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A B S T R A C T

Road construction associated with land development generally increases erosion and sediment yields.
Construction of unpaved roads has the potential to alter hydro-sedimentological behavior and catchment sedi-
ment source dynamics and, to date, this has largely been investigated in forested environments. The objective of
this study, therefore, was to assess the relative importance of unpaved recreational roads as a sediment source
alongside hillslope surface soils and stream channel banks in a non-forested mountainous catchment in northern
Tehran, Iran, using a fingerprinting procedure. Eleven geochemical tracers were measured on 27 samples col-
lected to characterise the sediment sources and five suspended sediment samples collected at the study catch-
ment outlet. The statistical analysis employed to select three different composite fingerprints for discriminating
the sediment sources comprised: (1) the Kruskal–Wallis H test (KW-H), (2) a combination of KW-H and dis-
criminant function analysis (DFA), and (3) a combination of KW-H and principal components & classification
analysis (PCCA). A Bayesian un-mixing model was used to ascribe sediment source contributions using the three
composite fingerprints. Using the KW-H composite signature, the respective relative contributions (with un-
certainty ranges) from recreational roads, hillslope surface soils and channel banks were estimated as 64.5%
(57.7–73.1), 1.1% (0.1–4.9), and 33.9% (24.9–41.0), compared to 55.3% (45.5–68.5), 1.9% (0.1–7.9) and 42.1%
(27.8–52.4) using a composite signature selected using a combination of KW-H and DFA, or 82.0% (69.7–93.8),
8.2% (0.7–22.7) and 7.3% (0.7–21.0) using a fingerprint selected using KW-H and PCCA. The root mean square
difference between the apportionment results using the fingerprints identified on the basis of the three different
statistical approaches ranged from 5.5% to 25.7%, highlighting the sensitivity of source estimates to the tracers
used. Regardless, the different composite signatures all suggested that unpaved recreational roads were the
dominant source of the suspended sediment samples, underscoring the need for mitigation measures targeting
these anthropogenic features of the catchment system, including closure to permit re-vegetation, surface ripping
and/or mulching to improve infiltration or gravel re-surfacing to reduce exposure of bare surfaces to sediment
mobilisation.

1. Introduction

Anthropogenic disturbance associated with land development such
as intensive farming for crops or livestock, deforestation or urbanisa-
tion, generally modifies catchment hydrology and increases soil erosion
and catchment sediment yields (Foley et al., 2005; Seutloali and
Beckedahl, 2015). Accelerated soil erosion and sediment delivery are
identified as being of priority concern around the world because of
many negative on-site and off-site consequences. On-site impacts in-
clude a reduction in soil productivity, whilst off-site effects include

sedimentation of reservoirs or deterioration of water quality. Effective
conservative actions for mitigating these effects require reliable in-
formation on key erosion processes and sediment sources at landscape
scale.

One of the most substantial impacts on catchment erosion concerns
road construction. Road networks artificially increase connectivity for
transferring eroded materials through catchment systems (Croke et al.,
1999; Motha et al., 2004). During construction and utilization, roads
can accelerate soil erosion through diverse mechanisms such as removal
of the protective vegetation cover and physical disturbance (Cao et al.,
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2015; Jimenez et al., 2013). Compaction of soil in road surfaces can
reduce infiltration and as a result, runoff potential is increased (Pereira
et al., 2015). Cut slopes formed in conjunction with road construction
can increase mass movements and release considerable volumes of se-
diment (Doten et al., 2006; Wu et al., 2008). Some researchers also
report switches in the types of erosion, such as to inter-rill and gully
erosion, as a result of road construction (Clarke and Walsh, 2006;
Imwangana et al., 2014). Megahan et al. (2001) investigated sediment
production from forest road cutslopes in Idaho, USA and reported that
erosion rates for the first winter period after construction averaged
about five times greater than the average rates for subsequent seasons.

Among different types of roads, those that are unpaved or unsealed/
unmetalled, tend to have the most significant contributions to sediment
yield (Motha et al., 2004; Thomaz et al., 2014). In general, unpaved
roads generate substantial amounts of sediment due to accelerated in
situ erosion of unmetalled surfaces, destabilisation of side-cast material
and the extension of the stream network and associated increased
connectivity (Galia et al., 2017). Accordingly, much previous research
has reported the importance of unpaved roads as major sediment
sources in rural catchments (Bravo-Linares et al., 2017; Froehlich,
1995; Froehlich and Walling, 1992, 1997; Hoover, 1952; Ramos-
Scharrón, 2018; Sheridan and Noske, 2007; Swift, 1984; Wemple et al.,
2001; Ziegler and Giambelluca, 1997; Ziegler et al., 2000). Unpaved
roads and verges are highly susceptible to hydraulic erosion processes
and may produce significant amounts of sediment despite their rela-
tively small areal extent (Collins et al., 2010a; Cooper et al., 2015;
Ramos-Scharrón and MacDonald, 2007a; Russell et al., 2001).

Soil loss is closely related to erosivity (rainfall amount and in-
tensity) and erodibility (resistance of the soil to both detachment and
transport). The soil erodibility depends on topographic position, slope
steepness, soil texture, aggregate stability, shear strength, infiltration

capacity, organic and chemical content and land use management. The
transformation of natural hillslope profiles, the interception of surface
and subsurface flows, construction of road banks, reduced plant cover,
and the compaction of soil on the road bed are all potential causes of
changes in erodibility (Jordán-López et al., 2009). A range of factors
can control sediment mobilisation from unsealed roads including, sur-
face characteristics (Burroughs and King, 1989), road construction and
maintenance (Elliot et al., 1999), area and slope (Sheridan et al., 2003),
rainfall amount or intensity (Araujo et al., 2014; Megahan et al., 1991)
and detachment by vehicle traffic (MacDonald et al., 2001; Reid and
Dunne, 1984). Road traffic encourages sediment production by forcing
fine sediment to the surface and via abrasion and crushing (Luce and
Black, 1999; Sheridan et al., 2006; Ziegler et al., 2001). Here, ATV and
dirt bike impacts can be as substantial as those resulting from regular
truck traffic (Welsh, 2008). Unpaved roads can also act as secondary
sediment sources as a result of deposition and subsequent remobilisa-
tion (Froehlich and Walling, 1992, 1997; Gruszowski et al., 2003;
Wemple et al., 2001). Even well-designed road systems can alter
catchment sediment budgets (Gucinski et al., 2001).

Unpaved recreational roads have received less attention from pre-
vious research than those serving commercial forestry but can, never-
theless, play an important role in accelerating soil erosion and sediment
production, especially in hilly or mountainous terrains. Kidd et al.
(2014), for example, studied the effect of such roads in Southwestern
Virginia, USA, earmarking the role of recreational road stream crossings
impacting on sediment delivery and water quality. Recreational roads
can expose soils to higher rates of erosion in conjunction with exposure
of the road bed, cutslopes, fill slopes, and (or) ditches (Spinelli and
Marchi, 1996). Arnaez et al. (2004), for example, found that the cut-
slope of a road exhibited the highest erosion rates, attributing the losses
to mass wasting and freeze-thaw processes along the cut banks which

Fig. 1. Map of the Koohsar study catchment and sampling sites.
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continuously release loose material. However, in contrast, Reid and
Dunne (1984), reported that the cutslope, fill slope, and ditches of
unpaved roads contributed only a small amount of sediment compared
to the exposed road surface.

Identifying the relative contributions of sediment from unpaved
recreational roads can be used to help inform erosion mitigation stra-
tegies. Historically, different techniques and methods have been used to
identify and apportion sediment sources, ranging from traditional
techniques such as erosion pins or field surveys of erosion features to
sediment source fingerprinting (Collins and Walling, 2004). Some re-
search has also applied modelling (Fu et al., 2010; Penna et al., 2014), a
combination of direct volumetric measurements and 137Cs-based sedi-
ment budgeting (Katz et al., 2014), or high resolution topographic
mapping (Tarolli et al., 2012, 2013). The concept of sediment finger-
printing refers to a field based technique that apportions or un-mixes,
sampled sediment into distinguishable sources through the use of dif-
ferent tracers combined in a so-called composite fingerprint or sig-
nature (Collins et al., 1997, 2017; Owens et al., 2017; Walling et al.,
1993). The importance of unpaved road margins in agricultural
catchments and of unpaved roads in forested areas has already been
explored using the source fingerprinting approach (see for example,
Collins et al., 2010b; Haddadchi et al., 2013; Wallbrink et al., 2002). In
contrast, the fingerprinting approach has not been used to investigate
sediment contributions from unpaved recreational roads in a moun-
tainous environment. The main objective of this study was therefore to
use a composite fingerprinting method combining different statistical
tests for source discrimination and a Bayesian un-mixing model for
apportionment, to determine the relative importance of unpaved re-
creational roads in the Koohsar catchment, northern Tehran, Iran. It
was hypothesized that unpaved recreational roads are the primary se-
diment source in the study catchment.

2. Materials and methods

2.1. Study area

The Koohsar catchment (292 ha) is located to the north of the

capital of Iran, Tehran city, between 51⁰ 20′ 50″E to 51⁰ 21′ 45″E
longitude and 35⁰ 47′ 36″N to 35⁰ 49′ 47″N latitude (Fig. 1) in the
Southern Alborz Mountains. The topography of the Koohsar catchment
is mountainous, with elevations ranging from 1721 to 2793m, with a
mean of 2154m above sea level. The average slope gradient is 43.3%.
The longest stream length is 4012m. Land cover comprises 97.4%
grazing land (284.5 ha) and 2.6% residential urban use (7.5 ha).

The catchment lithology is primarily Triassic sedimentary deposits
including the Karaj Formation consisting of well-bedded green tuff and
tuffaceous shale (EK). The soil orders within the catchment are mainly
Entisols and Inceptisols. Long-term (20 years) mean annual precipita-
tion at the Darakeh station near the study area is ca. 450mm. In the
upper parts of the region, precipitation is mostly snow.

Urban sprawl has the potential to influence geomorphic systems.
Throughout the mountainous terrain in northern Tehran city and par-
ticularly in the areas immediately adjacent to the residential develop-
ments and associated dense populations, the construction of unpaved
roads is widespread for the purpose of recreation. In the study area,
several unpaved recreational roads have been constructed on hillslopes.
These recreational roads are usually 3–6m in width and often follow
watersheds on hillslopes and along mountain ridges. The total length
and drainage density of unpaved recreational roads in the study area
are ca. 12.2 km and 4.2 km km−2, respectively. The road slope varies
from 1.7% to 14%. The damage caused by the frequent use of these
roads, and particularly by vehicle wheels promotes deepening. These
unpaved recreational roads can increase runoff and erosion and should
therefore be a major source of sediment; as a result, consecutive check
dams have been constructed at the study catchment outlet to intercept
high sediment loads (Fig. 2a).

2.2. Field sampling

Sediment source samples: Prior to sampling, field surveys were under-
taken to identify potential sediment sources across the study area.
Potential sediment sources were identified on the basis of soil erosion
types observed within the study catchment: surface soil erosion on hill-
slope rangelands or unpaved recreational roads, and subsurface erosion

Fig. 2. Photographs showing: (a) the consecutive check dams at the study catchment outlet; (b) rangelands on hillslopes; (c) an unpaved recreational road, and; (d)
channel banks - b, c, d represent the key sediment sources in the study area.
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affecting stream channel banks (Figs. 1 and 2). A total of 27 source sam-
ples were collected to represent these key sediment sources, comprising six
from the hillslopes, fifteen from unpaved recreational roads and six from
channel banks. In order to increase the representativeness of the individual
source samples, each surface (0–2 cm depth) sample for recreational roads
(i.e. the road bed) or the rangeland hillslopes (0–5 cm depth) comprised a
composite of five sub-samples collected within ca. 40m2 at a specific site,
whereas each subsoil (the full vertical extent of actively eroding profile
faces) sample comprised a composite of 10 sub-samples collected within a
∼20m long reach (interval 2m) at each sampling site. The source samples
were assumed to provide a spatially representative snapshot of erosion
source conditions at the time of sample collection but the temporal re-
presentativeness of the source samples was not investigated explicitly.
Each composite source sample weighed at least 1 kg. All source samples
were retrieved from the field between May 2nd and May 5th 2016. Si-
milarly to many previous studies, source samples were collected only once
during the study period (Collins et al., 2017).

Suspended sediment samples: Although a range of target sediment
sample types can be used (Collins et al., 2017; Owens et al., 2017;
Walling, 2013; Walling and Collins, 2016), the majority of sediment
fingerprinting studies rely on the collection and analysis of suspended
sediment transported during flood events (Collins and Walling, 2004;
Devereux et al., 2010; Mizugaki et al., 2008; Mukundan et al., 2012;
Pulley et al., 2015). In this study, five bulk suspended sediment samples
were collected from the study catchment outlet. These samples spanned
one water year to capture potential seasonal contrasts in sediment dy-
namics. All individual suspended sediment samples were retrieved
during flood events by collecting a large volume (40 to 80 L) of water
manually at varying time intervals during five rainfall-runoff events
(December 12, 2015, January 15, 2016, March 01, 2016, March 22,
2016 and April 25, 2016) at the catchment outlet. These samples were
decanted and manually filtered to de-water sufficient sediment mass for
all laboratory analyses. The five rainfall-runoff events sampled for se-
diment were monitored for discharge. Discharges were measured
manually using the velocity-area method (Gordon et al., 2004) in a
rectangular structure at the study catchment outlet. This method re-
quires measurement of the area of the channel cross section and the
average stream velocity during each rainfall-runoff event. Discharge is
then calculated as Q=V×S: where Q is discharge (m3 s−1), V is
average velocity (m s−1) and S is cross-sectional area of the water (m2).
Area was calculated from cross-section measurements (calculated by
multiplying width and depth). Flow velocity was measured with a
current meter (OTT Hydromet, Germany). As the width of the rectan-
gular structure at the study catchment outlet was fixed (constant), the
velocity and depth of flow were measured three times during each
storm event. The mean (estimated using three measurements for each
individual event) discharge during the runoff events sampled on De-
cember 12th 2015, January 15th 2016, March 01st 2016, March 22nd
2016 and April 25th 2016 was estimated (minimum-maximum ranges
in brackets) at: 1.53 (1.19–1.90), 2.14 (1.28–3.15), 1.89 (0.96–2.75),
1.17 (0.67–1.64) and 1.75 (0.80–2.36)m3 s−1, respectively. A snapshot
of suspended sediment concentration during each event was measured
by collecting an instantaneous 1.5 L sample of runoff water and using
manual gravitational filtering and weighing in the laboratory. The se-
diment concentrations during the events sampled on December 12th
2015, January 15th 2016, March 01st 2016, March 22nd 2016 and
April 25th 2016 were estimated at 52, 124, 96, 181 and 172mg L−1,
respectively. Given that the work reported here was a preliminary in-
vestigation of the importance of recreational roads as a sediment source
in the study catchment, the experimental design did not explore the
implications of spatially heterogeneous snowfall or varying proportions
of rainfall/snowfall or freeze-thaw on the magnitude, timing and in-
tensity of runoff induced erosion processes and thereby the estimated
source proportions. Instead, the work herein provided a first pass as-
sessment of the relative contribution of recreational road erosion to
sediment export from the study area.

2.3. Laboratory measurements of tracers

Dry sieving revealed that the<63 µm fraction was most re-
presentative of the suspended sediment samples collected in this study.
Consequently, only the<63 µm fraction of the sediment and source
samples was used for the analysis and comparison of fingerprint prop-
erties. In order to measure the concentrations of geochemical tracers,
one gram of the sediment and source samples (< 63 µm) was digested
in aqua regia (HCl–HNO3; 3:1) using a Velp Thermo-reactor at 95 °C for
two hours. After filtering the extracts through S&S ME24 (0.2 µm) filter
papers, the solutions were analysed by a Varian SpectrAA-20 Plus ca-
librated using an element standard solution (Merck KGaA, Frankfurter,
Germany) for Ca, Co, Fe, K, Mg, Mn, Na, Pb, Sr, and Zn concentrations.
The results showed that analytical error was less than 5% for all ele-
ments. Total organic carbon content was measured by the Walkley-
Black method (Skjemstad and Baldock, 2008).

2.4. Tracer conservation tests

A range of factors can influence tracer conservation in the natural
environment, including redox, temperature, selective particle transport,
adsorption/desorption or precipitation/dissolution (Stumm and
Morgan, 1996). The complex interplay of these controls will be highly
variable and site-specific. A three-part procedure was used to assess
tracer conservation. Firstly, a standard bracket or range test (Foster and
Lees, 2000) was used to identify non-conservative tracers, whereby the
tracer concentrations in the suspended sediment samples were com-
pared with the corresponding minimum and maximum ranges asso-
ciated with the sources samples, which bound the un-mixing polygon
(Zhang and Liu, 2016). This standard test does not provide truly defi-
nitive confirmation of tracer conservation, but instead, is used to con-
firm that major transformation is not occurring during sediment mo-
bilisation and delivery. Secondly, in addition to the standard test, the
tracers were checked using a stricter test whereby the sediment sample
means should fall within the corresponding source means rather than
their full ranges. This stricter range test is useful because sediment
sample tracer concentrations commonly exhibit limited variation
compared with source samples meaning that tracers easily pass the
standard range test procedure. Thirdly, to augment the testing for
conservatism further, biplots of tracers included in the final statisti-
cally-verified composite fingerprints were also used to compare source
and sediment samples. Here, the source and sediment sample values
will plot in the same space or along the same line if tracer behaviour is
conservative. In combination, these three tests provide a more robust
assessment of conservatism than the standard range test alone.

2.5. Statistical discrimination of sediment sources

The statistical analysis employed to identify different composite
fingerprints for discriminating between the potential sediment sources
used three approaches: (1) the Kruskal–Wallis H-test (KW-H), (2) a
combination of the KW-H as step one and discriminant function analysis
(DFA) as step two, and (3) a combination of the KW-H as step one and
principal component & classification analysis (PCCA) as the second
step. Three final composite signatures were therefore selected on this
basis. All statistical analyses were performed using STATISTICA V.8.0
(StatSoft, 2008). It is well-established that selecting differing composite
signatures using independent statistical tests based on different rules
can generate contrasting estimates of source apportionment. This re-
flects the sensitivity of the source fingerprinting approach to the tracers
included in any composite signature. The international tracing com-
munity has widely accepted that it is better to be explicit about this
aspect of sensitivity by using more than one composite signature se-
lected by different statistical tests (e.g., Collins et al., 2012, 2013, 2014,
2017; Owens et al., 2017; Palazón et al., 2015; Palazón and Navas,
2017).
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2.5.1. Kruskal–Wallis H-test
The KW-H is a non-parametric equivalent of one-way ANOVA to

compare more than two groups, and tests the null hypothesis that the
different groups in the comparison are drawn from the same distribu-
tion or from distributions with the same median. However, unlike one-
way ANOVA, it does not make assumptions about homogeneity of
variance or normal distributions. Thus, the interpretation of the KW-H
is basically similar to that of parametric one-way ANOVA, except that it
is based on ranks rather than means (Dytham, 2011).

2.5.2. Discriminant function analysis (DFA)
Those tracers exhibiting statistically significant differences between

the potential sediment sources, using KW-H, were included in the DFA.
DFA has been used extensively in sediment source fingerprinting in-
vestigations (e. g. Gellis and Noe, 2013; Laceby et al., 2015; Walling,
2013) since an early study by Collins et al. (1997). The basis of DFA is
to provide a set of weightings that allow the source groups to be dis-
tinguished. The weightings can then be used on individuals that are not
assigned to a group to provide a probability of them belonging to each
of the possible source groups. Different tests including eigenvalue, ca-
nonical correlation, Wilks' lambda, and squared Mahalanobis were used
to determine whether the discriminant functions were statistically sig-
nificant. Membership of the sediment source groups was the dependent
variable, whereas the measured tracers constituted the independent
variables.

2.5.3. Principal component & classification analysis (PCCA)
PCCA can be used as a classification technique in addition to re-

ducing the dimensions of the original variable space so that the rela-
tions among variables and cases can be highlighted. To do this, the
variables and the cases are plotted in the space generated by the
principal component axes. This technique works in very much the same
way as PCA but with one crucial difference; the individual samples
must be assigned to source groups before the analysis. The test then
calculates the variable weightings that will maximize the differences
between source groups rather than individuals as is the case with PCA.
The PCCA produces weightings that will allow you to identify those
variables that are the most different between source groups and discard
those that are the same.

Only those tracers with significant differences between the potential
sediment sources, using KW-H, were included in the PCCA. Principal
components with eigenvalues> 1 were retained and subjected to a
varimax rotation to minimize the number of tracers that have high
loadings on each PC. Under a particular PC, each tracer is given a
weight or PC loading that represents the contribution of that tracer to
the composition of the PC. Only the highly-weighted tracers were re-
tained from each PC. Highly-weighted tracer loadings were defined as
having absolute values within 10% of the highest tracer loading. When
more than one tracer was retained under a single PC, multivariate
correlation coefficients were employed to determine if the tracers could
be considered redundant and, therefore, eliminated from the final set of
tracers (i.e. composite fingerprint). If the highly-weighted tracers were
not correlated (assumed to be a correlation coefficient< 0.60) then
each was considered important, and thus, retained in the final com-
posite signature. Among well-correlated tracers, the tracer with the
highest PC loading (absolute value) was chosen for the final composite
fingerprint. Once the composite signature was chosen, a final check was
undertaken to identify significant differences among the potential se-
diment sources based on the PC scores of each sample using one-way
ANOVA (F-test) and Tukey HSD post-hoc tests (P < 0.05).

2.6. Source apportionment using the Modified MixSIR Bayesian un-mixing
model

Some recent sediment source tracing studies applying un-mixing
models have used the Modified MixSIR Bayesian model (Nosrati et al.,

2014, 2018). This model provides a Bayesian rather than frequentist
(e.g. Collins et al., 1997; Walling et al., 2006, 2008) approach to ap-
portionment modelling and builds upon earlier tools constructed for
isotopic studies (e.g. Moore and Semmens, 2008; Parnell and Jackson,
2011; Parnell et al., 2010).

The Modified MixSIR Bayesian statistical approach quantifies the
relative contributions of sediment from different sources by calculating
probability distributions for the proportional contribution (fi) of each
source i to the downstream target sediment samples in three stages: 1)
determination of the prior probability distributions for model para-
meters, 2) construction of a likelihood function for the statistical model,
and 3) derivation of the posterior probability distributions for the
parameters using the Bayes rule to adjust the prior distribution based on
the observed data. The Bayes rule states that the posterior probability
distribution for all fi is proportional to the prior probability distribu-
tions multiplied by the likelihood, and then dividing by their sum, viz.:
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×

×
P f data

L data f p f
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( )
( | ) ( )

( | ) ( )q
q q
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where L(data|fq) is the likelihood of the data given fq, p(fq) representing
the prior probability being true, based on prior information, and fq is
the proportional source contributions of q proposed vectors.

The relative contributions of sediment are factored into the model
by defining mean and variance parameters for each sediment source i
and the final sets of tracers (composite fingerprints; j). Modelling source
contributions using more than one composite signature permits an as-
sessment of the potential uncertainty resulting from different finger-
print property sets (Collins et al., 2012).

The proposed tracer distributions for the target sediment mixtures
collected from the study catchment outlet are determined by solving for
the proposed meansµjand standard deviations jof the sediment mix-
tures based on the randomly drawn fi values comprising a vector fq:
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Based on the µj and jof each property comprising each final com-
posite fingerprint, the likelihood of the data given the proposed sedi-
ment mixture is calculated as:
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where Xkjrepresents the jth tracer property of the kth sediment sample.
Using a version of the sampling-importance-resampling (SIR) algo-

rithm (Moore and Semmens, 2008), we generated 106 samples from the
posterior distribution of the estimated target sediment mixtures. This
method establishes a threshold acceptance value prior to sampling and
uses it simultaneously to resample, as the un-normalized posterior
probabilities for each fq sample are calculated.

3. Results and discussion

3.1. Final tracers and composite fingerprints for discriminating the potential
sediment sources

Table 1 compares the tracer concentrations in the sediment sources
and five suspended sediment samples collected at the study catchment
outlet. In addition, Table 1 also presents the results of the normality test
for tracers, showing that all measured tracers had normal distributions
(a prerequisite for using the tracers in a Bayesian model). The results of
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the standard bracket test showed that all tracers were generally con-
servative. In addition to the standard test, the results of comparing the
sediment means with the corresponding source means showed that all
tracers except K and Na are conservative (Table 1). Therefore, these two
tracers were removed from further analysis.

Table 1 also shows the results of applying the KW-H test which
indicated that seven tracers (Ca, Co, Fe, Mg, Mn, OC and Sr) exhibited a
statistically significant difference between the three potential sediment
sources. Those tracers (Pb and Zn) unable to discriminate the potential
sources were discarded from further analysis.

The seven tracers selected by the KW-H test were entered into the
stepwise DFA (Table 2). The largest eigenvalue of the first function
(25.1) corresponds to the eigenvector in the direction of the maximum
spread of the groups’ means. The Wilk’s lambda value of the first
function (0.015) indicated that 98.5% of the total variance among the
potential sediment sources was explained by these tracers. The cano-
nical correlation value was 0.98 and indicated a strong correlation
between the discriminant scores and the individual source groups.

The squared Mahalanobis distance showed that the sediment
sources were well separated by the shortlisted tracers (Table 2). The
backward stepwise DFA yielded classification matrices assigning 100%
of the cases (i.e., source samples) to the correct groups (Table 2).
Stepwise selection using Wilks’ lambda indicated that a composite
signature comprising four tracers (Ca, Mg, Mn and OC) provided sig-
nificant discriminatory power on the basis of the DFA model (Table 3).
The results of different tests within DFA indicated that the dis-
criminatory power of Mg and Mn is perfect (Table 3). Partial Wilks’
lambda is the Wilks’ lambda for the unique contribution of the
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Table 2
Summary of the backward DFA.

DFA parameters Result

Function 1
Eigenvalue 25.1
Wilks' lambda 0.015
Canonical correlation 0.98
Function 2
Eigen value 1.5
Wilks' lambda 0.39
Canonical correlation 0.78

Sediment source samples classified correctly (%)
Recreational road 100.0
Hillslope surface soils 100.0
Channel banks 100.0
Total 100.0

Sampling sites of sediment sources assigned by DFA
Recreational road 15.0
Hillslope surface soils 6.0
Channel banks 6.0

Squared Mahalanobis distance
Recreational road×Hillslope surface soils 52.8
Recreational road×Channel banks 126.7
Hillslope surface soils× Channel banks 29.7

Squared Mahalanobis F-value
Recreational road×Hillslope surface soils 49.5*

Recreational road×Channel banks 118.8*

Hillslope surface soils× Channel banks 19.5*

* Significant at 0.01 level.

Table 3
Final outputs of the stepwise backward DFA.

Tracer Wilks’ lambda Partial Wilks’ lambda F-remove p-level Tolerance

Ca 0.03 0.54 8.9 0.002 0.51
Mg 0.15 0.10 90.1 < 0.001 0.45
Mn 0.05 0.29 26.2 < 0.001 0.36
OC 0.03 0.52 9.7 0.001 0.70
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respective tracer to the discrimination between individual source
groups. The smaller the Partial Wilks’ lambda, the greater the con-
tribution to the overall discrimination. The Partial Wilks’ lambda values
suggested that Mg contributed the most, Mn second most, OC third
most and Ca the least to the overall discrimination (Table 3). A scat-
terplot using the first and second discriminant functions calculated
using backward DFA confirmed that the samples collected to char-
acterise the different potential sediment sources were well separated
(Fig. 3).

Tracers passing the KW-H test (Ca, Co, Fe, Mg, Mn, OC and Sr) were
also tested using PCCA. All tracers were further explored as an alter-
native means of reducing the number of tracers and problems of mul-
ticollinearity. The results of PCCA showed that the first three principal
components (PCs) with eigenvalues> 1 accounted for> 86% of the
variability among the tracer values for the source groups (Table 4). The
PC corresponding to the largest eigenvalue (3.7) accounted for ap-
proximately 52% of the total variance. The second PC corresponding to
the second eigenvalue (1.4) accounted for approximately 19% of the
total variance (Table 4). The PC corresponding to the smallest selected
eigenvalue (1.0) accounted for approximately 14% of the total variance
(Table 4).

The highly-weighted tracers under PC1 with absolute values within
10% of the highest tracer (0.93 value for Sr) loading (the loading of
selected tracers should be larger than 0.84) were Mg and Sr. Only Sr
was retained for the final composite signature because Mg and Sr were
strongly correlated (r= 0.76). Also, this tracer was most important due
to the highest communality estimate (Table 4). Under PC2, the highly-
weighted tracer with absolute values within 10% of the highest tracer
(0.67 value for Fe) loading (the loading of selected tracers should be
larger than 0.60) was Fe. Under PC3, the highly-weighted tracer (0.69
value for OC) with absolute values within 10% of the highest tracer
loading (the loading of selected tracers should be larger than 0.62) was
OC. These results selected these three tracers (Sr, Fe and OC) as an
alternative composite fingerprint on the basis of the PCCA model
(Table 4). The plot of principal component (PC) coordinates of tracers
for the first two PCs showed that the three selected tracers were re-
presented by the current set of PCs (Fig. 4a). Thus, the set of selected
tracers (i.e. composite fingerprint) clearly provided discrimination be-
tween the three potential sediment sources (Fig. 4b). These results il-
lustrated that PCCA can be used as a tool for identifying important
dimensions in a set of tracers and to identify those sediment sources
with similar or dissimilar characteristics.

PCs scores were calculated using the resulting component score
coefficient matrix and tested for significant differences between the
potential sediment sources (Table 4). PC scores for both PCs varied
significantly with sediment source (Table 4). Thus, the tracers related to
these PCs provided a basis for selection of an alternative composite

Fig. 3. Scatterplot of the first and second discriminant functions calculated
using backward DFA associated with selection of the composite signature
comprising Ca, Mg, Mn, and OC.

Table 4
PCCA factor coordinates of the variables and the eigenvalues of the correlation
matrix.

Tracer PC 1 PC 2 PC 3 Communalities

Ca 0.79 0.37 0.32 0.87
Co 0.51 −0.54 −0.57 0.88
Fe 0.55 −0.67 0.22 0.79
Mg 0.89 −0.37 0.08 0.93
Mn 0.82 0.34 0.03 0.80
OC −0.42 −0.42 0.69 0.83
Sr 0.93 0.24 0.11 0.93
Eigenvalue 3.7 1.4 1.0
% Total variance 52.9 19.4 13.9
Cumulative % variance 52.9 72.3 86.2

Mean scores of the three sediment sources
Recreational road −1.36 a1 −0.13 a −0.19 a
Hillslope surface soils −0.62b 0.12 a −1.29b
Channel banks 0.79c 0.79b 0.81 a

ANOVA results
F-value 92.1 11.3 15.2
p-value < 0.0001 <0.001 <0.001

1 Different small letters indicate that scores are significantly different at the
5% level, based on the Tukey HSD Post Hoc test.

Fig. 4. (a) Projection of the optimum composite tracers on the PC-plane using
PCCA, (b) Projection of the cases on the PC-plane using PCCA; RR: recreational
road; CB: channel banks; HSS: hillslope surface soils.
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signature (Sr, Fe and OC). For the tracers selected in the final composite
signatures, the biplots of all tracer pairings for source and sediment
samples were compared. The results confirmed that there is no major
tracer transformation (Fig. 5).

3.2. Sediment source contributions

Using priors and estimates of uncertainty associated with the un-
mixing model inputs, a Modified MixSIR model run of 106 iterations
resulted in convergence on the posterior contributions from the sources
using the three different composite signatures selected using the in-
dependent tests (Fig. 6). Using KW-H (Table 5), the relative contribu-
tions (with corresponding uncertainty ranges) from recreational roads,
hillslope surface soils and channel banks were estimated as 64.5%

(57.7–73.1), 1.1% (0.1–4.9), and 33.9% (24.9–41.0), respectively.
Using the alternative composite signature selected by a combination of
KW-H and DFA (Table 5), the corresponding respective contributions
and associated uncertainty ranges were estimated as 55.3%
(45.5–68.5), 1.9% (0.1–7.9) and 42.1% (27.8–52.4). Finally, on the
basis of the composite signature selected using a combination of KW-H
and PCCA (Table 5), the relative contributions from recreational roads,
hillslope surface soils and channel banks were estimated as 82.0%
(69.7–93.8), 8.2% (0.7–22.7) and 7.3% (0.7–21.0), respectively. The
root mean square difference (Table 5) between the estimated sediment
contributions using the three different composite signatures ranged
from 5.5% (hillslope surface soils) to 25.7% (channel banks). The
predicted source contributions were therefore sensitive to the compo-
site fingerprint used, underscoring the need to use multiple signatures

Fig. 5. Biplots of all pairings for the tracers selected in the final composite signatures for discriminating and apportioning source contributions to sediment samples.
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when investigating sediment source contributions (cf. Collins et al.,
2012, 2017; Nosrati et al., 2018; Owens et al., 2017; Palazón and
Navas, 2017).

3.3. Discussion

Previous studies in other areas of the world have highlighted un-
paved roads as landscape features experiencing high erosion rates and
as important contributors to sediment fluxes in river catchments. For
example, Ramos‐Scharrón and MacDonald (2007a) and Croke et al.
(1999) observed erosion rates of between four and six orders of mag-
nitude higher on unpaved roads than on undisturbed hillslope areas in
the U.S. Virgin Islands, and coastal southeast Australia, respectively.
Jordán-López et al. (2009) reported that highest soil loss rates were
found on road banks and that the total soil loss on road banks was
between 3 and 18 times higher than corresponding estimates for road
beds and side cast fills, respectively. Megahan et al. (2001) reported
that erosion rates for the first winter period after forest road con-
struction in Idaho, USA, averaged about five times greater than the
corresponding average rates for subsequent monitoring seasons. Motha
et al. (2004) reported that relative contributions from gravel-surfaced
roads, grouped lands (un-graveled roads, pasture lands and cultivated
lands on basalt-derived soils), cultivated lands on granite-derived soils,
and forest areas to sediment sampled on the falling limbs of event hy-
drographs were 41 ± 17%, 18 ± 13%, 13 ± 11% and 14 ± 7%,
respectively. The relative contributions during a peak discharge event

were 52 ± 12%, 30 ± 17%, 15 ± 11% and 17 ± 8%, respectively.
Froehlich and Walling (1997) reported that the evidence provided by
radiocaesium fingerprints suggested that the major source of the sus-
pended sediment transported by the Homerka stream was unmetalled
roads which occur throughout both the forested and the agricultural
zones of this study basin in the Polish Flysch Carpathians. Equally, data
measured using rainfall simulations on plots or on slope segments also
demonstrated that unpaved roads are the major source of suspended
sediment. Jordán-López et al. (2009) reported that the highest sediment
concentration in runoff was detected on the roadbank, from which
mean sediment yield was estimated at 13.7 g L−1. Ramos‐Scharrón and
MacDonald (2007b) reviewed studies of small scale erosion on unsealed
roads. The sediment concentrations they reported ranged from
70mg L−1 to 227,000mg L−1. Fu et al. (2010) reviewed road erosion
data provided by rainfall simulator and flume studies. The hourly se-
diment erosion rates ranged from 0.3 to 35.9 gm−2 mm−1 h−1. These
estimates suggest a very large range in road erosion rates across dif-
ferent study areas.

The source apportionment estimates generated here using different
composite signatures underscored the importance of sediment loss from
recreational roads in the study catchment. Unpaved recreational roads
have a propensity to alter catchment hydrology and sediment dy-
namics, with common impacts including: increasing Hortonian over-
land flow (Ramos-Scharrón and LaFevor, 2016; Ziegler and
Giambelluca, 1997); altering the magnitude and timing of peak flows in
response to rainfall (La Marche and Lettenmaier, 2001); accelerating

Fig. 5. (continued)
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runoff responses to precipitation (Froehlich, 1995), and; increasing
sediment yields (Bilby, 1985; Brunsden and Thornes, 1979; Fransen
et al., 2001; Poeppl et al., 2017). Such hydro-sedimentological impacts
largely reflect the role of unmetalled roads in increasing drainage
density by artificially extending flow pathways and the stream network
(Croke and Mockler, 2001; Luce and Wemple, 2001; Takken et al.,
2008). Here, it is important to note, however, that the impact of

unmetalled roads on sediment dynamics via increasing drainage density
and connectivity from slopes to channels, depends on source strength
associated with the erodibility of unmetalled road surfaces (Croke et al.,
2005). In addition, the impact of unmetalled roads on hydro-sedi-
mentological response is strongly influenced by the location and ar-
rangement of road drainage structures including mitre drains and cul-
verts (Croke et al., 2005). Gully development at culvert outlets
enhances connectivity between unmetalled road networks and streams,
with such gully development being controlled by contributing area,
road runoff and hillslope gradient (Croke et al., 2005; Montgomery,
1994). Where runoff mobilising sediment from unpaved road networks
discharges onto well-vegetated slopes, impacts on hydro-sedimentolo-
gical responses are smaller (Haupt, 1959).

Given that the source apportionment estimates underscored the
importance of unpaved recreational roads in the study area, appropriate
mitigation measures need to be identified and implemented. Existing
common ways of reducing the adverse impacts of unmetalled roads on
catchment sediment dynamics include decommissioning or closing
roads (Switalski et al., 2004; Weaver et al., 2015). Road closure, whilst
not always reducing infiltration rates to background levels (Foltz et al.,
2009), does improve infiltration, reduce surface degradation by vehicle
traffic and permit re-vegetation, all of which, collectively reduce sedi-
ment production (Foltz et al., 2009). In situations where it is not pos-
sible to close or decommission unpaved recreational roads, alternative
mitigation can comprise compaction treatment by roadbed ripping
(Luce, 1997; Weaver et al., 2015), although here, the treatment effect
can be transient (Robichaud, 2000). Furthermore, ripping alone has
been shown to not be as effective as a combination of ripping and
mulching (Sosa-Pérez and MacDonald, 2017). Where unpaved recrea-
tional roads are retained, gravel re-surfacing can be used to enhance
trafficability and to reduce mobilisation of surface sediment from the
road bed (Brown et al., 2013; Clinton and Vose, 2003).

3.4. Limitations

The source apportionment estimates discussed above must in-
evitably be interpreted in the context of some limitations. Numbers of
samples collected to characterise individual sources by any sediment
fingerprinting investigation are inevitably constrained by available
budgets as well as practical considerations including those associated
with the mountainous terrain of the study area and rarely, if ever, sa-
tisfy statistically-based probability sampling (Collins and Walling,
2004). A single source sampling campaign was undertaken and so any
potential sensitivity issues surrounding general replicability associated
with the timing and locations of the source samples including those
from the unpaved recreational roads were not investigated explicitly.
Different locations within the same source category will clearly be
characterised by different erosion histories, spatial patterns and in-
tensities meaning that repeat source sampling could affect signatures
and hence the overall findings. Equally, the work, on account of its
duration, did not consider the potential impacts of spatially hetero-
geneous snowfall, varying proportions of rainfall/snowfall or freeze-
thaw on the magnitude, timing and intensity of runoff induced erosion
processes and thereby potentially the source apportionment estimates.
The source apportionment estimates are scale dependent and it im-
portant to recognise that they might differ for different sampling lo-
cations along the study catchment channel network (Koiter et al.,
2013). In this study, target suspended sediment for source apportion-
ment was collected from a single downstream location on the main stem
of the study river. As a result, the source proportions pertain to this
specific sampling site and additional stream network locations would
need to be included to assess potential variations in sediment source
contributions at different scales within the study area. Sediment sam-
pling also needs to be temporally representative and this study sampled
the catchment outlet across one water year, but in the context of hydro-
climatic variability, it would be informative to sample additional water

Fig. 6. Probability density functions for the estimated source contributions
using the final composite signatures selected by (a) KW-H, (b) a combination of
KW-H as step one and discriminant function analysis (DFA) as step two, and (c)
a combination of KW-H as step one and principal components & classification
analysis (PCCA) as step two.
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years. For this reason, some previous sediment source tracing in-
vestigations, albeit in different physiographical settings to the one in-
volved here, have reported sampling spanning more than a single year
(e.g. Walling et al., 2006; Walling et al., 2008), although sediment
sample collection during a single year is also reported in published
studies (e.g. Gellis and Noe, 2013; Nosrati, 2017). Tracer property
transformation during mobilisation and delivery to, and through, the
stream network, was assumed not to be significant enough to impact on
the predicted source proportions. Here, although tracer properties were
tested for major transformation using a three-part procedure, this does
not confirm a complete absence of tracer transformation and this po-
tential issue associated with source tracing requires further work.
Various factors can influence sediment tracer conservation during
mobilisation and transport through catchment systems including bio-
geochemical processes such as adsorption or desorption (Förstner and
Salomons, 1980), as well as physical factors such as particle size se-
lectivity (Grygar and Popelka, 2016; Horowitz, 1991). A limited
amount of previous research has tested tracer conservation experi-
mentally (e.g. Motha et al., 2002) and both past (Motha et al., 2004) or
more recent (Sherriff et al., 2015) work has incorporated explicit as-
sessment of tracer transformation in sediment un-mixing modelling.
There remains, however, no widespread consensus as to the best ad-
ditional and more detailed means of quantifying tracer conservative-
ness as a standard component of fingerprinting methodological deci-
sion-trees, meaning that the range test remains a standard step in data
processing procedures (Collins et al., 2017). In the study reported here,
however, a three-part assessment was used for tracer conservation. In
addition, the sampling of deviate tracer values during the un-mixing
modelling, using tracer distributions constructed on the basis of the
sediment samples collected from the catchment outlet, provided an
additional means of taking some account of potential tracer transfor-
mations (Collins et al., 2014). Collection of sediment samples from
additional reaches along the channel network would permit inclusion of
a more representative range of sediment tracer values and thereby of
the potential for tracer conservation.

4. Conclusions

Sediment fingerprinting was successfully used to investigate the
relative importance of unpaved recreational roads as a sediment source
in the study area. This suggests that the approach has the potential to
address a similar research question in other environmental settings,
assuming good source discrimination can be achieved with the tracers
selected. We therefore recommend consideration of the approach re-
ported here by those investigators wanting to apportion sediment loss
from unpaved roads and additional landscape sources elsewhere in the
world. Three different composite signatures were selected using dif-
ferent statistical tests, but each signature suggested that the unpaved
recreational roads dominate source contributions to the suspended se-
diment samples collected at the study catchment outlet. It remains
important to assess the sensitivity of fingerprinting results to different
composite signatures. A modified Bayesian mixing model was success-
fully used to estimate the relative source contributions, but where the

requirements of a Bayesian approach are not satisfied by the tracer
data, alternative frequentist models used by the sediment source fin-
gerprinting research community could be applied. The findings support
the targeting of management resources towards addressing the erosion
of unpaved recreational roads. Management interventions need to be
selected on the basis of experience elsewhere in tackling sediment loss
from unpaved road systems in river catchments. Interventions will need
to be implemented with due care and attention and well maintained to
ensure sustained impact under ambient hydro-climatic conditions and
the ongoing need for recreational access to mountainous areas neigh-
bouring urban developments.
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