wash twice with $0.2 \mathrm{SSC}, 0.5 \%$ SDS at $50^{\circ} \mathrm{C}$ for 15 min each to a nucleic acid described by any one of SEQ ID NOs: $1,4,10,13,16,19,22,25,28,31,34,37,40,43$, and 55 or the complement thereof.
[0027] In another preferred embodiment aforementioned variants of polynucleotides still encode a polypeptide having a acyltransferase activity as specified above comprising a nucleic acid sequence which is capable of hybridizing under conditions equivalent to hybridization in 7% sodium dodecyl sulfate (SDS), $0.5 \mathrm{M} \mathrm{NaPO} 4,1 \mathrm{mM}$ EDTA at $50^{\circ} \mathrm{C}$ overnight with washing in $2 \times \mathrm{SSC}, 0.1 \%$ SDS at $50^{\circ} \mathrm{C}$ or $65^{\circ} \mathrm{C}$, preferably $65^{\circ} \mathrm{C}$ to a nucleic acid described by any one of SEQ ID NOs: $1,4,10,13,16,19,22,25,28,31,34,37,40,43$, and 55 or the complement thereof. In still another preferred embodiment, said variants of polynucleotides comprising a nucleic acid sequence which is capable of hybridizing under conditions equivalent to hybridization in 7% sodium dodecyl sulfate (SDS), $0.5 \mathrm{M} \mathrm{NaPO} 4,1 \mathrm{mM}$ EDTA at $50^{\circ} \mathrm{C}$ overnight with washing in $1 \mathrm{XSSC}, 0.1 \%$ SDS at $50^{\circ} \mathrm{C}$ or $65^{\circ} \mathrm{C}$, preferably $65^{\circ} \mathrm{C}$ to a nucleotide sequence described by any one of SEQ ID NOs: $1,4,10,13,16,19,22,25,28,31,34,37,40,43$, and 55 or or the complement thereof, most preferably, said variants of polynucleotides comprising a nucleic acid sequence which is capable of hybridizing under conditions equivalent to hybridization in 7% sodium dodecyl sulfate (SDS), $0.5 \mathrm{M} \mathrm{Na}-\mathrm{PO} 4,1 \mathrm{mM}$ EDTA at $50^{\circ} \mathrm{C}$ overnight with washing in $0,1 \times$ SSC, 0.1% SDS at $50^{\circ} \mathrm{C}$ or $65^{\circ} \mathrm{C}$, preferably $65^{\circ} \mathrm{C}$ to a nucleic acid sequence described by any one of SEQ ID NOs: $1,4,10,13,16,19,22,25,28,31,34,37,40,43$, and 55 or the complement thereof.
[0028] The term "hybridization" as used herein includes "any process by which a strand of nucleic acid molecule joins with a complementary strand through base pairing." (J. Coombs (1994) Dictionary of Biotechnology, Stockton Press, New York). Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acid molecules) is impacted by such factors as the degree of complementarity between the nucleic acid molecules, stringency of the conditions involved, the Tm of the formed hybrid, and the $\mathrm{G}: \mathrm{C}$ ratio within the nucleic acid molecules. As used herein, the term " Tm " is used in reference to the "melting temperature." The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. The equation for calculating the Tm of nucleic acid molecules is well known in the art. As indicated by standard references, a simple estimate of the Tm value may be calculated by the equation: $\mathrm{Tm}=81.5+0.41$ ($\% \mathrm{G}+\mathrm{C}$), when a nucleic acid molecule is in aqueous solution at 1 M NaCl [see e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization (1985)]. Other references include more sophisticated computations, which take structural as well as sequence characteristics into account for the calculation of Tm. Stringent conditions, are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley \& Sons, N.Y. (1989), 6.3.1-6.3.6.
[0029] A "complement" of a nucleic acid sequence as used herein refers to a nucleotide sequence whose nucleic acid molecules show total complementarity to the nucleic acid molecules of the nucleic acid sequence.
[0030] The term "Complementary" or "complementarity" refers to two nucleotide sequences which comprise antiparallel nucleotide sequences capable of pairing with one another (by the base-pairing rules) upon formation of hydrogen bonds
between the complementary base residues in the antiparallel nucleotide sequences. For example, the sequence 5^{\prime} '-AGT-3' is complementary to the sequence 5'-ACT-3'. Complementarity can be "partial" or "total." "Partial" complementarity is where one or more nucleic acid bases are not matched according to the base pairing rules. "Total" or "complete" complementarity between nucleic acid molecules is where each and every nucleic acid base is matched with another base under the base pairing rules. The degree of complementarity between nucleic acid molecule strands has significant effects on the efficiency and strength of hybridization between nucleic acid molecule strands.
[0031] Alternatively, polynucleotide variants are obtainable by PCR-based techniques such as mixed oligonucleotide primer- based amplification of DNA, i.e. using degenerated primers against conserved domains of the polypeptides of the present invention. Conserved domains of the polypeptide of the present invention may be identified by a sequence comparison of the nucleic acid sequences of the polynucleotides or the amino acid sequences of the polypeptides of the present invention. Oligonucleotides suitable as PCR primers as well as suitable PCR conditions are described in the accompanying Examples. As a template, DNA or cDNA from bacteria, fungi, plants or animals may be used.
[0032] Further, variants include polynucleotides comprising nucleic acid sequences which are at least up to at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identical to the nucleic acid sequences shown in any one of SEQ ID NOs: 52, 7, 46 and 49, preferably, encoding polypeptides retaining a acyltransferase activity as specified above.
[0033] Further, variants of the nucleic acids described herein can include polynucleotides comprising nucleic acid sequences which are at least up to 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identical to the nucleic acid sequences shown in any one of SEQ ID NOs: $1,4,10,13,16,19,22,25,28,31,34,37,40,43$, and 55 , preferably, encoding polypeptides retaining a acyltransferase activity as specified above.
[0034] Moreover, also encompassed are polynucleotides (derivatives) which comprise nucleic acid sequences encoding a polypeptide having an amino acid sequences which are at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identical to the amino acid sequences shown in any one of SEQ ID NOs: 53, 8, 47 and 50, wherein the polypeptide, preferably, retains acyltransferase activity as specified above.
[0035] Moreover, herein described are also polynucleotides (derivatives) which comprise nucleic acid sequences encoding a polypeptide having an amino acid sequences which are at least up to 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identical to the amino acid sequences shown in any one of SEQ ID NOs: $2,5,11,14,17,20,23,26,29,32,35,38,41,44$, and 56 , wherein the polypeptide, preferably, retains acyltransferase activity as specified above.
[0036] The percent identity values are, preferably, calculated over the entire amino acid or nucleic acid sequence region. A series of programs based on a variety of algorithms is available to the skilled artisan for comparing different sequences. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch algorithm (Needleman 1970, J. Mol. Biol. (48):444-453) which has been incorporated into the needle program in the EMBOSS software package (EMBOSS: The European Molecular Biology Open Software Suite, Rice,P., Longden,I., and Bleasby,A, Trends in Genetics 16(6), 276-277, 2000), using either a BLOSUM 45 or PAM250 scoring matrix for distantly related proteins, or either a BLOSUM 62 or PAM160 scoring matrix for closer related proteins, and a gap opening penalty of $16,14,12,10,8,6$, or 4 and a gap entension pentalty of $0.5,1,2,3,4,5$, or 6 . Guides for local installation of the EMBOSS package as well as links to WEB-Services can be found at http://emboss.sourceforge.net. A preferred, non-limiting example of parameters to be used for aligning two amino acid sequences using the needle program are the default parameters, including the EBLOSUM62 scoring matrix, a gap opening penalty of 10 and a gap extension penalty of 0.5 . In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the needle program in the EMBOSS software package (EMBOSS: The European Molecular Biology Open Software Suite, Rice,P., Longden,I., and Bleasby,A, Trends in Genetics 16(6), 276-277, 2000), using the EDNAFULL scoring matrix and a gap opening penalty of $16,14,12,10,8,6$, or 4 and a gap extension penalty of $0.5,1,2,3,4,5$, or 6 . A preferred, non-limiting example of parameters to be used in conjunction for aligning two amino acid sequences using the needle program are the default parameters, including the EDNAFULL scoring matrix, a gap opening penalty of 10 and a gap extension penalty of 0.5 . The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the BLAST series of programs (version 2.2) of Altschul et al. (Altschul 1990, J. Mol. Biol. 215:403-10). BLAST using acyltransferase nucleic acid sequences of the invention as query sequence can be performed with the BLASTn, BLASTx or the tBLASTx program using default parameters to obtain either nucleotide sequences (BLASTn, tBLASTx) or amino acid sequences (BLASTx) homologous to acyltransferase sequences of the invention. BLAST using acyltransferase protein sequences of the invention as query
sequence can be performed with the BLASTp or the tBLASTn program using default parameters to obtain either amino acid sequences (BLASTp) or nucleic acid sequences (tBLASTn) homologous to acyltransferase sequences of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST using default parameters can be utilized as described in Altschul et al. (Altschul 1997, Nucleic Acids Res. 25(17):3389-3402).

Table 1: Relation of sequence types of querry and hit sequences for various BLASt programs

Input query sequence	Converted Query	Algorithm Converted Hit	Actual Database
DNA		BLASTn	DNA
PRT		BLASTp	PRT
DNA	BRTASTx	PRT	
PRT	tBLASTn PRT	DNA	
DNA	tBLASTx PRT	DNA	

[0037] A polynucleotide comprising a fragment of any of the aforementioned nucleic acid sequences is also encompassed as a polynucleotide of the present invention. The fragment shall encode a polypeptide which still has acyltransferase activity as specified above. Accordingly, the polypeptide may comprise or consist of the domains of the polypeptide of the present invention conferring the said biological activity. A fragment as meant herein, preferably, comprises at least 50, at least 100, at least 250 or at least 500 consecutive nucleotides of any one of the aforementioned nucleic acid sequences or encodes an amino acid sequence comprising at least 20, at least 30 , at least 50 , at least 80 , at least 100 or at least 150 consecutive amino acids of any one of the aforementioned amino acid sequences.
[0038] The variant polynucleotides or fragments referred to above, preferably, encode polypeptides retaining acyltransferase activity to a significant extent, preferably, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80% or at least 90% of the acyltransferase activity exhibited by any of the polypeptide shown in any one of SEQ ID NOs: $53,8,47$ and 50 or derivative of any of these polypeptides. The activity may be tested as described in the accompanying examples.
[0039] Also described variant polynucleotides or fragments referred to above, preferably, encode polypeptides retaining acyltransferase activity to a significant extent, preferably, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80% or at least 90% of the acyltransferase activity exhibited by any of the polypeptide shown in any one of SEQ ID NOs: $2,5,11,14,17,20,23,26,29,32,35,38,41,44,50$, and 56 or derivative of any of these polypeptides. The activity may be tested as described in the accompanying examples.
[0040] The polynucleotides of the present invention either essentially consist of the aforementioned nucleic acid sequences or comprise the aforementioned nucleic acid sequences. Thus, they may contain further nucleic acid sequences as well. Preferably, the polynucleotide of the present invention may comprise in addition to an open reading frame further untranslated sequence at the 3 ' and at the 5 ' terminus of the coding gene region: at least 500, preferably 200, more preferably 100 nucleotides of the sequence upstream of the 5 ' terminus of the coding region and at least 100 , preferably 50 , more preferably 20 nucleotides of the sequence downstream of the 3 ' terminus of the coding gene region. Furthermore, the polynucleotides of the present invention may encode fusion proteins wherein one partner of the fusion protein is a polypeptide being encoded by a nucleic acid sequence recited above. Such fusion proteins may comprise as additional part other enzymes of the fatty acid or PUFA biosynthesis pathways, polypeptides for monitoring expression (e.g., green, yellow, blue or red fluorescent proteins, alkaline phosphatase and the like) or so called "tags" which may serve as a detectable marker or as an auxiliary measure for purification purposes. Tags for the different purposes are well known in the art and comprise FLAG-tags, 6-histidine-tags, MYC-tags and the like.
[0041] The polynucleotide of the present invention shall be provided, preferably, either as an isolated polynucleotide (i.e. purified or at least isolated from its natural context such as its natural gene locus) or in genetically modified or exogenously (i.e. artificially) manipulated form. An isolated polynucleotide can, for example, comprise less than approximately $5 \mathrm{~kb}, 4 \mathrm{~kb}, 3 \mathrm{~kb}, 2 \mathrm{~kb}, 1 \mathrm{~kb}, 0.5 \mathrm{~kb}$ or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic acid is derived. The polynucleotide, preferably, is provided in the form of double or single stranded molecule. It will be understood that the present invention by referring to any of the aforementioned polynucleotides of the invention also refers to complementary or reverse complementary strands of the specific sequences or variants thereof referred to before. The polynucleotide encompasses DNA, including cDNA and genomic DNA, or RNA polynucleotides.
[0042] However, the present invention also pertains to polynucleotide variants which are derived from the polynucleotides of the present invention and are capable of interefering with the transcription or translation of the polynucleotides of the present invention. Such variant polynucleotides include anti-sense nucleic acids, ribozymes, siRNA molecules, morpholino nucleic acids (phosphorodiamidate morpholino oligos), triple-helix forming oligonucleotides, inhibitory oligonucleotides, or micro RNA molecules all of which shall specifically recognize the polynucleotide of the invention due to
the presence of complementary or substantially complementary sequences. These techniques are well known to the skilled artisan. Suitable variant polynucleotides of the aforementioned kind can be readily designed based on the structure of the polynucleotides of this invention.
[0043] Moreover, comprised are also chemically modified polynucleotides including naturally occurring modified poly- nucleotides such as glycosylated or methylated polynucleotides or artificial modified ones such as biotinylated polynucleotides.
[0044] Advantageously, it has been found in accordance with the present invention that the polynucleotides encoding the above mentioned polypeptides having acyltransferase activity and, in particular, LPLAT, LPAAT, DGAT and/or GPAT activity, can be used for the manufacture of PUFA and, in particular, LCPUFA when expressed in a transgenic host organism or cell. Specifically, the aforementioned acyltransferase activities will allow for an increase of LCPUFA esterified to triglycerides in seed oils by shifting the said LCPUFA from the acyl-CoA pool (by polypeptides having LPAAT, DGAT or GPAT activity as specified above) and/or from the acyl-CoA pool/pospholipid pool to the phospholipid pool/acyl-CoA pool (by polypeptides having LPLAT as specified above) via transesterification. Surprisingly, it was found that the acyltransferases encoded by the polynucleotides of the present invention are also capable of efficiently shifting rather long and highly unsaturated LCPUFA towards the triglyceride pool or between the phospholipid pool and the acyl-CoA pool, in particular, even the long chain intermediates. More surprisingly even, DHA which is known to be incorporated in triglycerides only in very low amounts, if at all, can be efficiently transesterified to triglycerides by the acyltransferases of the invention.
[0045] In particular the LPLAT can efficiently catalyse the transesterfication of 18:2n-6 from the sn2 position of phosphatidylcholine (PC) to CoA and/or from CoA to lysophosphatidylcholine (LPC), the transesterfication of 18:2n-6 from the sn2 position of phosphatidylethanolamine (PE) to CoA and/or from CoA to lysophosphatidylethanolamine (LPE), the transesterfication of 18:2n-6 from the sn2 position of phosphatidylserine (PS) to CoA and/or from CoA to lysophosphatidylserine (LPS), the transesterfication of 18:3n-6 from the sn2 position of phosphatidylcholine (PC) to CoA and/or from CoA to lysophosphatidylcholine (LPC), the transesterfication of $18: 3 \mathrm{n}-6$ from the sn2 position of phosphatidylethanolamine (PE) to CoA and/or from CoA to lysophosphatidylethanolamine (LPE), the transesterfication of 18:3n-6 from the sn2 position of phosphatidylserine (PS) to CoA and/or from CoA to lysophosphatidylserine (LPS), the transesterfication of $18: 3 n-3$ from the sn2 position of phosphatidylcholine (PC) to CoA and/or from CoA to lysophosphatidylcholine (LPC), the transesterfication of $18: 3 n-3$ from the sn2 position of phosphatidylethanolamine (PE) to CoA and/or from CoA to lysophosphatidylethanolamine (LPE), the transesterfication of $18: 3 n-3$ from the sn2 position of phosphatidylserine (PS) to CoA and/or from CoA to lysophosphatidylserine (LPS), transesterfication of 18:4n-3 from the sn2 position of phosphatidylcholine (PC) to CoA and/or from CoA to lysophosphatidylcholine (LPC), the transesterfication of 18:4n-3 from the sn2 position of phosphatidylethanolamine (PE) to CoA and/or from CoA to lysophosphatidylethanolamine (LPE), the transesterfication of $18: 4 n-3$ from the sn2 position of phosphatidylserine (PS) to CoA and/or from CoA to lysophosphatidylserine (LPS), the transesterfication of 20:3n-6 from the sn2 position of phosphatidylcholine (PC) to CoA and/or from CoA to lysophosphatidylcholine (LPC), the transesterfication of 20:3n-6 from the sn2 position of phosphatidylethanolamine (PE) to CoA and/or from CoA to lysophosphatidylethanolamine (LPE), the transesterfication of 20:3n-6 from the sn2 position of phosphatidylserine (PS) to CoA and/or from CoA to lysophosphatidylserine (LPS), the transesterfication of 20:4n-3 from the sn2 position of phosphatidylcholine (PC) to CoA and/or from CoA to lysophosphatidylcholine (LPC), the transesterfication of 20:4n-3 from the sn2 position of phosphatidylethanolamine (PE) to CoA and/or from CoA to lysophosphatidylethanolamine (LPE), the transesterfication of 20:4n-3 from the sn2 position of phosphatidylserine (PS) to CoA and/or from CoA to lysophosphatidylserine (LPS), the transesterfication of 20:4n-6 from the sn2 position of phosphatidylcholine (PC) to CoA and/or from CoA to lysophosphatidylcholine (LPC), the transesterfication of 20:4n-6 from the sn2 position of phosphatidylethanolamine (PE) to CoA and/or from CoA to lysophosphatidylethanolamine (LPE), the transesterfication of 20:4n-6 from the sn2 position of phosphatidylserine (PS) to CoA and/or from CoA to lysophosphatidylserine (LPS), the transesterfication of 20:5n-3 from the sn2 position of phosphatidylcholine (PC) to CoA and/or from CoA to lysophosphatidylcholine (LPC), the transesterfication of 20:5n-3 from the sn2 position of phosphatidylethanolamine (PE) to CoA and/or from CoA to lysophosphatidylethanolamine (LPE), the transesterfication of 20:5n-3 from the sn2 position of phosphatidylserine (PS) to CoA and/or from CoA to lysophosphatidylserine (LPS), the transesterfication of 22:5n-3 from the sn2 position of phosphatidylcholine (PC) to CoA and/or from CoA to lysophosphatidylcholine (LPC), the transesterfication of $22: 5 n-3$ from the sn2 position of phosphatidylethanolamine (PE) to CoA and/or from CoA to lysophosphatidylethanolamine (LPE), the transesterfication of $22: 5 n-3$ from the sn2 position of phosphatidylserine (PS) to CoA and/or from CoA to lysophosphatidylserine (LPS), the transesterfication of 22:6n-3 from the sn2 position of phosphatidylcholine (PC) to CoA and/or from CoA to lysophosphatidylcholine (LPC), the transesterfication of 22:6n-3 from the sn2 position of phosphatidylethanolamine (PE) to CoA and/or from CoA to lysophosphatidylethanolamine (LPE) and/or the transesterfication of $22: 6 n-3$ from the sn2 position of phosphatidylserine (PS) to CoA and/or from CoA to lysophosphatidylserine (LPS).
[0046] Preferably the LPAAT can efficiently catalyse the transesterfication of 18:2n-6 from CoA to the sn2 position of lysophosphatidic acid (LPA), the transesterfication of 18:3n-6 from CoA to the sn2 position of lysophosphatidic acid
(LPA), the transesterfication of $18: 3 n-3$ from CoA to the sn2 position of lysophosphatidic acid (LPA) and/or the transesterfication of $18: 4 n-6$ from CoA to the sn2 position of lysophosphatidic acid (LPA).
[0047] More preferably the LPAAT can efficiently catalyse the transesterfication of 20:3n-6 from CoA to the sn2 position of lysophosphatidic acid (LPA), transesterfication of 20:4n-3 from CoA to the sn2 position of lysophosphatidic acid (LPA) and/or the transesterfication of 22:5n-3 from CoA to the sn2 position of lysophosphatidic acid (LPA).
[0048] Most preferably the LPAAT can efficiently catalyse the transesterfication of 20:4n-6 from CoA to the sn2 position of lysophosphatidic acid (LPA), the transesterfication of 20:5n-3 from CoA to the sn2 position of lysophosphatidic acid (LPA) and/or the transesterfication of 22:6n-3 from CoA to the sn2 position of lysophosphatidic acid (LPA).
[0049] Preferably the GPAT can efficiently catalyse the transesterfication of $18: 2 n-6$ from CoA to the sn1 position of glycerole-3-phosphate (G3P),the transesterfication of $18: 3 n-6$ from CoA to the sn1 position of glycerole-3-phosphate (G3P), the transesterfication of $18: 3 \mathrm{n}-3$ from CoA to the sn1 position of glycerole-3-phosphate (G3P) and/or the transesterfication of $18: 4 n-6$ from CoA to the sn1 position of glycerole-3-phosphate (G3P).
[0050] More preferably the GPAT can efficiently catalyse the transesterfication of 20:3n-6 from CoA to the sn1 position of glycerole-3-phosphate (G3P), the transesterfication of 20:4n-3 from CoA to the sn1 position of glycerole-3-phosphate (G3P) and/or the transesterfication of 22:5n-3 from CoA to the sn1 position of glycerole-3-phosphate (G3P).
[0051] Most preferably the GPAT can efficiently catalyse the transesterfication of 20:4n-6 from CoA to the sn1 position of glycerole-3-phosphate (G3P), the transesterfication of 20:5n-3 from CoA to the sn1 position of glycerole-3-phosphate (G3P) and/or the transesterfication of 22:6n-3 from CoA to the sn1 position of glycerole-3-phosphate (G3P).
[0052] Preferably the DGAT can efficiently catalyse the transesterfication of $18: 2 n-6$ from CoA to the sn3 position of Diacylglycerol (DAG), transesterfication of 18:3n-6 from CoA to the sn3 position of Diacylglycerol (DAG), the transesterfication of 18:3n-3 from CoA to the sn3 position of Diacylglycerol (DAG) and/or the transesterfication of 18:4n-6 from CoA to the sn3 position of Diacylglycerol (DAG).
[0053] More preferably the DGAT can efficiently catalyse the transesterfication of 20:3n-6 from CoA to the sn3 position of Diacylglycerol (DAG), the transesterfication of $20: 4 \mathrm{n}-3$ from CoA to the sn3 position of Diacylglycerol (DAG) and/or the transesterfication of 22:5n-3 from CoA to the sn3 position of Diacylglycerol (DAG).
[0054] Most preferably the DGAT can efficiently catalyse the transesterfication of 20:4n-6 from CoA to the sn3 position of Diacylglycerol (DAG), the transesterfication of $20: 5 n-3$ from CoA to the sn3 position of Diacylglycerol (DAG) and/or the transesterfication of 22:6n-3 from CoA to the sn3 position of Diacylglycerol (DAG).
[0055] The activity of the LPLAT, LPAAT, GPAT or DGAT is useful for the specificity of a fatty acid. This fatty acid specificity is useful to generate an artificially ARA-specificity preferably. More preferably the activity of the LPLAT, LPAAT, GPAT or DGAT of the present invention is useful to generate an artificially EPA-specificity. Most preferably the activity of the LPLAT, LPAAT, GPAT or DGAT of the present invention is useful to generate an artificially DHA-specificity.
[0056] In a preferred embodiment of the polynucleotide of the present invention, said polynucleotide further comprises an expression control sequence operatively linked to the said nucleic acid sequence.
[0057] The term "expression control sequence" as used herein refers to a nucleic acid sequence which is capable of governing, i.e. initiating and controlling, transcription of a nucleic acid sequence of interest, in the present case the nucleic sequences recited above. Such a sequence usually comprises or consists of a promoter or a combination of a promoter and enhancer sequences. Expression of a polynucleotide comprises transcription of the nucleic acid molecule, preferably, into a translatable mRNA. Additional regulatory elements may include transcriptional as well as translational enhancers. The following promoters and expression control sequences may be, preferably, used in an expression vector according to the present invention. The cos, tac, trp, tet, trp-tet, lpp, lac, Ipp-lac, laclq, T7, T5, T3, gal, trc, ara, SP6, λ PR or λ-PL promoters are, preferably, used in Gram-negative bacteria. For Gram-positive bacteria, promoters amy and SPO2 may be used. From yeast or fungal promoters ADC1, AOX1r, GAL1, MF α, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH are, preferably, used. For animal cell or organism expression, the promoters CMV-, SV40-, RSV-promoter (Rous sarcoma virus), CMV-enhancer, SV40-enhancer are preferably used. From plants the promoters CaMV/35S (Franck 1980, Cell 21: 285-294], PRP1 (Ward 1993, Plant. Mol. Biol. 22), SSU, OCS, lib4, usp, STLS1, B33, nos or the ubiquitin or phaseolin promoter. Also preferred in this context are inducible promoters, such as the promoters described in EP 0 388186 A1 (i.e. a benzylsulfonamide-inducible promoter), Gatz 1992, Plant J. 2:397-404 (i.e. a tetracyclin-inducible promoter), EP 0335528 A1 (i.e. a abscisic-acid-inducible promoter) or WO 93/21334 (i.e. a ethanol- or cyclohexenolinducible promoter). Further suitable plant promoters are the promoter of cytosolic FBPase or the ST-LSI promoter from potato (Stockhaus 1989, EMBO J. 8, 2445), the phosphoribosyl-pyrophosphate amidotransferase promoter from Glycine max (Genbank accession No. U87999) or the node-specific promoter described in EP 0249676 A1. Particularly preferred are promoters which enable the expression in tissues which are involved in the biosynthesis of fatty acids. Also particularly preferred are seed-specific promoters such as the USP promoter in accordance with the practice, but also other promoters such as the LeB4, DC3, phaseolin or napin promoters. Further especially preferred promoters are seed-specific promoters which can be used for monocotyledonous or dicotyledonous plants and which are described in US 5,608,152 (napin promoter from oilseed rape), WO 98/45461 (oleosin promoter from Arabidopsis, US 5,504,200 (phaseolin promoter from Phaseolus vulgaris), WO 91/13980 (Bce4 promoter from Brassica), by Baeumlein et al., Plant J., 2, 2, 1992:233-239
(LeB4 promoter from a legume), these promoters being suitable for dicots. The following promoters are suitable for monocots: Ipt-2 or Ipt-1 promoter from barley (WO 95/15389 and WO 95/23230), hordein promoter from barley and other promoters which are suitable and which are described in WO 99/16890. In principle, it is possible to use all natural promoters together with their regulatory sequences, such as those mentioned above, for the novel process. Likewise, it is possible and advantageous to use synthetic promoters, either additionally or alone, especially when they mediate a seed-specific expression, such as, for example, as described in WO 99/16890. In a particular embodiment, seedspecific promoters are utilized to enhance the production of the desired PUFA or LCPUFA.
[0058] The term "operatively linked" as used herein means that the expression control sequence and the nucleic acid of interest are linked so that the expression of the said nucleic acid of interest can be governed by the said expression control sequence, i.e. the expression control sequence shall be functionally linked to the said nucleic acid sequence to be expressed. Accordingly, the expression control sequence and, the nucleic acid sequence to be expressed may be physically linked to each other, e.g., by inserting the expression control sequence at the 5 'end of the nucleic acid sequence to be expressed. Alternatively, the expression control sequence and the nucleic acid to be expressed may be merely in physical proximity so that the expression control sequence is capable of governing the expression of at least one nucleic acid sequence of interest. The expression control sequence and the nucleic acid to be expressed are, preferably, separated by not more than $500 \mathrm{bp}, 300 \mathrm{bp}, 100 \mathrm{bp}, 80 \mathrm{bp}, 60 \mathrm{bp}, 40 \mathrm{bp}, 20 \mathrm{bp}, 10 \mathrm{bp}$ or 5 bp .
[0059] In a further preferred embodiment of the polynucleotide of the present invention, said polynucleotide further comprises a terminator sequence operatively linked to the nucleic acid sequence.
[0060] The term "terminator" as used herein refers to a nucleic acid sequence which is capable of terminating transcription. These sequences will cause dissociation of the transcription machinery from the nucleic acid sequence to be transcribed. Preferably, the terminator shall be active in plants and, in particular, in plant seeds. Suitable terminators are known in the art and, preferably, include polyadenylation signals such as the SV40-poly-A site or the tk-poly-A site or one of the plant specific signals indicated in Loke et al. 2005, Plant Physiol 138, pp. 1457-1468, downstream of the nucleic acid sequence to be expressed.
[0061] The present invention also relates to a vector comprising the polynucleotide of the present invention.
[0062] The term "vector", preferably, encompasses phage, plasmid, viral vectors as well as artificial chromosomes, such as bacterial or yeast artificial chromosomes. Moreover, the term also relates to targeting constructs which allow for random or site- directed integration of the targeting construct into genomic DNA. Such target constructs, preferably, comprise DNA of sufficient length for either homolgous or heterologous recombination as described in detail below. The vector encompassing the polynucleotide of the present invention, preferably, further comprises selectable markers for propagation and/or selection in a host. The vector may be incorporated into a host cell by various techniques well known in the art. If introduced into a host cell, the vector may reside in the cytoplasm or may be incorporated into the genome. In the latter case, it is to be understood that the vector may further comprise nucleic acid sequences which allow for homologous recombination or heterologous insertion. Vectors can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. The terms "transformation" and "transfection", conjugation and transduction, as used in the present context, are intended to comprise a multiplicity of prior-art processes for introducing foreign nucleic acid (for example DNA) into a host cell, including calcium phosphate, rubidium chloride or calcium chloride coprecipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, carbon-based clusters, chemically mediated transfer, electroporation or particle bombardment. Suitable methods for the transformation or transfection of host cells, including plant cells, can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) and other laboratory manuals, such as Methods in Molecular Biology, 1995, Vol. 44, Agrobacterium protocols, Ed.: Gartland and Davey, Humana Press, Totowa, New Jersey. Alternatively, a plasmid vector may be introduced by heat shock or electroporation techniques. Should the vector be a virus, it may be packaged in vitro using an appropriate packaging cell line prior to application to host cells.
[0063] Preferably, the vector referred to herein is suitable as a cloning vector, i.e. replicable in microbial systems. Such vectors ensure efficient cloning in bacteria and, preferably, yeasts or fungi and make possible the stable transformation of plants. Those which must be mentioned are, in particular, various binary and co-integrated vector systems which are suitable for the T-DNA-mediated transformation. Such vector systems are, as a rule, characterized in that they contain at least the vir genes, which are required for the Agrobacterium-mediated transformation, and the sequences which delimit the T-DNA (T-DNA border). These vector systems, preferably, also comprise further cis-regulatory regions such as promoters and terminators and/or selection markers with which suitable transformed host cells or organisms can be identified. While co-integrated vector systems have vir genes and T-DNA sequences arranged on the same vector, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. As a consequence, the last-mentioned vectors are relatively small, easy to manipulate and can be replicated both in E. coli and in Agrobacterium. These binary vectors include vectors from the pBIB-HYG, pPZP, pBecks, pGreen series. Preferably used in accordance with the invention are Bin19, pBI101, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use can be found in Hellens et al, Trends in Plant Science (2000)

EP 2585603 B1

$5,446-451$. Furthermore, by using appropriate cloning vectors, the polynucleotides can be introduced into host cells or organisms such as plants or animals and, thus, be used in the transformation of plants, such as those which are published, and cited, in: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), chapter 6/7, pp. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press (1993), 128-143; Potrykus 1991, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42, 205-225.
[0064] More preferably, the vector of the present invention is an expression vector. In such an expression vector, i.e. a vector which comprises the polynucleotide of the invention having the nucleic acid sequence operatively linked to an expression control sequence (also called "expression cassette") allowing expression in prokaryotic or eukaryotic cells or isolated fractions thereof. Suitable expression vectors are known in the art such as Okayama-Berg cDNA expression vector pcDV1 (Pharmacia), pCDM8, pRc/CMV, pcDNA1, pcDNA3 (Invitrogene) or pSPORT1 (GIBCO BRL). Further examples of typical fusion expression vectors are pGEX (Pharmacia Biotech Inc; Smith 1988, Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ), where glutathione S-transferase (GST), maltose E-binding protein and protein A, respectively, are fused with the recombinant target protein. Examples of suitable inducible nonfusion E. coli expression vectors are, inter alia, pTrc (Amann 1988, Gene 69:301-315) and pET 11d (Studier 1990, Methods in Enzymology 185, 60-89). The target gene expression of the pTrc vector is based on the transcription from a hybrid trp-lac fusion promoter by host RNA polymerase. The target gene expression from the pET 11d vector is based on the transcription of a T7-gn10-lac fusion promoter, which is mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is provided by the host strains BL21 (DE3) or HMS174 (DE3) from a resident λ-prophage which harbors a T 7 gn 1 gene under the transcriptional control of the lacUV 5 promoter. The skilled artisan is familiar with other vectors which are suitable in prokaryotic organisms; these vectors are, for example, in E. coli, pLG338, pACYC184, the pBR series such as pBR322, the pUC series such as pUC18 or pUC19, the M113mp series, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, $\lambda \mathrm{gt11}$ or pBdCl, in Streptomyces plJ101, pIJ364, plJ702 or pIJ361, in Bacillus pUB110, pC194 or pBD214, in Corynebacterium pSA77 or pAJ667. Examples of vectors for expression in the yeast S. cerevisiae comprise pYep Sec1 (Baldari 1987, Embo J. 6:229-234), pMFa (Kurjan 1982, Cell 30:933-943), pJRY88 (Schultz 1987, Gene 54:113-123) and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and processes for the construction of vectors which are suitable for use in other fungi, such as the filamentous fungi, comprise those which are described in detail in: van den Hondel, C.A.M.J.J., \& Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Ed., pp. 1-28, Cambridge University Press: Cambridge, or in: More Gene Manipulations in Fungi (J.W. Bennett \& L.L. Lasure, Ed., pp. 396-428: Academic Press: San Diego). Further suitable yeast vectors are, for example, pAG-1, YEp6, YEp13 or pEMBLYe23. As an alternative, the polynucleotides of the present invention can be also expressed in insect cells using baculovirus expression vectors. Baculovirus vectors which are available for the expression of proteins in cultured insect cells (for example Sf9 cells) comprise the pAc series (Smith 1983, Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow 1989, Virology 170:31-39).
[0065] The polynucleotide of the present invention can be expressed in single-cell plant cells (such as algae), see Falciatore 1999, Marine Biotechnology 1 (3):239-251 and the references cited therein, and plant cells from higher plants (for example Spermatophytes, such as arable crops) by using plant expression vectors. Examples of plant expression vectors comprise those which are described in detail in: Becker 1992, Plant Mol. Biol. 20:1195-1197; Bevan 1984, Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press, 1993, p. 15-38. A plant expression cassette, preferably, comprises regulatory sequences which are capable of controlling the gene expression in plant cells and which are functionally linked so that each sequence can fulfill its function, such as transcriptional termination, for example polyadenylation signals. Preferred polyadenylation signals are those which are derived from Agrobacterium tumefaciens T-DNA, such as the gene 3 of the Ti plasmid pTiACH5, which is known as octopine synthase (Gielen 1984, EMBO J. 3, 835) or functional equivalents of these, but all other terminators which are functionally active in plants are also suitable. Since plant gene expression is very often not limited to transcriptional levels, a plant expression cassette preferably comprises other functionally linked sequences such as translation enhancers, for example the overdrive sequence, which comprises the 5'-untranslated tobacco mosaic virus leader sequence, which increases the protein/RNA ratio (Gallie 1987, Nucl. Acids Research 15:8693-8711). As described above, plant gene expression must be functionally linked to a suitable promoter which performs the expression of the gene in a timely, cell-specific or tissue-specific manner. Promoters which can be used are constitutive promoters (Benfey 1989, EMBO J. 8:2195-2202) such as those which are derived from plant viruses such as 35 S CAMV (Franck 1980, Cell $21: 285-294$), 19 S CaMV (see US 5,352,605 and WO 84/02913) or plant promoters such as the promoter of the Rubisco small subunit, which is described in US 4,962,028. Other preferred sequences for the use in functional linkage in plant gene expression cassettes are targeting sequences which are required for targeting the gene product into its relevant cell compartment (for a review, see Kermode 1996, Crit. Rev. Plant Sci. 15, 4: 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids,
such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells. As described above, plant gene expression can also be facilitated via a chemically inducible promoter (for a review, see Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemically inducible promoters are particularly suitable if it is desired that genes are expressed in a time- specific manner. Examples of such promoters are a salicylic-acid-inducible promoter (WO 95/19443), a tetracyclininducible promoter (Gatz 1992, Plant J. 2, 397-404) and an ethanol-inducible promoter. Promoters which respond to biotic or abiotic stress conditions are also suitable promoters, for example the pathogen-induced PRP1-gene promoter (Ward 1993, Plant Mol. Biol. 22:361-366), the heat-inducible hsp80 promoter from tomato (US 5,187,267), the coldinducible alpha-amylase promoter from potato (WO 96/12814) or the wound-inducible pinll promoter (EP 0375091 A). The promoters which are especially preferred are those which bring about the expression of genes in tissues and organs in which fatty acid, lipid and oil biosynthesis takes place, in seed cells such as the cells of endosperm and of the developing embryo. Suitable promoters are the napin gene promoter from oilseed rape (US $5,608,152$), the USP promoter from Vicia faba (Baeumlein 1991, Mol. Gen. Genet. 225 (3):459-67), the oleosin promoter from Arabidopsis (WO 98/45461), the phaseolin promoter from Phaseolus vulgaris (US 5,504,200), the Bce4 promoter from Brassica (WO 91/13980) or the legumin B4 promoter (LeB4; Baeumlein 1992, Plant Journal, 2 (2):233-9), and promoters which bring about the seedspecific expression in monocotyledonous plants such as maize, barley, wheat, rye, rice and the like. Suitable promoters to be taken into consideration are the Ipt2 or Ipt1 gene promoter from barley (WO 95/15389 and WO 95/23230) or those which are described in WO 99/16890 (promoters from the barley hordein gene, the rice glutelin gene, the rice oryzin gene, the rice prolamin gene, the wheat gliadin gene, wheat glutelin gene, the maize zein gene, the oat glutelin gene, the sorghum kasirin gene, the rye secalin gene). Likewise, especially suitable are promoters which bring about the plastid-specific expression since plastids are the compartment in which the precursors and some end products of lipid biosynthesis are synthesized. Suitable promoters such as the viral RNA-polymerase promoter are described in WO 95/16783 and WO 97/06250, and the clpP promoter from Arabidopsis, described in WO 99/46394.
[0066] The abovementioned vectors are only a small overview of vectors to be used in accordance with the present invention. Further vectors are known to the skilled artisan and are described, for example, in: Cloning Vectors (Ed., Pouwels, P.H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0444 904018). For further suitable expression systems for prokaryotic and eukaryotic cells see the chapters 16 and 17 of Sambrook, loc cit.
[0067] It follows from the above that, preferably, said vector is an expression vector. More preferably, the said polynucleotide of the present invention is under the control of a seed-specific promoter in the vector of the present invention. A preferred seed-specific promoter as meant herein is selected from the group consisting of Conlinin 1, Conlinin 2, napin, LuFad3, USP, LeB4, Arc, Fae, ACP, LuPXR, and SBP. For details, see, e.g., US 2003-0159174.
[0068] Moreover, the present invention relates to a host cell comprising the polynucleotide or the vector of the present invention.
[0069] Preferably, said host cell is a plant cell and, more preferably, a plant cell obtained from an oilseed crop. More preferably, said oilseed crop is selected from the group consisting of flax (Linum sp.), rapeseed (Brassica sp.), soybean (Glycine and Soja sp.), sunflower (Helianthus sp.), cotton (Gossypium sp.), corn (Zea mays), olive (Olea sp.), safflower (Carthamus sp.), cocoa (Theobroma cacoa), peanut (Arachis sp.), hemp, camelina, crambe, oil palm, coconuts, groundnuts, sesame seed, castor bean, lesquerella, tallow tree, sheanuts, tungnuts, kapok fruit, poppy seed, jojoba seeds and perilla.
[0070] Also preferably, said host cell is a microorganism. More preferably, said microorganism is a bacterium, a fungus or algae. More preferably, it is selected from the group consisting of Candida, Cryptococcus, Lipomyces, Rhodosporidium, Yarrowia and Schizochytrium.
[0071] Moreover, a host cell according to the present invention may also be an animal cell. Preferably, said animal host cell is a host cell of a fish or a cell line obtained therefrom. More preferably, the fish host cell is from herring, salmon, sardine, redfish, eel, carp, trout, halibut, mackerel, zander or tuna.
[0072] It will be understood that if the host cell of the invention shall be applied for LCPUFA production, it shall be capable of carrying out desaturation and elongation steps on fatty acids. To produce the LCPUFA according to the invention, the C 16 - or C18-fatty acids must first be desaturated by the enzymatic activity of a desaturase and subsequently be elongated by at least two carbon atoms via an elongase. After one elongation cycle, this enzyme activity gives $\mathrm{C} 18-$ or C20-fatty acids and after two or three elongation cycles C22- or C24-fatty acids. The activity of the desaturases and elongases used in the process according to the invention preferably leads to C18-, C20-, C22- and/or C24-fatty acids, advantageously with at least two double bonds in the fatty acid molecule, preferably with three, four or five double bonds, especially preferably to give C20- and/or C22-fatty acids with at least two double bonds in the fatty acid molecule, preferably with three, four or five double bonds in the molecule. After a first desaturation and the elongation have taken place, further desaturation steps such as, for example, one in the delta- 5 position may take place. Products of the process according to the invention which are especially preferred are DGLA, ARA, EPA DPA and/or DHA, most preferably EPA and/or DHA. Desaturases and elongases which are required for this process may not always be present naturally in the host cell. Accordingly, the present invention, preferably, envisages a host cell which in addition to the polynucleotide of

EP 2585603 B1

the present invention comprises polynucleotides encoding such desaturases and/or elongases as required depending on the selected organism. Preferred desaturases and/or elongases which shall be present in the host cell are at least one enzyme selected from the group consisting of: Δ - 4 -desaturase, $\Delta-5$-desaturase, Δ - 5 -elongase, Δ - 6 -desaturase, $\Delta 12$ desaturase, $\Delta 15$-desaturase, $\omega 3$-desaturase and Δ-6-elongase. Especially prefered are the bifunctional d12d15-Desat- urases d12d15Des(Ac) from Acanthamoeba castellanii (WO2007042510), d12d15Des(Cp) from Claviceps purpurea (WO2008006202) and d12d15Des(Lg)1 from Lottia gigantea (WO2009016202), the d12-Desaturases d12Des(Co) from Calendula officinalis (WO200185968), d12Des(Lb) from Laccaria bicolor (WO2009016202), d12Des(Mb) from Monosiga brevicollis (WO2009016202), d12Des(Mg) from Mycosphaerella graminicola (WO2009016202), d12Des(Nh) from Nectria haematococca (WO2009016202), d12Des(OI) from Ostreococcus lucimarinus (WO2008040787), d12Des(Pb) from Phycomyces blakesleeanus (WO2009016202), d12Des(Ps) from Phytophthora sojae (WO2006100241) and d12Des (Tp) from Thalassiosira pseudonana (WO2006069710), the d15-Desaturases d15Des(Hr) from Helobdella robusta (WO2009016202), d15Des(Mc) from Microcoleus chthonoplastes (WO2009016202), d15Des(Mf) from Mycosphaerella fijiensis (WO2009016202), d15Des(Mg) from Mycosphaerella graminicola (WO2009016202) and d15Des(Nh)2 from Nectria haematococca (WO2009016202), the d4-Desaturases d4Des(Eg) from Euglena gracilis (WO2004090123), d4Des(Tc) from Thraustochytrium sp. (WO2002026946) and d4Des(Tp) from Thalassiosira pseudonana (WO2006069710), the d5-Desaturases d5Des(OI)2 from Ostreococcus lucimarinus (WO2008040787), d5Des(Pp) from Physcomitrella patens (WO2004057001), d5Des(Pt) from Phaeodactylum tricornutum (WO2002057465), d5Des(Tc) from Thraustochytrium sp. (WO2002026946), d5Des(Tp) from Thalassiosira pseudonana (WO2006069710) and the d6-Desaturases d6Des(Cp) from Ceratodon purpureus (WO2000075341), d6Des(OI) from Ostreococcus lucimarinus (WO2008040787), d6Des(Ot) from Ostreococcus tauri (WO2006069710), d6Des(Pf) from Primula farinosa (WO2003072784), d6Des(Pir)_BO from Pythium irregulare (WO2002026946), d6Des(Pir) from Pythium irregulare (WO2002026946), d6Des(Plu) from Primula luteola (WO2003072784), d6Des(Pp) from Physcomitrella patens (WO200102591), d6Des(Pt) from Phaeodactylum tricornutum (WO2002057465), d6Des(Pv) from Primula vialii (WO2003072784) and d6Des(Tp) from Thalassiosira pseudonana (WO2006069710), the d8-Desaturases d8Des(Ac) from Acanthamoeba castellanii (EP1790731), d8Des(Eg) from Euglena gracilis (WO200034439) and d8Des(Pm) from Perkinsus marinus (WO2007093776), the o3-Desaturases o3Des(Pi) from Phytophthora infestans (WO2005083053), o3Des(Pir) from Pythium irregulare (WO2008022963), o3Des(Pir)2 from Pythium irregulare (WO2008022963) and o3Des(Ps) from Phytophthora sojae (WO2006100241), the bifunctional d5d6-elongases d5d6Elo(Om)2 from Oncorhynchus mykiss (WO2005012316), d5d6Elo(Ta) from Thraustochytrium aureum (WO2005012316) and d5d6Elo(Tc) from Thraustochytrium sp. (WO2005012316), the d5-elongases d5Elo(At) from Arabidopsis thaliana (WO2005012316), d5Elo(At)2 from Arabidopsis thaliana (WO2005012316), d5Elo(Ci) from Ciona intestinalis (WO2005012316), d5Elo(OI) from Ostreococcus lucimarinus (WO2008040787), d5Elo(Ot) from Ostreococcus tauri (WO2005012316), d5Elo(Tp) from Thalassiosira pseudonana (WO2005012316) and d5Elo(XI) from Xenopus laevis (WO2005012316), the d6-elongases d6Elo(OI) from Ostreococcus lucimarinus (WO2008040787), d6Elo(Ot) from Ostreococcus tauri (WO2005012316), d6Elo(Pi) from Phytophthora infestans (WO2003064638), d6Elo(Pir) from Pythium irregulare (WO2009016208), d6Elo(Pp) from Physcomitrella patens (WO2001059128), d6Elo(Ps) from Phytophthora sojae (WO2006100241), d6Elo(Ps)2 from Phytophthora sojae (WO2006100241), d6Elo(Ps)3 from Phytophthora sojae (WO2006100241), d6Elo(Pt) from Phaeodactylum tricornutum (WO2005012316), d6Elo(Tc) from Thraustochytrium sp. (WO2005012316) and d6Elo(Tp) from Thalassiosira pseudonana (WO2005012316), the d9-elongases d9Elo(lg) from Isochrysis galbana (WO2002077213), d9Elo(Pm) from Perkinsus marinus (WO2007093776) and d9Elo(Ro) from Rhizopus oryzae (WO2009016208).
[0073] The present invention also relates to a cell, preferably a host cell as specified above or a cell of a non-human organism specified elsewhere herein, said cell comprising a polynucleotide which is obtained from the polynucleotide of the present invention by a point mutation, a truncation, an inversion, a deletion, an addition, a substitution and homologous recombination. How to carry out such modifications to a polynucleotide is well known to the skilled artisan and has been described elsewhere in this specification in detail.
[0074] The present invention furthermore relates to a method for the manufacture of a polypeptide encoded by a polynucleotide of any the present invention comprising
a) cultivating the host cell of the invention under conditions which allow for the production of said polypeptide; and b) obtaining the polypeptide from the host cell of step a).
[0075] Suitable conditions which allow for expression of the polynucleotide of the invention comprised by the host cell depend on the host cell as well as the expression control sequence used for governing expression of the said polynucleotide. These conditions and how to select them are very well known to those skilled in the art. The expressed polypeptide may be obtained, for example, by all conventional purification techniques including affinity chromatography, size exclusion chromatography, high pressure liquid chromatography (HPLC) and precipitation techniques including antibody precipitation. It is to be understood that the method may - although preferred - not necessarily yield an essentially

EP 2585603 B1

pure preparation of the polypeptide. It is to be understood that depending on the host cell which is used for the aforementioned method, the polypeptides produced thereby may become posttranslationally modified or processed otherwise.
[0076] The present invention encompasses a polypeptide encoded by the polynucleotide of the present invention or which is obtainable by the aforementioned method.
[0077] The term "polypeptide" as used herein encompasses essentially purified polypeptides or polypeptide preparations comprising other proteins in addition. Further, the term also relates to the fusion proteins or polypeptide fragments being at least partially encoded by the polynucleotide of the present invention referred to above. Moreover, it includes chemically modified polypeptides. Such modifications may be artificial modifications or naturally occurring modifications such as phosphorylation, glycosylation, myristylation and the like (Review in Mann 2003, Nat. Biotechnol. 21, 255-261, review with focus on plants in Huber 2004, Curr. Opin. Plant Biol. 7, 318-322). Currently, more than 300 posttranslational modifications are known (see full ABFRC Delta mass list at http://www.abrf.org/index.cfm/dm.home). The polypeptide of the present invention shall exhibit the acyltransferase activities referred to above.
[0078] The present invention furthermore relates to an antibody or a fragment derived thereof as an antigen which specifically recognizes a polypeptide encoded by the nucleic acid sequences of the invention.
[0079] Antibodies against the polypeptides of the invention can be prepared by well known methods using a purified polypeptide according to the invention or a suitable fragment derived therefrom as an antigen. A fragment which is suitable as an antigen may be identified by antigenicity determining algorithms well known in the art. Such fragments may be obtained either from the polypeptide of the invention by proteolytic digestion or may be a synthetic peptide. Preferably, the antibody of the present invention is a monoclonal antibody, a polyclonal antibody, a single chain antibody, a chimerized antibody or a fragment of any of these antibodies, such as Fab, Fv or scFv fragments etc.. Also comprised as antibodies by the present invention are bispecific antibodies, synthetic antibodies or chemically modified derivatives of any of the aforementioned antibodies. The antibody of the present invention shall specifically bind (i.e. does significantly not cross react with other polypeptides or peptides) to the polypeptide of the invention. Specific binding can be tested by various well known techniques. Antibodies or fragments thereof can be obtained by using methods which are described, e.g., in Harlow and Lane "Antibodies, A Laboratory Manual", CSH Press, Cold Spring Harbor, 1988. Monoclonal antibodies can be prepared by the techniques originally described in Köhler 1975, Nature 256, 495, and Galfre 1981, Meth. Enzymol. 73,3 , which comprise the fusion of mouse myeloma cells to spleen cells derived from immunized mammals. The antibodies can be used, for example, for the immunoprecipitation, immunolocalization or purification (e.g., by affinity chromatography) of the polypeptides of the invention as well as for the monitoring of the presence of said variant polypeptides, for example, in recombinant organisms, and for the identification of proteins or compounds interacting with the proteins according to the invention.
[0080] Moreover, the present invention contemplates a non-human transgenic organism comprising the polynucleotide or the vector of the present invention.
[0081] Preferably, the non-human transgenic organism is a microorganism, more preferably the non-human transgenic organism is a insect cell, bacterium or algae and most preferably the non-human transgenic organism is a plant, plant part, or plant seed. Preferred plants to be used for introducing the polynucleotide or the vector of the invention are plants which are capable of synthesizing fatty acids, such as all dicotyledonous or monocotyledonous plants, algae or mosses. It is to be understood that host cells derived from a plant may also be used for producing a plant according to the present invention. Preferred plants are selected from the group of the plant families Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae, Prasinophyceae or vegetable plants or ornamentals such as Tagetes. Examples which may be mentioned are the following plants selected from the group consisting of: Adelotheciaceae such as the genera Physcomitrella, such as the genus and species Physcomitrella patens, Anacardiaceae such as the genera Pistacia, Mangifera, Anacardium, for example the genus and species Pistacia vera [pistachio], Mangifer indica [mango] or Anacardium occidentale [cashew], Asteraceae, such as the genera Calendula, Carthamus, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana, for example the genus and species Calendula officinalis [common marigold], Carthamus tinctorius [safflower], Centaurea cyanus [cornflower], Cichorium intybus [chicory], Cynara scolymus [artichoke], Helianthus annus [sunflower], Lactuca sativa, Lactuca crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrata, Lactuca scariola L. var. integrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta [salad vegetables], Tagetes lucida, Tagetes erecta or Tagetes tenuifolia [african or french marigold], Apiaceae, such as the genus Daucus, for example the genus and species Daucus carota [carrot], Betulaceae, such as the genus Corylus, for example the genera and species Corylus avellana or Corylus colurna [hazelnut], Boraginaceae, such as the genus Borago, for example the genus and species Borago officinalis [borage], Brassicaceae, such as the genera Brassica, Melanosinapis, Sinapis, Arabadopsis, for example the genera and species Brassica napus, Brassica rapa ssp. [oilseed rape], Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Melanosinapis communis [mustard], Brassica oleracea [fodder beet] or Arabidopsis thaliana, Bromeliaceae,
such as the genera Anana, Bromelia (pineapple), for example the genera and species Anana comosus, Ananas ananas or Bromelia comosa [pineapple], Caricaceae, such as the genus Carica, such as the genus and species Carica papaya [pawpaw], Cannabaceae, such as the genus Cannabis, such as the genus and species Cannabis sativa [hemp], Convolvulaceae, such as the genera Ipomea, Convolvulus, for example the genera and species Ipomoea batatus, Ipomoea pandurata, Convolvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba or Convolvulus panduratus [sweet potato, batate], Chenopodiaceae, such as the genus Beta, such as the genera and species Beta vulgaris, Beta vulgaris var. altissima, Beta vulgaris var.Vulgaris, Beta maritima, Beta vulgaris var. perennis, Beta vulgaris var. conditiva or Beta vulgaris var. esculenta [sugarbeet], Crypthecodiniaceae, such as the genus Crypthecodinium, for example the genus and species Cryptecodinium cohnii, Cucurbitaceae, such as the genus Cucurbita, for example the genera and species Cucurbita maxima, Cucurbita mixta, Cucurbita pepo or Cucurbita moschata [pumpkin/squash], Cymbellaceae such as the genera Amphora, Cymbella, Okedenia, Phaeodactylum, Reimeria, for example the genus and species Phaeodactylum tricornutum, Ditrichaceae such as the genera Ditrichaceae, Astomiopsis, Ceratodon, Chrysoblastella, Ditrichum, Distichium, Eccremidium, Lophidion, Philibertiella, Pleuridium, Saelania, Trichodon, Skottsbergia, for example the genera and species Ceratodon antarcticus, Ceratodon columbiae, Ceratodon heterophyllus, Ceratodon purpureus, Ceratodon purpureus, Ceratodon purpureus ssp. convolutus, Ceratodon, purpureus spp. stenocarpus, Ceratodon purpureus var. rotundifolius, Ceratodon ratodon, Ceratodon stenocarpus, Chrysoblastella chilensis, Ditrichum ambiguum, Ditrichum brevisetum, Ditrichum crispatissimum, Ditrichum difficile, Ditrichum falcifolium, Ditrichum flexicaule, Ditrichum giganteum, Ditrichum heteromallum, Ditrichum lineare, Ditrichum lineare, Ditrichum montanum, Ditrichum montanum, Ditrichum pallidum, Ditrichum punctulatum, Ditrichum pusillum, Ditrichum pusillum var. tortile, Ditrichum rhynchostegium, Ditrichum schimperi, Ditrichum tortile, Distichium capillaceum, Distichium hagenii, Distichium inclinatum, Distichium macounii, Eccremidium floridanum, Eccremidium whiteleggei, Lophidion strictus, Pleuridium acuminatum, Pleuridium alternifolium, Pleuridium holdridgei, Pleuridium mexicanum, Pleuridium ravenelii, Pleuridium subulatum, Saelania glaucescens, Trichodon borealis, Trichodon cylindricus or Trichodon cylindricus var. oblongus, Elaeagnaceae such as the genus Elaeagnus, for example the genus and species Olea europaea [olive], Ericaceae such as the genus Kalmia, for example the genera and species Kalmia latifolia, Kalmia angustifolia, Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros or Kalmia lucida [mountain laurel], Euphorbiaceae such as the genera Manihot, Janipha, Jatropha, Ricinus, for example the genera and species Manihot utilissima, Janipha manihot, Jatropha manihot, Manihot aipil, Manihot dulcis, Manihot manihot, Manihot melanobasis, Manihot esculenta [manihot] or Ricinus communis [castor-oil plant], Fabaceae such as the genera Pisum, Albizia, Cathormion, Feuillea, Inga, Pithecolobium, Acacia, Mimosa, Medicajo, Glycine, Dolichos, Phaseolus, Soja, for example the genera and species Pisum sativum, Pisum arvense, Pisum humile [pea], Albizia berteriana, Albizia julibrissin, Albizia lebbeck, Acacia berteriana, Acacia littoralis, Albizia berteriana, Albizzia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecellobium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin, Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa julibrissin, Mimosa speciosa, Sericanrda julibrissin, Acacia lebbeck, Acacia macrophylla, Albizia lebbek, Feuilleea lebbeck, Mimosa lebbeck, Mimosa speciosa [silk tree], Medicago sativa, Medicago falcata, Medicago varia [alfalfa], Glycine max Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida or Soja max [soybean], Funariaceae such as the genera Aphanorrhegma, Entosthodon, Funaria, Physcomitrella, Physcomitrium, for example the genera and species Aphanorrhegma serratum, Entosthodon attenuatus, Entosthodon bolanderi, Entosthodon bonplandii, Entosthodon californicus, Entosthodon drummondii, Entosthodon jamesonii, Entosthodon leibergii, Entosthodon neoscoticus, Entosthodon rubrisetus, Entosthodon spathulifolius, Entosthodon tucsoni, Funaria americana, Funaria bolanderi, Funaria calcarea, Funaria californica, Funaria calvescens, Funaria convoluta, Funaria flavicans, Funaria groutiana, Funaria hygrometrica, Funaria hygrometrica var. arctica, Funaria hygrometrica var. calvescens, Funaria hygrometrica var. convoluta, Funaria hygrometrica var. muralis, Funaria hygrometrica var. utahensis, Funaria microstoma, Funaria microstoma var. obtusifolia, Funaria muhlenbergii, Funaria orcuttii, Funaria plano-convexa, Funaria polaris, Funaria ravenelii, Funaria rubriseta, Funaria serrata, Funaria sonorae, Funaria sublimbatus, Funaria tucsoni, Physcomitrella californica, Physcomitrella patens, Physcomitrella readeri, Physcomitrium australe, Physcomitrium californicum, Physcomitrium collenchymatum, Physcomitrium coloradense, Physcomitrium cupuliferum, Physcomitrium drummondii, Physcomitrium eurystomum, Physcomitrium flexifolium, Physcomitrium hookeri, Physcomitrium hookeri var. serratum, Physcomitrium immersum, Physcomitrium kellermanii, Physcomitrium megalocarpum, Physcomitrium pyriforme, Physcomitrium pyriforme var. serratum, Physcomitrium rufipes, Physcomitrium sandbergii, Physcomitrium subsphaericum, Physcomitrium washing-toniense, Geraniaceae, such as the genera Pelargonium, Cocos, Oleum, for example the genera and species Cocos nucifera, Pelargonium grossularioides or Oleum cocois [coconut], Gramineae, such as the genus Saccharum, for example the genus and species Saccharum officinarum, Juglandaceae, such as the genera Juglans, Wallia, for example the genera and species Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Wallia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, Juglans jamaicensis, Juglans major, Juglans microcarpa, Juglans nigra or Wallia nigra [walnut], Lauraceae, such as the genera Persea, Laurus, for example the genera and species Laurus nobilis [bay], Persea americana, Persea gratissima or Persea persea [avocado], Leguminosae, such as the genus Arachis, for example the genus and species

Arachis hypogaea [peanut], Linaceae, such as the genera Linum, Adenolinum, for example the genera and species Linum usitatissimum, Linum humile, Linum austriacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense or Linum trigynum [linseed], Lythrarieae, such as the genus Punica, for example the genus and species Punica granatum [pomegranate], Malvaceae, such as the genus Gossypium, for example the genera and species Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, Gossypium herbaceum or Gossypium thurberi [cotton], Marchantiaceae, such as the genus Marchantia, for example the genera and species Marchantia berteroana, Marchantia foliacea, Marchantia macropora, Musaceae, such as the genus Musa, for example the genera and species Musa nana, Musa acuminata, Musa paradisiaca, Musa spp. [banana], Onagraceae, such as the genera Camissonia, Oenothera, for example the genera and species Oenothera biennis or Camissonia brevipes [evening primrose], Palmae, such as the genus Elacis, for example the genus and species Elaeis guineensis [oil palm], Papaveraceae, such as the genus Papaver, for example the genera and species Papaver orientale, Papaver rhoeas, Papaver dubium [poppy], Pedaliaceae, such as the genus Sesamum, for example the genus and species Sesamum indicum [sesame], Piperaceae, such as the genera Piper, Artanthe, Peperomia, Steffensia, for example the genera and species Piper aduncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanthe adunca, Artanthe elongata, Peperomia elongata, Piper elongatum, Steffensia elongata [cayenne pepper], Poaceae, such as the genera Hordeum, Secale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (maize), Triticum, for example the genera and species Hordeum vulgare, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon, Hordeum aegiceras, Hordeum hexastichon, Hordeum hexastichum, Hordeum irregulare, Hordeum sativum, Hordeum secalinum [barley], Secale cereale [rye], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [oats], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgare, Andropogon drummondii, Holcus bicolor, Holcus sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgare, Holcus halepensis, Sorghum miliaceum, Panicum militaceum [millet], Oryza sativa, Oryza latifolia [rice], Zea mays [maize], Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum or Triticum vulgare [wheat], Porphyridiaceae, such as the genera Chroothece, Flintiella, Petrovanella, Porphyridium, Rhodella, Rhodosorus, Vanhoeffenia, for example the genus and species Porphyridium cruentum, Proteaceae, such as the genus Macadamia, for example the genus and species Macadamia intergrifolia [macadamia], Prasinophyceae such as the genera Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, for example the genera and species Nephroselmis olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata, Ostreococcus tauri, Rubiaceae such as the genus Cofea, for example the genera and species Cofea spp., Coffea arabica, Coffea canephora or Coffea liberica [coffee], Scrophulariaceae such as the genus Verbascum, for example the genera and species Verbascum blattaria, Verbascum chaixii, Verbascum densiflorum, Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbascum phlomoides, Verbascum phoenicum, Verbascum pulverulentum or Verbascum thapsus [mullein], Solanaceae such as the genera Capsicum, Nicotiana, Solanum, Lycopersicon, for example the genera and species Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutescens [pepper], Capsicum annuum [paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata, Nicotiana glauca, Nicotiana langsdorffii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [tobacco], Solanum tuberosum [potato], Solanum melongena [eggplant], Lycopersicon esculentum, Lycopersicon lycopersicum, Lycopersicon pyriforme, Solanum integrifolium or Solanum lycopersicum [tomato], Sterculiaceae, such as the genus Theobroma, for example the genus and species Theobroma cacao [cacao] or Theaceae, such as the genus Camellia, for example the genus and species Camellia sinensis [tea]. In particular preferred plants to be used as transgenic plants in accordance with the present invention are oil fruit crops which comprise large amounts of lipid compounds, such as peanut, oilseed rape, canola, sunflower, safflower, poppy, mustard, hemp, castor-oil plant, olive, sesame, Calendula, Punica, evening primrose, mullein, thistle, wild roses, hazelnut, almond, macadamia, avocado, bay, pumpkin/squash, linseed, soybean, pistachios, borage, trees (oil palm, coconut, walnut) or crops such as maize, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, Tagetes, Solanaceae plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa or bushy plants (coffee, cacao, tea), Salix species, and perennial grasses and fodder crops. Preferred plants according to the invention are oil crop plants such as peanut, oilseed rape, canola, sunflower, safflower, poppy, mustard, hemp, castor-oil plant, olive, Calendula, Punica, evening primrose, pumpkin/squash, linseed, soybean, borage, trees (oil palm, coconut). Especially preferred plants are plants such as sunflower, safflower, tobacco, mullein, sesame, cotton, pumpkin/squash, poppy, evening primrose, walnut, linseed, hemp, thistle or safflower. Very especially preferred plants are plants such as safflower, sunflower, poppy, evening primrose, walnut, linseed, or hemp.
[0082] Preferred mosses are Physcomitrella or Ceratodon. Preferred algae are Isochrysis, Mantoniella, Ostreococcus or Crypthecodinium, and algae/diatoms such as Phaeodactylum or Thraustochytrium. More preferably, said algae or mosses are selected from the group consisting of: Shewanella, Physcomitrella, Thraustochytrium, Nannochloropsis,

EP 2585603 B1

Fusarium, Phytophthora, Ceratodon, Isochrysis, Aleurita, Muscarioides, Mortierella, Phaeodactylum, Cryphthecodinium, specifically from the genera and species Thallasiosira pseudonona, Euglena gracilis, Physcomitrella patens, Phytophtora infestans, Fusarium graminaeum, Cryptocodinium cohnii, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Thraustochytrium sp., Nannochloropsis oculata, Muscarioides viallii, Mortierella alpina, Phaeodactylum tricornutum or Caenorhabditis elegans or especially advantageously Phytophtora infestans and Cryptocodinium cohnii.
[0083] Transgenic plants may be obtained by transformation techniques as elsewhere in this specification. Preferably, transgenic plants can be obtained by T-DNA-mediated transformation. Such vector systems are, as a rule, characterized in that they contain at least the vir genes, which are required for the Agrobacterium-mediated transformation, and the sequences which delimit the T-DNA (T-DNA border). Suitable vectors are described elsewhere in the specification in detail.
[0084] Also encompassed are transgenic non-human animals comprising the vector or polynucleotide of the present invention. Preferred non-human transgenic animals envisaged by the present invention are fish, such as herring, salmon, sardine, redfish, eel, carp, trout, halibut, mackerel, zander or tuna.
[0085] It will be understood that in order to produce the LCPUFA according to the invention, the C16- or C18- fatty acids must first be desaturated by the enzymatic activity of a desaturase and subsequently be elongated by at least two carbon atoms via an elongase in the non-human transgenic organism. After one elongation cycle, this enzyme activity gives C18- or C20-fatty acids and after two or three elongation cycles C22- or C24-fatty acids. The activity of the desaturases and elongases used in the process according to the invention preferably leads to C18-, C20-, C22-and/or C24-fatty acids, advantageously with at least two double bonds in the fatty acid molecule, preferably with three, four or five double bonds, especially preferably to give C20-and/or C22-fatty acids with at least two double bonds in the fatty acid molecule, preferably with three, four or five double bonds in the molecule. After a first desaturation and the elongation have taken place, further desaturation steps such as, for example, one in the delta- 5 position may take place. Products of the process according to the invention which are especially preferred are DGLA, ARA, EPA DPA and/or DHA, most preferably EPA and/or DHA. Desaturases and elongases which are required for this process may not always be present naturally in the organism. Accordingly, the present invention, preferably, envisages a transgenic non-human organism which in addition to the polynucleotide of the present invention comprises polynucleotides encoding such desaturases and/or elongases as required depending on the selected organism. Preferred desaturases and/or elongases which shall be present in the organism are at least one enzyme selected from the group consisting of: Δ-4-desaturase, $\Delta-5$-desaturase, Δ-5-elongase, Δ - 6 -desaturase, $\Delta 12$-desaturase, $\Delta 15$-desaturase, $\omega 3$-desaturase and Δ - 6 -elongase. Especially prefered are the bifunctional d12d15-Desaturases d12d15Des(Ac) from Acanthamoeba castellanii (WO2007042510), d12d15Des(Cp) from Claviceps purpurea (WO2008006202) and d12d15Des(Lg) 1 from Lottia gigantea (WO2009016202), the d12-Desaturases d12Des(Co) from Calendula officinalis (WO200185968), d12Des(Lb) from Laccaria bicolor (WO2009016202), d12Des(Mb) from Monosiga brevicollis (WO2009016202), d12Des(Mg) from Mycosphaerella graminicola (WO2009016202), d12Des(Nh) from Nectria haematococca (WO2009016202), d12Des(OI) from Ostreococcus lucimarinus (WO2008040787), d12Des(Pb) from Phycomyces blakesleeanus (WO2009016202), d12Des(Ps) from Phytophthora sojae (WO2006100241) and d12Des(Tp) from Thalassiosira pseudonana (WO2006069710), the d15-Desaturases d15Des(Hr) from Helobdella robusta (WO2009016202), d15Des(Mc) from Microcoleus chthonoplastes (WO2009016202), d15Des(Mf) from Mycosphaerella fijiensis (WO2009016202), d15Des(Mg) from Mycosphaerella graminicola (WO2009016202) and d15Des(Nh)2 from Nectria haematococca (WO2009016202), the d4-Desaturases d4Des(Eg) from Euglena gracilis (WO2004090123), d4Des(Tc) from Thraustochytrium sp. (WO2002026946) and d4Des(Tp) from Thalassiosira pseudonana (WO2006069710), the d5-Desaturases d5Des(OI)2 from Ostreococcus lucimarinus (WO2008040787), d5Des(Pp) from Physcomitrella patens (WO2004057001), d5Des(Pt) from Phaeodactylum tricornutum (WO2002057465), d5Des(Tc) from Thraustochytrium sp. (WO2002026946), d5Des(Tp) from Thalassiosira pseudonana (WO2006069710) and the d6-Desaturases d6Des(Cp) from Ceratodon purpureus (WO2000075341), d6Des(OI) from Ostreococcus lucimarinus (WO2008040787), d6Des(Ot) from Ostreococcus tauri (WO2006069710), d6Des(Pf) from Primula farinosa (WO2003072784), d6Des(Pir)_BO from Pythium irregulare (WO2002026946), d6Des(Pir) from Pythium irregulare (WO2002026946), d6Des(Plu) from Primula luteola (WO2003072784), d6Des(Pp) from Physcomitrella patens (WO200102591), d6Des(Pt) from Phaeodactylum tricornutum (WO2002057465), d6Des(Pv) from Primula vialii (WO2003072784) and d6Des(Tp) from Thalassiosira pseudonana (WO2006069710), the d8-Desaturases d8Des(Ac) from Acanthamoeba castellanii (EP1790731), d8Des(Eg) from Euglena gracilis (WO200034439) and d8Des(Pm) from Perkinsus marinus (WO2007093776), the o3-Desaturases o3Des(Pi) from Phytophthora infestans (WO2005083053), o3Des(Pir) from Pythium irregulare (WO2008022963), o3Des(Pir)2 from Pythium irregulare (WO2008022963) and o3Des(Ps) from Phytophthora sojae (WO2006100241), the bifunctional d5d6-elongases d5d6Elo(Om)2 from Oncorhynchus mykiss (WO2005012316), d5d6Elo(Ta) from Thraustochytrium aureum (WO2005012316) and d5d6Elo(Tc) from Thraustochytrium sp. (WO2005012316), the d5-elongases d5Elo(At) from Arabidopsis thaliana (WO2005012316), d5Elo(At)2 from Arabidopsis thaliana (WO2005012316), d5Elo(Ci) from Ciona intestinalis (WO2005012316), d5Elo(OI) from Ostreococcus lucimarinus (WO2008040787), d5Elo(Ot) from Ostreococcus tauri (WO2005012316), d5Elo(Tp) from Thalassiosira pseudonana (WO2005012316) and

EP 2585603 B1

d5Elo(XI) from Xenopus laevis (WO2005012316), the d6-elongases d6Elo(OI) from Ostreococcus lucimarinus (WO2008040787), d6Elo(Ot) from Ostreococcus tauri (WO2005012316), d6Elo(Pi) from Phytophthora infestans (WO2003064638), d6Elo(Pir) from Pythium irregulare (WO2009016208), d6Elo(Pp) from Physcomitrella patens (WO2001059128), d6Elo(Ps) from Phytophthora sojae (WO2006100241), d6Elo(Ps)2 from Phytophthora sojae (WO2006100241), d6Elo(Ps)3 from Phytophthora sojae (WO2006100241), d6Elo(Pt) from Phaeodactylum tricornutum (WO2005012316), d6Elo(Tc) from Thraustochytrium sp. (WO2005012316) and d6Elo(Tp) from Thalassiosira pseudonana (WO2005012316), the d9-elongases d9Elo(lg) from Isochrysis galbana (WO2002077213), d9Elo(Pm) from Perkinsus marinus (WO2007093776) and d9Elo(Ro) from Rhizopus oryzae (WO2009016208).
[0086] Furthermore, the present invention encompasses a method for the manufacture of polyunsaturated fatty acids comprising:
a) cultivating the host cell of the invention under conditions which allow for the production of polyunsaturated fatty acids in said host cell; and
b) obtaining said polyunsaturated fatty acids from the said host cell.
[0087] The term "polyunsaturated fatty acids (PUFA)" as used herein refers to fatty acids comprising at least two, preferably, three, four, five or six, double bonds. Moreover, it is to be understood that such fatty acids comprise, preferably from 18 to 24 carbon atoms in the fatty acid chain. More preferably, the term polyunsaturated fatty acids relates to long chain PUFA (LCPUFA) having from 20 to 24 carbon atoms in the fatty acid chain. Preferred unsaturated fatty acids in the sense of the present invention are selected from the group consisting of arachidonic acid (ARA) 20:4 $(5,8,11,14)$, eicosapentaenoic acid (EPA) 20:5 (5,8,11,14,17), and docosahexaenoic acid (DHA) 22:6 (4,7,10,13,16,19) and, more preferably, from EPA and DHA. Thus, it will be understood that most preferably, the methods provided by the present invention relating to the manufacture of EPA or DHA. Moreover, also encompassed are the intermediates of LCPUFA which occur during synthesis starting from oleic acid 18:1 (9), preferably, linoleic acid 18:2 (9,12), alpha-linolenic acid 18:3 ($9,12,15$), gamma-linolenic acid $18: 3(6,9,12)$, stearidonic acid $18: 4(6,9,12,15)$, dihomo-gamma-linoleic acid 20:3 $(8,11,14)$, eicosadienoic acid $20: 2(11,14)$, eicosatrienoic acid $20: 3(11,14,17)$, eicosatetraenoic acid $20: 4(8,11,14,17)$ and docospentaenoic acid (DPA) 22:5 (4,7,10,13,16).
[0088] The term "cultivating" as used herein refers maintaining and growing the host cells under culture conditions which allow the cells to produce the said polyunsaturated fatty acid, i.e. the PUFA and/or LCPUFA referred to above, preferably, as triglyceride esters. This implies that the polynucleotide of the present invention is expressed in the host cell so that the acyltransferase activity is present. Suitable culture conditions for cultivating the host cell are described in more detail below.
[0089] The term "obtaining" as used herein encompasses the provision of the cell culture including the host cells and the culture medium as well as the provision of purified or partially purified preparations thereof comprising the polyunsaturated fatty acids, preferably, as triglyceride esters. More preferably, the PUFA and LCPUFA are to be obtained as triglyceride esters, e.g., in form of an oil. More details on purification techniques can be found elsewhere herein below.
[0090] The host cells to be used in the method of the invention are grown or cultured in the manner with which the skilled artisan is familiar, depending on the host organism. Usually, host cells are grown in a liquid medium comprising a carbon source, usually in the form of sugars, a nitrogen source, usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as salts of iron, manganese and magnesium and, if appropriate, vitamins, at temperatures of between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, preferably between $10^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ under oxygen or anaerobic atmosphere depedent on the type of organism. The pH of the liquid medium can either be kept constant, that is to say regulated during the culturing period, or not. The cultures can be grown batchwise, semi-batchwise or continuously. Nutrients can be provided at the beginning of the fermentation or administerd semicontinuously or continuously: The produced PUFA or LCPUFA can be isolated from the host cells as described above by processes known to the skilled artisan, e.g., by extraction, distillation, crystallization, if appropriate precipitation with salt, and/or chromatography. It might be required to disrupt the host cells prior to purification. To this end, the host cells can be disrupted beforehand. The culture medium to be used must suitably meet the requirements of the host cells in question. Descriptions of culture media for various microorganisms which can be used as host cells according to the present invention can be found in the textbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981). Culture media can also be obtained from various commercial suppliers. All media components are sterilized, either by heat or by filter sterilization. All media components may be present at the start of the cultivation or added continuously or batchwise, as desired. If the polynucleotide or vector of the invention which has been introduced in the host cell further comprises an expressible selection marker, such as an antibiotic resistance gene, it might be necessary to add a selection agent to the culture, such as an antibiotic in order to maintain the stability of the introduced polynucleotide. The culture is continued until formation of the desired product is at a maximum. This is normally achieved within 10 to 160 hours. The fermentation broths can be used directly or can be processed further. The biomass may, according to requirement, be removed completely or partially from the fermentation

EP 2585603 B1

broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods or be left completely in said broth. The fatty acid preparations obtained by the method of the invention, e.g., oils, comprising the desired PUFA or LCPUFA as triglyceride esters are also suitable as starting material for the chemical synthesis of further products of interest. For example, they can be used in combination with one another or alone for the preparation of pharmaceutical or cosmetic compositions, foodstuffs, or animal feeds. Chemically pure triglycerides comprising the desired PUFA or LCPUFA can also be manufactured by the methods described above. To this end, the fatty acid preparations are further purified by extraction, distillation, crystallization, chromatography or combinations of these methods. In order to release the fatty acid moieties from the triglycerides, hydrolysis may be also required. The said chemically pure triglycerides or free fatty acids are, in particular, suitable for applications in the food industry or for cosmetic and pharmacological compositions.
[0091] Moreover, the present invention relates to a method for the manufacture of polyunsaturated fatty acids comprising:
a) cultivating the non-human transgenic organism of the invention under conditions which allow for the production of polyunsaturated fatty acids in said host cell; and
b) obtaining said polyunsaturated fatty acids from the said non-human transgenic organism.
[0092] Further, it follows from the above that a method for the manufacture of an oil, lipid or fatty acid composition is also envisaged by the present invention comprising the steps of any one of the aforementioned methods and the further step of formulating PUFA or LCPUFA as oil, lipid or fatty acid composition. Preferably, said oil, lipid or fatty acid composition is to be used for feed, foodstuffs, cosmetics or pharmaceuticals. Accordingly, the formulation of the PUFA or LCPUFA shall be carried out according to the GMP standards for the individual envisaged products. For example, oil may be obtained from plant seeds by an oil mill. However, for product safety reasons, sterilization may be required under the applicable GMP standard. Similar standards will apply for lipid or fatty acid compositions to be applied in cosmetic or pharmaceutical compositions. All these measures for formulating oil, lipid or fatty acid compositions as products are comprised by the aforementioned manufacture.
[0093] The term "oil" refers to a fatty acid mixture comprising unsaturated and/or saturated fatty acids which are esterified to triglycerides. Preferably, the triglycerides in the oil of the invention comprise PUFA or LCPUFA as referred to above. The amount of esterified PUFA and/or LCPUFA is, preferably, approximately 30%, a content of 50% is more preferred, a content of $60 \%, 70 \%, 80 \%$ or more is even more preferred. The oil may further comprise free fatty acids, preferably, the PUFA and LCPUFA referred to above. For the analysis, the fatty acid content can be, e.g., determined by GC analysis after converting the fatty acids into the methyl esters by transesterification. The content of the various fatty acids in the oil or fat can vary, in particular depending on the source. The oil, however, shall have a non-naturally occurring composition with respect to the PUFA and/or LCPUFA composition and content. It will be understood that such a unique oil composition and the unique esterification pattern of PUFA and LCPUFA in the triglycerides of the oil shall only be obtainable by applying the methods of the present invention specified above. Moreover, the oil of may comprise other molecular species as well. Specifically, it may comprise minor impurities of the polynucleotide or vector of the invention. Such impurities, however, can be detected only by highly sensitive techniques such as PCR.
[0094] The contents of all references cited throughout this application are herewith incorporated by reference in general and with respect to their specific disclosure content referred to above.
[0095] This invention is further illustrated by the following figures and examples which should not be construed as limiting the scope of the invention.

FIGURES
[0096]
Figure 1: Cloning strategy employed for stepwise buildup of plant expression plasmids of the invention.
Figure 2: Vector map of the bbc construct used for Arabidopsis transformation.

Figure 3: GC chromatogram of fatty acids methyl esters of total fatty acids of Col-0, fae1 mutant and fae1 transformed with bbc. Total fatty acids were measured as descibed by Wu et al., 2005. The content of the different fatty is indicated in table 5.

Figure 4: Total ion count of 26 acyl CoA ESI-MS/MS MRM pairs for Arabidopsis (A) Col-0 and (B) fae1 harbouring EPA biosynthesis pathway. Maturing Arabidopsis seeds were harvested 18 days after flowering. Acyl-CoA was extracted according to Larson et al (2001) and LC conditions after Han et al. (2010).

EP 2585603 B1

Figure 5: Identification of Eicosapentaenoic and Arachidonic-CoA's in the acyl CoA pool of Arabidopsis Col-0 and EPA producing plants. MRM chromatograms of co-eluting acyl-CoA of interest in (A) wild type and (C) fae 1 harbouring EPA biosynthetic pathway with recorded reactions shown for each transition, isotopic peaks (IP) of homologous long chain acyl CoA are shown. (B) Characteristic fragmentation of the protonated acyl-CoA by neutral loss of 507 to give the protonated acyl pantetheine group.

Figure 6: LPCAT activity assay.
A yeast mutant lacking LPEAT and LPCAT activity (due to knockout of the gene YOR175c) was transformed with the empty vector pYES2.1 (lane marked "-") and with pYES2.1 harboring the cDNA of pLPAAT_c6316(No) (lane 1 and 2, SEQ-ID: 13). Microsomal isolations of these transformants and the wildtype yeast strain BY4742 (lane marked " + ") containing $5 \mu \mathrm{~g}$ protein where incubated with alpha-linolenic acid-CoA and [$\left.{ }^{14} \mathrm{C}\right]-18: 1$-lysophosphatidylcholine (LPC). Thin layer chromatography was performed to separate lipid classes. Like for wildtype yeast (lane marked "+"), phosphatidylcholine (PC) is observed for both yeast clones shown in lane 1 and 2, indicating the gene pLPAAT_c6316(No) has LPCAT activity and complements the missing LPCAT activity of the knockout strain.

Figure 7: LPAAT activity assay.
A yeast mutant lacking LPAAT activity (due to knockout of the gene YDL052c) was transformed with the empty vector pYES2.1 (lane marked "-") and with pYES2.1 harboring the cDNA of pLPAAT_c6316(No) (lane 1 and 2, SEQID: 13). Microsomal isolations of these transformants and the wildtype yeast strain BY4742 (lane marked "+") containing $5 \mu \mathrm{~g}$ protein where incubated with alpha-linolenic acid-CoA and $\left[{ }^{14} \mathrm{C}\right]-18: 1$-lysophosphatidic acid (LPA). Thin layer chromatography was performed to separate lipid classes. Like for wildtype yeast (lane marked "+"), phosphatidic acid (PA) is observed for both yeast clones shown in lane 1 and 2 , indicating the gene pLPAAT_c6316(No) has LPAAT activity and complements the missing LPAAT activity of the knockout strain.

Figure 8: DGAT activity assay.
A yeast mutant lacking the capability to synthesis TAG (due to knockout of the four genes YCR048W, YNR019W, YOR245C and YNR008W) was transformed with the empty vector pYES2.1 (lane marked "-") and with pYES2.1 harboring the cDNA of pDGAT2-c19425mod(Ta) (SEQ-ID 52, lane 1 and 2), pDGAT2_c4648(No) (SEQ-ID 34, lane 5 and 6), pDGAT2_c48271(No) (SEQ-ID 102, lane 7 and 8), BnDGAT1 (SEQ-ID 107, lane 9 and 10), AtDGAT1 (SEQ-ID 105, lane 11 and 12), pDGAT2_c699(No) (SEQ-ID 19, lane 13 and 14) and pDGAT2_c2959(No) (SEQID 25, lane 15). Microsomal isolations of these transformants and the wildtype yeast strain G175 (lane marked "+") where incubated with ${ }^{14} \mathrm{C}$-labled oleic acid and diacylglyerole (DAG). Thin layer chromatography was performed to separate lipid classes. Like for wildtype yeast (lane marked "+"), triacylglycerole (TAG) is observed in lane 1, 2, 5, $6,7,8,9,10,11,12,13,14$ and 15, indicating pDGAT2-c19425mod(Ta), pDGAT2_c4648(No), pDGAT2_c48271(No), BnDGAT1, AtDGAT1, pDGAT2_c699(No) and pDGAT2_c2959(No) encode polypeptides having DGAT activity and complement the missing TAG-synthesis capability of the knockout.

Figure 9: Substrate specificity of AtDGAT1 and BnDGAT1. The specific activity of the enzymes AtDGAT1 and BnDGAT1 using the substrates indicated at the x-axis is given as the amount (in nmol) of substrate consumed in one minute per mg total protein and was determined as described in example 10.

Figure 10: Substrate specificity of pDGAT2-c19425(Ta) compared to AtDGAT1 and BnDGAT1. The specific activity of the enzymes pDGAT2-c19425(Ta), AtDGAT1 and BnDGAT1 using the substrates indicated at the x-axis is given as the amount (in nmol) of substrate consumed in one minute per mg total protein and was determined as described in example 10.

Figure 11: Substrate specificity of pDGAT2_c699(No) and pDGAT2_c4648(No) compared to AtDGAT1 and BnDGAT1. The specific activity of the enzymes pDGAT2_c699(No) and pDGAT2_c4648(No), AtDGAT1 and BnDGAT1 using the substrates indicated at the x-axis is given as the amount (in nmol) of substrate consumed in one minute per mg total protein and was determined as described in example 10.

EXAMPLES

Example 1: General cloning methods

[0097] Cloning methods as e.g. use of restriction endonucleases to cut double stranded DNA at specific sites, agarose gel electrophoreses, purification of DNA fragments, transfer of nucleic aicds onto nitrocellulose and nylon memebranes, joining of DNA-fragments, transformation of E.coli cells and culture of bacteria where perforemed as described in Sam-

EP 2585603 B1

brook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87965-309-6).

Example 2: Sequence Analysis of recombinant DNA

[0098] Sequencing of recombinant DNA-molecules was performed using a laser-fluorescence DNA sequencer (Applied Biosystems Inc, USA) employing the sanger method (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467). Expression constructs harboring fragments obtained by polymerase chain reactions were subjected to sequencing to confirm the correctness of expression cassettes consisting of promoter, nulceic acid molecule to be expressed and terminator to avoid mutations that might result from handling of the DNA during cloning, e.g. due to incorrect primers, mutations from exposure to UV-light or errors of polymerases.

Example 3: Cloning of yeast expression construct via homologous recombination

[0099] The open reading frame listed in SEQ ID NOs: 52, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, $49,55,102,105$ and 107 encoding polypeptides with the amino acid sequence SEQ ID NOs: $53,2,5,8,11,14,17,20$, $23,26,29,32,35,38,41,44,47,50,56,103,106$ and 108 that have acyltransferase activity can amplified using the primer listed in table 2 in a polymerase chain reaction. By doing so, the open reading frame is 5 ' fused to about 60 nucleotides of the 3' end of the GAL1 promotor sequence with simultanious introduction of and Asc I and/or Nco I restriction site between the fusion site and 3 ' fused to about 60 nucleotides of the 5 ' end of the CYC1 terminator sequence with simultanious introduction of and Pac I restriction site. To integrate these fragments into pYES2.1 TOPO downstream of the galactose inducible GAL1 Promotor via homologous recombination, the vector pYES2.1 (Invitrogen) can be digested using the restriction endonucleases Pvu II and Xba I, and Saccharomyces cerevisea can be transformed with 5 to 20 ng of linearized pYES2.1 TOPO vector and 20 to 100 ng PCR product per $50 \mu \mathrm{l}$ competent cells using the transformation method described by Schiestl et al. (Schiestl et al. (1989) Curr. Genet. 16(5-6), pp. 339-346), to obtain pYES-pLPLAT_c1216(No), pYES-pLPLAT_c3052(No), pYES-pLPEAT-c7109(Ta), pYES-pLPAAT_c2283(No), pYESpLPAAT_c6316(No), pYES-pDGAT2_Irc24907(No), pYES-pDGAT2_c699(No), pYES-pDGAT2_c1910(No), pYESpDGAT2_c2959(No), pYES-pDGAT2_c4857(No), pYES-pDGAT1_c21701(No), pYES-pDGAT2_c4648(No), pYESpDGAT2_c1660(No), pYES-pDGAT2_c29432(No), pYES-pDGAT2_c1052(No), pYES-pDGAT2-c18182(Ta), pYES-pDGAT2-c5568(Ta), pYES-pDGAT2-c19425(Ta), pYES-pDGAT2_c48271(No), AtDGAT1, BnDGAT1 and pYESpGPAT_c813(No) in various wildtype yeasts and yeast mutants. Positive transformants can be selected based on the complementation of the URA auxotrophy of the chosen S.cerevisia strain. To validate the correctness of the expression construct harbored by a particular yeast clone, plasmids can be isolated as described in Current Protocols in Molecular Biology (Hoffmann, Curr. Protoc. Mol. Biol. 2001 May; Chapter 13:Unit13.11), transformed into E.coli for amplification and subjected to sequencing of the expression cassette as described in example 2. For later cloning into plant expression plasmids, the introduced restrictions site for Asc I and/or Nco I in combination with Pac I can be used.

Table 2: Primer sequences for cloning acyltransferase-polynucleotides of the invention for yeast expression

Gene-Name	Primer	SEQ-ID
pLPLAT_c1216(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac- ctctatactttaacgtcaaggagaaaaaaccccg- gatcggcgcgccaccatggacaaggcactggcaccgtt	46
	Reverse: aactataaaaaaataaatagggacctagacttca- ggttgtctaactccttcctttcggttagagcggatt- taattaactaaacttcttccttccctcta	47
	Forward: ataaaagtatcaacaaaaaattgttaatatac- ctctatactttaacgtcaaggagaaaaaaccccg- gatcggcgcgccaccatgaccacgactgtcatctctag	48
	Reverse: aactataaaaaaataaatagggacctagacttca- ggttgtctaactccttcctttcggttagagcggatttaattaatca- aagcctcccgcacaacgagc	49

(continued)

Gene-Name	Primer	SEQ-ID
pLPEAT-c7109(Ta)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatggagggcatcgagtcgatagt	50
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttccttttcggttagagcggatt- taattaactataaggcttctcccggcgcgg	51
pLPAAT _c2283(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatgaagacgcccacgagcctggc	52
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaattaagctctcgaatcgtccttct	53
pLPAAT_c6316(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatggtcaggaggaagatggacgt	54
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaatcacgacgccggcgccttgcagt	55
pDGA T2_Irc24907(N o)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatggcaccctccccaccggcccc	56
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaatcatttgaccactaaggtggcct	57
pDGAT2_c699(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatgggtctatttggcagcgggat	58
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaactaaaagaaattcaacgtccgat	59

(continued)

Gene-Name	Primer	SEQ-ID
pDGAT2_c1910(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatgttgagtatccccgagtcgtc	60
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaactaaaagaaatccagctccctgt	61
pDGAT2_c2959(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatgacgccgcaagccgatatcac	62
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaattactcaatggacaacgggcgeg	63
pDGAT2_c4857(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatggcttacctcttccgtcgtcg	64
	Reverse: aactataaaaaaataaatagggacctagacttca ggttgtctaactccttcctttcggttagagcggatttaattaattaggcgatcgcaatgaactcct	65
pDGAT1_c21701(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatgcctttggacgggctgcatc	66
	Reverse: aactataaaaaaataaatagggacctagacttca ggttgtctaactccttcctttcggttagagcggatttaattaatcacccgaaaatatcctccttct	67
pDGAT2_c4648(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatggccaaggctaacttcccgcc	68
	Reverse: aactataaaaaaataaatagggacctagacttca ggttgtctaactccttcctttcggttagagcggatttaattaatcactttataagcagcttcttgt	69

(continued)

Gene-Name	Primer	SEQ-ID
pDGA T2_c1660(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac ctctatactttaacgtcaaggagaaaaaaccccg- gatcggcgcgccaccatgttgttgcagggattaagctg	70
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaatcacaacaggaccaatttatgat	71
pDGAT2_c29432(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatgttgatggcgccgtcgcggcg	72
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaatcagacgatgcgaagcgtcttgt	73
pDGAT2_c1052(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatgggcgctaccactgcgaccca	74
	Reverse: aactataaaaaaataaatagggacctagacttca ggttgtctaactccttcctttcggttagagcggatttaattaatcacgacttcggacagtccaaaa	75
pDGA T2-c18182(Ta)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatgtcgttcgttgagcacagcgc	76
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttccttttcggttagagcggatttaattaactacacaaatcgcatcgtcttgt	77
pDGAT2-c5568(Ta)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatggtcttcctctgccttcccta	78
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttccttttcggttagagcggatttaattaactacgagtccagccacttgatgc	79

(continued)

Gene-Name	Primer	SEQ-ID
pDGA T2-c19425(Ta)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatgtttcttcgcatcgaacggga	80
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaactaaccctcggtgtacagcgccg	81
pGPAT_C813(No)	Forward: ataaaagtatcaacaaaaaattgttaatatac- ctctatactttaacgtcaaggagaaaaaaccccg- gatcggcgcgccaccatgccatcccgcagcaccattga	82
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaatcagacaagctcctcttccccct	83
pDGAT2_c48271 (No)	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatggccgccatctcaccgcgcaa	109
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaactaccacacctccaacttcgccc	110
AtDGAT1	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatggcgattttggattctgctgg	111
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaatcatgacatcgatcctttcggt	112
BnDGAT1	Forward: ataaaagtatcaacaaaaaattgttaatatac-ctctatactttaacgtcaaggagaaaaaaccccggatcggcgcgccaccatggagattttggattctggagg	113
	Reverse: aactataaaaaaataaatagggacctagacttca-ggttgtctaactccttcctttcggttagagcggatttaattaactatgacatctttccttgcggt	114

Table 3: Coding polynucleotide sequences, amino acid sequences encoded thereby and expressed sequences (mRNA) of the acyltransferases of the invention

Example 4: Assembly of genes required for PUFA synthesis within a T-plasmid

[0100] For synthesis of EPA in Arabidopsis seeds, the set of genes encoding the proteins of the metabolic EPA pathway

EP 2585603 B1

(table 4) was combined with expression elements (promoter, terminators) and transferred into binary t-plasmids that were used for agrobacteria mediated transformation of plants as described in example 5. To this end, the general cloning strategy depicted in figure 1 was employed: Genes listed in table 4 were PCR-amplified using Phusion ${ }^{\text {™ }}$ High-Fidelity DNA Polymerase (NEB, Frankfurt, Germany) according to the manufactures instructions from cDNA using primer intro- ducing a Nco I and/or Asc I restriction site at the 5' terminus, and a Pac I restriction site at the 3' terminus (figure 1B). To obtain the final expression modules, PCR-amplified genes were cloned between promoter and terminator via Nco I and/or Pac I restriction sites (figure 1C). Up to three of those expression modules were combined as desired to expression cassettes harbored by either one of pENTR/A, pENTR/B or pENTR/C (figure 1D).. Finally, the Multisite Gateway ${ }^{\text {TM }}$ System (Invitrogen) was used to combine three expression cassette harbored by pENTR/A, pENTR/B and pENTR/C (figure 1E) to obtain the final binary T-plasmids bbc (SEQ-ID 101, figure 2).

Table 4: Genes of the bbc construct for synthesis of EPA (20:5n-3) in Arabidopsis seeds. The elements controlling
the expression of the respective genes are as well indicated.

Name	Source Organism	Activity	SEQ-ID	Promoter	Terminator
d12Des(Ps)	Phytophtora sojae	d-12 Desaturase	96	p-BnNapin	t-E9
d6Des(Ot)	Ostreococcus tauri	d-6 Desaturase	97	p-SBP	t-CatpA
d5Des(Tc)	Traustochytrium ssp.	d-5 Desaturase	98	p-LuCnl	t-AgroOCS
d6Elo(Pp)	Physcomitrella patens	d-6 Elongase	99	p-VfUSP	t-CaMV35S
o-3Des(Pi)	Phytophthora infestans	o-3 Desaturase	100	p-Napin	t-E9

Example 5: Plant Transformation

[0101] The resulting binary vector bbc harboring the genes reconstituting EPA biosynthesis pathway were transformed into Agrobacterium tumefaciens (Hofgen and Willmitzer (1988) Nucl. Acids Res. 16: 9877). The transformation of A. thaliana was accomplished by means of the floral-dip method (Clough and Bent (1998) Plant Journal 16: 735-743), this method is known to the skilled person. Wild-type Arabidopsis seeds contain considerable amounts of eicosenoic acid (20:1) (Table 5). Biosynthesis of 20:1 competes for the substrates of the PUFA biosynthesis pathway. This competition was circumvented by transforming bbc into the Arabidopsis fae1 mutant (James et al., (1995) The Plant Cell 7:309-319).

Example 6: Quantification of metabolic fatty Acyl-CoAs in wild-type and EPA producing Arabidopsis seeds

[0102] The selected transgenic Arabidopsis plants from example 3 were analyzed in respect to PUFA content in seeds. Seeds from wild-type, fae1 mutant and transgenics harboring the bbc construct were harvested 18 days after flowering. Total fatty acid, representing the fatty acids esterified to CoA, on lipids and as triacyl-glycerides were extracted and analyzed by gas chromatography as described in Wu et al., (2005) Nature Biotechnology 23(8): 1013-1017.
[0103] In seeds of fae1 transformed with bbc the EPA accumulation was 12.2%, the seeds contained small amounts of indermediate or side products: ARA (3.2%), SDA (0.8%), GLA (2.6%) which were not present in wild-type or fae1 (Fig 3, Table 5).

Table 5: Content of fatty acids in seeds of wild-type (Col-0), fae1 mutant and fae1 transformed with bbc construct

Fatty acid	Common name of FA	Col-0	fae1	bbc fae1
$16: 0$	Palmitic acid	6,2	8,8	6,8
$18: 0$	Stearic acid	3,1	4,1	5,3
$18: 1$	Oleic acid	16,3	27,5	18,9
$18: 2$	Linoleic acid	28,2	39,0	30,8
$18: 3 n 6$	Gamma-Linolenic acid	0,0	0,0	2,6
$18: 3 n 3$	Alpha-Linoleic acid	15,6	18,4	11,9
$18: 4 n 3$	Stearidonic acid	0,0	0,0	0,8
$20: 1$	Eicosenoic acid	22,8	0,4	0,3

EP 2585603 B1

(continued)

Fatty acid	Common name of FA	Col-0	fae1	bbc fae1
$20: 4 \mathrm{n} 6$	Arachidonic acid	0,0	0,0	3,2
$20: 5 \mathrm{n} 3$	Eicosapentaenoic acid	0,0	0,0	12,2
Others		7,8	1,8	7,2

[0104] For PUFA biosynthesis the acyl-moiety has to be shuffled between different metabolic pools. For example, the elongation of the acyl chain by two carbon atoms occurs specifically on acyl-CoA (Zank et al., (2002) The Plant Journal 318(3):255-268. The efficency of the transfer of the acyl-residue between the metabolic pools may represent a bottleneck for PUFA production in plants. Therefore the accumulation of EPA or intermediates of EPA biosynthesis as CoA species was analyzed by LC/MS2. As a control CoA pool of wild-type seeds were as well analyzed. The Acyl-CoA metabolites were extraced from the seed tissue according to Larson and Graham, 2001. LC/MS ${ }^{2}$ was applied as described by Magnes et al., 2005. Briefly, CoA were separeted with high resolution by reversed-phase high performance liquid chromatography (HPLC) with a ammonium hydroxide and acetonitrile gradient. The acyl-CoA species were identified and quantified by multireaction monitoring using triple quadrupole mass spectrometry. Only a few methods using mass spectrometry for characterization of long chain acyl-CoA have been published, the majority of which employ negative ionisation mode showing abundant ions. In contrast, positive ionisation has only one abundant ion $[\mathrm{M}-\mathrm{H}]+$, furthermore the predominant ion in MS^{2} spectra is the fatty acyl-pantetheine fragment ($\mathrm{m} / \mathrm{z} 507$ - Fig 5 B), characteristic of CoA-activated substances. In choosing the acyl-pantetheine of interest in multireaction monitoring mode (MRM) a very sensitive, selective and reproducible method was established. CoA-activated substances can be monitored by scanning for the neutral loss of phosphoadenosine diphosphate. Generally for reliable analysis, all interfering peaks must be chromatographically separated; in the case of EPA and ARA this is not possible (Fig 4 B). However through the use of MRM, incorporating very short dwell times (15 ms), it is possible to follow the individual chromatograms of acyl-CoA of interest and demonstrate the presence of EPA and ARA in the acyl CoA pool (Fig 5 C). According to internal standards the eicosapentaenoylCoA was in the range of ...\% of the total Co-A pool.
[0105] In conclusion these results show that PUFA accumulate in the metabolic CoA pool and are not transferred to DAG to be released as TAG into the seed oil. Such a bottleneck may be overcome by the co-expression of an acyltransferase from table 3 , having the appropriate substrate specificity. The application of suitable acyltransferase may increase the flux of fatty acid between the metabolic pools and increase the PUFA biosynthesis rate.

Example 7: Activity assays using yeast extracts

[0106] To characterize the functions of the acyltransferase polypeptides of the invention, yeast mutants can be employed that are defective in certain acyltransferase activities. For example, the yeast mutant Y13749 (Genotype: BY4742; Mat alpha; his3 31 ; leu2 40 ; lys2 20 ; u-ra3 40 ; YDL052c::kanMX4) lacking LPAAT activity can be transformed with expression constructs harboring candidate polypeptides to check for restoration (complementation) of LPAAT activity, the yeast mutant Y12431 (genotype BY4742; Mat alpha; his3 1 1; leu2 20 ; lys2 20 ; ura3 30 ; YOR175c:: kanMX4) lacking LPLAT activity can be transformed with expression constructs harboring candidate polypeptides to check for restoration (complementation) of LPLAT activity, the yeast mutant H1246 (genotype MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 YOR245::KanMX4 YNR008W::TRP1 YCR048W::HIS3 YNR019W::LEU2) lacking the ability to synthesize triacylglycerole can be transformed with expression constructs harboring candidate polypeptides to check for restoration (complementation) of the ability to synthesis triacylglycerole. The yeast mutants can for example harbor the expression constructs listed in example 3 employing the transformation method described in example 3.
[0107] For LPAAT activity assay, clones of the yeast mutant Y13749 harboring pYES-pLPAAT_c6316(No) can be grown at $28^{\circ} \mathrm{C}$ in 10 ml selective media (SC-URA) with 2% raffinose as carbon source over night. The next day, expression of the acyltransferase polypeptide can be induced by transferring the cells to fresh media containing 2% galactose, for example by inoculating 100 ml of fresh culture to an optical density (measure at 600 nm) of $\mathrm{OD}_{600}=0.1$. Cells are harvested after 24 h incubation at $28^{\circ} \mathrm{C}$ by centrifugation at 3000 xg for 5 min and resuspended in 1 ml resuspention buffer (25 mM Tris/HCL pH 7.6) and disrupted using acid washed zirconium bead ($200 \mu \mathrm{~m}$ average diameter) in a mill (Retsch, Germany) by three minutes agitation at 300 rpm . The supernatant is transferred to a fresh tube and centrifuged at 3000 xg for 5 min . The obtained supernatant is the crude extract. Protein content is measured according to Bradford (Bradford, M.M. (1976), Anal. Biochem. Bd. 72, pp. 248-254) with bovine serum albumin as standard. Assay mixtures contain 1 to $50 \mu \mathrm{~g}$ of protein, $10 \mu \mathrm{l}$ of $100 \mathrm{nM}\left[{ }^{14} \mathrm{C}\right]-18: 1-\mathrm{LPA}$ (giving about $2000 \mathrm{dpm} / \mathrm{nmol}$), $10 \mu \mathrm{l}$ of $50 \mathrm{nM} 18: 1-\mathrm{CoA}$ or 50 nM $18: 3 \mathrm{n}-3-\mathrm{CoA}$ in assay buffer (25 mM Tris/HCL pH 7.6, $0.5 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}$) to give a total volume of 100μ. Samples are incubated for 10 min at $30^{\circ} \mathrm{C}$. The assays are terminated by extraction of the lipids into chloroform according to Blight

EP 2585603 B1

and Dyer (Bligh, E.G. and Dyer, W.J. (1959), Can. J. Biochem. Physiol. 37, pp. 911-917). Lipids are separated on thin layer chromatography (TLC) silica 60 plates (Merck) using chloroform/methanol/acetic acid/water (90:15:10:3), and autoradiographic pictures are taken using an instant imager (Packard). It can be seen by the formation of phosphatidic acid (PA) in figure 7, that pLPAAT_c6316(No) (SEQ-ID 13, lane 1 and 2) encodes a polypetide having LPAAT activity. [0108] For LPCAT and LPEAT activity assay, clones of the yeast mutant Y12431 harboring pYES-pLPAAT_c6316(No) can be grown at $28^{\circ} \mathrm{C}$ in 10 ml selective media (SC-URA) with 2% raffinose as carbon source over night. The next day, expression of the acyltransferase polypeptide can be induced by transferring the cells to fresh media containing 2% galactose, for example by inoculating 100 ml of fresh culture to an optical density (measure at 600 nm) of $\mathrm{OD}_{600}=0.1$. Cells are harvested after 24 h incubation at $28^{\circ} \mathrm{C}$ by centrifugation at 3000 xg for 5 min and resuspendet in 1 ml resuspention buffer (25 mM Tris/HCL pH 7.6) and disrupted using acid washed zirconium bead ($200 \mu \mathrm{~m}$ average diameter) in a mill (Retsch, Germany) by three minutes agitation at 300 rpm . The supernatant is transferred to a fresh tube and centrifuged at 3000 xg for 5 min . The obtained supernatant is the crude extract. Protein content is measured according to Bradford (Bradford, M.M. (1976), Anal. Biochem. Bd. 72, pp. 248-254) with bovine serum albumin as standard. Assay mixtures contain either $10 \mu \mathrm{l} 100 \mathrm{nM}\left[{ }^{14} \mathrm{C}\right]$-LPC (LPCAT activity assay) or $10 \mu \mathrm{l} 100 \mathrm{nM}$ [$\left.{ }^{14} \mathrm{C}\right]$-LPE (LPEAT activity assay), 1 to $50 \mu \mathrm{~g}$ of protein, $10 \mu \mathrm{l}$ of $50 \mathrm{nM} 18: 1-\mathrm{CoA}$ or $50 \mathrm{nM} 18: 3 \mathrm{n}-3-\mathrm{CoA}$ in assay buffer (25 mM Tris $/ \mathrm{HCL} \mathrm{pH} 7.6,0.5 \mathrm{mg} / \mathrm{ml}$ BSA) to give a total volume of $100 \mu \mathrm{I}$. Samples are incubated for 10 min at $30^{\circ} \mathrm{C}$. The assays are terminated by extraction of the lipids into chloroform according to Blight and Dyer (Bligh, E.G. and Dyer, W.J. (1959), Can. J. Biochem. Physiol. 37, pp. 911-917). Lipids are separated on thin layer chromatography (TLC) silica 60 plates (Merck) using chloroform/methanol/acetic acid/water (90:15:10:3), and autoradiographic pictures are taken using an instant imager (Packard). It can be seen by the formation of phosphatidylethanolamine (PC) in figure 6, that pLPAAT_c6316(No) (SEQ-ID 13, lane 1 and 2) encodes a polypeptide having LPCAT activity.
[0109] For DGAT activity assay, clones of the yeast mutant H1246 harboring either one of pYES-pDGAT2_c699(No), pYES-pDGAT2_c2959(No), pYES-pDGAT2_c4648(No), pYES-pDGAT2_c48271(No), pYES-pDGAT2-c19425(Ta), pYES-AtDGAT1, or pYES-BnDGAT1 can be grown at $28^{\circ} \mathrm{C}$ in 10 ml selective media (SC-URA) with 2% raffinose as carbon source over night. The next day, expression of the acyltransferase polypeptides can be induced by transferring the cells to fresh media containing 2% galactose, for example by inoculating 100 ml of fresh culture to an optical density (measure at 600 nm) of $\mathrm{OD}_{600}=0.1$. Activity as indicated by the formation of TAG (as indicated, the mutant H1246is unable to synthesize TAG) can be measured either by relying on yeast-endogenous substrate-DAG, or by providing substrate in an in vitro assay.
For the former type of assay, cells are harvested after reaching stationary phase during incubation at $28^{\circ} \mathrm{C}$ by centrifugation at 3000 xg for 5 min and resuspendet in 2 ml resuspention buffer (phosphate buffered saline (PBS) pH 7.4, see Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989). The equivalent of 200 mg cell pellet is taken, the volume adjusted to $210 \mu \mathrm{l}$ using PBS and $790 \mu \mathrm{I}$ of methanol:chloroform ($2: 1$) are added. Cells are disrupted using acid washed zirconium bead ($200 \mu \mathrm{~m}$ average diameter) in a mill (Retsch, Germany) by three minutes agitation at 300 rpm and lipids are extracted according to Blight and Dyer (Bligh, E.G. and Dyer, W.J. (1959), Can. J. Biochem. Physiol. 37, pp. 911-917).
The in vitro assay is the preferred way of testing for DGAT activity, when activity is known or expected to be week when relying on endogenous substrate. Instead, both the type and concentration of the DAG acceptor molecule, as well as the type and concentration of the fatty acid-CoA can be controlled. To do so, cells are harvested after 24 h incubation at $28^{\circ} \mathrm{C}$ by centrifugation at 3000 xg for 5 min and resuspendet in 1 ml resuspention buffer (25 mM Tris/ HCL pH 7.6) and disrupted using acid washed zirconium bead ($200 \mu \mathrm{~m}$ average diameter) in a mill (Retsch, Germany) by three minutes agitation at 300 rpm . The supernatant is transferred to a fresh tube and centrifuged at $3000 \times \mathrm{g}$ for 5 min . The obtained supernatant is the crude extract. Protein content is measured according to Bradford (Bradford, M.M.(1976), Anal. Biochem. Bd. 72, pp. 248-254) with bovine serum albumin as standard. Assay mixtures contain $10 \mu \mathrm{l} 50 \mathrm{nM}$ [$\left.{ }^{14} \mathrm{C}\right]-6: 0-\mathrm{DAG}$ (giving about $3000 \mathrm{dpm} / \mathrm{nmol}$), $50 \mu \mathrm{~g}$ of microsomal protein (the amount can be adjusted to stay within linear conditions without substrate limitation), $10 \mu \mathrm{l}$ of $50 \mathrm{nM} 18: 3 \mathrm{n}-3-\mathrm{CoA}$ or $50 \mathrm{nM} 22: 6 \mathrm{n}-3-\mathrm{CoA}$ in assay buffer (50 mM Hepes buffer $\mathrm{pH} 7.2,1 \mathrm{mg} / \mathrm{ml}$ BSA) to give a total volume of $100 \mu \mathrm{l}$. Samples are incubated for 10 min at $30^{\circ} \mathrm{C}$.
In either case - in vivo or in vitro assay - lipids are separated on thin layer chromatography (TLC) silica 60 plates (Merck) using hexane:diethylether:acetic acid (70:30:1), and stained in iodine vapor. It can be seen by the formation of triacylglycerole (TAG) using the in vitro assay-conditions in figure 8, that pDGAT2-c19425mod(Ta) (SEQ-ID 52, lane 1 and 2), pDGAT2_c4648(No) (SEQ-ID 34, lane 5 and 6), pDGAT2_c48271(No) (SEQ-ID 102, lane 7 and 8), BnDGAT1 (SEQID 107, lane 9 and 10), AtDGAT1 (SEQ-ID 105, lane 11 and 12), pDGAT2_c699(No) (SEQ-ID 19, lane 13 and 14) and pDGAT2_c2959(No) (SEQ-ID 25, lane 15) encode polypetides having DGAT activity.
[0110] Table 6 summarizes the results of the LPCAT, LPAAT and DGAT activity tests.

Table 6: Measured with microsomal protein and [14C]-18:1-LPA, [14C]-18:1-LPC or [14C]-6:0-1,2-DAG. Ofr the in vitro DGAT assay, $1 \mathrm{mg} / \mathrm{ml}$ of BSA was added to reduce activity for staying in the linear range.

Enzyme Class	Candidate	SEQ-IDs (ORF / protein / mRNA)	Activity in vitro using 18:3-CoA nmol/(mg*min)	Activity in vitro using 22:6-CoA nmol/(mg*min	Activity in vivo
LPAAT	pLPAAT_c6316 (No)	$13 / 14 / 15$	81	64	
LPCAT	pLPAAT_c6316 (No)	$13 / 14 / 15$	38	9	
DGAT	pDGAT2_c699 (No)	$19 / 20 / 21$	0,22	0,17	Yes
DGAT	pDGAT2_c2959 (No)	$25 / 26 / 27$	0,95	0,67	Yes
DGAT	pDGAT2_c4648 $($ No)	$34 / 35 / 36$	1,4	0,17	Yes
DGAT	pDGAT2_c48271 $($ No)	$102 / 103 / 104$	1,6	0	Yes
DGAT	pDGAT2-c19425 $(T a)$	$52 / 53 / 54$	4,0	5,6	Yes
DGAT	AtDGAT1	$105 / 106 /--$	1,6	1,2	Yes
DGAT	BnDGAT1	$107 / 108 /--$	2,4	1,5	Yes

Example 8: Determination of substrate specificity for LPAAT

[0111] For determination of substrate specificities of the LPAAT enzymes, clones of the yeast mutant Y13749 (described in example 7) harboring LPAAT genes in the pYES plasmid can be grown at $28^{\circ} \mathrm{C}$ in 10 ml selective media (SCURA) with 2% raffinose as carbon source over night. The next day, expression of the acyltransferase polypeptides can be induced by transferring the cells to fresh media containing 2% galactose, for example by inoculating 100 ml of fresh culture to an optical density (measure at 600 nm) of $\mathrm{OD}_{600}=0.1$. Cells are harvested after 24 h incubation at $28^{\circ} \mathrm{C}$ by centrifugation at 3000 xg for 5 min and resuspended in 1 ml disruption buffer (20 mM Tris/ $\mathrm{HCL} \mathrm{pH} 7.6,10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, $1 \mathrm{mMEDTA}, 5 \%$ glycerol, $0.3 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$) and disrupted using acid washed zirconium beads ($200 \mu \mathrm{~m}$ average diameter) in a mill (Retsch, Germany) by three minutes agitation at 300rpm. The supernatant and the beads are transferred to a fresh tube. Disruption buffer is added up to 20 ml and the tube is centrifuged at $8000 \times \mathrm{g}$ for 5 min . The obtained supernatant is centrifuged for 2 hrs at 42000 rpm at $4^{\circ} \mathrm{C}$. The pellet (microsomal fraction) is resuspended in a small volume of 0.1 M phosphate buffer pH 7.2 . Protein content in the microsomal fraction is measured according to Bradford (Bradford, M.M. (1976), Anal. Biochem. Bd. 72, pp. 248-254) with bovine serum albumin as standard. Assay mixtures contain $1-5 \mu \mathrm{~g}$ of microsomal protein (the amount is adjusted to achieve linear conditions without substrate limitation), $10 \mu \mathrm{l}$ of $1 \mathrm{mM}\left[{ }^{14} \mathrm{C}\right]-18: 1-\mathrm{LPA}$ ($5000 \mathrm{dpm} / \mathrm{nmol}$), $10 \mu \mathrm{l}$ of 1 mM acyl-CoA in assay buffer (0.1 M phosphate buffer pH $7.2 ., 10 \mathrm{mg} / \mathrm{ml}$ Bovine Serum Albumine (BSA)) to give a total volume of 100μ. Like to amount of microsomal protein added to the assay, also the amount of BSA has influence on observed anzmye activities, where higher amounts of BSA result on lower activities and lower amounts of BSA result in higher activities. The enzyme specificity can be tested for different acyl-CoA:s, e.g. 14:0-CoA, 16:0-CoA, 18:1-CoA, 18:2-CoA, 18:3-CoA, $\gamma 18: 3-\mathrm{CoA}, 18: 4-\mathrm{CoA}, 20: 3-\mathrm{CoA}$, 20:4-CoA, 20:4(n-3)-CoA, 20:5-CoA, 22:5-CoA, 22:6-CoA. Samples are incubated for 4 min at $30^{\circ} \mathrm{C}$. The assays are terminated by extraction of the lipids into chloroform according to Bligh and Dyer (Bligh, E.G. and Dyer, W.J. (1959), Can. J. Biochem. Physiol. 37, pp. 911-917). Lipids are separated on thin layer chromatography (TLC) silica 60 plates (Merck) using chloroform/methanol/acetic acid/water (90:15:10:3), and autoradiographic pictures are taken using an instant imager (Packard). The amount of phosphatidic acid (PA) produced in the reaction (and hence the enzyme activity) can be determined from the picture.

Example 9: Determination of substrate specificity for LPLAT

[0112] For LPCAT and LPEAT activity assay, clones of the yeast mutant Y12431 harboring LPLAT genes in the pYES plasmid can be grown at $28^{\circ} \mathrm{C}$ in 10 ml selective media (SC-URA) with 2% raffinose as carbon source over night. The

EP 2585603 B1

next day, expression of the acyltransferase polypeptides can be induced by transferring the cells to fresh media containing 2% galactose, for example by inoculating 100 ml of fresh culture to an optical density (measure at 600 nm) of $\mathrm{OD}_{600}=0.1$ Cells are harvested after 24 h incubation at $28^{\circ} \mathrm{C}$ by centrifugation at 3000 xg for 5 min and resuspended in 1 ml disruption buffer (20 mM Tris/HCL pH 7.6, 10 mM MgCl 2 , 1 mM EDTA, 5% glycerol, $0.3 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$) and disrupted using acid washed zirconium beads ($200 \mu \mathrm{~m}$ average diameter) in a mill (Retsch, Germany) by three minutes agitation at 300 rpm . The supernatant and the beads are transferred to a fresh tube. Disruption buffer is added up to 20 ml and the tube is centrifuged at $8000 \times \mathrm{g}$ for 5 min . The obtained supernatant is centrifuged for 2 hrs at 42000 rpm at $4^{\circ} \mathrm{C}$. The pellet (microsomal fraction) is resuspended in a small volume of 0.1 M phosphate buffer pH 7.2 . Protein content in the microsomal fraction is measured according to Bradford (Bradford, M.M. (1976), Anal. Biochem. Bd. 72, pp. 248-254) with bovine serum albumin as standard. Assay mixtures contain either $10 \mu 11 \mathrm{mM}\left[{ }^{14} \mathrm{C}\right]-18: 1$-Lysophosphatidlycholine (-LPC), $5000 \mathrm{dpm} / \mathrm{nmol}$ (LPCAT assay) or $10 \mu \mathrm{l} 1 \mathrm{mM}\left[{ }^{14} \mathrm{C}\right]-18: 1$-Lysophosphatidylethanolamine (-LPE), $5000 \mathrm{dpm} / \mathrm{nmol}$ (LPEAT assay), $1-10 \mu \mathrm{~g}$ of microsomal protein (the amount is adjusted to achieve linear conditions without substrate limitation), $10 \mu \mathrm{l}$ of 1 mM acyl-CoA in assay buffer (0.1 M phosphate buffer $\mathrm{pH} 7.2 ., 10 \mathrm{mg} / \mathrm{ml}$ BSA) to give a total volume of 100 μl. Like to amount of microsomal protein added to the assay, also the amount of BSA has influence on observed anzmye activities, where higher amounts of BSA result on lower activities and lower amounts of BSA result in higher activities. The enzyme specificity can be tested for different acyl-CoA:s, e.g. 14:0-CoA, 16:0-CoA, 18:1-CoA, 18:2-CoA, 18:3-CoA, $\gamma 18: 3-C o A, 18: 4-C o A, 20: 3-C o A, 20: 4-C o A, 20: 4(n-3)-C o A, 20: 5-C o A, 22: 5-C o A, 22: 6-C o A . . ~ S a m p l e s ~ a r e ~ i n c u b a t e d ~ f o r ~$ 4 min at $30^{\circ} \mathrm{C}$. The assays are terminated by extraction of the lipids into chloroform according to Bligh and Dyer (Bligh, E.G. and Dyer, W.J. (1959), Can. J. Biochem. Physiol. 37, pp.911-917). Lipids are separated on thin layer chromatography (TLC) silica 60 plates (Merck) using chloroform/methanol/acetic acid/water (90:15:10:3), and autoradiographic pictures are taken using an instant imager (Packard). The amount of phosphatidyl choline (PC) or phosphatidyl ethanol amine (PE) produced in the reaction (and hence the enzyme activity) can be determined from the picture.

Example 10: Determination of substrate specificity for DGAT

[0113] For DGAT activity assay, clones of the yeast mutant H 1246 harboring either one of pYES-pDGAT2_c699(No), pYES-pDGAT2_c2959(No), pYES-pDGAT2_c4648(No), pYES-pDGAT2_c48271(No), pYES-pDGAT2-c19425(Ta), pYES-AtDGAT1, or pYES-BnDGAT1 can be grown at $28^{\circ} \mathrm{C}$ in 10 ml selective media (SC-URA) with 2% raffinose as carbon source over night. The next day, expression of the acyltransferase polypeptides can be induced by transferring the cells to fresh media containing 2% galactose, for example by inoculating 100 ml of fresh culture to an optical density (measure at 600 nm) of $\mathrm{OD}_{600}=0.1$. Cells are harvested after 24 h incubation at $28^{\circ} \mathrm{C}$ by centrifugation at 3000 xg for 5 min and resuspended in 1 ml disruption buffer (20 mM Tris/HCL pH $7.6,10 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 1 \mathrm{mM}$ EDTA, 5% glycerol, 0.3 $\left.\mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right)$ and disrupted using acid washed zirconium beads ($200 \mu \mathrm{~m}$ average diameter) in a mill (Retsch, Germany) by three minutes agitation at 300 rpm . The supernatant and the beads are transferred to a fresh tube. Disruption buffer is added up to 20 ml and the tube is centrifuged at 8000 xg for 5 min . The obtained supernatant is centrifuged for 2 hrs at 42000 rpm at $4^{\circ} \mathrm{C}$. The pellet (microsomal fraction) is resuspended in a small volume of 0.1 M phosphate buffer pH 7.2. Protein content in the microsomal fraction is measured according to Bradford (Bradford, M.M. (1976), Anal. Biochem. Bd. 72, pp. 248-254) with bovine serum albumin as standard. Assay mixtures contain $5 \mu \mathrm{l} 1 \mathrm{mM}$ [$\left.{ }^{14} \mathrm{C}\right]-6: 0-\mathrm{DAG}, 3000$ $\mathrm{dpm} / \mathrm{nmol}, 1-100 \mu \mathrm{~g}$ of microsomal protein (the amount is adjusted to achieve linear conditions without substrate limitation), $5 \mu \mathrm{l}$ of 1 mM acyl-CoA in assay buffer (50 mM Hepes buffer $\mathrm{pH} 7.2,1 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}$) to give a total volume of 100 $\mu \mathrm{l}$. The enzyme specificity can be tested for different acyl-CoA:s, e.g. 14:0-CoA, 16:0-CoA, 18:1-CoA, 18:2-CoA, 18:3CoA, $\gamma 18: 3-C o A, 18: 4-C o A, 20: 3-C o A, 20: 4-C o A, 20: 4(n-3)-C o A, 20: 5-C o A, 22: 5-C o A, 22: 6-C o A . . ~ S a m p l e s ~ a r e ~ i n c u-~$ bated for 4 min at $30^{\circ} \mathrm{C}$. The assays are terminated by extraction of the lipids into chloroform according to Bligh and Dyer (Bligh, E.G. and Dyer, W.J. (1959), Can. J. Biochem. Physiol. 37, pp. 911-917).Lipids are separated on thin layer chromatography (TLC) silica 60 plates (Merck) using hexane:diethylether:acetic acid (70:30:1), and autoradiographic pictures are taken using an instant imager (Packard). The amount of triacylglycerol (TAG) produced in the reaction (and hence the enzyme activity) can be determined from the picture. In Brassica napus and Arabidopsis, the DGAT involved in TAG-formation in seeds are of the DGAT1 type. The enzyme activity AtDGAT1 and BnDGAT1 for the different substrates can be seen in figure 9. The enzyme activity of pDGAT2-c19425(Ta) for the different substrates, compared to AtDGAT1 and BnDGAT1 is shown in figure 10. The enzyme activity of pDGAT2_c699(No) and pDGAT2_c4648(No) for the different substrates, compared to AtDGAT1 and BnDGAT1 is shown in figure 11. The data in figure 10 and 11 show clearly, that all DGAT2 enzymes shown in these figures vary strongly towards their activities for the various substrates, whereas the DGAT1 involved in TAG formation in Arabidopsis and Brassica napus exhibit less variability towards these different substrates.

Example 11: Determination of substrate selectivity for LPAAT

[0114] For determination of substrate selectivities of the LPAAT enzymes, clones of the yeast mutant Y13749 (de-
scribed in example 7) harboring LPAAT genes can be grown at $28^{\circ} \mathrm{C}$ in 10 ml selective media (SC-URA) with 2% raffinose as carbon source over night. The next day, expression of the acyltransferase polypeptides can be induced by transferring the cells to fresh media containing 2% galactose, for example by inoculating 100 ml of fresh culture to an optical density (measure at 600 nm) of $\mathrm{OD}_{600}=0.1$. Cells are harvested after 24 h incubation at $28^{\circ} \mathrm{C}$ by centrifugation at $3000 \times \mathrm{g}$ for 5 min and resuspended in 1 ml disruption buffer (20 mM Tris/HCL pH $7.6,10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EDTA, 5% glycerol, 0.3 $\left.\mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right)$ and disrupted using acid washed zirconium beads ($200 \mu \mathrm{~m}$ average diameter) in a mill (Retsch, Germany) by three minutes agitation at 300 rpm . The supernatant and the beads are transferred to a fresh tube. Disruption buffer is added up to 20 ml and the tube is centrifuged at $8000 \times \mathrm{g}$ for 5 min . The obtained supernatant is centrifuged for 2 hrs at 42000 rpm at $4^{\circ} \mathrm{C}$. The pellet (microsomal fraction) is resuspended in a small volume of 0.1 M phosphate buffer pH 7.2. Protein content in the microsomal fraction is measured according to Bradford (Bradford, M.M. (1976), Anal. Biochem. Bd. 72, pp. 248-254) with bovine serum albumin as standard. The substrate selectivity can be determined by mixing equimolar amounts of different acyl-CoA:s in the same reaction and measure the preference for using the different acyl groups as substrates. The assay is run as in the specificity studies (Example 5) but scaled up 18 times to get sufficient amount of PA for detection. Up to 4 different acyl-CoA:s can be used in the assay in equimolar amount instead of one single acyl-CoA. Samples are incubated for 4 min at $30^{\circ} \mathrm{C}$. The assays are terminated by extraction of the lipids into chloroform according to Bligh and Dyer (Bligh, E.G. and Dyer, W.J. (1959), Can. J. Biochem. Physiol. 37, pp. 911-917). Lipids are separated on thin layer chromatography (TLC) silica 60 plates (Merck) using chloroform/methanol/acetic acid/water ($90: 15: 10: 3$), and autoradiographic pictures are taken using an instant imager (Packard). The phosphatidic acid (PA) is recovered from the plate and the fatty acids methylated in situ on the gel with sulphuric acid (2\%) in methanol. Fatty acid methyl esters are extracted with hexane and separated by gas-liquid chromatography (GLC) using a WCOT fused silica $50 \mathrm{~m} \times 0.32 \mathrm{~mm}$ ID capillary column coated with $C P-$ Wax $58-\mathrm{CB} D F=0.3$ (Chrompack inc., The Netherlands) and quantified relative to methyl-heptadecanoate added as an internal standard. The selectivity can be determined by calculating the amount of each acyl group that has been acylated to LPA.

Example 12: Determination of substrate selectivity for LPLAT

[0115] For LPCAT and LPEAT activity assay, clones of the yeast mutant Y12431 harboring LPLAt genes can be grown at $28^{\circ} \mathrm{C}$ in 10 ml selective media (SC-URA) with 2% raffinose as carbon source over night. The next day, expression of the acyltransferase polypeptides can be induced by transferring the cells to fresh media containing 2% galactose, for example by inoculating 100 ml of fresh culture to an optical density (measure at 600 nm) of $\mathrm{OD}_{600}=0.1$ Cells are harvested after 24 h incubation at $28^{\circ} \mathrm{C}$ by centrifugation at 3000 xg for 5 min and resuspended in 1 ml disruption buffer (20 mM Tris/HCL pH 7.6, $10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EDTA, 5% glycerol, $\left.0.3 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right)$ and disrupted using acid washed zirconium beads ($200 \mu \mathrm{~m}$ average diameter) in a mill (Retsch, Germany) by three minutes agitation at 300 rpm . The supernatant and the beads are transferred to a fresh tube. Disruption buffer is added up to 20 ml and the tube is centrifuged at 8000 x g for 5 min . The obtained supernatant is centrifuged for 2 hrs at 42000 rpm at $4^{\circ} \mathrm{C}$. The pellet (microsomal fraction) is resuspended in a small volume of 0.1 M phosphate buffer pH 7.2 . Protein content in the microsomal fraction is measured according to Bradford (Bradford, M.M. (1976), Anal. Biochem. Bd. 72, pp. 248-254) with bovine serum albumin as standard. The substrate selectivity can be determined by mixing equimolar amounts of different acyl-CoA:s in the same reaction and measure the preference for using the different acyl groups as substrates. The assay is run as in the specificity studies (Example 6) but scaled up 18 times to get sufficient amount of PC or PE for detection. Up to 4 different acylCoA:s can be used in the assay in equimolar amount instead of one single acyl-CoA. Samples are incubated for 4 min at $30^{\circ} \mathrm{C}$. The assays are terminated by extraction of the lipids into chloroform according to Bligh and Dyer (Bligh, E.G. and Dyer, W.J. (1959), Can. J. Biochem. Physiol. 37, pp. 911-917). Lipids are separated on thin layer chromatography (TLC) silica 60 plates (Merck) using chloroform/methanol/acetic acid/water (90:15:10:3), and autoradiographic pictures are taken using an instant imager (Packard). The PC or PE is recovered from the plate and the fatty acids methylated in situ on the gel with sulphuric acid (2%) in methanol. Fatty acid methyl esters are extracted with hexane and separated by gas-liquid chromatography (GLC) using a WCOT fused silica $50 \mathrm{~m} \times 0.32 \mathrm{~mm}$ ID capillary column coated with CPWax 58-CB DF $=0.3$ (Chrompack inc., The Netherlands) and quantified relative to methyl-heptadecanoate added as an internal standard. The selectivity can be determined by calculating the amount of each acyl group that has been acylated to LPC or LPE.

Example 13: Determination of substrate selectivity for DGAT

[0116] For DGAT activity assay, clones of the yeast mutant H 1246 harboring DGAT genes can be grown at $28^{\circ} \mathrm{C}$ in 10 ml selective media (SC-URA) with 2% raffinose as carbon source over night. The next day, expression of the acyltransferase polypeptides can be induced by transferring the cells to fresh media containing 2% galactose, for example by inoculating 100 ml of fresh culture to an optical density (measure at 600 nm) of $\mathrm{OD}_{600}=0.1$. Cells are harvested after 24 h incubation at $28^{\circ} \mathrm{C}$ by centrifugation at 3000 xg for 5 min and resuspended in 1 ml disruption buffer (20 mM Tris/HCL
$\mathrm{pH} 7.6,10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EDTA, 5% glycerol, $\left.0.3 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right)$ and disrupted using acid washed zirconium beads ($200 \mu \mathrm{~m}$ average diameter) in a mill (Retsch, Germany) by three minutes agitation at 300 rpm . The supernatant and the beads are transferred to a fresh tube. Disruption buffer is added up to 20 ml and the tube is centrifuged at 8000 xg for 5 min . The obtained supernatant is centrifuged for 2 hrs at 42000 rpm at $4^{\circ} \mathrm{C}$. The pellet (microsomal fraction) is resus- pended in a small volume of 0.1 M phosphate buffer pH 7.2 . Protein content in the microsomal fraction is measured according to Bradford (Bradford, M.M. (1976), Anal. Biochem. Bd. 72, pp. 248-254) with bovine serum albumin as standard. The substrate selectivity can be determined by mixing equimolar amounts of different acyl-CoA:s in the same reaction and measure the preference for using the different acyl groups as substrates. The assay is run as in the specificity studies (Example 7) but scaled up 18 times to get sufficient amount of TAG for detection. Up to 4 different acyl-CoA:s can be used in the assay in equimolar amount instead of one single acyl-CoA. Samples are incubated for 4 min at $30^{\circ} \mathrm{C}$. The assays are terminated by extraction of the lipids into chloroform according to Bligh and Dyer (Bligh, E.G. and Dyer, W.J. (1959), Can. J. Biochem. Physiol. 37, pp. 911-917). Lipids are separated on thin layer chromatography (TLC) silica 60 plates (Merck) using chloroform/methanol/acetic acid/water (90:15:10:3), and autoradiographic pictures are taken using an instant imager (Packard). The TAG is recovered from the plate and the fatty acids methylated in situ on the gel with sulphuric acid (2%) in methanol. Fatty acid methyl esters are extracted with hexane and separated by gas-liquid chromatography (GLC) using a WCOT fused silica $50 \mathrm{~m} \times 0.32 \mathrm{~mm}$ ID capillary column coated with CP-Wax 58-CB DF $=0.3$ (Chrompack inc., The Netherlands) and quantified relative to methyl-heptadecanoate added as an internal standard. The selectivity can be determined by calculating the amount of each acyl group that has been acylated to TAG.

SEQUENCE LISTING

[0117]

```
    <110> BASF Plant Science Company GmbH
    <120> Acyltransferases and uses therof in fatty acid production
    <130> PF70215
    <160> 114
    <170> PatentIn version 3.5
    <210> 1
    <211> 1485
    <212> DNA
    <213> Nannochloropsis oculata
    <400> 1
```

atggacaagg cactggcacc gttgggggag accctgggct ttgagatcgg catgctcaag
tatgttctgg ccatgttcct cgcctacccg ctatcgggca tccttaatat cttgcccact
gccaatgcca agcatgcttt ctccttattg gtgggcttgt ggtacgcgca ggagattttt
ggcaaccagt gggtgcattc gttcctctcc tcggccgtgt cctacctcat cgtctgcctc
ggcccccgga agcacatagc caccctggtc ttcctcttca ccatgacgta catgagcgtc
agtcacctgt accgcctcta cgtggactac ttgggatggt cgctggactt cacaggaccc
cagatgatcc tgaccatcaa gctctcgtcg ttcgcctaca atgtgtatga cggcgtggtg
gatctcgacg ccatctccaa gccccaggag aacaagctca agatccgtgt cttcaaggag
aggctccgct acgccatcac atccattcct tcccccttgg ccttcttcgg ctacgtctac
tccttctcca ccttcctggc aggtccggcg ttcgagtact cagactatgc atccgtcatt
gacggctcgg ccttctccaa gaagggaggg aaggagggag ggaaggaggg aggagcaccc
tcctcgttgc tggctgcgtt gtggcgcctt ctccagggtg tcctgtgcct ggctctccac
ctcgtcggct ctgccaagtt cagcctcagc gacgtcctct ccgacgaagt cctggccatg
cccttcttcg agcgctggct cttcactctc atcgccctct tcttctgccg aatgaagtac
tacttcgctt ggaaggtggc ggaaggctcc tgcgtcgtgg ccggcttcgg tttcgaaggc
tatgcggagg acgggtcggt gaaggggtgg aacggcatct ctaatatgga tatattaggt
ttcgaggcgg ccaccaatac cgccgaggcc tccaaggcct ggaacaaggg cacccaaaag
tggttgcagc gatacgtcta ttttcgcaac agcgagtccc tccttatcac gtacttcgtc
tccgccttct ggcatggctt ctacccgggc tactacctct tcttcttctc catcgcgctg
gtgcagacgg tgcagagggc gtggcagaag aaggtgtctc cttacttcac ctccaccatt
cccgccctct accacctcct ctgcatcctc gttttctccg cctacatcaa ttacttctcg
atcgtctttc aggtcctggc ctgggaccgg gcgatggcgg tgtggaagag cgcgcattac
aaggaggcgg ggaagaaggt tttagaggaa agaaagaagg ctttgaggga aggaaggaga
tgggtcatg tcgccaccgc gggcgccttt gttctcacct ccgtgctgcc ctctcccaag

```
<210> 2
<211>494
<212> PRT
<213> Nannochloropsis oculata
<400> 2
```

Met Asp Lys Ala Leu Ala Pro Leu Gly Glu Thr Leu Gly Phe Glu Ile
10
Ala Ala Leu Trp Arg Leu Leu Gln Gly Val Leu Cys Leu Ala Leu His
225
230
Leu Val Gly Ser Ala Lys Phe Ser Leu Ser Asp Val Leu Ser Asp Glu
245250255
Val Leu Ala Met Pro Phe Phe Glu Arg Trp Leu Phe Thr Leu Ile Ala
260265270
Leu Phe Phe Cys Arg Met Lys Tyr Tyr Phe Ala Trp Lys Val Ala Glu
275280285

Gly Ser Val Lys Gly Trp Asn Gly Ile Ser Asn Met Asp Ile Leu Gly
305310315320
Phe Glu Ala Ala Thr Asn Thr Ala Glu Ala Ser Lys Ala Trp Asn Lys
Gly Thr Gln Lys Trp Leu Gln Arg Tyr Val Tyr Phe Arg Asn Ser Glu
Ser Leu Leu Ile Thr Tyr Phe Val Ser Ala Phe Trp His Gly Phe Tyr $\begin{gathered}365 \\ 350\end{gathered}$
Pro Gly Tyr Tyr Leu Phe Phe Phe Ser Ile Ala Leu Val Gln Thr Val
370
375
380

Pro Ala Leu Tyr His Leu Leu Cys Ile Leu Val Phe Ser Ala Tyr Ile
405410415
Asn Tyr Phe Ser Ile Val Phe Gln Val Leu Ala Trp Asp Arg Ala Met $\begin{array}{r}430 \\ 420\end{array}$
Ala Val Trp Lys Ser Ala His Tyr Trp Gly His Val Ala Thr Ala Gly
435440445
Ala Phe Val Leu Thr Ser Val Leu Pro Ser Pro Lys Lys Glu Ala Gly
450
455
Lys Lys Val Leu Glu Glu Arg Lys Lys Ala Leu Arg Glu Gly Arg Arg
4654404750

Phe Arg Gly Lys Glu Glu Gly Leu Glu Gly Arg Lys Lys Val 485 490

<210> 3

<211> 1908
<212> DNA
<213> Nannochloropsis oculata
<400> 3

gagcccatga	cgttccacga	gaagcacctc	gatgcattgg	gtccttctt	cgggagctgg
gtgccgctag	cagacaagac	ggtctacttg	accgtgcetg	gtatggacaa	ggcactggca
ccgttggggg	agaccctggg	ctttgagatc	ggcatgctca	agtatgttct	ggccatgttc
ctcgectacc	cgctatcggg	catccttaat	tcttgccca	gccaatgc	caagcatgct
ttctccttat	$g g t g g g c t t$	gtggtacgcg	caggagattt	tggcaacca	gtgggtgcat
tcgttcctct	cctcggccgt	tcctacctc	cgtctgcc	cggcccecg	aagcacata
gccaccetgg	cttcctctt	caccatgacg	acatgagcg	cagtcacct	taccgectc
tacgtggact	cttgggatg	gtcgctggac	tcacaggac	cccagatgat	cctgaccatc
aagctctcgt	cgttcgccta	caatgtgtat	acggcgtgg	ggatctcga	cgecatctcc
aagccccagg	agaacaagct	caagatccgt	gtcttcaagg	agaggctccg	ctacgccatc
acatccattc	cttccccett	ggccttcttc	ggctacgtct	ctccttctc	caccttcctg
gcaggtccgg	cgttcgagta	ctcagactat	gcatccgtca	tgacggctc	ggcettctcc
aagaagggag	ggaaggaggg	agggaaggag	ggaggagcac	cctcctcgtt	gctggctgcg
ttgtggcgcc	ctccaggg	cctgtgc	ggctctcc	cctcgtcgg	tctgccaag
ttcagcctca	gcgacgtcct	ccgacgaa	tcctggcea	gcccttctt	gagcgctgg
ctcttcactc	tcatcgecct	cttcttctgc	cgaatgaagt	actacttcgc	ttggaaggtg
gcggaaggct	cctgcgtcgt	ggccggcttc	ggtttcgaag	ctatgcgga	gacgggtcg
gtgaaggggt	ggaacggcat	ctctaatatg	gatatattag	tttcgaggc	ggccaccaat
accgccgagg	cctccaaggc	ctggaacaag	ggcacccaaa	agtggttgca	gcgatacgtc
tattttcgca	acagcgagtc	cctccttatc	cgtacttcg	ctccgcctt	tggcatggc
ttctacccgg	gctactacct	cttcttcttc	tccatcgcgc	tggtgcagac	gtgcagagg
gcgtggcaga	agaaggtgtc	ccttacttc	cctccacca	tcccgcect	taccacctc
ctctgcatcc	tcgttttctc	cgcctacatc	aattacttct	cgatcgtctt	tcaggtcctg
gcctgggacc	gggcgatggc	ggtgtggaag	agcgcgcatt	actggggtca	tgtcgccacc
gcgggcgcct	ttgttctcac	ctccgtgctg	ccctctccca	agaaggaggc	ggggaagaag
gttttagagg	aaagaaagaa	ggctttgagg	gaaggaagga	gatttagagg	agggaagaa

ggtttagagg gaaggaagaa agtttagagg gaaggaagaa ggtttagagg gaagggagga	1680
ggttttatag agggaaggga ggaggtttta tagagggaag gaagaaggct ttgagggaag	1740
gaaggaggtt tagattcctc gcataaggca ttggaattta aatagtggtg ggcctgtctg	1800
gctttccgtg aaggagagca accataatgt gtgaccaacg ctttggcacc gcaaccacca	1860
taataacagc actaacaaaa agaagaacaa caataagaag gaggagat	1908
$<210>4$	
$<211>1776$	
$<212>$ DNA	
$<213>$ Nannochloropsis oculata	


```
<210>5
<211> 591
<212> PRT
<213> Nannochloropsis oculata
<400> 5
```

Met Thr Thr Thr Val Ile Ser Ser Ser Met Gly Pro Ile Leu Ala Tyr 1501015 Tyr Thr Cys Ala Thr Ile Thr Ile Tyr Val Val Leu Gly Arg Phe Ser
20 Ser Pro Asn Pro Arg Leu Arg Trp Leu Lys Leu Lys Asp Leu Glu Asn 354045

Ile Glu Thr Ala Asn Pro Ala Ala His Pro Ser Glu Ser Asp Ser Met 505560 Pro Leu Asn Ser Gly Asn Leu Ser Ser Ser Lys Pro Ile Ala Ala Ala
65
70

Glu Met Leu Gln Thr Pro Ser Ala Ser Ser Ser Ser Pro Ser Ala Ser 8590 95

Pro Glu Arg Lys Ala Pro Met Met Arg Lys Leu Ser Phe Leu Ala Thr 100105110

Thr Gly Val Ile Glu Asn Pro Phe Met Asn Asn Thr Trp Asp Ile Ser 115

120
125

Pro Arg Leu Leu Leu Leu Phe Val Ser Leu Leu Gly Ala Tyr Gly Phe 145150155160 Gly Lys Leu Ser Thr Ile Gly Ala Glu Leu Glu Arg Pro Leu Pro Arg 165 170

175

Trp Arg Ile Asp Leu Gln His Pro Met Lys Phe Phe Ala Arg Gly Ile

Glu Ala Ile Tyr Leu Pro Gly Arg Leu Leu		
225	230	235

Arg Glu Asn Ala Ala
245
Gln Cys Ile Phe Val Ser Arg Thr Asp Lys Asp Ser Arg Thr Thr Val
Ala Asn Glu Ile Leu Arg Arg Ser Lys Ile Glu Arg Gly Gln Trp His
275280285
Arg Gln Leu Leu Val Phe Pro Glu Gly Thr Thr Thr Asn Gly Ser Ala
290295300
Val Ile Ser Phe Lys Val Gly Ser Phe Ala Gly Gly Val Ser Val Gln
$305310315 \quad 320$
Pro Val Ala Val Ser Tyr Pro Ser Asn Gln Ile Cys Asp Pro Ser Trp $\begin{array}{r}335 \\ 325\end{array}$
Val Ser Gly Gly Pro His Pro Gly Glu Ile Leu Phe Lys Leu Leu Cys
340345350
Gln Pro Trp Asn Ser Met Asn Val Thr Phe Leu Pro Val Tyr Asn Pro
355360365
$\begin{array}{rr}\text { Asp Ala Ala Glu Ile Asp Asp Pro Val Leu Phe Ser Thr Asn Val Arg } \\ 370 & 375 \\ 380\end{array}$
Arg Leu Ile Ala Ala Glu Leu Gly Val Pro Ala Ser Asp His Thr Phe
385390395
400
Asp Asp Val Leu Leu Leu Met Glu Ala Lys Lys Leu Gly Tyr Gln Gly $\begin{array}{r}415 \\ 405\end{array}$
Gly Leu Arg Asp Cys Ile Ser Glu Leu Lys Asn Met Arg Lys Ile Leu
420
425
430
Glu Ile Asp Leu Ala Lys Ala Lys Glu Tyr Leu His Glu Phe Ser Gln

```
            Leu Asp Thr Asn Arg Lys Gly Leu Leu Ser Tyr Pro Gln Phe Ile Lys
            450
                    455
                            460
                    Ala Phe Gly Ser Gln Asp Ser Asp Ala Leu Arg Ser Leu Phe Cys Val
                    465
                    470
                            475480Leu Asp Val Gln Asp Arg Gly Val Ile Asn Leu Val Glu Tyr Thr Thr485490495
```

Gly Leu Ala Leu Leu Asn Glu Gln Gly Thr Asp Gly Phe Asp Gly Ala

```500505510
```

Met Arg Leu Ile Phe Lys Val Gln Asp Ser Ser Gly Glu Gly Arg Leu

```515520525
```

Ser Lys Glu Asp Thr Ala Lys Val Leu Arg Arg Leu Trp Pro Asp Val 530535540

```Thr Thr Glu Leu Phe Asp Ser Thr Phe Ala Ala Ala Asp Thr Asp Asn\(545 \quad 5505550\)
Asn Gly Thr Leu Ser Ala Asp Glu Phe Leu Ala Leu Ala Arg Ser Asn
                        565
                        5 7 0
                                    5 7 5
                            Gln His Leu Cys Pro Ser Leu Lys Ser Ser Leu Cys Gly Arg Leu
<210> 6
<211> 2247
<212> DNA
<213> Nannochloropsis oculata
<400> 6
```

aaaaagtttg agattttcag caaagtaatc aagataataa acaaaaacaa tcctataaag	60
gaaaaacaac agggactatt tcgcctcgct cctcacgcct gcccaattag gggaccaacg	120
atcacaacta tgaccacgac tgtcatctct agctcgatgg ggcccatcct ggcctattat	180
acgtgtgcca caatcaccat ctacgtagtg ctcggccgct tttccagtcc aaacccgcgc	240
ttgagatggc tgaagctcaa agacctggag aacattgaga ctgcgaaccc ggccgcgcac	300
ccttcagagt ctgattctat gcctcttaat tctggcaatc tatcgtcttc caagcccatt	360
gccgcagctg agatgcttca aactccctcg gcatcgtcgt cotcgccctc ggcatcccca	420
gagcgcaaag ctcctatgat gcggaagctt tcctttctcg ccacgactgg agtcatcgaa	480
aatcccttta tgaacaatac ttgggatatc tccaggttgg aacgcgttaa atgtgcgata	540
ttcggtccaa tgctcatccc cccccgtctg ctcctgctct ttgtgtcact tcttggtgcc	600
tacgggttcg gcaagctctc taccattggc gcagaactag agcgcccctt gcctcgatgg	660


```
<210> }
<211> 1134
<212> DNA
<213> Thraustochytrium aureum
<400> 7
```

| atggagggca tcgagtcgat agtggacgac gacttttgga agtgcttcca gagccggaaa | 60 |
| :--- | :--- | ---: |
| ccgcgaccct ggaactggaa tgcctacttg tggccgctgt gggctgcggg tgtctttatc | 120 |

cggtactttg tccttttccc gatccggctt gcgatttttg cgatgggctg gattctgttc
ggaatcggga tgttggtcac gcaaacctgc tttccgcacg ggccgcgtcg cacctcgctt
gagcacggac tgatctcgat gatgtgcggc gtgttctgta tcacctgggg ggcggtcatc
cggtaccacg ggtcgccggt caagccgcga gagggcgagt gccagcccgt gtacgttgcc
aaccacactt cgatgatcga cgtcatcatc ttgcagcaga tgcgctgctt ttcgctcgtg
ggccagcgcc acaaaggcat cgtgcggttt ttgcaagagg tcgtgctggg ctgtttgcag
tgcgtctggt tcgaccgcgg cgagatcaag gacagggcag ccgtggcgcg caagctcaac
gagcatgcga acgacccgac tcgcaacccg ctgctcgtgt ttccggaggg aacgtgcgtg
aacaatgagt acgtgatcca gttcaagaag ggcatctttg agatcggcgc ccccgtggtc
ccagtcgcca tcaagtacaa caaaatgttc gtggacccgt tctggaactc gcgcgcgcag
tcgttcccga tgcacctcgt agagctcatg acctcgtggt gcctcatttg cgaggtttgg
tacctcaagc cgctcgagcg catggagcgc gagtcgtcca ccgattttgc agcacgcgtg
aagaaggcga ttgcggacca ggccggcctt aagaacgtca actgggacgg ctacatgaag
tattggaagc catcggagcg ttacttgcgc gcgcgccagg cgatcttcgc caaaactctc
cgcaaaatcc actcgcgctc tttggagcag gacaaggctg accggcaggc cattctgcac
gacctggacg gcgcgttccc ggattctggg acacaccgcg gcgagcgcga gtcgccaaga
gagccgggtc tgcggcgccg ccaggcggcc tccgcgccgg gagaagcctt atag

```
<210>8
<211> }37
<212> PRT
<213> Thraustochytrium aureum
<400> 8
```

Met Glu Gly Ile Glu Ser Ile Val Asp Asp Asp Phe Trp Lys Cys Phe 1515
Gln Ser Arg Lys Pro Arg Pro Trp Asn Trp Asn Ala Tyr Leu Trp Pro
Leu Trp Ala Ala Gly Val Phe $\begin{gathered}\text { Ile Arg Tyr Phe Val } \\ 35 \\ 40\end{gathered} \quad 45$
Arg Leu Ala Ile Phe Ala Met Gly Trp Ile Leu Phe Gly Ile Gly Met505560
Leu Val Thr Gln Thr Cys Phe Pro His Gly Pro Arg Arg Thr Ser Leu 65 70 75 80
8590 95

Arg Gly Glu Arg Glu Ser Pro Arg Glu Pro Gly Leu Arg Arg Arg Gln	
355	360

Ala Ala Ser Ala Pro Gly Glu Ala Leu
370

```
<210> }
<211> 1288
<212> DNA
<213> Thraustochytrium aureum
<400> 9
```

atggagggca tcgagtcgat agtggacgac gacttttgga agtgcttcca gagccggaaa
ccgcgaccct ggaactggaa tgcctacttg tggccgctgt gggctgcggg tgtctttatc
cggtactttg tccttttccc gatccggctt gcgatttttg cgatgggctg gattctgttc
ggaatcggga tgttggtcac gcaaacctgc tttccgcacg ggccgcgtcg cacctcgctt
gagcacggac tgatctcgat gatgtgcggc gtgttctgta tcacctgggg ggcggtcatc
cggtaccacg ggtcgccggt caagccgcga gagggcgagt gccagcccgt gtacgttgcc
aaccacactt cgatgatcga cgtcatcatc ttgcagcaga tgcgctgctt ttcgctcgtg
ggccagcgcc acaaaggcat cgtgcggttt ttgcaagagg tcgtgctggg ctgtttgcag
tgcgtctggt tcgaccgcgg cgagatcaag gacagggcag ccgtggcgcg caagctcaac
gagcatgcga acgacccgac tcgcaacccg ctgctcgtgt ttccggaggg aacgtgcgtg
aacaatgagt acgtgatcca gttcaagaag ggcatctttg agatcggcgc ccccgtggtc
ccagtcgcca tcaagtacaa caaaatgttc gtggacccgt tctggaactc gcgcgcgcag
tcgttcccga tgcacctcgt agagctcatg acctcgtggt gcctcatttg cgaggtttgg
tacctcaagc cgctcgagcg catggagcgc gagtcgtcca ccgattttgc agcacgcgtg
aagaaggcga ttgcggacca ggccggcctt aagaacgtca actgggacgg ctacatgaag
tattggaagc catcggagcg ttacttgcgc gcgcgccagg cgatcttcgc caaaactctc
cgcaaaatcc actcgcgctc tttggagcag gacaaggctg accggcaggc cattctgcac
gacctggacg gcgcgttccc ggattctggg acacaccgcg gcgagcgcga gtcgccaaga
gagccgggtc tgcggcgccg ccaggcggcc tccgcgccgg gagaagcctt atagcggcgt
ttgccttgca cgctgatcaa cgtggggcat gtgggtgctc tgtggccaag agcaggccgt
gcgctcggca ctgcagcgct acgctcagac ttttcgcggt ggggcatgca tgcatccaaa
cattttcttc cttcttccaa aaaaaaaa

```
<210> 10
<211> 1284
```

```
<212> DNA
<213> Nannochloropsis oculata
<400> 10
```

atgaagacgc ccacgagcct ggcgtgcgga gcctgcacgg cagccgtgtt aatgtgtttc
acaacaacag cagatgccct tgccagcaca tcacaaccgg gcagcgttgg cgtggctgtc
gcgcggcggc caccaggctt ccactcgata gggcgatcat cagccacgac taggagaata
agcaggggag ggatagagga tctcggaacc catcacacgt ggggcggcag gatgtcgcag
cagcaccagc agcaccagca gcaccagcag caccgtcggc gtaggaggac acccactatg
ctagtggaga cagacgtgaa ggtaaaagag gaagcgggga ttggccacgg atcaggaagc
aacgaaagtg gcaacaggag cggcaagagc gggtctgcgg cggcagacgc ctcagaaggt
acaggcccac cgccagtgcc cgtggatacc ttccggcaca agagcttggc ggaggtcccg
acggactatg gaccctacct gaccattaaa gggttcaaga tcaatgcctt tggcttctat
ttctgcttcg tggccctatt ctgggcgatc ccctggggtg tcttcctcat cctgtacaag
gcgagtttgg agttcatgga caagatcgat cctcgccggt acaacgtgga ccgctccagt
tccctatggg gctggctgac cagtatcagt actgactcct tacccgacat tacgggcatg
gagaacattc ccaagggacc ggcggtcttc gtcgccaacc acgcctcctg gatggacgtg
ccctacactg cccaactgcc catccgcgcc aagtacctag cgaaagctga cctggccaag
atcccaatcc tgggcaacgc catgagcatg gctcagcacg tcctcctcga tcgagacgac
aagcgcagtc aaatggaagc cctgcgctct gctctcctga tcctcaagac aggcaccccc
atcttcgtct tccccgaggg cacccgtggg cctcaaggcc gaatgcagac ctttaagatg
ggtgcattca aggtggcgac caaggcgggc gtgcctatag tgcctgtatc tatcgcgggg
acgcatgtca tgatgcccaa ggaggtgatc atgcctcaat gtgctggccg gggaatcacc
gccattcatg tccaccctcc catctccatc aagggccgca cggaccagga gctgtcggat
ctggcgtttg atactattaa caatgcattg tcagatgagc agcgggctat gcctagcagg
aagaaggacg attcgagagc ttaa

```
<210> 11
<211>427
<212> PRT
<213> Nannochloropsis oculata
<400> 11
```

Met Lys Thr Pro Thr Ser Leu Ala Cys Gly Ala Cys Thr Ala Ala Val 1
Leu Met Cys Phe Thr Thr Thr Ala Asp Ala Leu Ala Ser Thr Ser Gln 20 25 30
Pro Gly Ser Val Gly Val Ala Val Ala Arg Arg Pro Pro Gly Phe His 3540 45
Ser Ile Gly Arg Ser Ser Ala Thr Thr Arg Arg Ile Ser Arg Gly Gly
50

Trp Met Asp Val Pro Tyr Thr Ala Gln Leu Pro Ile Arg Ala Lys Tyr 260 265 270

Leu Ala Lys Ala Asp Leu Ala Lys Ile Pro Ile Leu Gly Asn Ala Met Ser Met Ala Gln His Val Leu Leu Asp Arg Asp Asp Lys Arg Ser Gln 290 295 300

Met Glu Ala Leu Arg Ser Ala Leu Leu Ile Leu Lys Thr Gly Thr Pro
Ile Phe Val Phe Pro Glu Gly Thr Arg Gly Pro Gln Gly Arg Met GlnThr Phe Lys Met Gly Ala Phe Lys Val Ala Thr Lys Ala Gly Val Pro340345350
Ile Val Pro Val Ser Ile Ala Gly Thr His Val Met Met Pro Lys Glu 355 360 365
Val Ile Met Pro Gln Cys Ala Gly Arg Gly Ile Thr Ala Ile His Val370375380
His Pro Pro Ile Ser Ile Lys Gly Arg Thr Asp Gln Glu Leu Ser Asp
385390395 400
Leu Ala Phe Asp Thr Ile Asn Asn Ala Leu Ser Asp Glu Gln Arg Ala 405 410 415
Met Pro Ser Arg Lys Lys Asp Asp Ser Arg Ala 420 425

```
<210> 12
<211> 1826
<212> DNA
<213> Nannochloropsis oculata
<400> 12
```



```
<210> 13
<211> 1395
<212> DNA
<213> Nannochloropsis oculata
```

atggtcagga ggaagatgga cgtggacagc tcggccgccg gcgaagcggc gtcagctacg
agcaacggcg ccaacgtccc gtcgtccacc tcctctacag cctccgcttc ttcctcctcc
aaaggcaccc tacccgcacg tgtccaggcc ctgcaaacga aggccgccac attgcctcag
cctttatcga atgtggcaaa acgcgccttg tactacgagg cggaaatgct ctggcaatca
atcaaggatg agctgcccgc cgagcacccg gaccaggcct ctttacttgc ggcaatcgac
cagttcgaga ccaaccttct acgcatcagt cccgctcagc tcgccaccac ctctttacga
cggatcctac aacaactcga catgctcctg cgaatcatta cttgctccct ctacctctgc
cttctagggg tcatcacatt tttgcccatg atcactctcg ttcccatcct cgaccgcctc
ctcgtaatcc tgggctggcc ccgtcgtttc ctcatctacg aactggccaa aaaggcatct
gcacgtggat ttctctacct ggccggtgtt ttctacacgg aagaagggaa gcaagccaat
gggtatgaaa ccccccttgt cctcctcttt caacacggct cgaaccttga tggcttcttg
atcttggatt cctttcctca attctttaaa tcaatcggga aagacgacat ctttctcatg
ccttacgtag ggtggatggc atatgtgtac ggcattctac ctatcgaccg caagcatcgt
aacgaagcaa tcaaacagct aggacgagcc acccgcgtct gtacctctgg tgtggccgtc
gctctttccc ccgaggggac acgtagcaag accggacaat tgatgcgatt caagaaaggg
ccgttttact tacaagccga gacatcggct actgtcaccc ctcttgtcat cgttggaaat
tacgagttgt ggcctccaaa ctatttcttt acctgtcctg ggcaggtggt gatgaggtat
ctccccccca ttgaccattc ctccctccct ccctcggttg gtcggaacaa agacgagttc
agtcgatatg tgcgcaagca gatgtttgag gccattgatg atatcatggc tggttccgag
gagggaggga aggaggtagg ggagaagagg aaaaaatatg cgccgggggg gaaattgacc
tggtggttgc ggggagtgaa tttggcatgc atgtgcctgt tttggttgat ggtaaaggcg
gcgtggatgg tggtaacggg ggtgagtgac gcgtatgggt tcagtagggg ggcgttggcg
gegt cgtga

```
<210> 14
<211>464
<212> PRT
<213> Nannochloropsis oculata
```



```
Ala Ser Ala Thr Ser Asn Gly Ala Asn Val Pro Ser Ser Thr Ser Ser 20 25 30
```

$\begin{array}{cc}\text { Thr Ala } \\ & \text { Ser Ala Ser Ser Ser Ser Lys Gly Thr Leu Pro Ala Arg Val } \\ 35 & 40\end{array}$

Gln Ala Leu Gln Thr Lys Ala Ala Thr Leu Pro Gln Pro Leu Ser Asn 50 55 60

Val Ala Lys Arg Ala Leu Tyr Tyr Glu Ala Glu Met Leu Trp Gln Ser $65 \quad 70 \quad 75080$

Ala Ala Ile Asp Gln Phe Glu Thr Asn Leu Leu Arg Ile Ser Pro Ala 100105110

Gln Leu Ala Thr Thr Ser Leu Arg Arg Ile Leu Gln Gln Leu Asp Met 115120 125

Leu Leu Arg Ile Ile Thr Cys Ser Leu Tyr Leu Cys Leu Leu Gly Val

Met Val Lys Ala Ala Trp Met Val Val Thr Gly Val Ser Asp Ala Tyr420425430
Gly Phe Ser Arg Gly Ala Leu Ala Gly Gly Phe Val Ala Tyr Thr Val 435 440 445
Ser Val Thr Ala Gly Leu Tyr Ile Leu Tyr Cys Lys Ala Pro Ala Ser 450

 455

 460
    ```
<210> 15
<211> 1771
<212> DNA
<213> Nannochloropsis oculata
<400> 15
```



```
<210> 16
<211> 1026
<212> DNA
<213> Nannochloropsis oculata
<400> 16
```

atggcaccct ccccaccggc cccgccacct gcacccgaga acccctacaa cctattgcca
cccaagcgcc ccaatccgca gtactggcgg tatgcaagcc ttgccgcctt ccttctcact
tgcttcctgg ccccttccag taactcgtgg gccaccaccc tccgccgcgc ctgctgggcg
gcgtactgga cgacctacct ggacacaagc tataaggacg gctcacgggc ctggccctgg
tttcagcgat tgcgaatctg gcgtatgtat tgcggctatt tgcagggcaa agtcatttgc
acggtgccct tggacccggc gcagcaattt atcttcgcgg cccatcccca cggcattggt
acctggaacc atttcctgac catgactgac ggctgtcgat ttctctcctc ctcctacccc
cgcccgcggc tcgacctggg tgcgacagta cttttcttca tccccttctt aaaggaaatt
ctgctttggc taggctgtgt ggatgctgga gcggccacgg ctcatgcggt tttggcgcgg
ggctactcct ccctcattta catcggtgga gaaaaagagc agatttggac acggcgaggc
aaagacatcg tggtggtacg tccccgcaag ggtttttgca agctggccct ccagcataac
tgccccatcg taccggtcta cgcatttggg gaaaacgatc tgtatcgcac gttcaaccac
ctcaaggact tccagctgtg ggtggctagc gccttcaagc tcgcttttcc tccttgttgg
ggcgtcctct tcctcccctt cotccccctc cccgtctcta tcacggtggt gatgggcgag
cccttgctac ccagagcaca aaaaggaagt gcgagaagga gtggtggagg aaaaggggtg
gagccgacga gggaggaggt ggaggagctg cacttccgat acgtggaggc cttgcagaag
ttgtttgacg cacacaaagt caggcaggga gggaggagcg aagaggccac cttagtggtc
aaatga
<210> 17
$<211>341$
$<212>~ P R T ~ N a n n o c h l o r o p s i s ~ o c u l a t a ~$
Met Ala Pro Ser Pro Pro Ala Pro Pro Pro Ala Pro Glu Asn Pro Tyr
10
Leu Lys Asp Phe Gln Leu Trp Val Ala Ser Ala Phe Lys Leu Ala Phe 245250 255

```
Pro Pro Cys Trp Gly Val Leu Phe Leu Pro Phe Leu Pro Leu Pro Val
                260
                            265
                                    270
Ser Ile Thr Val Val Met Gly Glu Pro Leu Leu Pro Arg Ala Gln Lys
    275
                            280
                                    285
Gly Ser Ala Arg Arg Ser Gly Gly Gly Lys Gly Val Glu Pro Thr Arg
        290
                            295
                    300
Glu Glu Val Glu Glu Leu His Phe Arg Tyr Val Glu Ala Leu Gln Lys
305
                                    310
                                    315
Leu Phe Asp Ala His Lys Val Arg Gln Gly Gly Arg Ser Glu Glu Ala 325
```

 330
 335
 Thr Leu Val Val Lys
340

```
```

<210> 18

```
<210> 18
<211> 1100
<211> 1100
<212> DNA
<212> DNA
<213> Nannochloropsis oculata
<213> Nannochloropsis oculata
<400> 18
```

<400> 18

```
attttcagca aagtaatcaa gataataaac aaaacaatc ctataaagga aaacaacag
aacgatggca ccctccccac cggccccgcc acctgcaccc gagaacccct acaacctatt
gccacccaag cgccccaatc cgcagtactg gcggtatgca agccttgccg ccttccttct
cacttgcttc ctggcccctt ccagtaactc gtgggccacc accctccgcc gcgcctgctg
ggcggcgtac tggacgacct acctggacac aagctataag gacggctcac gggcctggcc
ctggtttcag cgattgcgaa tctggcgtat gtattgcggc tatttgcagg gcaaagtcat
ttgcacggtg cccttggacc cggcgcagca atttatcttc gcggcccatc cccacggcat
tggtacctgg aaccatttcc tgaccatgac tgacggctgt cgatttctct cctcctccta
cccccgcccg cggctcgacc tgggtgcgac agtacttttc ttcatcccct tcttaaagga
aattctgctt tggctaggct gtgtggatgc tggagcggcc acggctcatg cggttttggc
gcggggctac tcctccctca tttacatcgg tggagaaaaa gagcagattt ggacacggcg
aggcaaagac atcgtggtgg tacgtccccg caagggtttt tgcaagctgg ccctccagca
taactgcccc atcgtaccgg tctacgcatt tggggaaaac gatctgtatc gcacgttcaa
ccacctcaag gacttccagc tgtgggtggc tagcgccttc aagctcgctt ttcctccttg
ttggggcgtc ctcttcctcc ccttcctccc cctccccgtc tctatcacgg tggtgatggg
cgagcccttg ctacccagag cacaaaaagg aagtgcgaga aggagtggtg gaggaaaagg
ggtggagccg acgagggagg aggtggagga gctgcacttc cgatacgtgg aggccttgca
gaagttgttt gacgcacaca aagtcaggca gggagggagg agcgaagagg ccaccttagt
ggtcaaatga ggaaacaccc
```

<210> 19
<211> 1206
<212> DNA
<213> Nannochloropsis oculata
<400> 19

```


Met Gly Leu Phe Gly Ser Gly Ile Lys Glu Lys Thr Glu Ala Glu Thr

Ala Gln Val Glu Gln Gln Glu Gln Ala Lys Leu Lys Gln \(\begin{aligned} & \text { Lys Pro } \\ & 30\end{aligned}\)

Leu Leu Arg Glu Arg Lys Gly Gly Asn Ile Thr Lys Glu Pro Gln Thr 354045
\(\begin{array}{cc}\text { Pro Ser Ser Asn Leu Arg Pro Ala Arg Ser Pro Thr Glu Val Asp Trp } \\ 50 & 55 \\ 60\end{array}\)

Ser Ser Phe Pro Glu Gly Ser Tyr Thr Arg Phe Gly His Gly Gly Asp
65
70

Trp Trp Thr Leu Ile Lys Gly Thr Ile Ala Ile Leu Phe Thr Trp Gly 85

90
95

Thr Trp Leu Ala Gly Gly Leu Ser Pro Phe Trp Met Thr Trp Leu Tyr

Thr His Gly Tyr Lys Arg Thr Phe Tyr Ser Ile Ile Gly Pro Leu Leu Tyr Pro Leu Phe Leu Pro Val Pro Ala Trp Pro Gly Phe Val Arg Phe 130135140

Ile Leu Asn Met Ala Gly Tyr Phe Glu Gly Gly Ala Ala Met Tyr Val
145
150

Glu Asn Ser Phe Lys Gly Arg Asn Val Asn Gly Pro Ile Met Leu Ala 165170 175
Met His Pro His Gly Ile Met Pro His Ser Phe Leu Leu Asn Gly Ala


180

Gln Asp Met Ser Leu Lys Ser Thr Gly Val Ala Glu Pro Leu Leu Phe 210215220

Arg Ile Pro Phe Ile Ser Ala Phe Leu Tyr Phe Phe Gly Cys Ala Glu \(225 \quad 230 \quad 235 \quad 240\)

Pro Ala Ser Lys Glu Met Met His Asp Ile Leu Gly Arg Gln Val Pro 245 250 255

Phe Gly Ile Leu Val Gly Gly Ser Glu Glu Ile Leu Leu Met Glu Tyr 260265270
```

Gln Lys Glu Asn Ile Tyr Ile Leu Glu Arg Lys Gly Phe Ile Lys Tyr
275
280
285
Ala Leu Gln His Gly Tyr Thr Ile Ala Ile Gly Tyr Leu Phe Gly Glu
Ser Asn Leu Tyr His Thr Ile Thr Trp Gly Arg Lys Thr Arg Leu Ala
305 310 315 320
Leu Phe Lys Lys Phe Lys Ile Pro Leu Phe Leu Ala Trp Gly Arg Trp
325
330
335
Phe Phe Pro Leu Leu Pro Glu Arg Ala Ala Pro Leu Asn Ala Val Val
340 345 350
Gly Asn Pro Ile Asp Leu Pro Arg Ile Ala Asn Pro Ser Gln Ala Asp
355 360 365
Ile Asp Lys Tyr His Ala Met Tyr Ile Glu Lys Leu Thr Asp Leu Phe
370
375
380
Glu Arg Asn Lys Ala Ala Phe Gly Tyr Ser Asp Arg Thr Leu Asn Phe
385 390 395 400
Phe

```
```

<210> 21

```
<210> 21
<211> 1772
<211> 1772
<212> DNA
<212> DNA
<213> Nannochloropsis oculata
<213> Nannochloropsis oculata
<400> 21
```

<400> 21

```

```

<211> 1173
<212> DNA
<213> Nannochloropsis oculata
<400> 22

```
atgttgagta tccccgagtc gtcctcgccc ctctcggacc ggactctggt gaagaatgga
ggcaaggaga ccgagctttc cacgccggtc accgctccca cttcggaccg ctcgcgtacc
tacagtgatg gctattcgac ccccaagtcc tacacattgg aggtcgatcc caaattttat
aagcgggtat gcgatgctga tgacgtgtgg acacgcacac agggtgcatt tgctcttctc
atgctctggg gcgtctggct tgccgggtcc ttttctgtgt tttggtggcc ctatttagta
gtgaaggggt attatactgc tgccctagct atggcagtga tcatggcata tccgtatgtg
gtcaaggtca agcaaagccc ggcatttatt cgcttcatct tgagcggcgc gggatggttt
aagggcggga cgtgtttgta tttggaggag tcgatgaagc agatcgacac cagcgagtct
gtcctcctct gtcagcatcc gcatggtctc ttcacctatg gcttcatcca aaacgggtct
gctgcccgca tcgatgcccg caaacccgag gtttatgtgc ctgccgcatt tcgtcacatg
aaacccaacg ccaaggcctt cgtggaacct ttgctattca aaatcccgct tatccgtcac
tttatcaccg ccttcggcaa cgccgccccg gcgaccaaaa aagagatgca ccgtctcatg
tccactaaaa ttcccctggg gctgttaccg ggtgggtcgg aagagatcat cttaagccac
catggccatg agcgggtgta catcctcaaa cggaaaggct tcctcaagta cgcattacaa
catggctaca cgatttgcat tggttacaca ttcggggagt ccgactcgta ccgcaccttg
gactggggcg tgaagtttcg tacgtggtac ctgaagacct tccgcgttcc actctttgcg
tgctggggga cgtggtggtg ccccctcttg ccacggggga aggtggcgct tgagacagtc
gttgggaacc catttcggtt gcccaagatt gtagatccga gccaggagga tattgataag
tggcatgcgg tgtatgtgca aaaacttgta gatttgtttg atcggaacaa ggccaagttc
gggtatgggg acagggagct ggatttcttt tag
```

<210> 23
<211> }39
<212> PRT
<213> Nannochloropsis oculata
<400> 23

```
Met Leu Ser Ile Pro Glu Ser Ser Ser Pro Leu Ser Asp Arg Thr Leu 1051015
Val Lys Asn Gly Gly Lys Glu Thr Glu Leu Ser Thr Pro Val Thr Ala
    202530
Pro Thr Ser Asp Arg Ser Arg Thr Tyr Ser Asp Gly Tyr Ser Thr Pro
        354045
Lys Ser Tyr Thr Leu Glu Val Asp Pro Lys Phe Tyr Lys Arg Val Cys
        50
                            5560
Asp Ala Asp Asp Val Trp Thr Arg Thr Gln Gly Ala Phe Ala Leu Leu\(\begin{array}{llll}65 & 70 & 75 & 80\end{array}\)
Met Leu Trp Gly Val Trp Leu Ala Gly Ser Phe Ser Val Phe Trp Trp 85 90 ..... 95
Pro Tyr Leu Val Val Lys Gly Tyr Tyr Thr Ala Ala Leu Ala Met Ala100105110
Val Ile Met Ala Tyr Pro Tyr Val Val Lys Val Lys Gln Ser Pro Ala 115 ..... 120 ..... 125
Phe Ile Arg Phe Ile Leu Ser Gly Ala Gly Trp Phe Lys Gly Gly Thr 130135140
\begin{tabular}{lrl} 
Cys Leu Tyr Leu Glu Glu Ser Met Lys Gln Ile Asp Thr Ser Glu Ser \\
145 & 150 & 155
\end{tabular}
Val Leu Leu Cys Gln His Pro His Gly Leu Phe Thr Tyr Gly Phe Ile
                        165170175
Gln Asn Gly Ser Ala Ala Arg Ile Asp Ala Arg Lys Pro Glu Val Tyr \(\begin{gathered}185 \\ 180\end{gathered}\)
Val Pro Ala Ala Phe Arg His Met Lys Pro Asn Ala Lys Ala Phe Val
    195200
                                    205
Glu Pro Leu Leu Phe Lys Ile Pro Leu Ile Arg His Phe Ile Thr Ala
    210215220
Phe Gly Asn Ala Ala Pro Ala Thr Lys Lys Glu Met His Arg Leu Met
225230235240

Ile Leu Ser His His Gly His Glu Arg Val Tyr Ile Leu Lys Arg Lys
    260
                                    265
                                    270
Gly Phe Leu Lys Tyr Ala Leu Gln His Gly Tyr Thr
275
280
Tyr Thr Phe Gly Glu Ser Asp Ser Tyr Arg Thr Leu Asp Trp Gly Val
    290295300
Lys Phe Arg Thr Trp Tyr Leu Lys Thr Phe Arg Val Pro Leu Phe Ala
305310315
                                    320
Cys Trp Gly Thr Trp Trp Cys Pro Leu Leu Pro Arg Gly Lys Val Ala
    325330335
Leu Glu Thr Val Val Gly Asn Pro Phe Arg Leu Pro Lys Ile Val Asp
Pro Ser Gln Glu Asp Ile Asp Lys Trp His Ala Val Tyr Val Gln Lys
Leu Val Asp Leu Phe Asp Arg Asn Lys Ala Lys Phe Gly Tyr Gly Asp
    370375380
Arg Glu Leu Asp Phe Phe
385
390
```

```
<210> 24
```

```
<210> 24
<211> 1239
<211> 1239
<212> DNA
<212> DNA
<213> Nannochloropsis oculata
<213> Nannochloropsis oculata
<400> 24
```

```
<400> 24
```

```
attttcagca aagtaatcaa gataataaac aaaacaatc ctataaagg aaaacaaca
ggtagaatgt tgagtatccc cgagtcgtcc tcgcccctct cggaccggac tctggtgaag
aatggaggca aggagaccga gctttccacg ccggtcaccg ctcccacttc ggaccgctcg
cgtacctaca gtgatggcta ttcgaccccc aagtcctaca cattggaggt cgatcccaaa
ttttataagc gggtatgcga tgctgatgac gtgtggacac gcacacaggg tgcatttgct
cttctcatgc tctggggcgt ctggcttgcc gggtcctttt ctgtgttttg gtggccctat
ttagtagtga aggggtatta tactgctgcc ctagctatgg cagtgatcat ggcatatccg
tatgtggtca aggtcaagca aagcccggca tttattcgct tcatcttgag cggcgcggga
tggtttaagg gcgggacgtg tttgtatttg gaggagtcga tgaagcagat cgacaccagc
gagtctgtcc tcctctgtca gcatccgcat ggtctcttca cctatggctt catccaaaac
gggtctgctg cccgcatcga tgcccgcaaa cccgaggttt atgtgcctgc cgcatttcgt
cacatgaaac ccaacgccaa ggccttcgtg gaacctttgc tattcaaaat cccgcttatc
cgtcacttta tcaccgcctt cggcaacgcc gccccggcga ccaaaaaaga gatgcaccgt
ctcatgtcca ctaaaattcc cctggggctg ttaccgggtg ggtcggaaga gatcatctta
agccaccatg gccatgagcg ggtgtacatc ctcaaacgga aaggcttcct caagtacgca
ttacaacatg gctacacgat ttgcattggt tacacattcg gggagtccga ctcgtaccgc
accttggact ggggcgtgaa gtttcgtacg tggtacctga agaccttccg cgttccactc
tttgcgtgct gggggacgtg gtggtgcccc ctcttgccac gggggaaggt ggcgcttgag
acagtcgttg ggaacccatt tcggttgccc aagattgtag atccgagcca ggaggatatt
gataagtggc atgcggtgta tgtgcaaaaa cttgtagatt tgtttgatcg gaacaaggcc
aagttcgggt atggggacag ggagctggat ttcttttag
```

<210> 25
<211> 1089
<212> DNA
<213> Nannochloropsis oculata
<400> 25

```
atgacgccgc aagccgatat caccagcaag acgacatcca accccaagac ggctgcatcc
tccccctcca agacctcgcc ccccgccgtt caatacaaag cagggaatgg caaggtgatc
acggtggcca tggccgagca agacgacggg aacatgggca ttttccgcga gtgttgtgcg
atggtgacaa tggggataat catgtcgtgg tactacatcg tcgtcgttct ctccctcctg
tgcttggtgg ggatctcctt cttccctgcc tggcgggcgg tggcggcgac ggtttttgta
ctcatgtgga gtgcggcgct tttgccgctc gactaccagg ggtgggacgc tttctgcaac
tcatgtatct tcaggctgtg gcgggactac ttccactacg aatacgtcct ggaagaaatg
atcgacccca acaagcgcta cctcttcgct gagatgcccc acggaatctt cccctgggga
gaggtgattt ccatttctat caccaagcag cttttccccg ggagccgcgt cggctccatt
ggtgcgagtg tcatcttcct ccttccgggc ctccggcact tcttcgcctg gatcgggtgt
cggcccgcga gcccggagaa tatcaaaaag atttttgatg atgggcagga ttgtgccgtg
acggtgggag gggtcgccga gatgtttctg gttggaggag agaaggagcg gctctaccta
aaaaagcaca agggtttcgt tcgagaggcc atgaagaacg gcgcggacct ggtccctgtc
ttctgcttcg gcaacagcaa gttgttcaat gtggtggggg agagcagtcg ggtgtccatg
ggcctgatga agcgtctctc gaggaggctc aaagccagcg tcctcatttt ctacggccgt
ctcttcctac ccattccgat ccgccacccg ctcttgttcg tggtgggaaa gcccctgccg
gtcgtgcaga atgcagagcc gaccaaggag gagatcgcgg cgacgcacgc actcttttgc
gagaaggtgg aggagcttta ctacaaattc aggccggaat gggagacgcg cccgttgtcc
attgagtaa
```

<210> 26
<211> 362
<212> PRT
<213> Nannochloropsis oculata
<400> 26

```
\(\begin{array}{cc}\text { Met Thr Pro Gln Ala Asp } \\ 1 & 5 \\ 5\end{array}\)Thr Ala Ala Ser Ser Pro Ser Lys Thr Ser Pro Pro Ala Val Gln Tyr202530
Lys Ala Gly Asn Gly Lys Val Ile Thr Val Ala Met Ala Glu Gln Asp354045
Asp Gly Asn Met Gly Ile Phe Arg Glu Cys Cys Ala Met Val Thr Met 50 ..... 55 ..... 60
Gly Ile Ile Met Ser Trp Tyr Tyr Ile Val Val Val Leu Ser Leu Leu\(\begin{array}{llll}65 & 70 & 75 & 80\end{array}\)
Cys Leu Val Gly Ile Ser Phe Phe Pro Ala Trp Arg Ala Val Ala Ala ..... 85
Thr Val Phe Val Leu Met Trp Ser Ala Ala Leu Leu Pro Leu Asp Tyr 100 105 ..... 110
Gln Gly Trp Asp Ala Phe Cys Asn Ser Cys Ile Phe Arg Leu Trp Arg 115120 ..... 125

```

<212> DNA
<213> Nannochloropsis oculata
<400> 27

```
attttcagca aagtaatcaa gataataaac aaaacaatc ctataaagga aaacaacag
agagacaagt aggccaccag cattggtttc caccatgacg ccgcaagccg atatcaccag
caagacgaca tccaacccca agacggctgc atcctccccc tccaagacct cgccccccgc
cgttcaatac aaagcaggga atggcaaggt gatcacggtg gccatggccg agcaagacga
cgggaacatg ggcattttcc gcgagtgttg tgcgatggtg acaatgggga taatcatgtc
gtggtactac atcgtcgtcg ttctctccct cctgtgcttg gtggggatct ccttcttccc
tgcctggcgg gcggtggcgg cgacggtttt tgtactcatg tggagtgcgg cgcttttgcc
gctcgactac caggggtggg acgctttctg caactcatgt atcttcaggc tgtggcggga
ctacttccac tacgaatacg tcctggaaga aatgatcgac cccaacaagc gctacctctt
cgctgagatg ccccacggaa tcttcccctg gggagaggtg atttccattt ctatcaccaa
gcagcttttc cccgggagcc gcgtcggctc cattggtgcg agtgtcatct tcctccttcc
gggcctccgg cacttcttcg cctggatcgg gtgtcggccc gcgagcccgg agaatatcaa
aaagattttt gatgatgggc aggattgtgc cgtgacggtg ggaggggtcg ccgagatgtt
tctggttgga ggagagaagg agcggctcta cctaaaaaag cacaagggtt tcgttcgaga
ggccatgaag aacggcgcgg acctggtccc tgtcttctgc ttcggcaaca gcaagttgtt
gtagccagcg tcatcagaga gaggtctcac acacgatcgt gtgtccttgc acatgtcttt
tccatttaac acgaattact tttttttaaa aaaataataa aaaaaaata
acttgtcccc tatcatccgt gtttagtaac gaggtacatc cgtgcgacgg gtcggtggaa
gctcaaagcc agcgtcctca ttttctacgg ccgtctcttc ctacccattc cgatccgcca
cccgctcttg ttcgtggtgg gaaagcccct gccggtcgtg cagaatgcag agccgaccaa
ggaggagatc gcggcgacgc acgcactctt ttgcgagaag gtggaggagc tttactacaa
attcaggccg gaatgggaga cgcgcccgtt gtccattgag taaaatacgt ggacggagaa
agcgaggggc gtgtggtttga gtatctgatt gtgattgtga ttgtctgtgt ctgcacgtgt
gtgtgtacga ttacttctgg tgcttgtgcg gttttgaaag taactgtaaa ggtcagaaga
gatagaga cgagacttgg atacgatgaa gggtgaagaa gaaatttaaa acaattttga
atgtctgagg aataaatgta gatgttagaa aatttgaggt agttctcggt
```

<210> 28
<211> 1464

```
```

<212> DNA
<213> Nannochloropsis oculata
<400> 28

```
atggcttacc tcttccgtcg tcgaagcaaa ggcgagggca acagcactag cagcagctgc
tcttctctgt cggaagataa taagggcacg tccatccact cttccgaaat cgagccgcgc
gctcccgcca cgtccaaagc cacgacaagc agcataaagg agattgggaa gccctcattg
cccaccgccg cacatttatc accacccagc ataagcaagg cagatagaaa tttcgccatt
gccgcagtag cagcaggagc actggagggg gctgcagcag gcgccgtgac agcaccaccc
accgaccaat ctccgaagaa gcagtacggg cagggtggta ctggggagcg agggaaggag
gcagaaggtg gacgagaacg aagtggaagc gtcggcaacc ttttactgtc atcaattaat
tcgttttcaa gctgcacgtc cctatccttt ttggccggcg aggacgagac cccgtctcct
cccgagacag ggcctgctgg gattgatttc tcgacaccgg ctcatccgac catgcaactt
gtggacttca tcatcacttt tctcttggtg cattatattc aagtcttcta ctccctagtc
ctcctcttca tctacctcgt caagcacggt cacagatggc cgtacctcct cgctgccatc
tacgcccctt cgtacttcat tcctttacag cgattgggcg gatggccgtt caaaggattc
atgcgtcggc ccttttggcg gtgtgtccaa aggaccttag ctctccaggt ggaaagagag
gtcgagctgc gtccagacga acagtacatt tttggttggc acccccacgg gatcttgctc
ttgtcccggt ttgcaatcta tgggggtctg tgggaaaagc tttttccggg tattcatttc
aagacgctag cggcaagtcc tctgttttgg attccaccta ttcgcgaagt gtcgatcttg
ctgggtgggg tggatgcagg cagggcatca gcagcacggg cactcacaga cggctactcc
gtctctcttt atccgggggg aagcaaggaa atctacacca ctgatcccta cactcctgaa
acgaccctgg tcctgaaaat ccgcaaaggc ttcattcgca tggccctccg ctatggctgt
ccactcgtgc ctgtgtacac gtttggagaa aaatacgcct accatcggct agggccggcc
acgggctttg cgcgctggct gttggcagtg ctgaaagtcc ctttcttgat cttttgggga
cgatggggca cattcatgcc gctcaaggag acgcaggtgt cagtggtggt gggcaagcca
ctgcgcgtgc ccaaaatcga tggagatcct gcccctgagg tggtggagga atggttgcac
agatactgcg acgaagtcca ggcgttgttc cagcgacaca agaacaaata cgcaaagcct
gagatca ttgcgatcgc ctaa
```

<210> 29
<211>487
<212> PRT
<213> Nannochloropsis oculata

```

\title{
Met Ala Tyr Leu Phe Arg Arg Arg Ser Lys Gly Glu Gly Asn Ser Thr 1 10 15
}
\(\begin{array}{cc}\text { Ser Ser Ser Cys Ser Ser Leu Ser Glu Asp Asn Lys Gly Thr Ser Ile } \\ 20 & 25 \\ 30\end{array}\)


Met Arg Arg Pro Phe Trp Arg Cys Val Gln Arg Thr Leu Ala Leu Gln 245250255

Val Glu Arg Glu Val Glu Leu Arg Pro Asp Glu Gln Tyr Ile Phe Gly \(\begin{array}{r}260 \\ 260\end{array}\) Trp His Pro His Gly Ile Leu Leu Leu Ser Arg Phe Ala Ile Tyr Gly 275280285

Gly Leu Trp Glu Lys Leu Phe Pro Gly Ile His Phe Lys Thr Leu Ala
Ala Ser Pro Leu Phe Trp Ile Pro Pro Ile Arg Glu Val Ser Ile Leu
305
310
Asp Gly Tyr Ser Val Ser Leu Tyr Pro Gly Gly Ser Lys Glu Ile Tyr
    340345350
Thr Thr Asp Pro Tyr Thr Pro Glu Thr Thr Leu Val Leu Lys Ile Arg
    355360365
Lys Gly Phe Ile Arg Met Ala Leu Arg Tyr Gly Cys Pro Leu Val Pro
370
375
Val Tyr Thr Phe Gly Glu Lys Tyr Ala Tyr His Arg Leu Gly Pro Ala
385430395400
Thr Gly Phe Ala Arg Trp Leu Leu Ala Val Leu Lys Val Pro Phe Leu
    405410
                            415
Ile Phe Trp Gly Arg Trp Gly Thr Phe Met Pro Leu Lys Glu Thr Gln
Val Ser Val Val Val Gly Lys Pro Leu Arg Val Pro Lys Ile Asp Gly
    \(435440 \quad 445\)
Asp Pro Ala Pro Glu Val Val Glu Glu Trp Leu His Arg Tyr Cys Asp
    450455460
Glu Val Gln Ala Leu Phe Gln Arg His Lys Asn Lys Tyr Ala Lys Pro
Glu Glu Phe Ile Ala Ile Ala
    485
```

<210> 30
<211> 1682
<212> DNA
<213> Nannochloropsis oculata
<400> }3

```

```

<213> Nannochloropsis oculata
<400> }3

```
atgccttttg gacgggctgc atcagcctgg atttcggcct cagcattgtt gccagccttg
gcggacccaa ctttcctttg cggcaccgcc atcgtgggcc tcgtcgttat gtactacatt
gtcagcggcc aaaggtgtgc acgagctttg cgtccttccc caggggtgat tcgaaggaaa
atgagttttt gttcggcggc ctgtgcggat ggtcccatgc ctgagcacgc caagatgaac
cctgtcgatc ctattatcaa tgccgtggtg cttttcgagg gggaggcgcc cacgcgtgcg
gcggtggaat cggccatctt gccgctcttt gaattcgaac ggtttcgctc ccggaaggtt
aagattggtg atgattggta ttgggaagtg ctgccttcct ttgacgctag gacgcatgtg
attgaagact ctttcaaggg tgccagcatc gatgacttgt ttcttcgcct ggaggtgtgg
tcccagaaac ccctgcatgt accggtggac gggcccgcct ttgaatttgc tttgcttcgg
aatcaggata agaaggggcc ctctgctgtg atttgtcgta tcaaccatgc gattggtgat
ggtgtctctc tggccaagtt gatcccccac gtgttcaagg acattgacgg ccagtcactg
ccgatcgggg agaagtttcg ccggcgggaa gcagggttca agccgacttt ccgcacccct
tttaccttgc tggcttcgct tttcaaggta ttgggtacgc ctactacggc gtttgatact
gacgtggggt tgacgattcc ggataaaaag aatattacct ttacggggcg tcggtgcatt
gtgcgtatcc ccaccgtgaa gctttcgttc atcaagagca ttaaaaatgc ggcgaatgtg
actgtgaacg atgtggtgat gagcgcggtt gctggggccg tgcatcgatt tcgttgcgcg
ggggcacgtg aactaggaga gcattttatt gacgagttga tggacttggc tcgaaggacg
gggctggaaa atgtaaagaa ggaggatatt ttcgggtga
aaaaagatc ctgcaatgct cgacccttta tcccattgta aagtccgtac acgcgctttg
atgcctgtgg ctttgccccg ggaggaggga gatcctgtca aggctttgcg aaacaagtgg
agttttgctt ccgtggcgat gcccgtgggg gtcaagggga gtttggaacg cttgcatgca
gcgaatgcca cgatgactgc gttgaaaaac agtccgatag tgatcgtgca gaatatggtg
gagctaacc taggggcacg cttgccgtgg acagtggcaa aacaaaccgc gtttgactcg
```

<210> 32
<211> 512
<212> PRT
<213> Nannochloropsis oculata

```

\title{
Met Pro Phe Gly Arg Ala Ala Ser Ala Trp Ile Ser Ala Ser Ala Leu 1 \\ 5 10 15
}
Leu Pro Ala Leu Ala Asp Pro Thr Phe Leu Cys Gly Thr Ala Ile Val
 20
 25
 30

Gly Leu Val
35

Ala Leu Arg Pro Ser Pro Gly Val Ile Arg Arg Lys Met Ser Phe Cys
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 50 & & & & & 55 & & & & & 60 & & & & \\
\hline \[
\begin{aligned}
& \text { Ser } \\
& 65
\end{aligned}
\] & Ala & Ala & Cys & Ala & \[
\begin{aligned}
& \text { Asp } \\
& 70
\end{aligned}
\] & Gly & Pro & Met & Pro & \[
\begin{aligned}
& \text { Glu } \\
& 75
\end{aligned}
\] & His & Ala & Lys & Met & \[
\begin{aligned}
& \text { Asn } \\
& 80
\end{aligned}
\] \\
\hline Pro & Val & Asp & Pro & \[
\begin{aligned}
& \text { Ile } \\
& 85
\end{aligned}
\] & Ile & Asn & Ala & val & \[
\begin{aligned}
& \text { Val } \\
& 90
\end{aligned}
\] & Leu & Phe & Glu & Gly & \[
\begin{aligned}
& \text { Glu } \\
& 95
\end{aligned}
\] & Ala \\
\hline Pro & Thr & Arg & \[
\begin{aligned}
& \text { Ala } \\
& 100
\end{aligned}
\] & Ala & Val & Glu & Ser & \[
\begin{aligned}
& \text { Ala } \\
& 105
\end{aligned}
\] & Ile & Leu & Pro & Leu & \begin{tabular}{l}
Phe \\
110
\end{tabular} & Glu & Phe \\
\hline Glu & Arg & \begin{tabular}{l}
Phe \\
115
\end{tabular} & Arg & Ser & Arg & Lys & \[
\begin{aligned}
& \text { Val } \\
& 120
\end{aligned}
\] & Lys & Ile & Gly & Asp & \[
\begin{aligned}
& \text { Asp } \\
& 125
\end{aligned}
\] & Trp & Tyr & Trp \\
\hline Glu & \[
\begin{aligned}
& \text { Val } \\
& 130
\end{aligned}
\] & Leu & Pro & Ser & Phe & \[
\begin{aligned}
& \text { Asp } \\
& 135
\end{aligned}
\] & Ala & Arg & Thr & His & \[
\begin{aligned}
& \text { Val } \\
& 140
\end{aligned}
\] & Ile & Glu & Asp & Ser \\
\hline \begin{tabular}{l}
Phe \\
145
\end{tabular} & Lys & Gly & Ala & Ser & \[
\begin{aligned}
& \text { Ile } \\
& 150
\end{aligned}
\] & Asp & Asp & Leu & Phe & \[
\begin{aligned}
& \text { Leu } \\
& 155
\end{aligned}
\] & Arg & Leu & Glu & Val & \[
\begin{aligned}
& \operatorname{Trp} \\
& 160
\end{aligned}
\] \\
\hline Ser & Gln & Lys & Pro & \[
\begin{aligned}
& \text { Leu } \\
& 165
\end{aligned}
\] & His & Val & Pro & Val & \[
\begin{aligned}
& \text { Asp } \\
& 170
\end{aligned}
\] & Gly & Pro & Ala & Phe & \[
\begin{aligned}
& \text { Glu } \\
& 175
\end{aligned}
\] & Phe \\
\hline Ala & Leu & Leu & \[
\begin{aligned}
& \text { Arg } \\
& 180
\end{aligned}
\] & Asn & Gln & Asp & Lys & \[
\begin{aligned}
& \text { Lys } \\
& 185
\end{aligned}
\] & Gly & Pro & Ser & Ala & \[
\begin{aligned}
& \text { Val } \\
& 190
\end{aligned}
\] & Ile & Cys \\
\hline Arg & Ile & \[
\begin{aligned}
& \text { Asn } \\
& 195
\end{aligned}
\] & His & Ala & Ile & Gly & \[
\begin{aligned}
& \text { Asp } \\
& 200
\end{aligned}
\] & Gly & Val & Ser & Leu & \[
\begin{aligned}
& \text { Ala } \\
& 205
\end{aligned}
\] & Lys & Leu & Ile \\
\hline Pro & \[
\begin{aligned}
& \text { His } \\
& 210
\end{aligned}
\] & Val & Phe & Lys & Asp & \[
\begin{aligned}
& \text { Ile } \\
& 215
\end{aligned}
\] & Asp & Gly & Gln & Ser & \[
\begin{aligned}
& \text { Leu } \\
& 220
\end{aligned}
\] & Pro & Ile & Gly & Glu \\
\hline \[
\begin{aligned}
& \text { Lys } \\
& 225
\end{aligned}
\] & Phe & Arg & Arg & Arg & \[
\begin{aligned}
& \text { Glu } \\
& 230
\end{aligned}
\] & Ala & Gly & Phe & Lys & \[
\begin{aligned}
& \text { Pro } \\
& 235
\end{aligned}
\] & Thr & Phe & Arg & Thr & \[
\begin{aligned}
& \text { Pro } \\
& 240
\end{aligned}
\] \\
\hline Phe & Thr & Leu & Leu & \[
\begin{aligned}
& \text { Ala } \\
& 245
\end{aligned}
\] & Ser & Leu & Phe & Lys & \[
\begin{aligned}
& \text { Val } \\
& 250
\end{aligned}
\] & Leu & Gly & Thr & Pro & \[
\begin{aligned}
& \text { Thr } \\
& 255
\end{aligned}
\] & Thr \\
\hline Ala & Phe & Asp & \[
\begin{aligned}
& \text { Thr } \\
& 260
\end{aligned}
\] & Asp & Val & Gly & Leu & \[
\begin{aligned}
& \text { Thr } \\
& 265
\end{aligned}
\] & Ile & Pro & Asp & Lys & \[
\begin{aligned}
& \text { Lys } \\
& 270
\end{aligned}
\] & Asn & Ile \\
\hline Thr & Phe & \[
\begin{aligned}
& \text { Thr } \\
& 275
\end{aligned}
\] & Gly & Arg & Arg & Cys & \[
\begin{aligned}
& \text { Ile } \\
& 280
\end{aligned}
\] & Val & Arg & Ile & Pro & \[
\begin{aligned}
& \text { Thr } \\
& 285
\end{aligned}
\] & Val & Lys & Leu \\
\hline Ser & \[
\begin{aligned}
& \text { Phe } \\
& 290
\end{aligned}
\] & Ile & Lys & Ser & Ile & \[
\begin{aligned}
& \text { Lys } \\
& 295
\end{aligned}
\] & Asn & Ala & Ala & Asn & \[
\begin{aligned}
& \text { Val } \\
& 300
\end{aligned}
\] & Thr & Val & Asn & Asp \\
\hline \[
\begin{aligned}
& \text { Val } \\
& 305
\end{aligned}
\] & Val & Met & Ser & Ala & \[
\begin{aligned}
& \text { Val } \\
& 310
\end{aligned}
\] & Ala & Gly & Ala & Val & \[
\begin{aligned}
& \text { His } \\
& 315
\end{aligned}
\] & Arg & Phe & Arg & Cys & \[
\begin{aligned}
& \text { Ala } \\
& 320
\end{aligned}
\] \\
\hline
\end{tabular}
Gln Lys Asp Pro Ala Met Leu Asp Pro Leu Ser His Cys Lys Val Arg 325 330 ..... 335
Thr Arg Ala Leu Met Pro Val Ala Leu Pro Arg Glu Glu Gly Asp Pro
340
345
Val Lys Ala Leu Arg Asn Lys Trp Ser Phe Ala Ser Val Ala Met Pro 355
360
365
Val Gly Val Lys Gly Ser Leu Glu Arg Leu His Ala Ala Asn Ala Thr
370
375
Met Thr Ala Leu Lys Asn Ser Pro Ile Val Ile Val Gln Asn Met Val \(385 \quad 390 \quad 395 \quad 400\)
Glu Ala Asn Leu Gly Ala Arg Leu Pro Trp Thr Val Ala Lys Gln Thr 405410415
Ala Phe Asp Ser Phe Val Arg His Thr Phe Val Phe Ser Asn Val Pro \(\begin{array}{r}430 \\ 420\end{array}\)
Gly Pro Asn Met Pro Ile Thr Phe Ala Gly Arg Glu Val Ser Gly Leu 435 440 445
Tyr Met Ala Phe Ala Asn Leu Ile Pro Gln Val Gly Ala Leu Ser Leu 450455460
Asn Gly Lys Ile Phe Thr Cys Leu Val Leu Asp Asp Glu Val Thr Pro 465470475480
Gly Ala Arg Glu Leu Gly Glu His Phe Ile Asp Glu Leu Met Asp Leu 485 490 495
Ala Arg Arg Thr Gly Leu Glu Asn Val Lys Lys Glu Asp Ile Phe Gly 500505510
```

<210> 33
<211> 1904
<212> DNA
<213> Nannochloropsis oculata
<400> 33

```
\begin{tabular}{ll} 
attttcagca aagtaatcaa gataataaac aaaacaatc ctataaagga aaaacaacag & 60 \\
ccacacagac gccccagctt caactctcca cacacgattt gccagtgagg gtcgtgcacc & 120 \\
ctccgcaacc acgagccttt tccacagtag tcatcctgcc catcacgctt aaaatcatgc & 180 \\
cttttggacg ggctgcatca gcctggattt cggcctcagc attgttgcca gccttggcgg & 240 \\
acccaacttt cctttgcggc accgccatcg tgggcctcgt cgttatgtac tacattgtca & 300
\end{tabular}

```

<210> 34
<211> 1083
<212> DNA
<213> Nannochloropsis oculata
<400> 34

```
\begin{tabular}{lr} 
atggccaagg ctaacttccc gccogcggcg cgctatgtta atatgacgca ggtctatgcg & 60 \\
acaggcgctc acaatatgcc ggacgaggac cgcgtcaagg tcatgaacgg gctgtccaag & 120
\end{tabular}
cccgtgacgg aggccaaggc aggtgatttg gggtttgggg atgttgagtc catgacggcc
tgggaagagt ttgtggcggc tatgttcttg ttgatcattg tgggaagcat gctttggatt
ccgattgcgg tggtcggttt tgtcctgtgt gtccgcagcg cggtggcgtg ggtggtgatg
ctcatcgtgt tcttcgccct gagcctgcac ccagtcccgc gcattcatga tatggttcat
tcgcctttga atcactttat attcaagtac ttcagtctta aaatggcgag tgatgcacca
ctggatagtg ctgggcgcta tatctttgtt gctccgccgc atggggtgct gccgatgggg
aatcttatga cggtgcacgc gatgaaggct tgtggtggat tggagttccg tgggctgacg
acagatgtcg cgctcaggct gcctttattt cgacattact taggcgccat tggtactatt
gccgcgactg ggcacgtggc gaagcagtac ctcgacgaag ggtggtcaat aggcatatct
tcgggcggag tcgcggaaat tttcgaggta aataataagg atgaagtggt gttgatgaag
gagaggaagg gctttgtgaa gctcgccctt cgcacgggaa ctccgctggt ggcttgttat
atatttggga ataccaagct gttgtcggcg tggtatgatg atggaggtgt gttgcagggt
ctttcacgtt atttgaaatg tggtgtgttg ccactttggg gtcggtttgg attgccgctt
atgcaccgcc atccggtgct gggcgcgatg gcaaagccga ttgtggtccc caaggtggag
ggggagccta cgcaggagat gatagatgat taccataatc tcttctgtca gacgctggtc
gatctctttg ataggtacaa gggcttatat ggctggccgg acaagaagct gcttataaag
tga
```

<210> 35
<211> 360
<212> PRT
<213> Nannochloropsis oculata
<400> 35

```

Met Ala Lys Ala Asn Phe Pro Pro Ala Ala Arg Tyr Val Asn Met Thr 1

Gln Val Tyr Ala Thr Gly Ala His Asn Met Pro Asp Glu Asp Arg Val 2025 30

Lys Val Met Asn Gly Leu Ser Lys Pro Val Thr Glu Ala Lys Ala Gly 35

40 45

Asp Leu Gly Phe Gly Asp Val Glu Ser Met Thr Ala Trp Glu Glu Phe 50

55 60

Val Ala Ala Met Phe Leu Leu Ile Ile Val Gly Ser Met Leu Trp Ile
\(\begin{aligned} & 70\end{aligned}\)
65

Pro Ile Ala Val Val Gly Phe Val Leu Cys Val Arg Ser Ala Val Ala 85

90
95

\(\begin{array}{rr}\text { Val Ala Cys Tyr Ile Phe Gly Asn Thr Lys Leu Leu Ser Ala Trp Tyr } \\ 260 & 270\end{array}\)Asp Asp Gly Gly Val Leu Gln Gly Leu Ser Arg Tyr Leu Lys Cys Gly275280285
Val Leu Pro Leu Trp Gly Arg Phe Gly Leu Pro Leu Met His Arg His
290
Pro Val Leu Gly Ala Met Ala Lys Pro Ile Val Val Pro Lys Val Glu305310315320
Gly Glu Pro Thr Gln Glu Met Ile Asp Asp Tyr His Asn Leu Phe Cys \(\begin{array}{r}330 \\ 325\end{array}\)Gln Thr Leu Val Asp Leu Phe Asp Arg Tyr Lys Gly Leu Tyr Gly Trp340

EP 2585603 B1

\section*{Pro Asp Lys Lys Leu Leu Ile Lys 355 \\ 360}
```

<210> 36
<211> 1362
<212> DNA
<213> Nannochloropsis oculata
<400> 36

```

```

<210> 37
<211> 1695
<212> DNA
<213> Nannochloropsis oculata

```
atgttgttgc agggattaag ctggtctttt ttgaccttgt cgattgtggt agaaatcttg
tttgtgatct cgacgtttgc tgtggggttt gagttgtttg ttggagcggc ggtggtggcg
ggcggcttct ttttggtctc ggaagtgttg atgattgtga gtttgcattt ttatatgcct
acgacgacca cgactgtgac aacgaccggg ttggcggtga tggaggagaa ggtggaggag
gtggaggaga tgatggtggg gaaggaggga gtgggggaag aggacgagga gatggtggag
gaaaaggtgg acgtgacgac agcggcgacg acgaacgcac tcttaagaac cgaaaagcag
cggctgctct tggcgaaaga gagtgctacg accactacta ctaccgcgac tgtgaccacg
gggcagacca gcaagacgtc tacttcattt atgcctgtcc gggtcgacga ggcttccctt
gagcaattcc gccggctcac cgttataacc gttctgagta atatgcaata cctgcccttc
ctccttccca tcctcccttt tgtcctctca ggtcttcctc tccctgtggc atcttttcac
tggttcggcg ctttttgttg tctgacctca gcggtcgttt taaacgccta tgtcaaaacc
acgttggcca aagctgggaa tcgtatttcc tccttccagc gctccctcct taatgtcctc
cccacgetca tttatgccgc gccgggtctt atttgctttt ttgcgtggag tcaacaccaa
ggtgggaggg aggacgggaa ggagcgcgcg gtgactgcgt tcccggcttg ggcggcgctc acggccatgc attacctgta cctctttctc acgtttcgcg gaaatccgga agtaacggga gagaggtact taggcgaaaa gctagagctg tggaaaggcg gttggtcatt gtactatttt ttagaaggga tagatcaata ttttcaggcg aagttggtct tcatggaccc gaaactggat ctgaagggga aaccgcatgt gtttgcgttt cacccacacg gagtccagcc gtttacgacg ttttggattc agctttcgcg ggcctggagg gagggagtgg ggaagggaca gagattctgt gtgatgactg cgagtgttat gcattatgtg ccgttaatgc gcgatatatt acagtggctc ggggggcggg aagtgagcag ggaagccatt tcgtacgcac tggaccgtaa acagtcagta ttgttggttc caggcggaca acaagagatg atggagtccc aatctcagat gggcgagatt cggatcatta cgaagcacgt cggcttcatt agattagcac tccagacagg cgcgccgctc gtgcctgtgc tctcatttgg cgaagttgaa gtgatggatt ttgtccggta cccgcgtcta cagcgtttct ttatctcgeg catcggtatt ccggttccct tcttcccata tggattgttt ggatttccca tcccaaggec cgtgcccgtg acggtcgtgt ttggccgtcc gattgcagtg gagaaagtgg agcaaccgac gcaggaagag gtgcgtaaat tgtcgaaaaa gtactttgaa agtatccagg aggtgtttga taaaaataag gcgaaggccc tggggcatgg aaatcataaa ttggtcctgt tgtga
<210> 38
<211> 564
<212> PRT
<213> Nannochloropsis oculata
<400> 38

Val Glu Ile Leu Phe Val Ile Ser Thr Phe Ala Val Gly Phe Glu Leu
20
Phe Val Gly Ala Ala Val Val Ala Gly Gly Phe Phe Leu Val Ser Glu
    354045
Val Leu Met Ile Val Ser Leu His Phe Tyr Met Pro Thr Thr Thr Thr
Thr Val Thr Thr Thr Gly Leu Ala Val Met Glu Glu Lys Val Glu Glu
\(65 \quad 70 \quad 7580\)
Val Glu Glu Met Met Val Gly Lys Glu Gly Val Gly Glu Glu Asp Glu
\(\begin{array}{rl}\text { Glu Met Val Glu Glu Lys Val Asp Val Thr Thr Ala Ala Thr Thr Asn } \\ 100 & 105\end{array}\)
Ala Leu Leu Arg Thr Glu Lys Gln Arg Leu Leu Leu Ala Lys Glu Ser
Ala Thr Thr Thr Thr Thr Thr Ala Thr Val Thr Thr Gly Gln Thr Ser
Lys Thr Ser Thr Ser Phe Met Pro Val Arg Val Asp Glu Ala Ser Leu
Glu Gln Phe Arg Arg Leu Thr Val Ile Thr Val Leu Ser Asn Met Gln \(\begin{array}{r}175 \\ 165\end{array}\)
\(\begin{array}{rr}\text { Tyr Leu Pro Phe Leu Leu Pro Ile Leu Pro Phe Val Leu Ser Gly Leu } \\ 180 & 185\end{array}\)
Pro Leu Pro Val Ala Ser Phe His Trp Phe Gly Ala Phe Cys Cys Leu \(\begin{array}{r}205 \\ 195\end{array}\)
Thr Ser Ala Val Val Leu Asn Ala Tyr Val Lys Thr Thr Leu Ala Lys
    210
                                    215
                                    220
Ala Gly Asn Arg Ile Ser Ser Phe Gln Arg Ser Leu Leu Asn Val Leu
225230235240
Pro Thr Leu Ile Tyr Ala Ala Pro Gly Leu Ile Cys Phe Phe Ala Trp
Ser Gln His Gln Gly Gly Arg Glu Asp Gly Lys Glu Arg Ala Val Thr
\begin{tabular}{rr} 
Ala Phe Pro Ala Trp Ala Ala Leu Thr Ala Met His Tyr Leu Tyr Leu \\
275 & 280
\end{tabular}
Phe Leu Thr Phe Arg Gly Asn Pro Glu Val Thr Gly Glu Arg Tyr Leu
290
Pro Lys Leu Asp Leu Lys Gly Lys Pro His Val Phe Ala Phe His Pro
His Gly Val Gln Pro Phe Thr Thr Phe Trp Ile Gln Leu Ser Arg Ala
\begin{tabular}{rl} 
Trp Arg Glu Gly Val Gly \\
\begin{tabular}{l} 
Lys \\
370
\end{tabular} & \(\left.\begin{array}{l}375\end{array}\right)\) Gln Arg Phe Cys Val Met Thr Ala \\
380
\end{tabular}
Ser Val Met His Tyr Val Pro Leu Met Arg Asp Ile Leu Gln Trp Leu
385

Lys Gln Ser Val Leu Leu Val Pro Gly Gly Gln Gln Glu Met Met Glu 420 425 430

Ser Gln Ser Gln Met Gly Glu Ile Arg Ile Ile Thr Lys His Val Gly Phe Ile Arg Leu Ala Leu Gln Thr Gly Ala Pro Leu Val Pro Val Leu 450455460

Ser Phe Gly Glu Val Glu Val Met Asp Phe Val Arg Tyr Pro Arg Leu \(4654470 \quad 475 \quad 480\)
 Tyr Gly Leu Phe Gly Phe Pro Ile Pro Arg Pro Val Pro Val Thr Val 500 505 510

Val Phe Gly Arg Pro Ile Ala Val Glu Lys Val Glu Gln Pro Thr Gln 515520525
```

Glu Glu Val Arg Lys Leu Ser Lys Lys Tyr Phe Glu Ser Ile Gln Glu
530
535 540

```

Val Phe Asp Lys Asn Lys Ala Lys Ala Leu Gly His Gly Asn His Lys
545
550

Leu Val Leu Leu
```

<210> 39
<211> 2074
<212> DNA
<213> Nannochloropsis oculata
<400> 39

```
aagggaggga gggaagagcg caccagaagg ccgtacgaaa gcaatggcgt ttttggcagc
catttttggg aggagccaag tttatgttgt tgcagggatt aagctggtct tttttgacct
tgtcgattgt ggtagaaatc ttgtttgtga tctcgacgtt tgctgtgggg tttgagttgt
ttgttggagc ggcggtggtg gcgggcggct tctttttggt ctcggaagtg ttgatgattg
tgagtttgca tttttatatg cctacgacga ccacgactgt gacaacgacc gggttggcgg
tgatggagga gaaggtggag gaggtggagg agatgatggt ggggaaggag ggagtggggg
aagaggacga ggagatggtg gaggaaaagg tggacgtgac gacagcggcg acgacgaacg
cactcttaag aaccgaaaag cagcggctgc tcttggcgaa agagagtgct acgaccacta
ctactaccgc gactgtgacc acggggcaga ccagcaagac gtctacttca tttatgcctg
tccgggtcga cgaggcttcc cttgagcaat tccgccggct caccgttata accgttctga
gtaatatgca atacctgccc ttcctccttc ccatcctccc ttttgtcctc tcaggtcttc
ctctccctgt ggcatctttt cactggttcg gcgctttttg ttgtctgacc tcagcggtcg
ttttaaacgc ctatgtcaaa accacgttgg ccaaagctgg gaatcgtatt tcctccttcc
agcgctccct ccttaatgtc ctccccacgc tcatttatgc cgcgccgggt cttatttgct
tttttgcgtg gagtcaacac caaggtggga gggaggacgg gaaggagcgc gcggtgactg
cgttcccggc ttgggcggcg ctcacggcca tgcattacct gtacctcttt ctcacgtttc
gcggaaatcc ggaagtaacg ggagagaggt acttaggcga aaagctagag ctgtggaaag
gcggttggtc attgtactat tttttagaag ggatagatca atattttcag gcgaagttgg
tcttcatgga cccgaaactg gatctgaagg ggaaaccgca tgtgtttgcg tttcacccac
acggagtcca gccgtttacg acgttttgga ttcagctttc gcgggcctgg agggagggag
tggggaaggg acagagattc tgtgtgatga ctgcgagtgt tatgcattat gtgccgttaa
tgcgcgatat attacagtgg ctcggggggc gggaagtgag cagggaagcc atttcgtacg
cactggaccg taaacagtca gtattgttgg ttccaggcgg acaacaagag atgatggagt
tat
\begin{tabular}{lll} 
cccaatctca gatgggcgag attcggatca ttacgaagca cgtcggcttc attagattag & 1440 \\
cactccagac aggcgcgccg ctcgtgcctg tgctctcatt tggcgaagtt gaagtgatgg & 1500 \\
attttgtccg gtacccgcgt ctacagcgtt tctttatctc gcgcatcggt attccggttc & 1560 \\
ccttcttccc atatggattg tttggatttc ccatcccaag gcccgtgccc gtgacggtcg & 1620 \\
tgtttggccg tccgattgca gtggagaaag tggagcaacc gacgcaggaa gaggtgcgta & 1680 \\
aattgtcgaa aaagtacttt gaaagtatcc aggaggtgtt tgataaaaat aaggcgaagg & 1740 \\
ccctggggca tggaaatcat aaattggtcc tgttgtgagg gaggaagaga agcaaaaggg & 1800 \\
tgggagacag ggagatggat ggggagaagg aggtttgtgg gggtaggctt tcggagagag & 1860 \\
aacaaacgga ctgatacaag acaaaagtgt aagatagaac ttcaggaaag cgaaataatg & 1920 \\
attgaacgac atagaaaaaa gaaagggcag cgaggaaggg agggagggag gaagggagga & 1980 \\
cagtactgaa atgccaccaa tggcggtccc agcatcggag aatgcacaat aaagcaacaa & 2040 \\
agctagtcgg taatgaaaaa aaaaaaaaa aaaa
\end{tabular}
<210> 40
<211> 1029
<212> DNA
<213> Nannochloropsis oculata
<400> 40
atgttgatgg cgccgtcgcg gcggccagca tcgtccttgg tggacccttt gccattgacg
gggaagctgc ctatcggggc aatcaggctc ttcacgtccc ggcctgcttc atggcgtacc
actcccatgg tcgtgggcgg ctccttgctg gtggtgggat ccttcgtctg ggtgcccctt
gttatctggc tgggttggaa gaaatgtagg acacggaatc gacgcattgt ctacgtcctt
gttttgtgtg tcatcttgac cctacctaca cggcgttggg acgcggtggt cttgaacggc
ctatggagcc gttttgtgga atatttttca gtccaggtgg taggggacga ccccttgccc
aaggaccgct ccgccgtcta cgccgtcatt cctcacggca ccttcccctt tggtctcggc
gtggtctccc tcggtccctt gaacaagatc ttcaataagg tccggcccgt ggtggcctcg
gcagtcttgc gctttccggg ctttggtcaa ctaataggct tcgccggtgg ggtcgacgca
gggcccaaag aagtaagcaa ggccatcaag aagggctgtt cagtgagtat ctgtcctggg
ggcatcgcag agatgttctg gggatttcca aaggagggct gcttaccgcg ggaggaatat
gcgttcttac agtcgaggaa agggtttatc cgcatggcca tgaaacacaa tgtgcctgtg
gtccctgtgt actgttttgg taacacccac gcgatgcata aggcgaagac gccttgggtc
ttggaggcgc tatcaaggct tctcaagacc tctcttatct taacctgggg ccggtggggg
ctgccgatcc cctaccgtgt gcctctcctc tacgccgtcg gtaagcccct ccgcctcctg
cacgcagaaa atccaacccc tgctcagatt gaggcggcgc acgccgagtt ctgcagggcc
ctttcggatt tgtttgatcg gtacaagttt tattatggat gggggcacaa gacgcttcgc
```

atcgtctga

```
```

<210> 41

```
<210> 41
<211> 342
<211> 342
<212> PRT
<212> PRT
<213> Nannochloropsis oculata
<213> Nannochloropsis oculata
<400> 41
```

<400> 41

```1029
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Met \\
1
\end{tabular} & Leu & Met & Ala & \[
\begin{aligned}
& \text { Pro } \\
& 5
\end{aligned}
\] & Ser & Arg & Arg & Pro & \[
\begin{aligned}
& \text { Ala } \\
& 10
\end{aligned}
\] & Ser & Ser & Leu & Val & \[
\begin{aligned}
& \text { Asp } \\
& 15
\end{aligned}
\] & ro \\
\hline Leu & Pro & Leu & \[
\begin{aligned}
& \text { Thr } \\
& 20
\end{aligned}
\] & Gly & Lys & Leu & Pro & \[
\begin{aligned}
& \text { Ile } \\
& 25
\end{aligned}
\] & Gly & Ala & Ile & Arg & \[
\begin{aligned}
& \text { Leu } \\
& 30
\end{aligned}
\] & & Thr \\
\hline Ser & Arg & \[
\begin{aligned}
& \text { Pro } \\
& 35
\end{aligned}
\] & Ala & Ser & Trp & Arg & \[
\begin{aligned}
& \text { Thr } \\
& 40
\end{aligned}
\] & Thr & Pro & Met & & \[
\begin{aligned}
& \text { Val } \\
& 45
\end{aligned}
\] & Gly & Gly & Ser \\
\hline Leu & \[
\begin{aligned}
& \text { Leu } \\
& 50
\end{aligned}
\] & Val & Val & Gly & Ser & Phe 55 & Val & Trp & Val & Pro & \[
\begin{aligned}
& \text { Leu } \\
& 60
\end{aligned}
\] & Val & Ile & Trp & Leu \\
\hline \[
\begin{aligned}
& \text { Gly } \\
& 65
\end{aligned}
\] & Trp & Lys & Lys & Cys & \[
\begin{aligned}
& \text { Arg } \\
& 70
\end{aligned}
\] & Thr & Arg & Asn & Arg & \[
\begin{aligned}
& \text { Arg } \\
& 75
\end{aligned}
\] & Ile & Val & Tyr & Val & \[
\begin{aligned}
& \text { Leu } \\
& 80
\end{aligned}
\] \\
\hline Val & Leu & Cys & Val & \[
\begin{aligned}
& \text { Ile } \\
& 85
\end{aligned}
\] & Leu & Thr & Leu & Pro & \[
\begin{aligned}
& \text { Thr } \\
& 90
\end{aligned}
\] & Arg & Arg & Trp & Asp & \[
\begin{aligned}
& \text { Ala } \\
& 95
\end{aligned}
\] & Val \\
\hline Val & Leu & Asn & \[
\begin{aligned}
& \text { Gly } \\
& 100
\end{aligned}
\] & Leu & Trp & Ser & Arg & Phe
\[
105
\] & Val & Glu & Tyr & Phe & \[
\begin{aligned}
& \text { Ser } \\
& 110
\end{aligned}
\] & Val & Gln \\
\hline Val & Val & Gly & Asp & Asp & Pro & Leu & \[
\begin{aligned}
& \text { Pro } \\
& 120
\end{aligned}
\] & Lys & Asp & Arg & Ser & \[
\begin{aligned}
& \text { Ala } \\
& 125
\end{aligned}
\] & Val & Tyr & Ala \\
\hline Val & \[
\begin{aligned}
& \text { Ile } \\
& 130
\end{aligned}
\] & Pro & His & \[
\mathrm{Gl}_{\mathrm{Y}}
\] & Thr & Phe 135 & Pro & Phe & Gly & Leu & Gly & Val & Val & Ser & Leu \\
\hline \[
\begin{aligned}
& \text { Gly } \\
& 145
\end{aligned}
\] & Pro & Leu & Asn & Lys & \[
\begin{aligned}
& \text { Ile } \\
& 150
\end{aligned}
\] & Phe & Asn & Lys & Val & \[
\begin{aligned}
& \text { Arg } \\
& 155
\end{aligned}
\] & Pro & Val & Val & Ala & \[
\begin{aligned}
& \text { Ser } \\
& 160
\end{aligned}
\] \\
\hline Ala & Val & Leu & Arg & \begin{tabular}{l}
Phe \\
165
\end{tabular} & Pro & Gly & Phe & Gly & \[
\begin{aligned}
& \text { Gln } \\
& 170
\end{aligned}
\] & Leu & Ile & Gly & Phe & \[
\begin{aligned}
& \text { Ala } \\
& 175
\end{aligned}
\] & Gly \\
\hline Gly & Val & Asp & \[
\begin{aligned}
& \text { Ala } \\
& 180
\end{aligned}
\] & Gly & Pro & Lys & Glu & \[
\begin{aligned}
& \text { Val } \\
& 185
\end{aligned}
\] & Ser & Lys & Ala & Ile & \[
\begin{aligned}
& \text { Lys } \\
& 190
\end{aligned}
\] & Lys & Gly \\
\hline Cys & Ser & \[
\begin{aligned}
& \text { Val } \\
& 195
\end{aligned}
\] & Ser & Ile & Cys & Pro & \[
\begin{aligned}
& \text { Gly } \\
& 200
\end{aligned}
\] & Gly & Ile & Ala & Glu & \[
\begin{aligned}
& \text { Met } \\
& 205
\end{aligned}
\] & Phe & Trp & Gly \\
\hline Phe & \[
\begin{aligned}
& \text { Pro } \\
& 210
\end{aligned}
\] & Lys & Glu & Gly & Cys & Leu 215 & Pro & Arg & Glu & Glu & \[
\begin{aligned}
& \text { Tyr } \\
& 220
\end{aligned}
\] & Ala & Phe & Leu & Gln \\
\hline
\end{tabular}
Ser Arg Lys Gly Phe Ile Arg Met Ala Met Lys His Asn Val Pro Val

225230

                            240
Val Pro Val Tyr Cys Phe Gly Asn Thr His Ala Met His Lys Ala Lys 245250 ..... 255
Thr Pro Trp Val Leu Glu Ala Leu Ser Arg Leu Leu Lys Thr Ser Leu 260 ..... 265 ..... 270
Ile Leu Thr Trp Gly Arg Trp Gly Leu Pro Ile Pro Tyr Arg Val Pro ..... 285
Leu Leu Tyr Ala Val Gly Lys Pro Leu Arg Leu Leu His Ala Glu Asn 290 295 ..... 300
Pro Thr Pro Ala Gln Ile Glu Ala Ala His Ala Glu Phe Cys Arg Ala305310315320
Leu Ser Asp Leu Phe Asp Arg Tyr Lys Phe Tyr Tyr Gly Trp Gly His 325 ..... 330 ..... 335
Lys Thr Leu Arg Ile Val ..... 340
```

<210> 42
<211> 1585
<212> DNA
<213> Nannochloropsis oculata
<400> 42

```

```

<210> 43
<211> 1251
<212> DNA
<213> Nannochloropsis oculata
<400>43

```
atgggcgcta ccactgcgac ccagactaa aagacgttgg tcatgcggac agtcgcagtg
cgtaacgagg atatagtgcc ggaagcagcg acgggagacg gagcagcagg cgatgcaact
gctggtggcc tttctcgctc aacaccaaca gcggctccgg aggcctccac ttcgctttca
tcgcgactgg taccatcccc agcacaagtt tcatccatgc ccccagcaca agcttcagcc
acgcctattg tggtgcggcc cgaggcacgc cccgcaggtc cacaaggccg tctacaagca
ttaggtgcgg tgctattttt ggggctcatg gggtcgtcgc tgtacctagt gatcgcgtca
gcgctttaca tcgtgattgg tttcggtgtg ttgggccacc gcatttgccc ttcgatctta
ctcggggttt gggtaggaca agccctaatt tccgtcaagg tgctgcacca agacccggaa
ggtatcaagc ggtcgtggct tttccgagaa atggtgaact tttttgatgt gacactggtg
atggagcaga aattggacac ttccaagaag tacctatttg cacaacaccc gcacggtatc
cttcccctcg cccccgtgtt gtccgcttac tttgtctcgg acgtggtgcc cggcggaggc
aagatctttt gtttgataca tagcggcatc tttcacctgc ccatcgtccg ttttttcatg
ggtgaatggg gtgcactctc cgcaaacaag gagtctgtcg ccgaagcaaa gcaacaagga
cagcattgct ccatcgtcgt cggcggggtc gcggagattt tcctccaaaa cggagagacc
gagcaactgc aactcagaaa gggcttcatt cgtgaggcac ttcgtaatgg atatgacctt
gtgcccatgt ttcactttgg ggccacgcgc atgtatcatt ttgttggccc tgtttcattt
tggcggtcct tgtccaatta cctgccgttt ccctttttcc tcattggggg atggggaaaa
gggttgacct tgctccccaa acctgtgcgt attgtaattg ctgtcggttc gcccataggc
cttgcggctt tgtatggggt gccggaagga cagtcggtgc ctgatccaga cctggcgaaa
gtggatttga tatatgagga gtggaagaag cacttggcgg gcctgtatta tcggcagcgg
cctgagtggg aaacgcggga gttggagatt ttggactgtc cgaagtcgtg a
```

<210>44
<211>416
<212> PRT
<213> Nannochloropsis oculata
<400>44

```
```

Met Gly Ala Thr Thr Ala Thr Gln Thr Lys Lys Thr Leu Val Met Arg
1 5 10 15
Thr Val Ala Val Arg Asn Glu Asp Ile Val Pro Glu Ala Ala Thr Gly
20
2530

```
Asp Gly Ala Ala Gly Asp Ala Thr Ala Gly Gly Leu Ser Arg Ser Thr ..... 45
Pro Thr Ala Ala Pro Glu Ala Ser Thr Ser Leu Ser Ser Arg Leu Val 5055 ..... 60
Pro Ser Pro Ala Gln Val Ser Ser Met Pro Pro Ala Gln Ala Ser Ala
65 ..... 70 ..... 75 ..... 80
Thr Pro Ile Val Val Arg Pro Glu Ala Arg Pro Ala Gly Pro Gln Gly
```Arg Leu Gln Ala Leu Gly Ala Val Leu Phe Leu Gly Leu Met Gly Ser100105110
```

Ser Leu Tyr Leu Val Ile Ala Ser Ala Leu Tyr Ile Val Ile Gly Phe

```115120125
```

Gly Val Leu Gly His Arg Ile Cys Pro Ser Ile Leu Leu Gly Val Trp

```130135140
```

Val Gly Gln Ala Leu Ile Ser Val Lys Val Leu His Gln Asp Pro Glu 145150 ..... 155 ..... 160

```Gly Ile Lys Arg Ser Trp Leu Phe Arg Glu Met Val Asn Phe Phe Asp165170175
```

```
Val Thr Leu Val Met Glu Gln Lys Leu Asp Thr Ser Lys Lys Tyr Leu
 180 185 190
Phe Ala Gln His Pro His Gly Ile Leu Pro Leu Ala Pro Val Leu Ser
 195 200 205
Ala Tyr Phe Val Ser Asp Val Val Pro Gly Gly Gly Lys Ile Phe Cys
 210 215 220
Leu Ile His Ser Gly Ile Phe His Leu Pro Ile Val Arg Phe Phe Met
225 230 245
Gly Glu Trp Gly Ala Leu Ser Ala Asn Lys Glu Ser Val Ala Glu Ala
 245 250 255
 Lys Gln Gln Gly Gln His Cys Ser Ile Val Val Gly Gly Val Ala Glu
 260 265 270
Ile Phe Leu Gln Asn Gly Glu Thr Glu Gln Leu Gln Leu Arg Lys Gly
 275 280
 285
Phe Ile Arg Glu Ala Leu Arg Asn Gly Tyr Asp Leu Val Pro Met Phe
 290 295 300
His Phe Gly Ala Thr Arg Met Tyr His Phe Val Gly Pro Val Ser Phe
305 310 315320
```

Trp Arg Ser Leu Ser Asn Tyr Leu Pro Phe Pro Phe Phe Leu Ile Gly

```
Gly Trp Gly Lys Gly Leu Thr Leu Leu Pro Lys Pro Val Arg Ile Val
 340 345 350
Ile Ala Val Gly Ser Pro Ile Gly Leu Ala Ala Leu Tyr Gly Val Pro
 355
 360
 365
Glu Gly Gln Ser Val Pro Asp Pro Asp Leu Ala Lys Val Asp Leu Ile
Tyr Glu Glu Trp Lys Lys His Leu Ala Gly Leu Tyr Tyr Arg Gln Arg
385 390 395 400
Pro Glu Trp Glu Thr Arg Glu Leu Glu Ile Leu Asp Cys Pro Lys Ser
 405 410 415
```

<210> 45
<211> 1923
<212> DNA
<213> Nannochloropsis oculata
<400> 45


```
CcC
<210>46
<211> 930
<212> DNA
<213> Thraustochytrium aureum
<400> 46
```

atgtcgttcg ttgagcacag cgcggtggtg ctcgtgcttg cctttgtgat gggcggcgca
ctgtactggt cctgggccgg gctcgcggtg ctcatctggg ggtcgtggtc gcaggtggct
acttatgtg tgctgacggc tgtgctggcc ctgcacccga tcccggacat ctcggatgcc
gtgtacagct cgtggatcgt gcagcaattg tacaagtact ttacctaccg ctttgtgtac
tcggggaacg cgcgcgtact agcgcagacg caggcgccgt tcatcggcgc aggcgtcccg
cacggcgcga tgccgttctc caacctgctc tcagtccctg ctgtcaactc gttttctccg
agccagaccg ggggcgaatt tgtcggggcg ccggcgagca ttgtgttccg cacgcctttc
ctgcgctact ttaccatgtt caagtcggtc acggtgtcac gcgagagcct caccaaacag
ctggagctcg ggaacacggt tggcctggtt ggcgatggca tcgctgggat cttccaatgc
gaccacaacg acgaggtcgt tgcgctccgg acgcgcaagg ggctcgcaaa actggcgctg
cgaacggggc ggcccgtttt gccctgctac agcttgggaa acacggaagc gtttagcgtt
tggtttgacc gctggggcgt catggagcgc ctctcgcgca agctgcaggc gagcgtgttt
ttctactggg gcaggtacgg cctccctgtt ccgtaccgtg tcaatatcac gatgatcctc
ggcgacatgg tcctcgtcga ccaggtcgag aacccgacgc cggcacaggt cgatgcagtg
cacgagcgca ttcttgcgtc catcgagaac gccttcaatc ggcacaaggc cgcccttggt
tggggccaca agacgatgcg atttgtgtag

```
<210>47
<211> }30
<212> PRT
<213> Thraustochytrium aureum
<400> 47
```

Met Ser Phe Val Glu His Ser Ala Val Val Leu Val Leu Ala Phe Val 150 ..... 15
Met Gly Gly Ala Leu Tyr Trp Ser Trp Ala Gly Leu Ala Val Leu Ile202530
Trp Gly Ser Trp Ser Gln Val Ala Thr Tyr Val Val Leu Thr Ala Val ..... 35
40 ..... 45
Leu Ala Leu His Pro Ile Pro Asp Ile Ser Asp Ala Val Tyr Ser Ser ..... 50
55 ..... 60

```
Trp Ile Val Gln Gln Leu Tyr Lys Tyr Phe Thr Tyr Arg Phe Val Tyr
Ser Gly Asn Ala Arg Val Leu Ala Gln Thr Gln Ala Pro Phe Ile Gly
 85 90 95
Ala Gly Val Pro His Gly Ala Met Pro Phe Ser Asn Leu Leu Ser Val
 100
 105
 110
Pro Ala Val Asn Ser Phe Ser Pro Ser Gln Thr Gly Gly Glu Phe Val
 115 120 125
Gly Ala Pro Ala Ser Ile Val Phe Arg Thr Pro Phe Leu Arg Tyr Phe
Thr Met Phe Lys Ser Val Thr Val Ser Arg Glu Ser Leu Thr Lys Gln
145 150 155 160
Leu Glu Leu Gly Asn Thr Val Gly Leu Val Gly Asp Gly Ile Ala Gly
Ile Phe Gln Cys Asp His Asn Asp Glu Val Val Ala Leu Arg Thr Arg
Lys Gly Leu Ala Lys Leu Ala Leu Arg Thr Gly Arg Pro Val Leu Pro
Cys Tyr Ser Leu Gly Asn Thr Glu Ala Phe Ser Val Trp Phe Asp Arg
 210 215 220
Trp Gly Val Met Glu Arg Leu Ser Arg Lys Leu Gln Ala Ser Val Phe
225 230 240
Phe Tyr Trp Gly Arg Tyr Gly Leu Pro Val Pro Tyr Arg Val Asn Ile
 245 250 255
Thr Met Ile Leu Gly Asp Met Val Leu Val Asp Gln Val Glu Asn Pro
 260
 265
 270
Thr Pro Ala Gln Val Asp Ala Val His Glu Arg Ile Leu Ala Ser Ile
 275 280 285
Glu Asn Ala Phe Asn Arg His Lys Ala Ala Leu Gly Trp Gly His Lys
Thr Met Arg Phe Val
305
```

```
<210>48
<211> 1134
<212> DNA
<213> Thraustochytrium aureum
<400>48
```

aagcgtttag cgtttggttt gaccgagcag gcgccaatgt cgttcgttga gcacagcgcg
gtggtgctcg tgcttgcctt tgtgatgggc ggcgcactgt actggtcctg ggccgggctc
gcggtgctca tctgggggtc gtggtcgcag gtggctactt atgtggtgct gacggctgtg
ctggccctgc acccgatccc ggacatctcg gatgccgtgt acagctcgtg gatcgtgcag
caattgtaca agtactttac ctaccgcttt gtgtactcgg ggaacgcgcg cgtactagcg
cagacgcagg cgccgttcat cggcgcaggc gtcccgcacg gcgcgatgcc gttctccaac
ctgctctcag tccctgctgt caactcgttt tctccgagcc agaccggggg cgaatttgtc
ggggcgccgg cgagcattgt gttccgcacg cctttcctgc gctactttac catgttcaag
tcggtcacgg tgtcacgcga gagcctcacc aaacagctgg agctcgggaa cacggttggc
ctggttggcg atggcatcgc tgggatcttc caatgcgacc acaacgacga ggtcgttgcg
ctccggacgc gcaaggggct cgcaaaactg gcgctgcgaa cggggcggcc cgttttgccc
tgctacagct tgggaaacac ggaagcgttt agcgtttggt ttgaccgctg gggcgtcatg
gagcgcctct cgcgcaagct gcaggcgagc gtgtttttct actggggcag gtacggcctc
cctgttccgt accgtgtcaa tatcacgatg atcctcggcg acatggtcct cgtcgaccag
gtcgagaacc cgacgccggc acaggtcgat gcagtgcacg agcgcattct tgcgtccatc
gagaacgcct tcaatcggca caaggccgcc cttggttggg gccacaagac gatgcgattt
gtgtaggagg tgctgtttgc caacaccaca cttggcctgg cctgggatgc ggctgggcca
atcgtttcgg tcgatcgcgc tcgagctcga gctactcgag agtcaccgcc gagcgaggca
gccataaaga gtcgaacgaa aatagcaaaa tgtgcaattc accaaaaaaa aaaa

```
<210>49
<211> 1179
<212> DNA
<213> Thraustochytrium aureum
<400>49
```

atggtcttcc tctgccttcc ctacatgctc cccgaagcgc tgctcccttt cttggacacg
gcgacgctag gcctcatccc ggccctgccc ggagacaagg agaactttgt ccacacgttt
gccgtgtggt ggacgctctt gtgggcgatt gcgttttgga cgatctttta cgccgcgctc
aagaattggg gcgtgcgagg gtggcggctc agcctggcgc tcgctgtctt cgcggtctgc
tcgttcggcg gcactctgcg gtaccactcg gagagcccac actacccgat ggcggttctc
atctgctcgc tcaactttgt ctacatctcc actacgttca ccaagaagcc agagtccaac
gcgtgccggg agtggcccga gctgcgcgag ctgcgcatct tgcccgacat gtttgagcgc
ttcttcggcc tgcaggtcct gctcaccgac ggtgccaagc gcgtcgcgca catgctgggc
gacgagtcga gcgcagaccc gcggatgcgc caggtaatgc tcctcttcca cccgcacagc
atcttcccag tctcgcacgc ggcgctgggt ctcacttcgc tctggcgctc gcactttccc
cacctctcgg tcaaccccct aacagcgagc attatccact ttgtgccggt catgcgcgac
gttttgcagt ggctcggcat ctgcgacgtc tccaaagcga gcgtggtcaa cctcatcggc
atggggcgca acgtccagat cgtgtgcggc gggcagaccg agatgttcga gtcccgctcc
tgggacaagg agatttctgt ggtgcgggcg cgccgccttg gcgttttcaa gatcgccatc
cagcagggcc tcggtatcgt gccgatttac agcttcggag agccgctcac ctttgacaac
atatacatgc cccgcttgca aaacttttgc aagcgcgtgc tcggcttccc ctgcccgttc
gtgatgctcg gtcagtacgg ccttcccatt ccgcgccgcg tcccaatttc ggtggctgtt
ggcgagcccg tctttcctgc tcggcagacc gccgatcctt cgctcgagga ggtcaaagag
tttcacagac gttactttga ggccctgcag gccctgtttg accagttcaa ggaccaggcc
gggcacggcc agtgtagcat caagtggctg gactcgtag

```
<210> 50
<211> }39
<212> PRT
<213> Thraustochytrium aureum
<400> 50
```

Met Val Phe Leu Cys Leu Pro Tyr Met Leu Pro Glu Ala Leu Leu ProPhe Leu Asp Thr Ala Thr Leu Gly Leu Ile Pro Ala Leu Pro Gly Asp20
25
30
Lys Glu Asn Phe Val His Thr Phe Ala Val Trp Trp Thr Leu Leu Trp ..... 35 ..... 40 ..... 45
Ala Ile Ala Phe Trp Thr Ile Phe Tyr Ala Ala Leu Lys Asn Trp Gly 50 ..... 55 ..... 60
Val Arg Gly Trp Arg Leu Ser Leu Ala Leu Ala Val Phe Ala Val Cys
6570 ..... 75
80
Ser Phe Gly Gly Thr Leu Arg Tyr His Ser Glu Ser Pro His Tyr Pro ..... 85 ..... 90 ..... 95
Met Ala Val Leu Ile Cys Ser Leu Asn Phe Val Tyr Ile Ser Thr Thr 100 ..... 105 ..... 110
Phe Thr Lys Lys Pro Glu Ser Asn Ala Cys Arg Glu Trp Pro Glu Leu 115 ..... 120 ..... 125


Asp Glu Ser Ser Ala Asp Pro Arg Met Arg Gln Val Met Leu Leu Phe 165170175

His Pro His Ser Ile Phe Pro Val Ser His Ala Ala Leu Gly Leu Thr $\begin{array}{r}180 \\ 180\end{array}$ Ser Leu Trp Arg Ser His Phe Pro His Leu Ser Val Asn Pro Leu Thr 195200205

Ala Ser	Ile Ile His Phe Val Pro Val Met Arg Asp Val Leu Gln Trp
210	215

Leu Gly Ile Cys Asp Val Ser Lys Ala Ser Val Val Asn Leu Ile Gly
225

Met Gly Arg Asn Val Gln Ile Val Cys Gly Gly Gln Thr Glu Met Phe $\begin{array}{r}245 \\ 250\end{array}$ Glu Ser Arg Ser Trp Asp Lys Glu Ile Ser Val Val Arg Ala Arg Arg Leu Gly Val Phe Lys Ile Ala Ile Gln Gln Gly Leu Gly Ile Val Pro Ile Tyr Ser Phe Gly Glu Pro Leu Thr Phe Asp Asn Ile Tyr Met Pro
290
295

Arg Leu Gln Asn Phe Cys Lys Arg Val Leu Gly Phe Pro Cys Pro Phe	
305	310
315	320

Val Met Leu Gly Gln Tyr Gly Leu Pro Ile Pro Arg Arg Val Pro Ile
325

Ser Val Ala Val Gly Glu Pro Val Phe Pro Ala Arg Gln Thr Ala Asp 340 345 350

Pro Ser Leu Glu Glu Val Lys Glu Phe His Arg Arg Tyr Phe Glu Ala Leu Gln Ala Leu Phe Asp Gln Phe Lys Asp Gln Ala Gly His Gly Gln Cys Ser Ile Lys Trp Leu Asp Ser

```
<210> 51
<211> 1303
<212> DNA
<213> Thraustochytrium aureum
<400> 51
```



```
<210> 52
<211> 1389
<212> DNA
<213> Thraustochytrium aureum
<400> 52
```

atgtttcttc gcatcgaacg ggaatggcga gaggaggacg agtgggccaa gcaggagccc
ggcgttgtct ccacgatgat ctggaccccg atcctgatcg ggctccgctg cttcaacatc
tggctctccg tggttacctg gccgctctcg tttctggctc gcgtcgtttt cggcatggag
atgaagaagg cgagcttctg ggacgtccct ctggagcggc gcaagcagac ggtggcagtt
gcgggcttcg tgatgctgct cccctgcgtg ctgcttgcgt acgtctggtc gcttgtgctg
ctcgttttcc cgctgacgac gctgccaatg ctcgggtact acatctggat cttcaagatc
gacaagagcc ccgagaacgg gcagcgcacg ccgttcctgc gttactggtc ggcgtggcgc
cacttcgcct cctacttccc gctgcgcctc atcaagacgc acaacctcga cccgagccgc
aagtacgtct tcgcgtacca cccgcacggc atcatcagca ttggcgcgtt cggcaacttt
gccaccaacg cgacggggtt tagccgcaag tttcccggaa tcgacctccg cctcctcacc
ttggaaatga acttttggtg cccctggatc cgcgagttcc tgctgagcat gggcgtctgc
tcagccgcca agcggtcctg caacaagatt ctcagcaagg ggcccggaag cgccatcatg
ctggtcgttg gcggcgccgc cgagtcgctc gacacggagc ccggcaccta caggctcacg
ttgggccgca agggctttat ccgcgtcgcg ctcgacaacg gggccgacct cgtgcctgtg
ctcgccttcg gggagaacga catctttgac accatctact acgagtccgg caccgtgatg
cgcaagatcc aggaggtcgt gcgcaagcgc ctcggctttg ccacccctgt tttttccggc
cgcggcttct tcaactacag ctttggcttc ctcccgcacc ggcgcccggt cattgtcgtc
tgcgggcgcc ctatcaaggt cccaaaactc ccggaacacc tgcgcggctc ggcgctctcg
accacccctg aaggcgtcgc gcttgtcgac cagtaccacc aaaagtacgt cgccgagctg
cgccgcgtgt gggacctcta caagtccaag tgggccgtct cgcgggcaga gtcgctcatg
atcaaggggtg tgcaaaaccc ggcgctcccg cgctccccgt cgcgccgcat cccgccggcg

```
<210> 53
<211>462
<212> PRT
<213> Thraustochytrium aureum
<400> 53
```

Met Phe Leu Arg Ile Glu Arg Glu Trp Arg Glu Glu Asp Glu Trp Ala 1 ..... 5
10 ..... 15
Lys Gln Glu Pro Gly Val Val Ser Thr Met Ile Trp Thr Pro Ile Leu 20 ..... 25 ..... 30
Ile Gly Leu Arg Cys Phe Asn Ile Trp Leu Ser Val Val Thr Trp Pro

            35
    
                                    40 ..... 45
    Leu Ser Phe Leu Ala Arg Val Val Phe Gly Met Glu Met Lys Lys Ala
50
50 ..... 50 ..... 55 ..... 60
Ser Phe Trp Asp Val Pro Leu Glu Arg Arg Lys Gln Thr Val Ala Val $65 \quad 70$ ..... 80
Ala Gly Phe Val Met Leu Leu Pro Cys Val Leu Leu Ala Tyr Val Trp $8590 \quad 95$
Ser Leu Val Leu Leu Val Phe Pro Leu Thr Thr Leu Pro Met Leu Gly 100 105 ..... 110
Tyr Tyr Ile Trp Ile Phe Lys Ile Asp Lys Ser Pro Glu Asn Gly Gln 115 ..... 120 ..... 125
$\begin{array}{rl}\text { Arg Thr Pro Phe Leu Arg Tyr Trp Ser Ala Trp Arg His Phe Ala Ser } \\ 130 & 135\end{array}$
Tyr Phe Pro Leu Arg Leu Ile Lys Thr His Asn Leu Asp Pro Ser Arg$145150 \quad 155 \quad 160$
Lys Tyr Val Phe Ala Tyr His Pro His Gly Ile Ile Ser Ile Gly Ala $\begin{array}{r}175 \\ 165\end{array}$
Phe Gly Asn Phe Ala Thr Asn Ala Thr Gly Phe Ser Arg Lys Phe Pro180185190
$\begin{array}{cc}\text { Gly Ile Asp Leu Arg Leu Leu Thr Leu Glu Met Asn Phe Trp Cys Pro } \\ 195 & 200\end{array}$ ..... 205
Trp Ile Arg Glu Phe Leu Leu Ser Met Gly Val Cys Ser Ala Ala Lys 210 215 ..... 220
Arg Ser Cys Asn Lys Ile Leu Ser Lys Gly Pro Gly Ser Ala Ile Met 225230235 ..... 240
Leu Val Val Gly Gly Ala Ala Glu Ser Leu Asp Thr Glu Pro Gly Thr245250255
Tyr Arg Leu Thr Leu Gly Arg Lys Gly Phe Ile Arg Val Ala Leu Asp $\begin{array}{r}\text { Aly } \\ 260\end{array}$
Asn Gly Ala Asp Leu Val Pro Val Leu Ala Phe Gly Glu Asn Asp Ile275280285
Phe Asp Thr Ile Tyr Tyr Glu Ser Gly Thr Val Met Arg Lys Ile Gln
290 290 ..... 300
Glu Val Val Arg Lys Arg Leu Gly Phe Ala Thr Pro Val Phe Ser Gly305310315320

Arg Gly Phe Phe Asn Tyr Ser Phe Gly Phe Leu Pro His Arg Arg Pro 325

330
335

Val Ile Val Val Cys Gly Arg Pro Ile Lys Val Pro Lys Leu Pro Glu 340 345 350

His Leu Arg Gly Ser Ala Leu Ser Thr Thr Pro Glu Gly Val Ala Leu 355360365

Val Asp Gln Tyr His Gln Lys Tyr Val Ala Glu Leu Arg Arg Val Trp 370

375 380

Asp Leu Tyr Lys Ser Lys Trp Ala Val Ser Arg Ala Glu Ser Leu Met
385 Ile Lys Gly Val Gln Asn Pro Ala Leu Pro Arg Ser Pro Ser Arg Arg Ile Pro Pro Ala Gln Arg Val Pro Ala Ser Ala Ala Ser Leu Ser Phe 420 425 430

Arg Glu Val Asp Glu Ala Glu Phe Glu Ala Lys Glu Asp Gly Ala Thr 435440445

```
Ser Ser Pro Gln Ser Met Ser Ala Ala Leu Tyr Thr Glu Gly 450455460
```

```
<210> 54
<211> 1547
<212> DNA
<213> Thraustochytrium aureum
<400> 54
```



```
<210> 55
<211> 1977
<212> DNA
<213> Nannochloropsis oculata
<400> 55
```

atgccatccc gcagcaccat tgaggtcatt aaggccgata agaaccagaa taatctggcg
tatggcctga ttgttgtcat cctcctggcc attgacccca accccgtcaa agtcatcgcc
gcctctctcg gcatcccctc tcgatggttc gcctacccct gcctggtcat gcttggccac
ctattcctca cccactccca ggaatttctc tacgacggcg tccgggtctt cttccgctcc
atcctttcga tcttcttccg tcaagtcgac attgtgggca tcgacaacat cccgaaacac
ggccctgtca tcttctccgg gaaccactcg aaccaatttg tcgacgggat catggtcctc
accaccgccc aacaccgcgt cggcttcctt atcgccgaaa agtcctacaa ccaccctgtt
gtcggcacat ttgcaaaact cgcgggcgcc gtgcccgtca cccgccctca agacagcgct
aagctcatgc aaggtaccat tatcatgtcc ggccgctctg tcaagggaca aggaaccgcc
tttagtcacg agctcgtccc cggcgacaag ctacgtctaa aaggtggtgc tgatcaattc
aaagtcgagt ccatcacctc cgataccgag ctgatgctct ccgagaacgg cccccttcct
cccccctcct ctacctccgc ctcgcccttt gaaaaactag ggaaggtgga ccagacccgt
gtctacaatg ccgtgttcga gcaccttaag cacgggaaat gcatcggtat cttccccgaa
ggcggctcgc acgatcggac agacctccta cccctcaagg tagggattgc actcatcgcc
tgcggcatgg tcgataaata caatatcaca gtgcccatcg tccccgtggg tttgaactac
ttccgaggcc accggtttcg tggacgggtg gtagtagaat tcgggccagc aattcgcgtg
ccggaagagt tggcggagtt gtacaagacc aatcgacgcg aggcgtatca ccagtttctg
accaacgtgg aggaagggat gcgggcgacg cttgtgacgg cgcctgatta ccacgcgttg
catttggtgt acacggcacg gaggttattt cagaaggata attggattcc gagcccacgg
gagaagatgg atttgaaccg gcggtttgcc gaggggtata aaattttgat gaataagtat
ggggagcaga ggccggcggc gttggtggag ttggagagga ggttgaatga ttaccaaaaa
actctgcata cgttgggttt gagggattac caagtgccga cgttggagga ggatgataac
ttaaagttgt gttacacgat agcgcatttg tttttggtgt tgacgctggc gatgatgccg
agcttggtgt tgaacgcgcc ggtggggttg attgcccgga ttgtttcgag tcgggagcag
aaaaaggcct tggcggcgtc ccgggtaaag atcgaggcga gggatgtggt tatgagcaaa
aaaatcacgt tgtcgattgt cttggttccg accctatgga tcgtgtacgc catcctcctc
cttcggtaca cctccctcca gccctccacc gtcgccgtgc tcttcttctc ctgtcccctc
ttttcctatc ttggggtcat ggccacagaa gctggcatgg ttgacgccaa ggatctcaaa
cccgtcgtta tgcgtctttt acccggagct cgtaagaaaa tggcgaccct ccctgcggag
cgcgcgcagc tacaaagaga aatccgcgcc tacatacacc agatcggccc tgaacttggg
agtctctaca ccgacaaaac cgtcaagtgg gaagaatacg tccgcaagtc ctcatcggcg
gctgacttgc aatcgttgtt gaacgaagcg acccaaccca agatgcaagg aagtcagacg
gaaggaggga atggtggaga aaaaggggga aggaaggggg aagaggagct tgtctga

```
<210> 56
<211>658
<212> PRT
<213> Nannochloropsis oculata
<400> 56
```

Met Pro Ser Arg Ser Thr Ile Glu Val Ile Lys Ala Asp Lys Asn Gln 1

Asn Asn Leu Ala Tyr Gly Leu Ile Val Val Ile Leu Leu Ala Ile Asp 2025 30

Pro Asn Pro Val Lys Val Ile Ala Ala Ser Leu Gly Ile Pro Ser Arg 35 40 45

Trp Phe Ala Tyr Pro Cys Leu Val Met Leu Gly His Leu Phe Leu Thr 50

55 60

His Ser Gln Glu Phe Leu Tyr Asp Gly Val Arg Val Phe Phe Arg Ser $65 \quad 70 \quad 750$

Ile Leu Ser Ile Phe Phe Arg Gln Val Asp
85
90

```
Ile Pro Lys His Gly Pro Val Ile Phe Ser Gly Asn His Ser Asn Gln
 100 105 110
```

Phe Val Asp Gly Ile Met Val Leu Thr Thr Ala Gln His Arg Val Gly
115
120
125
Phe Leu Ile Ala Glu Lys Ser Tyr Asn His Pro Val Val Gly Thr Phe
130135140
Ala Lys Leu Ala Gly Ala Val Pro Val Thr Arg Pro Gln Asp Ser Ala
$145150 \quad 155 \quad 160$
Lys Leu Met Gln Gly Thr Ile Ile Met Ser Gly Arg Ser Val Lys Gly
165170175
$\begin{array}{cc}\text { Gln Gly Thr Ala Phe Ser His Glu Leu Val Pro Gly Asp } \\ 180 & 185 \\ 190\end{array}$
Leu Lys Gly Gly Ala Asp Gln Phe Lys Val Glu Ser Ile Thr Ser Asp
195200205
Thr Glu Leu Met Leu Ser Glu Asn Gly Pro Leu Pro Pro Pro Ser Ser
210215220
Thr Ser Ala Ser Pro Phe Glu Lys Leu Gly Lys Val Asp Gln Thr Arg
225230235240
Val Tyr Asn Ala Val
245 Phe Glu His Leu Lys His Gly Lys Cys Ile Gly $\begin{gathered}250 \\ 250\end{gathered}$
Ile Phe Pro Glu Gly Gly Ser His Asp Arg Thr Asp Leu Leu Pro Leu
260
265270
Lys Val $\begin{array}{r}\text { Gly } \\ 275\end{array}$ Ile Ala Leu Ile Ala Cys Gly Met Val Asp Lys Tyr Asn
280
Ile Thr Val Pro Ile Val Pro Val Gly Leu Asn Tyr Phe Arg Gly His
290
295
300

Arg Phe Arg Gly Arg Val Val Val Glu Phe Gly Pro Ala Ile Arg Val 30533103150

Pro Glu Glu Leu Ala Glu Leu Tyr Lys Thr Asn Arg Arg Glu Ala Tyr 325330335


EP 2585603 B1
Lys Trp Glu Glu Tyr Val Arg Lys Ser Ser Ser Ala Ala Asp Leu Gln 610615
620
Ser Leu Leu Asn Glu Ala Thr Gln Pro Lys Met Gln Gly Ser Gln Thr 625630635 ..... 640
Glu Gly Gly Asn Gly Gly Glu Lys Gly Gly Arg Lys Gly Glu Glu Glu645650655
Leu Val

```
<210> 57
<211> 2460
<212> DNA
<213> Nannochloropsis oculata
<400> 57
```

attttcagca aagtaatcaa gataataaac aaaacaatc ctataaagga aaaacaacag
gcacgcgtcc tgaggtgccg gtgcctgtaa ttttcctcct tgggactgtc ggccatcgtc
aggaacaagc gcggccacca gggctcattt cgaatcaagc acatccgttc cacacccggg
caacaaaacc atgccatccc gcagcaccat tgaggtcatt aaggccgata agaaccagaa
taatctggcg tatggcctga ttgttgtcat cctcctggcc attgacccca accccgtcaa
agtcatcgcc gcctctctcg gcatcccctc tcgatggttc gcctacccct gcctggtcat
gcttggccac ctattcctca cccactccca ggaatttctc tacgacggcg tccgggtctt
cttccgctcc atcctttcga tcttcttccg tcaagtcgac attgtgggca tcgacaacat
cccgaaacac ggccctgtca tcttctccgg gaaccactcg aaccaatttg tcgacgggat
catggtcctc accaccgccc aacaccgcgt cggcttcctt atcgccgaaa agtcctacaa
ccaccctgtt gtcggcacat ttgcaaaact cgcgggcgcc gtgcccgtca cccgccctca
agacagcgct aagctcatgc aaggtaccat tatcatgtcc ggccgctctg tcaagggaca
aggaaccgcc tttagtcacg agctcgtccc cggcgacaag ctacgtctaa aaggtggtgc
tgatcaattc aaagtcgagt ccatcacctc cgataccgag ctgatgctct ccgagaacgg
cccccttcct cccccctcct ctacctccgc ctcgcccttt gaaaaactag ggaaggtgga
ccagacccgt gtctacaatg ccgtgttcga gcaccttaag cacgggaaat gcatcggtat
cttccccgaa ggcggctcgc acgatcggac agacctccta cccctcaagg tagggattgc
actcatcgcc tgcggcatgg tcgataaata caatatcaca gtgcccatcg tccccgtggg
tttgaactac ttccgaggcc accggtttcg tggacgggtg gtagtagaat tcgggccagc
aattcgcgtg ccggaagagt tggcggagtt gtacaagacc aatcgacgcg aggcgtatca
ccagtttctg accaacgtgg aggaagggat gcgggcgacg cttgtgacgg cgcctgatta
ccacgcgttg catttggtgt acacggcacg gaggttattt cagaaggata attggattcc
gagcccacgg gagaagatgg atttgaaccg gcggtttgcc gaggggtata aaattttgat
gaataagtat ggggagcaga ggccggcggc gttggtggag ttggagagga ggttgaatga
ttaccaaaaa actctgcata cgttgggttt gagggattac caagtgccga cgttggagga
ggatgataac ttaaagttgt gttacacgat agcgcatttg tttttggtgt tgacgctggc
gatgatgccg agcttggtgt tgaacgcgcc ggtggggttg attgcccgga ttgtttcgag
tcgggagcag aaaaaggcct tggcggcgtc ccgggtaaag atcgaggcga gggatgtggt
tatgagcaaa aaaatcacgt tgtcgattgt cttggttccg accctatgga tcgtgtacgc
catcctcctc cttcggtaca cctccctcca gccctccacc gtcgccgtgc tcttcttctc
ctgtcccctc ttttcctatc ttggggtcat ggccacagaa gctggcatgg ttgacgccaa
ggatctcaaa cccgtcgtta tgcgtctttt acccggagct cgtaagaaaa tggcgaccct
ccctgcggag cgcgcgcagc tacaaagaga aatccgcgcc tacatacacc agatcggccc
tgaacttggg agtctctaca ccgacaaaac cgtcaagtgg gaagaatacg tccgcaagtc
ctcatcggcg gctgacttgc aatcgttgtt gaacgaagcg acccaaccca agatgcaagg
aagtcagacg gaaggaggga atggtggaga aaaaggggga aggaaggggg aagaggagct
tgtctgatac gtcaccgaaa ttgtcgcatg cgatgaatgg aagagagacg ccgccaccag
ttaagatgac tcaaaacccg ctggtgacgg ggaagaagga tgcataggag ggattatgag
ggagggaggg cagggtggat gagttagaat tcgatgcaca tagagaagga tgttcctggc
tgggactgta aattggttag ggttaatatt gtgtgtgctg catcgtcttt gtcacgtacg
tgaaaggaaa cggaaaggaa aaaaagtgga atacaagaca aaaaaaaaaa aaaaaaaaaa

```
<210> 58
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 58
```

ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa
accccggatc ggcgcgccac catggacaag gcactggcac cgtt

```
<210> 59
<211> 101
<212> DNA
```

```
<213> Artificial
<220>
<223> Primer
<400> 59
```

```
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt ccttttcggt 60
tagagcggat ttaattaact aaactttctt ccttccctct a 101
<210> 60
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 60
```

ataaaagtat caacaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 60
accocggatc ggcgcgccac catgaccacg actgtcatct ctag 104
<210> 61
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 61
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt ccttttcggt 60
tagagcggat ttaattaatc aaagcctccc gcacaacgag c 101
<210> 62
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 62
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 60
accccggatc ggcgcgccac catggagggc atcgagtcga tagt 104
<210> 63

```
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 63
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt 60
tagagcggat ttaattaact ataaggcttc tcccggcgcg g 101
<210> 64
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 64
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 60
accccggatc ggcgcgccac catgaagacg cccacgagcc tggc 104
<210> 65
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 65
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt ccttttcggt
tagagcggat ttaattaatt aagctctcga atcgtccttc t 101
<210> 66
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 66
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa
accccggatc ggcgcgccac catggtcagg aggaagatgg acgt 104
<210> 67
```

```
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> }6
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt ccttttcggt 60
tagagcggat ttaattaatc acgacgccgg cgccttgcag t 101
<210> 68
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 68
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa60
accccggatc ggcgcgccac catggcaccc tccccaccgg cccc 104
<210> 69
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 69
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt 60
tagagcggat ttaattaatc atttgaccac taaggtggcc t 101
<210> 70
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400>}7
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 60
accccggatc ggcgcgccac catgggtcta tttggcagcg ggat 104
```

```
<210> }7
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> }7
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt ccttttcggt 60
tagagcggat ttaattaact aaaagaaatt caacgtccga t 101
<210> 72
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 72
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa }6
accccggatc ggcgcgccac catgttgagt atccccgagt cgtc 104
<210>73
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400>73
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt 60
tagagcggat ttaattaact aaaagaaatc cagctccctg t 101
<210> 74
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 74
```

ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa ..... 60

accecggatc ggcgcgecac catgacgecg caagccgata tcac 104

```
<210> 75
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400>75
```

aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt ccttttcggt 60
tagagcggat ttaattaatt actcaatgga caacgggcgc g 101
<210> 76
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 76
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 60
accecggatc ggcgcgecac catggcttac ctcttccgtc gtcg 104
<210> 77
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 77
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt 60
tagagcggat ttaattaatt aggcgatcgc aatgaactcc t 101
<210> 78
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 78

```
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa
<210> 79
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400>79
```

aactataaa aaataaatag ggacctagac ttcaggttgt ctaactcctt ccttttcggt 60
tagagcggat ttaattaatc acccgaaaat atcctccttc t 101
<210> 80
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 80
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 60
accccggatc ggcgcgecac catggccaag gctaacttcc cgcc 104
<210> 81
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 81
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt 60
tagagcggat ttaattaatc actttataag cagcttcttg t 101
<210> 82
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer

```
<400> }8
```

```
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 60
accccggatc ggcgcgccac catgttgttg cagggattaa gctg 104
<210> }8
<211> }10
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 83
```

aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt 60
tagagcggat ttaattaatc acaacaggac caatttatga t 101
<210> 84
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 84
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 60
accccggatc ggcgcgccac catgttgatg gcgccgtcgc ggcg 104
<210> 85
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 85
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt ccttttcggt 60
tagagcggat ttaattaatc agacgatgcg aagcgtcttg t 101
<210> 86
<211> 104
<212> DNA
<213> Artificial
<220>

```
<223> Primer
<400> 86
\begin{tabular}{lr}
ataaaagtat caacaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa & 60 \\
accocggatc ggcgcgccac catgggegct accactgcga ccca & 104
\end{tabular}
```

```
<210> 87
```

<210> 87
<211> 101
<211> 101
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Primer
<223> Primer
<400> }8
<400> }8
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt 60
tagagcggat ttaattaatc acgacttcgg acagtccaaa a 101
<210> 88
<210> 88
<211> 104
<211> 104
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Primer
<223> Primer
<400> 88
<400> 88
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa60
accccggatc ggcgcgccac catgtcgttc gttgagcaca gcgc 104
<210> 89
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 89
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt ccttttcggt 60
tagagcggat ttaattaact acacaaatcg catcgtcttg t 101
<210> 90
<211> 104
<212> DNA
<213> Artificial

```
```

<220>
<223> Primer
<400> 90

```60
```

ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa

```
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa
accccggatc ggcgcgccac catggtcttc ctctgccttc ccta 104
accccggatc ggcgcgccac catggtcttc ctctgccttc ccta 104
<210> }9
<210> }9
<211> 101
<211> 101
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Primer
<223> Primer
<400> }9
<400> }9
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt 60
tagagcggat ttaattaact acgagtccag ccacttgatg c 101
<210> 92
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 92
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 60
accccggatc ggcgcgccac catgtttctt cgcatcgaac ggga 104
<210> 93
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 93
\begin{tabular}{lr}
aactataaa aataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt & 60 \\
tagagcggat ttaattaact aaccctcggt gtacagcgcc \(g\) & 101
\end{tabular}
<210> 94
<211> 104
<212> DNA
```

```
<213> Artificial
<220>
<223> Primer
<400> 94
ataaaagtat caacaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa
<210> 95
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 95
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt 60
tagagcggat ttaattaatc agacaagctc ctcttccccc t 101
<210> 96
<211> 1197
<212> DNA
<213> Phytophtora sojae
<400> 96
atggcaattc tgaatccgga agcagatagc gcagcaaatc tggcaaccga ttcagaagca 60
aaacagcgtc agctggccga agcaggttat acccatgttg aaggtgcacc ggcaccgctg 120
```

ccgctggaac tgccgcattt ttcactgcgt gatctgcgtg cagcaattcc gaacattgt
tttgaacgta gctttgttac cagcacctat tatatgatta aaacgtgct gacctgcgca
gcactgtttt atgcagcaac ctttattgat cgtgctggtg cagcagccta tgttctgtgg
cctgtttatt ggttttttca gggttcatat ctgaccggtg tttgggttat tgcacatgaa
tgtggtcatc aggcctattg tagctcagaa gttgtgaata atctgattgg tctggttctg
cattcagcac tgctggttcc gtatcattct tggcgtatta gccatcgtaa acatcattca
aataccggta gctgcgaaaa tgatgaagtt tttgttccgg ttacccgtag cgttctggca
agcagctgga atgaaaccct ggaagatagt ccgctgtatc agctgtatcg tattgtttat
atgctggttg ttggttggat gccgggttac ctgtttttta atgcaaccgg tccgaccaaa
tattggggta aatcacgtag ccattttaat ccgtatagcg caatttatgc cgatcgtgaa
cgttggatga ttgttctgtc agatattttt ctggttgcaa tgctggcagt tctggcagca
ctggttcata cctttagctt taatacgatg gtgaagtttt atgtggtgcc gtattttatt
gtgaatgcct atctggtgct gattacctat ctgcagcaca ccgataccta tattccgcac
tttcgtgaag gtgaatggaa ttggctgcgt ggtgcactgt gtaccgttga tcgtagcttt
ggtccgtttc tggattcagt tgttcatcgt attgttgata cccatgtgtg ccatcatatt
tttagcaaaa tgccgtttta tcattgcgaa gaagccacca acgcaattaa accgctgctg
ggtaaatttt atctgaaaga taccacaccg gttccggttg cactgtggcg ttcatatacc
cattgtaaat ttgtggaaga tgatggcaaa gtggtgtttt acaaaaacaa actgtaa
<210> 97


```
<210> 98
<211> 1320
<212> DNA
<213> Thraustochytrium sp.
<400> 98
```

atgggaaaag gatctgaggg aagatctgct gctagagaga tgactgctga ggctaacgga
gataagagaa agaccatcct cattgaggga gtgttgtacg atgctaccaa cttcaaacac
ccaggaggtt ccattattaa cttcctcacc gagggagaag ctggagttga tgctacccaa
gcttacagag agttccatca gagatccgga aaggctgata agtacctcaa gtccctccca
aagttggatg cttctaaggt ggagtctagg ttctctgcta aggagcaggc tagaagggac
gctatgacca gggattacgc tgctttcaga gaggagttgg ttgctgaggg atacttcgat
ccatctatcc cacacatgat ctacagagtg gtggagattg tggctttgtt cgctttgtct
ttctggttga tgtctaaggc ttctccaacc tctttggttt tgggagtggt gatgaacgga
atcgctcaag gaagatgcgg atgggttatg cacgagatgg gacacggatc tttcactgga
gttatctggc tcgatgatag gatgtgcgag ttcttctacg gagttggatg tggaatgtct
ggacactact ggaagaacca gcactctaag caccacgctg ctccaaacag attggagcac
gatgtggatt tgaacacctt gccactcgtt gctttcaacg agagagttgt gaggaaggtt
aagccaggat ctttgttggc tttgtggctc agagttcagg cttatttgtt cgctccagtg
tcttgcttgt tgatcggatt gggatggacc ttgtacttgc acccaagata tatgctcagg
accaagagac acatggagtt tgtgtggatc ttcgctagat atatcggatg gttctccttg
atgggagctt tgggatattc tcctggaact tctgtgggaa tgtacctctg ctctttcgga
cttggatgca tctacatctt cctccaattc gctgtgtctc acacccactt gccagttacc
aacccagagg atcaattgca ctggcttgag tacgctgctg atcacaccgt gaacatctct
accaagtctt ggttggttac ctggtggatg tctaacctca acttccaaat cgagcaccac
ttgttcccaa ccgctccaca attcaggttc aaggagatct ctccaagagt tgaggctctc
ttcaagagac acaacctccc ttactacgat ttgccataca cctctgctgt ttctactacc
ttcgctaacc tctactctgt tggacactct gttggagctg ataccaagaa gcaggattga

```
<210> 99
<211>873
<212> DNA
<213> Physcomitrella patens
<400> 99
```

atggaagttg ttgagaggtt ctacggagag ttggatggaa aggtttccca aggagtgaac
gctttgttgg gatctttcgg agttgagttg actgataccc caactactaa gggattgcca
ctcgttgatt ctccaactcc aattgtgttg ggagtgtctg tttacttgac catcgtgatc
ggaggattgc tttggatcaa ggctagagat ctcaagccaa gagcttctga gccattcttg
ttgcaagctt tggtgttggt gcacaacttg ttctgcttcg ctttgtctct ttacatgtgt
gtgggaatcg cttaccaagc tatcacctgg agatattcct tgtggggaaa cgcttataac
ccaaagcaca aggagatggc tatcctcgtt tacctcttct acatgtccaa gtacgtggag
ttcatggata ccgtgatcat gatcctcaag agatctacca gacagatttc tttcctccac
gtgtaccacc actcttctat ctcccttatc tggtgggcta ttgctcacca cgctccagga
ggagaggctt attggagcgc tgctctcaac tctggagtgc acgtgttgat gtacgcttac
tacttcttgg ctgcttgctt gagatcttcc ccaaagctca agaacaagta cctcttctgg
ggaagatacc tcacccaatt ccagatgttc cagtttatgc tcaacttggt gcaagcttac
tacgatatga agaccaacgc tccatatcca cagtggctca tcaagatcct cttctactac
atgatctccc tcttgttcct cttcggaaac ttctacgtgc aaaagtacat caagccatca
gatggaaagc aaaagggagc taagaccgag tga

```
<210> 100
<211> 1086
<212> DNA
<213> Phytophthora infestans
<400> 100
```

atggcgacga aggaggcgta tgtgttcccc actctgacgg agatcaagcg gtcgctacct
aaagactgtt tcgaggcttc ggtgcctctg tcgctctact acaccgtgcg ttgtctggtg
atcgcggtgg ctctaacctt cggtctcaac tacgctcgcg ctctgcccga ggtcgagagc
ttctgggctc tggacgccgc actctgcacg ggctacatct tgctgcaggg catcgtgttc
tggggcttct tcacggtggg ccacgatgcc ggccacggcg ccttctcgcg ctaccacctg
cttaacttcg tggtgggcac tttcatgcac tcgctcatcc tcacgccctt cgagtcgtgg

ctatacaaag ttgatagctt ggcgtaatcg atgtaccgat atcaatttaa attggccggc
cgagctccct gcagggggcc cggcgcgcct ctagattaat taaaggcctt agttactaat
cagtgatcag attgtcgttt cccgccttca gtttaaacta tcagtgtttg acaggatata
ttggcgggta aacctaagag aaaagagcgt ttattagaat aatcggatat ttaaaagggc
gtgaaaaggt ttatccgttc gtccatttgt atgtcaatat ccatgataag tcgcgctgta
tgtgtttgtt tgaatattca tggaacgcag tggcggtttt catggcttgt tatgactgtt
tttttggggt acagtctatg cctcgggcat ccaagcagca agcgcgttac gccgtgggtc
gatgtttgat gttatggagc agcaacgatg ttacgcagca gggcagtcgc cctaaaacaa
agttaaacat catgggtgaa gcggtcatcg ccgaggtgtc cacccagctg tcggaagtcg
tgggtgtcat cgagcgccac ctcgaaccga ccctcctcgc cgtgcatctg tatggtagcg
ccgttgacgg cggccttaag ccccattcgg acatcgacct gcttgtcacc gttaccgtcc
gtctcgacga gaccacgcgc cgcgcgctta tcaacgacct tctggaaacg tccgcctccc
ccggcgagag cgaaatcctg cgcgcggttg aggtgacgat tgtggtgcac gatgacatca
tcccctggcg ctatccggcc aaacgcgaac tccagttcgg cgaatggcag cgtaatgata












atggccgcca tctcaccgcg caacatcct ccgcctgatc ttaaggagcg catgatcggg
ggtctgctcc tggcttcgct catctacgta tggctctttg gtgtcattgt tgtacccttg
gctacgtaca agatgctggc acagggcgac tatcgcctcg ccctcggcct cctcctttat
tacgcctacc gttgggtcta tccgaccaag gaatgggccc tcgtgcgcga catctaccga
gccggcaacc gatatttcta cccacaagag gtcctttttg atggcttcaa ggagatcaaa
cccgaatcga ggtcattgat ttgcatgcac ccgcatggaa tcttgactat tggttgggcg
ttgaccagca cgagtcccac catgacgcac gccaatgtga agtggctggt gacggaggct
ttgttgcgct tgccttttat cagcgacttc ctgtcctgga acggctgtgc acacgctagc
aagagctaca tgcaaaaccg tatgacgaag ggtgcgaatc ttgccctgct ccccggaggg
tttgaagagg cttccctcta tcaacacagc tcttaccgtg tctacatccg aaagcgcaca
ggctttgttg tgtatgccct cagatatggt tataagattt atccttcgtt cgtctttggg
gaggagaagt gttatttctc tttgatgccc gactgggggt ggctaacggc ggcgaggcta
tggttgaatc agttccggtt cccggcagtt gcgtttgtcg gaaagttgtt tttggtgcct
gggtgggatt cgcatttgat cacggtgatc ggcgcccccg tggtgttgcc gaggctagag
aagccaacgg aagaggaggt gaggaagtac cattcgttgt atgtgcgtgc attgatggaa
ttgtttgaga agcacaaaac ccaatattgt gagaaggggg cgaagttgga ggtgtggtag
<210> 103
$<211>319$
$<212>~ P R T ~$
Met Ala Ala Ile Ser Pro Arg Lys His Pro Pro Pro Asp Leu Lys Glu
10

```
Thr His Ala Asn Val Lys Trp Leu Val Thr Glu Ala Leu Leu Arg Leu
Pro Phe Ile Ser Asp Phe Leu Ser Trp Asn Gly Cys Ala His Ala Ser
145 150 155 160
Lys Ser Tyr Met Gln Asn Arg Met Thr Lys Gly Ala Asn Leu Ala Leu
 165
 170
 175
Leu Pro Gly Gly Phe Glu Glu Ala Ser Leu Tyr Gln His Ser Ser Tyr
Arg Val Tyr Ile Arg Lys Arg Thr Gly Phe Val Val Tyr Ala Leu Arg
Tyr Gly Tyr Lys Ile Tyr Pro Ser Phe Val Phe Gly Glu Glu Lys Cys
 210 215 220
 Tyr Phe Ser Leu Met Pro Asp Trp Gly Trp Leu Thr Ala Ala Arg Leu
225 230 235 240
Trp Leu Asn Gln Phe Arg Phe Pro Ala Val Ala Phe Val Gly Lys Leu
Phe Leu Val Pro Gly Trp Asp Ser His Leu Ile Thr Val Ile Gly Ala
 260 265 270
Pro Val Val Leu Pro Arg Leu Glu Lys Pro Thr Glu Glu Glu Val Arg
 275 280 285
Lys Tyr His Ser Leu Tyr Val Arg Ala Leu Met Glu Leu Phe Glu Lys
His Lys Thr Gln Tyr Cys Glu Lys Gly Ala Lys Leu Glu Val Trp
<213> Nannochloropsis oculata
```

<210> 104
<211> 1265
<212> DNA
<400> 104


```
<210> }10
<211> 1563
<212> DNA
<400> 105
```



```
<210> 106
<211> 520
<212> PRT
<213> Arabidopsis thaliana
<400> 106
```

Met Ala Ile Leu Asp Ser Ala Gly Val Thr Thr Val Thr Glu Asn Gly151015
Gly Gly Glu Phe Val Asp Leu Asp Arg Leu Arg Arg Arg Lys Ser Arg202530
Ser Asp Ser Ser Asn Gly Leu Leu Leu Ser Gly Ser Asp Asn Asn Ser ..... 35 ..... 40 ..... 45
Pro Ser Asp Asp Val Gly Ala Pro Ala Asp Val Arg Asp Arg Ile Asp 50 ..... 55 ..... 60
Ser Val Val Asn Asp Asp Ala Gln Gly Thr Ala Asn Leu Ala Gly Asp65707580
Gly Arg Gly Asn Ala Asp Ala Thr Phe Thr Tyr Arg Pro Ser Val Pro100105110
Ala His Arg Arg Ala Arg Glu Ser Pro Leu Ser Ser Asp Ala Ile Phe
115
120
Lys Gln Ser His Ala Gly Leu Phe Asn Leu Cys Val Val Val Leu Ile
130
135
Ala Val Asn Ser Arg Leu Ile Ile Glu Asn Leu Met Lys Tyr Gly Trp
Leu Ile Arg Thr Asp Phe Trp Phe Ser Ser Arg Ser Leu Arg Asp Trp
Pro Leu Phe Met Cys Cys Ile Ser Leu Ser Ile Phe Pro Leu Ala Ala
Phe Thr Val Glu Lys Leu Val Leu Gln Lys Tyr Ile Ser Glu Pro Val
195
200
Val Ile Phe Leu His Ile Ile Ile Thr Met Thr Glu Val Leu Tyr Pro
210
215
Val Tyr Val Thr Leu Arg Cys Asp Ser Ala Phe Leu Ser Gly Val Thr
225
Leu Met Leu Leu Thr Cys Ile Val Trp Leu Lys Leu Val Ser Tyr Ala
245250255
His Thr Ser Tyr Asp Ile Arg Ser Leu Ala Asn Ala Ala Asp Lys Ala
Asn Pro Glu Val Ser Tyr Tyr Val Ser Leu Lys Ser Leu Ala Tyr Phe
$\begin{array}{rl}\text { Met Val Ala Pro Thr Leu Cys Tyr Gln Pro Ser Tyr Pro Arg Ser Ala } \\ 290 & 295\end{array}$
Cys Ile Arg Lys Gly Trp Val Ala Arg Gln Phe Ala Lys Leu Val Ile
305
Phe Thr Gly Phe Met Gly Phe Ile Ile Glu Gln Tyr Ile Asn Pro Ile
325330
335
Val Arg Asn Ser Lys His Pro Leu Lys Gly Asp Leu Leu Tyr Ala Ile
340345350
Glu Arg Val Leu Lys Leu Ser Val Pro Asn Leu Tyr Val Trp Leu Cys
355360365
Met Phe Tyr Cys Phe Phe His Leu Trp Leu Asn Ile Leu Ala Glu Leu

Leu Cys Phe Gly Asp Arg Glu Phe Tyr Lys Asp Trp Trp Asn Ala Lys 385390395400
Ser Val Gly Asp Tyr Trp Arg Met Trp Asn Met Pro Val His Lys Trp
405

410

415

Met Val Arg His Ile Tyr Phe Pro Cys Leu Arg Ser Lys Ile Pro Lys 420425430

Thr Leu Ala Ile Ile Ile Ala Phe Leu Val Ser Ala Val Phe His Glu 435440445

Leu Cys Ile Ala Val Pro Cys Arg Leu Phe Lys Leu Trp Ala Phe Leu 450 455 460

Gly Ile Met Phe Gln Val Pro Leu Val Phe Ile Thr Asn Tyr Leu Gln $4654470 \quad 4750$

Glu Arg Phe Gly Ser Thr Val Gly Asn Met Ile Phe Trp Phe Ile Phe 485490495

Cys Ile Phe Gly Gln Pro Met Cys Val Leu Leu Tyr Tyr His Asp Leu 500505 510

Met Asn Arg Lys Gly Ser Met Ser 515 520

```
<210> 107
<211> 1506
<212> DNA
<213> Brassica napus
<400> 107
```



```
<210> 108
<211> 501
<212> PRT
<213> Brassica napus
<400> 108
```

Gly Ala Asp Leu Asp Thr Leu Arg His Arg Lys Pro Arg Ser Asp Ser
20
25

```
Met Glu Ile Leu Asp Ser Gly Gly Val Thr Met Pro Thr Glu Asn Gly
1 10 15
``` 2530
Ser Asn Gly Leu Leu Pro Asp Ser Val Thr Val Ser Asp Ala Asp Val 35 ..... 40 ..... 45
Arg Asp Arg Val Asp Ser Ala Val Glu Asp Thr Gln Gly Lys Ala Asn

    50

                        55

                                    60
Leu Ala Gly Glu Asn Glu Ile Arg Glu Ser Gly Gly Glu Ala Gly Gly
65
                                    70
                                    75
                                    80
Asn Val Asp Val Arg Tyr Thr Tyr Arg Pro Ser Val Pro Ala His Arg
85
Arg Val Arg Glu Ser Pro Leu Ser Ser Asp Ala Ile Phe Lys Gln Ser

His Ala Gly Leu Phe Asn Leu Cys Val Val Val Leu Val Ala Val Asn
\begin{tabular}{rr} 
Ser Arg Leu Ile Ile Glu Asn Leu Met Lys Tyr Gly Trp Leu Ile Arg \\
130 & 135
\end{tabular}

Thr Asp Phe Trp Phe Ser Ser Thr Ser Leu Arg Asp Trp Pro Leu Phe 145150155160

Met Cys Cys Leu Ser Leu Ser Ile Phe Pro Leu Ala Ala Phe Thr Val \(\begin{array}{r}170 \\ 165\end{array}\)

Glu Lys Leu Val Leu Gln Lys Cys Ile Ser Glu Pro Val Val Ile Ile 180185 190

Leu His Ile Ile Ile Thr Met Thr Glu Val Leu Tyr Pro Val Tyr Val

Thr Leu Arg Cys Asp Ser Ala Phe Leu Ser Gly Val Thr Leu Met Leu 210215220

Leu Thr Cys Ile Val Trp Leu Lys Leu Val Ser Tyr Ala His Thr Asn \(225230235 \quad 240\) Tyr Asp Ile Arg Thr Leu Ala Asn Ser Ser Asp Lys Ala Asn Pro Glu
245
250

Val Ser Tyr Tyr Val Ser Leu Lys Ser Leu Ala Tyr Phe Met Leu Ala 260265 270
Pro Thr Leu Cys Tyr Gln Pro Ser Tyr Pro Arg Ser Pro Cys Ile Arg \begin{tabular}{r}
285 \\
275
\end{tabular}
Lys Gly Trp Val Ala Arg Gln Phe Ala Lys Leu Ile Ile Phe Thr Gly
290
Phe Met Gly Phe Ile Ile Glu Gln Tyr Ile Asn Pro Ile Val Arg Asn
305
310
Ser Lys His Pro Leu Lys Gly Asp Leu Leu Tyr Gly Val Glu Arg Val \begin{tabular}{r}
330 \\
325
\end{tabular}

Leu Lys Leu Ser Val Pro Asn Leu Tyr Val Trp Leu Cys Met Phe Tyr 340345350

Cys Phe Phe His Leu Trp Leu Asn Ile Leu Ala Glu Leu Leu Cys Phe
```

 Gly Asp Arg Glu Phe Tyr Lys Asp Trp Trp Asn Ala Lys Ser Val Gly
 370
 375
 380
 Asp Tyr Trp Arg Met Trp Asn Met Pro Val His Lys Trp Met Val Arg
 385 390 395 400
 His Val Tyr Phe Pro Cys Leu Arg Arg Asn Ile Pro Lys Val Pro Ala
 405 410 415
 Ile Ile Leu Ala Phe Leu Val Ser Ala Val Phe His Glu Leu Cys Ile
 4 2 0
 4 2 5
 4 3 0
 Ala Val Pro Cys Arg Leu Phe Lys Leu Trp Ala Phe Leu Gly Ile Met
 4 3 5
 440
 445
 Phe Gln Val Pro Leu Val Phe Ile Thr Asn Tyr Leu Gln Glu Arg Phe
 450 455 460
 Gly Ser Met Val Gly Asn Met Ile Phe Trp Phe Thr Phe Cys Ile Phe
 465 470 475 480
 Gly Gln Pro Met Cys Val Leu Leu Tyr Tyr His Asp Leu Met Asn Arg
 Lys Gly Lys Met Ser
 500
    ```
```

<210> 109

```
<210> 109
<211> 104
<211> 104
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Primer
<223> Primer
<400> 109
<400> 109
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa
```

<210> 110

```
<210> 110
<211> 101
<211> 101
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Primer
<223> Primer
<400> 110
```

<400> 110

```
\begin{tabular}{lr} 
aactataaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt & 60 \\
tagagcggat ttaattaact accacacctc caacttcgcc c & 101
\end{tabular}
```

<210> 111
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> }11

```
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 60
accccggatc ggcgcgccac catggcgatt ttggattctg ctgg 104
<210> 112
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 112
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt 60
tagagcggat ttaattaatc atgacatcga tccttttcgg t 101
<210> 113
<211> 104
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 113
ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 60
accccggatc ggcgcgccac catggagatt ttggattctg gagg 104
<210> 114
<211> 101
<212> DNA
<213> Artificial
<220>
<223> Primer
```

<400> 114

```
aactataaaa aaataaatag ggacctagac ttcaggttgt ctaactcctt cottttcggt
tagagcggat ttaattaact atgacatctt tcctttgcgg t

\section*{Claims}
1. A polynucleotide comprising a nucleic acid sequence selected from the group consisting of:
a) a nucleic acid sequence consisting of the nucleotide sequence as shown in any one of SEQ ID NOs: 52, 7, 46 and 49;
b) a nucleic acid sequence encoding a polypeptide having an amino acid sequence as shown in any one of SEQ ID NOs: 53, 8, 47 and 50;
c) a nucleic acid sequence being at least \(60 \%\) identical to the nucleic acid sequence as shown in any one of SEQ ID NOs: 52, 7, 46 and 49 or encoding a polypeptide having an amino acid sequence at least \(60 \%\) identical to in any one of SEQ ID NOs: 53, 8, 47 and 50,
and wherein said nucleic acid sequence of (a) to (c) encodes a polypeptide having acyltransferase activity.
2. The polynucleotide of claim 1, wherein said polynucleotide further comprises an expression control sequence operatively linked to the said nucleic acid sequence.
3. The polynucleotide of claim 1 or 2 , wherein said polynucleotide further comprises a terminator sequence operatively linked to the nucleic acid sequence.
4. A vector comprising the polynucleotide of any one of claims 1 to 3 .
5. A host cell comprising the vector of claim 4, or a plant cell, an insect cell, bacterium or algae cell comprising the polynucleotide of any one of claims 1 to 3 or the vector of claim 4 .
6. A method for the manufacture of a polypeptide consisting of an amino acid sequence as shown in any one of SEQ ID NOs: \(53,8,47\) and 50 or consisting of an amino acid sequence at least \(60 \%\) identical to any one of SEQ ID NOs: \(53,8,47\) and 50 ; and wherein said polypeptide has acyltransferase activity comprising
a) cultivating the cell of claim 5 under conditions which allow for the production of the said polypeptide; and
b) obtaining the polypeptide from the cell of step a).
7. A polypeptide
(a) encoded by nucleic acid sequence as shown in any one of SEQ ID NOs: 52, 7, 46 and 49 or being at least \(60 \%\) identical to the nucleic acid sequence as shown in any one of SEQ ID NOs: 52, 7, 46 and 49, or
(b) consisting of an amino acid sequence as shown in any one of SEQ ID NOs: 53, 8, 47 and 50 or consisting of an amino acid sequence at least \(60 \%\) identical to any one of SEQ ID NOs: \(53,8,47\) and 50,
and wherein said polypeptide has acyltransferase activity
8. A plant, bacterium or algae comprising the polynucleotide of any one of claims 1 to 3 or the vector of claim 4 .
9. The plant of claim 8 , which is a plant part, or plant seed.
10. A method for the manufacture of polyunsaturated fatty acids comprising:
a) cultivating the cell of claim 5 under conditions which allow for the production of polyunsaturated fatty acids in said host cell; and
b) obtaining said polyunsaturated fatty acids from the said cell.
11. A method for the manufacture of polyunsaturated fatty acids comprising:
a) cultivating the plant, bacterium or algae of claim 8 or 9 under conditions which allow for the production of polyunsaturated fatty acids in said organsim; and
b) obtaining said polyunsaturated fatty acids from the said plant, bacterium or algae.
12. A method for the manufacture of an oil, lipid or fatty acid composition comprising the steps of the method of claim 10 or 11 and the further step of formulating the polyunsaturated fatty acid as oil, lipid or fatty acid composition.
13. The method of claim 12, wherein said oil, lipid or fatty acid composition is to be used for feed, foodstuffs, cosmetics or pharmaceuticals.
14. The method of any one of claims 10 to 13 , wherein the organism is a plant or algae.
15. An antibody which specifically binds to a polypeptide consisting of an amino acid sequence as shown in any one of SEQ ID NOs: 53, 8,47 and 50 or to a polypeptide consisting of an amino acid sequence at least \(60 \%\) identical to any one of SEQ ID NOs: \(53,8,47\) and 50 ; and wherein said polypeptide has acyltransferase activity.

\section*{Patentansprüche}
1. Polynukleotid umfassend eine Nukleinsäuresequenz, die aus der Gruppe bestehend aus den Folgenden ausgewählt ist:
a) einer Nukleinsäuresequenz, die aus der in einer der SEQ ID NO: 52, 7, 46 und 49 gezeigten Nukleotidsequenz besteht;
b) einer Nukleinsäuresequenz, die für ein Polypeptid mit einer Aminosäuresequenz gemäß einer der SEQ ID NO: 53, 8, 47 und 50 codiert;
c) einer Nukleinsäuresequenz, die zumindest zu \(60 \%\) mit der Nukleinsäuresequenz gemäß einer der SEQ ID NO: 52, 7, 46 und 49 identisch ist oder die für ein Polypeptid mit einer Aminosäuresequenz, die zumindest zu \(60 \%\) zu einer der SEQ ID NO: 53, 8,47 und 50 identisch ist, codiert,
und wobei die Nukleinsäuresequenz von (a) bis (c) für ein Polypeptid mit Acyltransferaseaktivität codiert.
2. Polynukleotid nach Anspruch 1, wobei das Polynukleotid weiterhin eine Expressionskontrollsequenz in operativer Verknüpfung mit der Nukleinsäuresequenz umfasst.
3. Polynukleotid nach Anspruch 1 oder 2, wobei das Polynukleotid weiterhin eine Terminatorsequenz in operativer Verknüpfung mit der Nukleinsäuresequenz umfasst.
4. Vektor, der das Polynukleotid nach einem der Ansprüche 1 bis 3 umfasst.
5. Wirtszelle, die den Vektor nach Anspruch 4 umfasst, oder Pflanzenzelle, Insektenzelle, Bakterium oder Algenzelle, die das Polynukleotid nach einem der Ansprüche 1 bis 3 oder den Vektor nach Anspruch 4 umfasst.
6. Verfahren zur Herstellung eines Polypeptids, das aus einer Aminosäuresequenz nach einer der SEQ ID NO: 53, 8, 47 und 50 besteht oder aus einer Aminosäuresequenz, die zumindest zu \(60 \%\) zu einer der SEQ ID NO: 53, 8, 47 und 50 identisch ist, besteht; und wobei das Polypeptid Acyltransferaseaktivität aufweist, wobei das Verfahren Folgendes umfasst:
a) Kultivieren der Zelle nach Anspruch 5 unter Bedingungen, die die Produktion des Polypeptids gestatten; und
b) Gewinnen des Polypeptids aus der Zelle gemäß Schritt a).
7. Polypeptid,
(a) das von einer Nukleinsäuresequenz gemäß einer der SEQ ID NO: 52, 7, 46 und 49 codiert wird oder das zumindest zu \(60 \%\) zu der Nukleinsäuresequenz gemäß einer der SEQ ID NO: 52, 7, 46 und 49 identisch ist, oder
(b) das aus einer Aminosäuresequenz gemäß einer der SEQ ID NO: 53, 8, 47 und 50 besteht oder das aus
einer Aminosäuresequenz, die zumindestzu \(60 \%\) zu einer der SEQ ID NO: \(53,8,47\) und 50 identisch ist, besteht, und wobei das Polypeptid Acyltransferaseaktivität aufweist.
8. Pflanze, Bakterium oder Alge, die/das das Polynukleotid nach einem der Ansprüche 1 bis 3 oder den Vektor nach Anspruch 4 umfasst.
9. Pflanze nach Anspruch 8, wobei es sich um einen Pflanzenteil oder einen Pflanzensamen handelt.
10. Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren, das Folgendes umfasst:
a) Kultivieren der Zelle nach Anspruch 5 unter Bedingungen, die die Produktion von mehrfach ungesättigten Fettsäuren gestatten; und
b) Gewinnen der mehrfach ungesättigten Fettsäuren aus der Zelle.
11. Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren, das Folgendes umfasst:
a) Kultivieren der Pflanze, des Bakteriums oder der Alge nach Anspruch 8 oder 9 unter Bedingungen, die die Produktion von mehrfach ungesättigten Fettsäuren in dem Organismus gestatten; und
b) Gewinnen der mehrfach ungesättigten Fettsäuren aus der Pflanze, dem Bakterium oder der Alge.
12. Verfahren zur Herstellung einer Öl-, Lipid- oder Fettsäurezusammensetzung, umfassend die Schritte des Verfahrens nach Anspruch 10 oder 11 und den weiteren Schritt des Formulierens der mehrfach ungesättigten Fettsäure als Öl-, Lipid- oder Fettsäurezusammensetzung.
13. Verfahren nach Anspruch 12, wobei die Öl-, Lipid- oder Fettsäurezusammensetzung für Futtermittel, Nahrungsmittel, Kosmetika oder Pharmazeutika bestimmt ist.
14. Verfahren nach einem der Ansprüche 10 bis 13, wobei es sich bei dem Organismus um eine Pflanze oder Alge handelt.
15. Antikörper, der spezifisch an ein Polypeptid, das aus einer Aminosäuresequenz gemäß einer der SEQ ID NO: 53, 8, 47 und 50 besteht, bindet oder der an ein Polypeptid, das aus einer Aminosäuresequenz, die zumindest zu \(60 \%\) zu einer der SEQ ID NO: 53, 8, 47 und 50 identisch ist, besteht, bindet; und wobei das Polypeptid Acyltransferaseaktivität aufweist.

\section*{Revendications}
1. Polynucléotide comprenant une séquence d'acide nucléique choisie dans le groupe constitué par :
a) une séquence d'acide nucléique constituée par la séquence nucléotidique telle qu'illustrée selon l'une quelconque parmi SEQ ID n \({ }^{\circ} 52,7,46\) et 49 ;
b) une séquence d'acide nucléique codant pour un polypeptide ayant une séquence d'acides aminés telle qu'illustrée selon l'une quelconque parmi SEQ ID \(n^{\circ} 53,8,47\) et 50 ;
c) une séquence d'acide nucléique étant identique à au moins \(60 \%\) par rapport à la séquence d'acide nucléique telle qu'illustrée selon l'une quelconque parmi SEQ ID \(n^{\circ} 52,7,46\) et 49 , ou codant pour un polypeptide ayant une séquence d'acides aminés étant identique à au moins \(60 \%\) par rapport à l'une quelconque parmi SEQ ID \(n^{\circ} 53,8,47\) et 50 ;
et où ladite séquence d'acide nucléique de (a) à (c) code pour un polypeptide ayant une activité d'acyltransférase.
2. Polynucléotide selon la revendication 1 , où ledit polynucléotide comprend en outre une séquence de contrôle d'expression liée de manière opérante à ladite séquence d'acide nucléique.
3. Polynucléotide selon la revendication 1 ou 2 , où ledit polynucléotide comprend en outre une séquence de terminaison liée de manière opérante à la séquence d'acide nucléique.
4. Vecteur comprenant le polynucléotide selon l'une quelconque des revendications 1 à 3 .
5. Cellule hôte comprenant le vecteur selon la revendication 4 , ou une cellule végétale, une cellule d'insecte, une bactérie ou une cellule algale, comprenant le polynucléotide selon l'une quelconque des revendications 1 à 3 , ou le vecteur selon la revendication 4.
6. Méthode de préparation d'un polypeptide constitué de la séquence d'acides aminés telle qu'illustrée selon l'une quelconque parmi SEQ ID \(n^{\circ} 53,8,47\) et 50 , ou constitué d'une séquence d'acides aminés étant identique à au moins \(60 \%\) par rapport à l'une quelconque parmi SEQ ID \(n^{\circ} 53,8,47\) et 50 , et où ledit polypeptide possède une activité d'acyltransférase, comprenant
a) la culture de la cellule selon la revendication 5 dans des conditions permettant la production dudit polypeptide ; et
b) l'obtention du polypeptide à partir de la cellule de l'étape a).
7. Polypeptide
(a) codé par une séquence d'acide nucléique telle qu'illustrée selon l'une quelconque parmi SEQ ID \(n^{\circ} 52,7\), 46 et 49 , ou étant identique à au moins \(60 \%\) par rapport à la séquence d'acide nucléique telle qu'illustrée selon l'une quelconque parmi SEQ ID \(n^{\circ} 52,7,46\) et 49 , ou
(b) étant constitué d'une séquence d'acides aminés telle qu'illustrée selon l'une quelconque parmi SEQ ID \(\mathrm{n}^{\circ}\) \(53,8,47\) et 50 ou constitué d'une séquence d'acides aminés identique à au moins \(60 \%\) par rapport à l'une quelconque parmi SEQ ID \(n^{\circ} 53,8,47\) et 50 ;
et où ledit polypeptide possède une activité d'acyltransférase.
8. Plante, bactérie ou algue, comprenant le polynucléotide selon l'une quelconque des revendications 1 à 3 , ou le vecteur selon la revendication 4.
9. Plante selon la revendication 8 , qui est une partie de plante, ou une semence issue d'une plante.
10. Méthode de préparation d'acides gras polyinsaturés, comprenant :
a) la culture de la cellule selon la revendication 5 dans des conditions qui permettent la production d'acides gras polyinsaturés dans ladite cellule hôte ; et
b) l'obtention desdits acides gras polyinsaturés à partir de ladite cellule.
11. Méthode de préparation d'acides gras polyinsaturés, comprenant:
a) la culture de la plante, bactérie ou algue selon la revendication 8 ou 9 dans des conditions qui permettent la production d'acides gras polyinsaturés dans ledit organisme ; et
b) l'obtention desdits acides gras polyinsaturés à partir de ladite plante, bactérie ou algue.
12. Méthode de préparation d'une composition d'huile, de lipides ou d'acides gras, comprenant les étapes de la méthode selon la revendication 10 ou 11, et l'étape supplémentaire consistant à formuler l'acide gras polyinsaturé sous forme de composition d'huile, de lipides ou d'acides gras.
13. Méthode selon la revendication 12, dans laquelle ladite composition d'huile, de lipides ou d'acides gras est prévue pour être utilisée dans les aliments pour animaux, les produits alimentaires, les produits cosmétiques ou les produits pharmaceutiques.
14. Méthode selon l'une quelconque des revendications 10 à 13 , dans laquelle l'organisme est une plante ou une algue.
15. Anticorps se fixant spécifiquement à un polypeptide constitué d'une séquence d'acides aminés telle qu'illustrée selon l'une quelconque parmi SEQ ID \(n^{\circ} 53,8,47\) et 50 ou à un polypeptide constitué d'une séquence d'acides aminés identique à au moins \(60 \%\) par rapport à l'une quelconque parmi SEQ ID \(n^{\circ} 53,8,47\) et 50 ; et où ledit polypeptide possède une activité d'acyltransférase.
Fig 1:

Expression Construct
(9 Exp. Mod.)
Gene of interest
PCR from cDNA or Synthesis

> Pro::Ter - Modules 'yOd uo!sny 's!seytuks Cloning
Expression - Modules
Cloning via Nco I / Pac I
Expression Cassettes
(3 Exp. Mod.)
Cloning via modular custom MCS



Fig 2:


Fig 3:

Fig 4:

Fig 4 (continued):

Fig 5:

(A) wild type

IP
\[
\begin{aligned}
& 18: 2^{9,12} \\
& \mathrm{~m} / \mathrm{z} 1030-523
\end{aligned}
\]
K!!suəŋu|
Fig 5 (continued):


Fig 6:


Fig 7:


EP 2585603 B1

Fig 9


EP 2585603 B1

( \(6 \omega_{*}\) !! \(\omega\) ) / /owu

\section*{REFERENCES CITED IN THE DESCRIPTION}

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

\section*{Patent documents cited in the description}
- WO 9113972 A [0005]
- WO 9311245 A [0005]
- WO 9411516 A [0005]
- EP 0550162 A [0005]
- WO 9418337 A [0005]
- WO 9730582 A [0005]
- WO 9721340 A [0005]
- WO 9518222 A [0005]
- EP 0794250 A [0005]
- WO 9306712 A [0005]
- US 5614393 A [0005]
- WO 9621022 A [0005]
- WO 0021557 A [0005]
- WO 9927111 A [0005]
- WO 9846763 A [0005]
- WO 9846764 A [0005]
- WO 9846765 A [0005]
- WO 9964616 A [0005]
- WO 9846776 A [0005]
- WO 2009016202 A [0005] [0016] [0072] [0085]
- WO 0042195 A [0006]
- WO 9827203 A [0006]
- WO 9855625 A [0006]
- WO 9854302 A [0007]
- WO 9854303 A [0007]
- WO 9855632 A [0007]
- WO 9855631 A [0007]
- WO 9413814 A [0007]
- WO 9624674 A [0007]
- WO 9527791 A [0007]
- WO 0018889 A [0007]
- WO 9310241 A [0007]
- WO 2009085169 A [0009]
- WO 2009143398 A [0009]
- WO 2007106905 A [0009]
- WO 2009143401 A [0009]
- DE 10219203 [0010]
- WO 2004087902 A [0010]
- EP 0388186 A1 [0057]
- EP 0335528 A1 [0057]
- WO 9321334 I [0057]
- EP 0249676 A1 [0057]
- US 5608152 A [0057] [0065]
- WO 9845461 A [0057] [0065]
- US 5504200 A [0057] [0065]
- WO 9113980 A [0057] [0065]
- WO 9515389 A [0057] [0065]
- WO 9523230 A [0057] [0065]
- WO 9916890 A [0057] [0065]
- US 5352605 A [0065]
- WO 8402913 A [0065]
- US 4962028 A [0065]
- WO 9519443 A [0065]
- US 5187267 A [0065]
- WO 9612814 A [0065]
- EP 0375091 A [0065]
- WO 9516783 A [0065]
- WO 9706250 A [0065]
- WO 9946394 A [0065]
- US 20030159174 A [0067]
- WO 2007042510 A [0072] [0085]
- WO 2008006202 A [0072] [0085]
- WO 200185968 A [0072] [0085]
- WO 2008040787 A [0072] [0085]
- WO 2006100241 A [0072] [0085]
- WO 2006069710 A [0072] [0085]
- WO 2004090123 A [0072] [0085]
- WO 2002026946 A [0072] [0085]
- WO 2004057001 A [0072] [0085]
- WO 2002057465 A [0072] [0085]
- WO 2000075341 A [0072] [0085]
- WO 2003072784 A [0072] [0085]
- WO 200102591 A [0072] [0085]
- EP 1790731 A [0072] [0085]
- WO 200034439 A [0072] [0085]
- WO 2007093776 A [0072] [0085]
- WO 2005083053 A [0072] [0085]
- WO 2008022963 A [0072] [0085]
- WO 2005012316 A [0072] [0085]
- WO 2003064638 A [0072] [0085]
- WO 2009016208 A [0072] [0085]
- WO 2001059128 A [0072] [0085]
- WO 2002077213 A [0072] [0085]

\section*{Non-patent literature cited in the description}
- VAZHAPPILLY. Botanica Marina, 1998, vol. 41, 553-558 [0004]
- TOTANI. Lipids, 1987, vol. 22, 1060-1062 [0004]
- AKIMOTO. Appl. Biochemistry and Biotechnology, 1998, vol. 73, 269-278 [0004]
- STUKEY. J. Biol. Chem., 1990, vol. 265, 20144-20149 [0005]
- WADA. Nature, 1990, vol. 347, 200-203 [0005]
- HUANG. Lipids, 1999, vol. 34, 649-659 [0005]
- ABBADI. European Journal of Lipid Science \& Technology, 2001, vol. 103, 106-113 [0006]
- METZ. Science, 2001, vol. 293, 290-293 [0006]
- ZANK. Biochemical Society Transactions, 2000, vol. 28, 654-658 [0006]
- SLABAS. J. Plant Physiology, 2001, vol. 158, 505-513 [0006]
- FRENTZEN. Fett/Lipid, 1998, vol. 100, 161-166 [0006]
- CASES. Proc. Nat. Acad. Sci. USA, 1998, vol. 95, 13018-13023 [0006]
- AKERMOUN. Biochemical Society Transactions, 2000, vol. 28, 713-715 [0007]
- TUMANEY. Biochimica et Biophysica Acta, 1999, vol. 1439, 47-56 [0007]
- FRASER. Biochemical Society Transactions, 2000, vol. 28, 715-7718 [0007]
- STYMNE. Biochem. J., 1984, vol. 223, 305-314 [0007]
- YAMASHITA. Journal of Biological Chemistry, 2001, vol. 276, 26745-26752 [0007]
- UCCIANI. Nouveau Dictionnaire des Huiles Végétales. Technique \& Documentation-Lavoisier, 1995, ISBN 2-7430-0009-0 [0008]
- SINGH. Curr. Opin. Plant Biol., 2005, vol. 8, 197-203 [0010]
- Journal of Lipid Research, 2012, 1210ff [0013]
- ZHANG et al. Journal of Experimental Botany, 2013, vol. 64 (11), 3189-3200 [0013]
- Current Protocols in Molecular Biology. John Wiley \& Sons, 1989, 6.3.1-6.3.6 [0023] [0028]
- SAMBROOK et al. Molecular Cloning. Cold Spring Harbor Laboratory, 1989 [0023] [0109]
- HAMES AND HIGGINS (ED.) 1985. Nucleic Acids Hybridization: A Practical Approach. IRL Press at Oxford University Press [0023]
- Essential Molecular Biology: A Practical Approach. IRL Press at Oxford University Press, 1991 [0023]
- J. COOMBS. Dictionary of Biotechnology. Stockton Press, 1994 [0028]
- ANDERSON ; YOUNG. Quantitative Filter Hybridization. Nucleic Acid Hybridization, 1985 [0028]
- NEEDLEMAN. J. Mol. Biol., 1970, vol. 48, 444-453 [0036]
- RICE,P.; LONGDEN,I. ; BLEASBY,A. EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics, 2000, vol. 16 (6), 276-277 [0036]
- ALTSCHUL. J. Mol. Biol., 1990, vol. 215, 403-10 [0036]
- ALTSCHUL. Nucleic Acids Res., 1997, vol. 25 (17), 3389-3402 [0036]
- FRANCK. Cell, 1980, vol. 21, 285-294 [0057] [0065]
- WARD. Plant. Mol. Biol., 1993, 22 [0057]
- GATZ. Plant J., 1992, vol. 2, 397-404 [0057] [0065]
- STOCKHAUS. EMBO J., 1989, vol. 8, 2445 [0057]
- BAEUMLEIN et al. Plant J., 1992, vol. 2 (2), 233-239 [0057]
- LOKE et al. Plant Physiol, 2005, vol. 138, 1457-1468 [0060]
- SAMBROOK et al. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1989 [0062]
- Agrobacterium protocols. Methods in Molecular Biology. Humana Press, 1995, vol. 44 [0062]
- HELLENS et al. Trends in Plant Science, 2000, vol. 5, 446-451 [0063]
- Plant Molecular Biology and Biotechnology. CRC Press, 1993, 71-119 [0063]
- F.F. White. Vectors for Gene Transfer in Higher Plants [0063]
- Transgenic Plants. Engineering and Utilization. Academic Press, 1993, vol. 1, 15-38 [0063]
- Techniques for Gene Transfer, in: Transgenic Plants. B. JENES et al. Engineering and Utilization. Academic Press, 1993, vol. 1, 128-143 [0063]
- POTRYKUS. Annu. Rev. Plant Physiol. Plant Molec. Biol., 1991, vol. 42, 205-225 [0063]
- SMITH. Gene. Pharmacia Biotech Inc, 1988, vol. 67, 31-40 [0064]
- AMANN. Gene, 1988, vol. 69, 301-315 [0064]
- STUDIER. Methods in Enzymology, 1990, vol. 185, 60-89 [0064]
- BALDARI. Embo J., 1987, vol. 6, 229-234 [0064]
- KURJAN. Cell, 1982, vol. 30, 933-943 [0064]
- SCHULTZ. Gene, 1987, vol. 54, 113-123 [0064]
- Gene transfer systems and vector development for filamentous fungi. VAN DEN HONDEL ; C.A.M.J.J. ; PUNT, P.J. et al. Applied Molecular Genetics of fungi. Cambridge University Press, 1991, 1-28 [0064]
- More Gene Manipulations in Fungi. Academic Press, 396-428 [0064]
- SMITH. Mol. Cell Biol., 1983, vol. 3, 2156-2165 [0064]
- LUCKLOW. Virology, 1989, vol. 170, 31-39 [0064]
- FALCIATORE. Marine Biotechnology, 1999, vol. 1 (3), 239-251 [0065]
- BECKER. Plant Mol. Biol., 1992, vol. 20, 1195-1197 [0065]
- BEVAN. Nucl. Acids Res., 1984, vol. 12, 8711-8721 [0065]
- Engineering and Utilization. Transgenic Plants. Academic Press, 1993, vol. 1, 15-38 [0065]
- GIELEN. EMBO J., 1984, vol. 3, 835 [0065]
- GALLIE. Nucl. Acids Research, 1987, vol. 15, 8693-8711 [0065]
- BENFEY. EMBO J., 1989, vol. 8, 2195-2202 [0065]
- KERMODE. Crit. Rev. Plant Sci., 1996, vol. 15 (4), 285-423 [0065]
- GATZ. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, 89-108 [0065]
- WARD. Plant Mol. Biol., 1993, vol. 22, 361-366 [0065]
- BAEUMLEIN. Mol. Gen. Genet., 1991, vol. 225 (3), 459-67 [0065]
- BAEUMLEIN. Plant Journal, 1992, vol. 2 (2), 233-9 [0065]
- Cloning Vectors. Elsevier, 1985 [0066]
- MANN. Nat. Biotechnol., 2003, vol. 21, 255-261 [0077]
- HUBER. Curr. Opin. Plant Biol., 2004, vol. 7, 318-322 [0077]
- HARLOW ; LANE. Antibodies, A Laboratory Manual. CSH Press, 1988 [0079]
- KÖHLER. Nature, 1975, vol. 256, 495 [0079]
- GALFRE. Meth. Enzymol., 1981, vol. 73, 3 [0079]
- Manual of Methods for General Bacteriology. American Society for Bacteriology, 1981 [0090]
- SANGER et al. Proc. Natl. Acad. Sci. USA, 1977, vol. 74, 5463-5467 [0098]
- SCHIESTL et al. Curr. Genet., 1989, vol. 16 (5-6), 339-346 [0099]
- HOFFMANN. Curr. Protoc. Mol. Biol. May 2001 [0099]
- HOFGEN ; WILLMITZER. Nucl. Acids Res., 1988, vol. 16, 9877 [0101]
- CLOUGH ; BENT. Plant Journal, 1998, vol. 16, 735-743 [0101]
- JAMES et al. The Plant Cell, 1995, vol. 7, 309-319 [0101]
- WU et al. Nature Biotechnology, 2005, vol. 23 (8), 1013-1017 [0102]
- ZANK et al. The Plant Journal, 2002, vol. 318 (3), 255-268 [0104]
- BRADFORD, M.M. Anal. Biochem., 1976, vol. 72, 248-254 [0107] [0108] [0109] [0111] [0112] [0113] [0114] [0115] [0116]
- BLIGH, E.G. ; DYER, W.J. Can. J. Biochem. Physiol., 1959, vol. 37, 911-917 [0107] [0108] [0109] [0111] [0112] [0113] [0114] [0115] [0116]```


[^0]:    Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

