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Abstract

Reflectance spectra of soil can be used to estimate the concentrations of

organic carbon in soil (SOC). The estimates are more or less impreciseQ4 , but

spectroscopy is quicker, less laborious and cheaper than conventional dry com-

bustion analysis. Are the greater economy and efficiency sufficient to justify

the loss of information arising from errors in estimation? We measured soil

spectra with three instruments: a bench-top mid-infrared (mid-IR) (mid-IRb)

spectrometer, a portable mid-IR (mid-IRp) spectrometer and a portable visible–
near infrared (vis–NIRp) spectrometerQ5 . We calculated a quantity E to express

the cost-effectiveness of spectroscopic estimates relative to the conventional

analysis, by accounting for their inaccuracy, their cost and their capacity,

namely the maximum number of samples that can be prepared and measured

daily. In all, 562 samples of soil were collected from 150 locations at four

depths on a farm. The samples were dried and ground to particle sizes of ≤2
and ≤0.5 mm before measurements were made by dry-combustion analysis.

The machine learning algorithm Cubist was used to derive spectroscopic

models of SOC concentrations and their uncertaintiesQ6 . We found that the mid-

IRb on the ≤0.5 mm samples was the most accurate and expensive but never-

theless sufficiently cost-effective (large value of E) for determining the organic

C. The mid-IRp was somewhat more accurate, but its E was smaller than vis–
NIRp on corresponding samples because it required more time to record the

spectra. We also found that, with the portable spectrometers, the SOC predic-

tions made on the ≤0.5 mm samples were somewhat more accurate than those

made on the ≤2 mm samples, but their E was smaller because of the additional

cost of sample preparation. The vis–NIRp on the ≤2 mm samples was the most

cost-effective for estimating SOC because it is cheap, accurate and has a large

capacity for measurements.

Highlights

• Concentrations of soil organic carbon (SOC) were determined by standard

dry combustion and estimated from reflectance spectra recorded by three

instruments.

• The labour required for each of the techniques and the cost, including that

of the equipment, were recorded.
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• A quantity E, expressing the cost-effectiveness relative to dry combustion

was calculated for each spectral technique, taking into account both accu-

racy and cost.

• Dry combustion was always more accurate than estimates from spectra for

individual samples, and the technique was also more cost-effective for small

numbers of samples.

• The cost-effectiveness of the spectral techniques varied among themselves,

but all were more cost-effective than dry combustion for large numbers of

samples.

KEYWORD S

accuracy, capacity, cost, economy, mid-infrared spectroscopy, soil organic carbon, visible–
near-infrared spectroscopy

1 | INTRODUCTION

Scientists have for many years measured the concentra-
tion of organic carbon in the soil (SOC). They have
wanted to understand the role of carbon (C) in the soil's
behaviour, especially as the result of changes under culti-
vation. In recent years emphasis has switched towards
the carbon cycle in ecosystem processes (Davidson &
Janssens, 2006; Fontaine et al., 2007; Schmidt et al., 2011;
Stell et al., 2021) and for carbon accounting (Atwood
et al., 2017; Mishra et al., 2021; Viscarra Rossel et al., 2014).
Scientists have taken soil material from the field into the
laboratory, dried it, crushed and sieved it, and then
analysed sub-samples of it chemically. The methods are
time-consuming, laborious, and expensive, and they can be
unaffordable when many samples are needed, for example,
to monitor SOC on farms and larger regions such as catch-
ments and nations. Modern spectroscopy in the near- and
mid-infrared regions of the electromagnetic spectrum offers
an alternative means of analysing soil quickly and cheaply,
and there is growing interest in it for estimating SOC
(Paustian et al., 2016).

The spectra contain a great deal of information, not
only on the organic C but also on soil minerals, particle
size and water (if measured under field conditions). The
relevant information for estimating the SOC has, there-
fore, to be teased out. This requires some fairly complex
statistical processing and modelling, but once the spectra
have been recorded digitally they too can be rapid. Ques-
tions then arise concerning the accuracy of estimates
from the technique.

There is relevant spectral information on C in the
mid-infrared (mid-IR, 2500–25,000 nm) and visible–near-
infrared (vis–NIR, 350–2500 nm) regions (Reeves
et al., 2006; Viscarra Rossel & Hicks, 2015), and there are
now modestly priced spectrometers for sensing and

recording reflectance in these regions. Quantification of
SOC by spectroscopy in the vis–NIR and mid-IR requires
reference soil samples with both analytical data and spectra
from which to derive a spectroscopic model. Despite the
successful estimation of SOC by laboratory-based spectros-
copy (for both bench-top and portable instruments)
(Soriano-Disla et al., 2014), the preparation of samples (dry-
ing and grinding) can still be time-consuming.

Measurements with portable vis–NIR (vis–NIRp) and
mid-IR (mid-IRp) spectrometers can be made in the labo-
ratory on air-dried and ground soil samples and on wet
soil under field conditions (Dhawale et al., 2015;
Greenberg et al., 2021; Hutengs et al., 2019; Ji et al., 2016;
Li et al., 2015). Hand-held vis–NIRp and mid-IRp spec-
trometers are available from several manufacturers, and
they are becoming increasingly affordable. Their advan-
tage over bench-top instruments is that they are small,
portable, can be deployed in the field, and can be incor-
porated into multi-sensor systems (e.g., Viscarra Rossel
et al., 2017): there is thus growing motivation for their
further development.

It has been shown that spectroscopy in the mid-IR
provides 10%–40% more accurate estimates of organic C
than that in the vis–NIR (Baumann et al., 2021; Bellon-
Maurel & McBratney, 2011; Viscarra Rossel et al., 2006).
With few exceptions, however, the use of portable mid-IR
spectrometers has not been sufficiently explored
(Hutengs et al., 2018) because until recently, few mid-IRp

spectrometers have been commercially available. Also,
the preparation of samples strongly affects the estimates
of soil properties from mid-IR spectra. Soil for mid-IR
spectroscopy is commonly ground more finely than that
for vis–NIR, to between 0.1 and 0.5 mm (Janik
et al., 1998; Le Guillou et al., 2015). For the latter, the soil
is usually ground to ≤2 mm, though measurements can
be made on unprepared samples. We need to be sure that
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estimates of SOC from spectra recorded by mid-IRp spec-
trometers on soil ground only to ≤2 mm are sufficiently
accurate before such instruments are used routinely.

Estimates of SOC must be accurate, of course. But
what do we mean by accuracy, or, more importantly in
the current context, inaccuracy? van Leeuwen et al. (2021)
address the question in some detail in this journal, and
they illustrate their answer with a statistical analysis of
some data on organic C in soil. They, and we, treat ‘inac-
curacy’ in general as the departure of an estimate or mea-
surement from a true value. This departure comprises
systematic deviation from a true value, that is, bias, plus
apparently random fluctuation about the true value or its
estimate. Many statisticians distinguish by restricting the
word ‘accuracy’ to refer to bias and its avoidance and use
the word ‘precision’ for the random component. Others
use the word to embrace both, and we do that following
the usage of Kempthorne and Allmaras (1965).

We take the dry combustion method as a standard.
We have assumed that the errors in the measurements by
dry combustion provided by the accredited laboratories
(NATA and ASPAC, listed below), were small enough to
negligible, though recognising that such errors can be
substantial (van Leeuwen et al., 2021). Inaccuracies arise
almost entirely from variation among replicate samples
from the field or analyses on replicate sub-samples in the
laboratory or both. We can determine their contributions
from the replicate measurements, and we can diminish
the error, that is, increase precision, by increased
replication—at a price in terms of labour and cost.

Variation from sample to sample contributes to an
error in the measurement of the spectra. Again, one can
increase precision by increasing the replication, but now
at substantially less cost. Nonetheless, such variations
contribute to errors in spectral estimates of SOC. Addi-
tionally, its estimates contain systematic errors, that is
biases, arising from calibration and modelling, and these
must be taken into account when one judges the merits
of spectroscopy. Thus, estimates of SOC from spectros-
copy are less accurate than those from dry combustion,
but by how much? Given that spectroscopy is much
cheaper than dry combustion, can we put a price on its
inaccuracy?

We can certainly document the costs. We can record
the times taken to obtain measurements by the various
techniques; we can convert them into monetary units
knowing the wages of the labour by trained technicians.
We know the prices of instruments and other equipment
and their running costs, and we can take into account
their depreciation in time. In other words, we can know
how much it costs to obtain data. If those data are inaccu-
rate, however, there is an additional hidden cost that we
should take into account.

Though previous investigators have discussed the cost
(O'Rourke & Holden, 2011), or cost–benefit (Nocita
et al., 2015), of soil spectroscopy, they seem not to have
done so quantitatively, or set the cost of loss of informa-
tion against the operational savings. Can we do that, or
alternatively, can we increase the sampling for spectros-
copy to counteract the inaccuracy of individual measure-
ments? In the simplest situations the cost of obtaining a
mean value of SOC is directly related to the size of the sam-
ple, say n; that is, the cost is a linear function of n, and the
error variance is inversely related to n (Cochran, 1977). One
can then define the effectiveness of a procedure in terms of
its cost relative to some standard. The situation we investi-
gate is far more complex, yet we still want a measure of
relative effectiveness. We designate a quantity E, the cost-
effectiveness of spectroscopy compared to conventional
laboratory analysis. This quantity combines time, cost and
inaccuracy, and it is intended to reveal the most economical
means of obtaining sufficient accurate data for a particular
application over a region of interest; the larger it is the bet-
ter. It would enable an investigator to choose a technique
that gives the best value within a limited budget or to esti-
mate the resources required to achieve some given goal of
accuracy. This is the background to the study we describe
below.

Our aims here were as follows:

1. To compare spectra recorded with three spectrome-
ters: a bench-top mid-IR spectrometer (mid-IRb), a
portable mid-IRp spectrometer and a portable vis–
NIRp spectrometer, all capturing spectra from soil gro-
und to ≤2 and ≤0.5 mm;

2. To compare spectroscopic predictions of SOC made
with the spectra from the three spectrometers on the
two-particle sizes;

3. To compare the cost-effectiveness, E, of the spectro-
scopic predictions of SOC relative to measurements
made by dry combustion as standard, after quantify-
ing their inaccuracy and costs.

2 | MATERIALS AND METHODS

2.1 | Soil sampling

We took soil for this study from a 600-ha cattle farm in
Northern New South Wales, Australia (30.69�S, 151.48�E).
It is predominantly a Kurosol in the Australian Soil Classifi-
cation (Isbell, 2002) approximately equivalent to Acrisols
and Planosols in the World Reference Base (WRB) for Soil
Resources (IUSS Working Group WRB, 2006).

We sampled to a stratified random design to obtain
150 soil cores to a depth of 1 m, or to the limit of
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penetration if that was less. The cores were 50 mm in
diameter and were retained in PVC tubes for storage.
Viscarra Rossel et al. (2017) have recorded the details of
the soil and its variation over the farm.

The word ‘sample’ is used in two ways by soil scien-
tists. One is the strictly statistical meaning of a set of
units, say cores as above, drawn from a population; the
other, and more usual, is a mass of soil material on which
measurements are made. In this paper, we use the word
in this second sense unless stated otherwise.

2.2 | Sample preparation and laboratory
analyses

Once in the laboratory, all the cores were air-dried, sub-
sampled and stored before measurements were made.
The soil cores were divided into sections at depths of
0–5.5 cm, 13–17 cm, 28–32 cm and 58–62 cm to produce
a total of 562 sub-samples for the experiments. The samples
were dried in a drying room at 40�C for approximately
3 days. Portions were then crushed and ground to particle
sizes ≤2 and ≤0.5 mm. Some of each portion was analysed
for SOC by the DC elemental method (Rayment &
Lyons, 2011) with a LECO analyser (Laboratory Equipment
Corporation, St Joseph, MI, USA). We sent the prepared
samples to a National Association of Testing Authorities
(NATA) and Australasian Soil and Plant Analysis Council
(ASPAC) accredited environmental analysis laboratory for

the measurement of SOC. The analytical accuracy of these
laboratories has been independently assessed by “blind”
duplicate analysis.

2.3 | Spectroscopic measurements

Figure F11 shows three spectrometers used in this study,
the corresponding spectra in absorbance were also given
underneath. The mid-IRb spectra of the soil samples were
recorded with a Vertex 70 bench-top spectrometer
(Bruker Optik GmbH, Ettlingen, Germany) with liquid
nitrogen-cooled mercury cadmium telluride (MCT) detec-
tor. The spectral range was 7500–600 cm�1 (1333–
16,667 nm). Samples with particle size ≤0.5 mm were
placed into a 48-well microplate with a well diameter
10 mm. A gold standard was placed on the first well. The
robotic arm (Twister Microplate Handler, also from
Bruker Optik GmbH) was used for the automated loading
of sample plates into the spectrometer. Before recording
the soil spectra, once every plate, a background measure-
ment was made with the gold standard. We used a spec-
tral resolution of 4 cm�1 and took 64 measurements per
sample. Soil samples were filled in the next 44 wells (with
the last three wells empty) for each plate. To minimise
errors in spectroscopic measurement to obtain a robust
estimate, four sub-samples of each soil sample were mea-
sured, and the four replicate spectra were then averaged
into one spectrum for each sample.

FIGURE 1 Three spectrometers with their corresponded spectra. From the left to the right: Mid-IRb, mid-IRp, and Vis–NIRp
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The mid-IRp spectra were recorded manually with a
hand-held Agilent 4200 spectrometer with a deuterated
triglycine sulfate (DTGS) detector cooled by a thermo-
electric cooling module (Agilent Technologies, Santa
Clara, CA). The instrument measures diffuse reflectance
over the range 4000–650 cm�1 (2500–15,385 nm) with a
spectral resolution of 4 cm�1. Samples ground to ≤2 and
≤0.5 mm were placed in a petri dish (5 cm diameter,
1 cm depth). We recorded a gold reference background
spectrum once every 10 measurements. Each recorded
spectrum was the product of 64 internal measurements.

The vis–NIRp spectra were measured manually with a
portable Labspec® spectrometer (PANalytical Inc., for-
merly Analytical Spectral Devices–ASD, Boulder, CO)
with a high-intensity contact probe attached to an exter-
nal fibre-optic cable. The contact probe measures a spot
of diameter 10 mm, and is designed to minimise errors
associated with stray light. The spectra were recorded at
a resolution of 1 nm from 350 to 2500 nm. Samples gro-
und to ≤2 and ≤0.5 mm were placed in a petri dish (5 cm
diameter, 1 cm depth). Standardised measurements were
made with the protocols described by Viscarra Rossel,
Behrens, et al. (2016). Briefly, we calibrated the sensor
with a Spectralon® white reference once every 10 mea-
surements. Thirty spectra were averaged into one spec-
trum for each soil sample.

2.4 | Pre-processing of spectra

The spectral ranges from both mid-IRb and mid-IRp were
reduced to span the 4000–650 cm�1 range. The vis–NIRp

spectra were reduced to 400–2450 nm to eliminate noise
at the ends of the spectra. Because the spectra are highly
collinear, the vis–NIR spectra were sampled to a resolu-
tion of 10 nm. Both mid-IR and vis–NIR reflectances (R)
were later transformed to the logarithmic apparent absor-
bance, A¼ log10 1=Rð Þ:

To reduce noise further and to enhance the signals,
we used Savitzky–Golay smoothing combined with a
first-derivative treatment (Savitzky & Golay, 1964) and
then centred the resulting spectra before modelling them.
We then offset the spectra to a baseline for qualitative
description by subtracting the absorbance of the first
wavenumber or wavelength.

To summarise the spectra and examine their struc-
ture, we decomposed the spectra using principal compo-
nents analysis (PCA) with the iterative non-linear partial
least squares (NIPALS) algorithm on the covariance
matrix of the spectral data (Martens & Næs, 1989). This
enabled us to condense the information contained in the
samples to a few scores and to identify those variables
that load heavily on the leading principal components.

We projected the spectra from the mid-IRp (≤2, ≤0.5 mm
particle sizes) onto the space of the mid-IRb, and the spectra
from vis–NIRp (≤2 mm particle size) onto that of ≤0.5 mm
particle size.

2.5 | Modelling and assessment

As above, we had 562 samples of soil from 150 cores
available for our analysis. To validate our models so that
they could be used with confidence, we randomly
selected 30 cores (96 samples) to represent an indepen-
dent test set of data. From the remaining 120 cores, we
selected a training set of 82 cores (320 samples) using the
Kennard–Stone (KS) algorithm (Kennard & Stone, 1969).
Because of the correlations of the measurements from
the same core, we selected cores rather than samples by
defining one core as one subgroup in the KS algorithm.
The remaining 38 cores (146 samples) were used for vali-
dation. Table T11 lists the basic statistics of the calibration,
validation and test sets of data.

We used the machine-learning algorithm Cubist
(Quinlan, 1992) to build the spectroscopic models for SOC.
The algorithm divides the variable space into smaller
regions and creates a multivariate linear least-squares
model for each of the partitions, and it divides the response
data into subsets in which their characteristics are similar
to their spectra and other predictors that might be used. It
is the same approach as Viscarra Rossel and Webster (2012)
described and used to model soil spectra.

We took 50 bootstrap samples of the calibration data
when we implemented Cubist to ensure that the model
was stable and to assess the uncertainty of our predic-
tions. The method relies on repeated random sampling
with replacement from the original units of calibration
datasets to obtain 50 bootstrap samples. Each bootstrap
sample is the same size as the initial set of calibration
data, though it contains replicates of some units, while
others are absent and represent the out-of-bag (OOB)
samples (Hastie et al., 2005). The bootstrap estimates pro-
vide robust predictions because the final predictions are
calculated from the mean of the 50 bootstraps. Briefly,
these improvements result from the aggregation of the
50 different bootstrapped models, each of which provides
unique information (Viscarra Rossel, 2007).

To express the uncertainty of the estimation of the
independent test set of data we derived the upper and
lower 95% confidence intervals by calculating,

y ¼ y�1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

s2i

vuut , ð1Þ
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where y is the average value of predicted SOC concentra-
tions at a particular depth, s2i is the variance of 50 boot-
straps for sample i, and N is the number of soil samples.

We used the coefficient of determination (R2) to eval-
uate and compare the performances of the spectroscopic
models, which is simply the square of the Pearson corre-
lation coefficient between the predictions and the mea-
surements, the root mean square error (RMSE) to assess
the inaccuracy of the estimations, the mean error (ME) to
evaluate the bias, and the ratio of performance to inter-
quartile distance (RPIQ) to assess the quality of the spec-
troscopic model (Bellon-Maurel et al., 2010), defined as
the ratio of the interquartile (IQ = Q3 � Q1) to the
RMSE. The mathematical pre-processing and chemometric
analyses were done in R (R Core Team, 2020). For the DC
method, the inaccuracy was calculated by RMSE from the
results of duplicated soil samples.

2.6 | The cost effectiveness, E, of
spectroscopy

We calculated the quantity E to account for the inaccu-
racy of the spectroscopic SOC predictions from the three
spectrometers and their cost, relative to the measure-
ments made with dry combustion (DC) analyser. We
assumed that all measurements began with the work
done for the sample preparation (drying and grinding).
We defined the capacity of each method as the maximum
number of samples that could be ground and measured
by one analyst using a particular method during a work-
ing day, which is 7 h. We assumed that as the number of
samples increases, E approaches a maximum determined
by the capacity of the procedure to acquire data. Thus,
we calculated,

E ¼ Ur�Cr

Us�Cs
�nlogαs

αs�βs
αr�βr

� �
for 1≤n≤ αs , ð2Þ

where n is the number of samples. The quantity α is the
capacity of the laboratory to prepare samples for analysis
or spectroscopy; it is the maximum number of samples

that can be ground and prepared daily. The quantity β is
the capacity of data acquisition; it is the maximum num-
ber of soil samples that can be measured by the method.
These two quantities are the most important in determin-
ing the cost-effectiveness of the techniques. The subscript
r refers to the DC method, and subscript s refers to the
particular spectrometer. The quantities Ur and Us are the
mean square errors (MSEs) of the measurements (in %);
they express both the assumed random fluctuation and
systematic error about the mean estimates. The quantities
Cr and Cs are the total costs, in AU $, of the measure-
ments, see Equations (3)–(8) below. These equations also
tell how the time taken was transferred into cost and
capacity.

We calculated the total time taken, T, and total cost,
C, as,

T ¼ TspþTda

C ¼ CspþCda ,
ð3Þ

where Tsp and Tda are the times for preparation of the
samples and for acquiring the data Csp and Cda are the
costs.

The Csp was calculated as,

Csp ¼ 7�ν

α
, ð4Þ

where ν is the hourly salary (AU $45) and there are 7 h
in the working day. The quantity α is the capacity of sam-
ple preparation; it is the maximum number of samples
that can be prepared in 1 day and is given by,

α ¼ 7�3600
Tsp

, ð5Þ

The value 3600 converts hours to seconds, and 7 is
again the number of working hours in a day. The quan-
tity Tsp is the time taken for crushing and grinding sam-
ples to ≤2 or to ≤0.5mm. In practice, operators need to

TABLE 1 Statistics of SOC concentrations (in %) measured by dry combustion in the laboratory

Data set

1st 3rd

N Min. Quartile Median Mean Quartile Max. Skew

Calibration data 320 0.08 0.22 0.40 0.79 0.91 3.30 1.40

Validation data 146 0.08 0.19 0.35 0.70 0.83 2.66 1.26

Independent test data 96 0.08 0.22 0.43 0.80 0.85 3.20 1.44

Abbreviations: Max, maximum; Min, minimum; N, sample size; Skew, skewness coefficient.
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take substantial breaks from such work, and the effective
working day for crushing and grinding the samples is
only about 60% of the 7 h (Collewet & Sauermann, 2017).

The time and cost for data acquisition were calcu-
lated as,

Tda ¼ T ldþTrf þTmm

and Cda ¼ CmoþCmi ,
ð6Þ

where T ld and Cld are the cost and time to load sample
from containers into plates or Petri dishes after samples
have been mixed thoroughly in the container. The porta-
ble sensors required extra cleaning between the measure-
ments to avoid contamination from one sample to
another. The quantity Trf is the time spent for measuring
of the reference material; Tmm is the time for measure-
ment, Cmo is the cost of measurement by the operator;
and Cmi is the cost of measurement by the selected
instrument.

Specifically, we calculated each part of Cda by,

Cmo ¼ 7�ν

β

and Cmi ¼ 1:1�Ω
240�β

,
ð7Þ

where β is the capacity of data acquisition, that is, the
maximum number of samples that can be measured
within one working day. The quantity Ω is the estimated
one-off capital cost of the equipment, which we assume
to have a life of 10 years and to depreciate at the rate of
10% per annum. The 240 is the number of working days
in 1 year.

With a DC analyser, one operator can measure
50 samples per day on average. So β = 50. As mentioned
in Section 2.3, we have 132 or 220 for mid-IRb with
Bruker Vertex 70 spectrometer as its 60% and 100% β,
respectively. The β of each portable spectrometer was cal-
culated as,

β ¼ Tw�1800
Tda

, ð8Þ

where Tw is the length of a working day in seconds
(25,200 s). The 1800 s is the half-hour warm-up time for
before the spectrometer can begin scanning.

To measure the difference in the capacity of the two
methods with increasing n, Equation (2), we introduce
the partition coefficient (Kwon, 2001) as the power. A
value of E>1 indicates that the spectroscopic method is
more effective than DC. Conversely, E<1 suggests that
the spectroscopic method is less so.

The quantities α and β are set for a working day of
7 h with a single break (for lunch, for example). In prac-
tice, many technicians find such continuous, repetitive
work tedious and require more frequent breaks. There-
fore, we used 60% of the working day as a conservative
estimate of the effective time spent to work on one or
both of those tasks (Collewet & Sauermann, 2017). We,
therefore, define four levels of work as follows:

Normal (60% α with 60% β),
Medium (100% α with 60% β),
High (60% α with 100% β), and
Extreme (100% α with 100% β).

3 | RESULTS

3.1 | Soil spectroscopy

Figure F22 shows, for each spectrometer, the average loga-
rithmic apparent absorbance of all the 562 ground sam-
ples for each of the four layers of soil and twice their
standard deviations, representing the variation of the soil.
The vis–NIR spectra contain fewer absorption bands than
the mid-IR spectra; the latter effectively contain more
information on the composition of the soil.

For all three spectrometers (mid-IRb, mid-IRp, and
vis–NIRp), the magnitude of the spectral variation in the
two deeper layers was generally larger than that of in
the top two layers. The average absorbance spectra in the
mid-IRp were less for the ≤2 mm particles than for the
≤0.5 mm particles. This might be because the larger par-
ticles reflect more radiation from their surfaces than do
the smaller particles.

The spectra from the same ≤0.5 mm particle size,
both mid-IRb and mid-IRp were similar; both had sharp
absorbances in the 4000–2000 cm�1 region. In the range
between 2000 and 650 cm�1, however, the spectra from
the mid-IRb have more pronounced peaks than those of
the mid-IRp. The spectra of the mid-IRp were more varied
in each layer (shown by the shaded regions in Figure 2).
This variation was smaller for measurements made on
the larger ≤2 mm fraction. The opposite is true for the
vis–NIRp spectra; that is, there was more variation in the
spectra of the larger ≤2 mm fraction.

As the concentrations of SOC gradually decrease with
increasing depth, the mid-IR absorptions near 2920 and
2850 cm�1 associated with stretching CH2 vibrations in
organic matter gradually disappear (Figure 2). Similarly,
there were other absorptions around 1400 cm�1 that are
attributed to organic compounds that were less pro-
nounced in the deeper layers (Capriel et al., 1995). As the
clay content of the soil samples increased with increasing
depth, the absorptions of the vis–NIR spectra that are
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associated with iron oxides in the range 400–1000 nm
and water near 1400 and 1900 nm and clay minerals such
as kaolinite near 2200 nm.

FigureF3 3 shows the scatter of the scores of the first
two principle components plotted against one another for
the spectra from the mid-IRb, mid-IRp (Figure 3a) and
vis–NIRp (Figure 3b) for the two-particle fractions. The
two leading components accounted for almost 90% of the
total variance of the mid-IR spectra. All three types of
spectra are clustered, though with some overlap. As
described above (Figure 2), the spectra of the mid-IRp

≤0.5 mm are more varied and thus have a wider spread
in the vector space of the first two components.

For the vis–NIRp spectra, the first two principal com-
ponents accounted for 94.3% of the variance in the absor-
bance spectra. Although the scores of the ≤2 and
≤0.5 mm overlap, those of the ≤2 mm are more variable
(see Figure 2) and thus have a wider spread (Figure 3b).

3.2 | Spectroscopic model evaluation and
estimation

Figure F44 shows the estimated values in the independent test
set of data and their uncertainties. The 95% lower and
upper confidence limits (CLs) of each statistic are also given
in brackets. The thick red lines down the profiles represent
the means of the observations, and black dashed lines
depict the predicted concentrations of organic C.

The mid-IRb (Figure 4a) produced the best estimates
of SOC (R2 = 0.96, RMSE = 0.17, RPIQ = 3.70) with the
narrowest 95% confidence limits. For both mid-IRp and
vis–NIRp instruments, the >2% SOC concentrations
tended to be under-estimated. Estimates of SOC from
these portable spectrometers were more accurate for par-
ticles ≤0.5 mm than for the larger fraction, ≤2 mm.

The 95% confidence interval for mid-IRp on ≤2 mm,
Figure 4c, was narrower than that of the ≤0.5 mm,
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2 The average mid-IRb, mid-IRp and Vis–NIRp spectra of four depths (0–5.5 cm, 13–17 cm, 28–32 cm, and 58–62 cm) for the

two particle sizes, ≤0.5 and ≤2 mm. The absorbance spectra are shown as red curves with their twice standard deviations show as shaded

grey bands about the means. The standard deviation here shows the variation of the samples
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Figure 4b, which accords with our results shown in Fig-
ures 2 and 3a. We found no clear difference between the
estimates of SOC from the mid-IRp (R2 = 0.84,
RMSE = 0.35) and vis–NIRp (R2 = 0.81, RMSE = 0.38)
for the ≤2 mm fraction. However, the estimates of SOC
with the vis–NIRp on the ≤0.5 mm fraction (R2 = 0.88,
RMSE = 0.30) were more accurate than those with the
mid-IRp on ≤2 mm fraction.

Overall, estimates from the mid-IRp were somewhat
more accurate than those from the vis–NIRp on soil gro-
und to the same particle size. There is one poorly
predicted sample for the ≤2 mm particle fraction shown
in Figure 4c,e (shown as red discs) but which was well
predicted on the ≤0.5 mm particle fraction. We checked
the sample quality and further examined this by re-
measuring the sample five times with all of the spectrom-
eters to avoid any measurement error (see FigureF6 A1).

3.3 | Comparison of cost-effectiveness

TableT2 2 lists the approximate time taken for one individ-
ual sample by DC and each of the spectroscopic methods.
Overall, the DC was the most time-consuming, requiring
500 s for sample preparation (Tsp) and 780 s for data
acquisition (Tda). The total time for portable instruments
accounted for around 27%–45% relative to that of
DC. The Tsp, accounted from more than half to 90% of
the total time for spectroscopic methods, but only around
39% for the DC. This was mainly because spectroscopic
measurement itself is quick; the time taken to prepare
the samples, Tsp, is not changed. As one of three

components of the Tda, loading samples (Tld) for the mid-
IRb takes the longest time (240 s) among all methods; this
is because four replicates are needed (60 s for each) and
loading a spot of sample into each well of the sample
plates requires great care and patience.

Table T33 lists the values of α and β for both a realistic
60% working day and a whole working day, 100%, as ulti-
mate limits for the methods. The capital cost (Ω, in AU $)
and inaccuracy (in %) for each method are also given.
The times taken, listed in Table 2, and so it is evident that
more samples can be measured in a full day, 100%, than
at 60%. There is one exception, namely DC for which β is
constant. As the sample racks with boats are fixed, β is
the same for 60% and 100% of the working day. Determi-
nation of SOC with the spectrometers is less accurate
than by DC, but because spectroscopy is quicker its
values of β are greater than that of the DC (50 samples
per day).

Table T44 lists the approximate costs of determining the
SOC by DC and spectroscopy for a comfortable working
day (60%) and a full day (100%). See also Table 2. For all
methods working at 60% of the day costs more than at
100%. For example, the DC was the most expensive
method with a total cost AU $ 35 (60% α) or AU $
31 (100% α) per sample. Although mid-IRb on the
≤0.5 mm ranked the second, it accounted for less than
half to one-third that for DC. The total costs for deter-
mining the SOC with portable spectrometers are much
less than those of the more refined techniques because
they are quicker; their values of β are much larger.

Figure F55 shows that for each spectrometer its E rela-
tive to DC increases up to its full capacity, β (i.e., for DC

FIGUREC
ol
or

on
lin

e,
B
&
W

in
pr
in
t

3 Scatter plots of the scores of second principal component (PC2) against those of the first principal component (PC1) for soil

absorbance spectra: (a) PCA transformed mid-IR spectra values and (b) PCA transformed Vis–NIR spectra values
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E = 1). Figure 5a,b are the results of E under 60% and
100% α of the working day respectively. Lower and upper
boundaries of the coloured area distinguish the 60% and
100% β. Each interval of area is the condition between 60%
and 100% β. Figure 5c shows the intersection among
methods under four levels depicted as a confusion matrix.

The spectroscopic methods are less accurate than dry
combustion (DC). Nevertheless, they are quicker and
cheaper, and many more samples can be measured per
working day. That reduces the cost per datum and can
make them more cost-effective. All the spectroscopic
methods were more cost-effective than DC as long as
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4 Validation of independent test data of the SOC estimates from cubist showing the observed values against the estimated ones

and their uncertainties (bars), and estimations of SOC on cores with their 95% confidence intervals (shaded grey bands). The thick (red) line

and (black) short dash line down the profiles represent the mean of observed and predicted values of SOC, respectively. Values in brackets

are 95% lower and upper confidence limits (CLs)
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more than some threshold number of samples were
measured.

For each spectroscopic method, the E for 100% β
always exceeds the corresponding E for 60% β for the
same number of samples, n, whatever the values of α are.
This is simply because more samples can be measured
per day (larger β) thereby reducing the cost of data acqui-
sition (Cda) and therefore the total cost. The entries is
Table 3 confirm this. It is the same for α; the E at 100% α
is always greater than that of the 60% with same β. This
is because when β is fixed, the greater capacity for prepar-
ing samples means that more samples are ready for measure-
ment (see Table 3), and that helps to reduce the cost for
preparation of sample (Csp) significantly and further reduce
the total cost of the whole operation. Not only that, larger α
or β diminished the number of intersections (see
Figure 5c). More details of the maximum E from Figure 5a,
b are listed in TableT5 5. The value of E for DC remains at
1. With greater throughput, faster data acquisition and
good accuracy, the vis–NIRp on the ≤2mm samples was
the most cost-effective for estimating organic C; its E
ranged from 2.11 to 5.24 times that of the DC measure-
ment at its full capacity among four levels of work.

4 | DISCUSSION

4.1 | Performance of the spectroscopic
models

The laboratory measurements with the mid-IRb spec-
trometer produced sharper spectra than did mid-IRp

instrument. This is because the spectrometers have differ-
ent detectors. The detector in the mid-IRp Agilent 4200
spectrometer is a thermoelectrically regulated DTGS, the
sensitivity of which is roughly 1000th of that of the
liquid-cooled MCT detector in the mid-IRb Bruker Ver-
tex 70 spectrometer. This might contribute to the accu-
racy of the estimates of SOC for the ≤0.5 mm samples
from the mid-IRb spectra. Figures 2 and 3a show a larger
variation of the mid-IRp spectra on the ≤0.5 mm soil
samples, particularly in the region between 2000 and
650 cm�1. It might be the reason that the estimates of
SOC with the spectra of the ≤0.5 mm samples are less
certain (Figure 4b).

The mid-IRp spectra produced somewhat more accu-
rate estimates of SOC than those from the vis–NIRp on
the same particle fraction (Figure 4). One reason is that

TABLE 2 Approximate time taken (in seconds) for individual measurements of SOC concentrations made with the DC (dry

combustion) analyser and three spectrometers (mid-IRb, mid-IRp, and Vis–NIRp)

Method

Sample preparation Data acquisition

Total time/s≤2 mm ≤0.5 mm Loading Reference Measurement

DC – 500 120 300 360 1280

Mid-IRb – 500 240a 4a 120a 864

Mid-IRp – 500 35 5 30 570

300 – 35 5 30 370

Vis–NIRp – 500 35 5 10 550

300 – 35 5 10 350

aComprised four replicates.

TABLE 3 Approximate numbers of samples under 60% and 100% capacities of the sample preparation (α) and data acquisition (β)

within one working day made by a DC (dry combustion) analyser and three spectrometers (mid-IRb, mid-IRp, and Vis–NIRp)

Method
Particle
diameter/mm Capital cost/AU $

α β
RMSE/%60% 100% 60% 100%

DC ≤0.5 200,000 30 50 50 50 0.09

Mid-IRb ≤0.5 120,000 30 50 132a 220a 0.17

Mid-IRp ≤0.5 80,000 30 50 200 334 0.26

≤2 80,000 50 84 200 334 0.35

Vis–NIRp ≤0.5 80,000 30 50 280 468 0.30

≤2 80,000 50 84 280 468 0.38

aComprised four replicates.
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the absorptions in mid-IR range correspond to intense fun-
damental vibrations of bonds in molecules (Williams &
Norris, 1987), whereas the absorption in the NIR range cor-
responds to weak overtones and combinations of the com-
ponents at characteristic wavelengths or in particular
wavelengths in that range and in the visible range they are
electronic transitions of atoms (Vohland et al., 2014). The
estimates from the vis–NIRp spectra of the ≤0.5 mm sam-
ples were more accurate than those from the mid-IRp spec-
tra on ≤2 mm fractions, however. This indicates that
sample preparation and surface conditions of the soil have
a significant effect on spectroscopic predictions. Grinding to
a fine particle size homogenises the soil and increases the
overall accuracy of SOC estimates (Le Guillou et al., 2015;
Stumpe et al., 2011).

We believe that the overestimates of the SOC for the
≤2 mm samples (red discs), shown in Figures 4c,e and
A1, are likely to be caused by poor penetration of light
into the soil so that diffuse reflection of the light from the
soil is also poor. Stenberg et al. (2010) observed larger
errors in estimates of SOC by vis–NIR spectroscopy
when the samples contained larger amounts of sand
(which are coarser than clay and silt) and that the
errors in the sandiest soil were dominated by overes-
timates of SOC. We, therefore, suspect the mid-IR
suffers similarly; it is a matter that needs further
investigation.

4.2 | Factors affecting the cost
effectiveness

In our cost-effectiveness formula, Equation (2), four main
factors affecting E with the numbers of samples (n)
increasing are the inaccuracy (U), the total cost (C) and
the capacities of sample preparation (α) and data acquisi-
tion (β). Having found that all spectroscopic methods at
full capacity are more cost-effective (i.e., E>1) than dry
combustion, we discuss below only those situations for
which E exceeds 1 (see Figure 5).

As one of two components of the C, the cost on sam-
ple preparation (Csp) for dry combustion accounted for
20%–30% of its C, but more than 50% of that for spectros-
copy (one exception is the mid-IRb under a medium
working level, which was 48%). This suggests that the
effort it takes to grind the samples can diminish E and
thus the overall performance of the spectroscopic
methods.

The cost of measurement by particular instrument
(Cmi) was determined by the depreciation, capital cost
(Ω) and the β (see Equation 7). These Cmi were less than
around 30% of the total cost per sample for the spectro-
scopic methods compared with around 50% (AU $ 18.3)
for DC (AU $ 35 at 60% α, or AU $ 31 at 100% α). The
purchase price of an instrument as the Ω can vary from
one supplier to another, and this variation will positively

TABLE 4 Approximate cost (in AU $) for individual measurements of SOC concentrations made with the DC (dry combustion) analyser

and three spectrometers (mid-IRb, mid-IRp, and Vis–NIRp)

Method

Sample preparation Data acquisitiona

Total cost/AU $≤2 mm ≤0.5 mm Measurementb Measurementc

DC – 10.5 6.3 18.3 35

Mid-IRb – 10.5 (2.4, 1.4) (4.2, 2.5) (17, 14)

Mid-IRp – 10.5 (1.6, 0.9) (1.8, 1.1) (14, 13)

6.3 – (1.6, 0.9) (1.8, 1.1) (10, 8)

Vis–NIRp – 10.5 (1.1, 0.7) (1.3, 0.8) (13, 12)

6.3 – (1.1, 0.7) (1.3, 0.8) (9, 8)

DC – 6.3 6.3 18.3 31

Mid-IRb – 6.3 (2.4, 1.4) (4.2, 2.5) (13, 10)

Mid-IRp – 6.3 (1.6, 0.9) (1.8, 1.1) (10, 8)

3.8 – (1.6, 0.9) (1.8, 1.1) (7, 6)

Vis–NIRp – 6.3 (1.1, 0.7) (1.3, 0.8) (9, 8)

3.8 – (1.1, 0.7) (1.3, 0.8) (6, 5)

Note: The upper section of the table is for α = 60% and lower section for α = 100%. The entries in the square brackets are for β = 60% (the first entry) and for
β = 100% (second entry).
aFrom 60% (left in the bracket) to 100% β (right in the bracket).
bBy operator.
cBy instrument.
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affect the value of E. However, Ω is insignificant and is
masked by the greater capacities of the spectroscopic
methods. Moreover, the price of spectrometers is decreasing

with greater technological development, for example, devel-
opment of spectrometers based on microelectromechanical
systems (MEMS). The cost of labour (e.g., the hourly wage)
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5 The cost-effectiveness (E) of measuring soil organic carbon concentrations with a DC analyser and three spectrometers: Mid-IRb,

mid-IRp, and Vis–NIRp under (a) 60% α, (b) 100% α, and (c) the intersections over or equal to E= 1, combined with 60% β and 100% β, respectively.

The dashed and solid boundaries of the coloured area represent the 60% β and 100% β, respectively. Columns represent the 60% α (upper matrix)

and 100% α (lower matrix); rows represent the 60% β (lower triangular matrix in white) and 100% β (upper triangular matrix in grey), for

example, no 16 at DC column and mid-IRb ≤0.5mm row means the E of former is equal to that of latter when 16 samples were measured

TABLE 5 Maximum values of E made with the DC dry combustion) analyser and three spectrometers (mid-IRb, mid-IRp, and Vis–NIRp)

at full capacity under four levels of work

Level α (%) β (%)
DC Mid-IRb Mid-IRp Mid-IRp Vis–NIRp Vis–NIRp

≤0.5 mm ≤0.5 mm ≤0.5 mm ≤2 mm ≤0.5 mm ≤2 mm

Normal 60 60 1 1.52 1.21 1.60 1.37 2.11

Medium 100 60 1 1.78 1.53 1.92 1.78 2.64

High 60 100 1 3.00 2.24 3.10 2.48 3.96

Extreme 100 100 1 3.73 2.97 3.96 3.36 5.24
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has a large effect on the E. The salary could be less, perhaps
much less, in countries other than Australia (e.g., 10% of
AU $ or even less). For the spectroscopic methods, however,
the effect on E is likely to be small because of the greater
capacities of the instruments than those of dry combustion.

The rank order of maximum values of E, see Table 5,
increases as the working day intensifies. The greater
capacity leads to smaller costs on sample preparation
(Csp) or data acquisition (Cda), and finally to the substan-
tially smaller total cost. For spectroscopy, however,
increasing the capacity of data acquisition (β) has a larger
effect on increasing E than does increase the capacity of
sample preparation (α). For example, in the mid-IRb

increasing the working day for sample preparation from
60% to 100% increased E from 1.52 to 1.78, a difference of
0.26; increasing the working day for measurement
increased E from 1.52 to 3.00, a difference of 1.48.

The upper half of Figure 5c is additionally instructive.
We found the estimates of SOC with the mid-IRb spectra
on ≤0.5 mm samples to be consistently more cost-
effective (E > 1) than the DC measurements provided
more than four soil samples are being measured at the
high working level or more than 16 samples are being
measured at the normal working level. We attribute this
partly to the accuracy of the technique (RMSE = 0.17%)
and partly to the automation and consequent small oper-
ational costs (Cmo). Automation with the robotic arm
means that it can be operated comfortably for 100% of
the working day to measure 220 samples per day rather
than only 132 samples at 60%; in other words its capacity
for data acquisition, β, is much larger.

For portable spectrometers, the final ranking of their
E values (under each level) was the reverse of their accu-
racy. For example, the mid-IRp on ≤0.5mm was the most
accurate, but least cost-effective among the mid-IRp and
vis–NIRp on ground samples. The reason is that more
time is needed to prepare the ≤0.5mm samples (Tsp

500 s) than the ≤2mm samples (300 s), and to measure
them (mid-IRp Tmm = 30 s; vis–NIRp Tmm = 10 s) (Table 2).

We do not claim that the advantage of the larger
throughput with a portable spectrometer is necessarily
more cost-effective regardless of its accuracy. First, a
tolerable error is arbitrary (Lark & Knights, 2015) and
depends on the data and the application. For instance,
an RMSE of 0.5% SOC might be acceptable, when the
mean SOC is large or when many measurements are
made for mapping by kriging, for example, kriging
would diminish the prediction error variances further.
It would be too large, however, if the mean SOC was small
or for carbon accounting in a region or farm (Viscarra
Rossel, Brus, et al., 2016).

Although spectroscopic estimates on any one sample
might be less precise than measurement by conventional

chemical analysis, many more measurements can be made
for the same cost and at the same time. The final estimates
might well then be more precise and hence more informa-
tive, (e.g., the many spectral estimates better characterising
spatial variation compared with only a few measurements
made by conventional laboratory methods). Another impor-
tant advantage of spectroscopy is that a single spectrum
allows for simultaneous estimation of other soil properties
Viscarra Rossel and Webster (2012), although our study
here does not account for this.

5 | CONCLUSIONS

We have determined the inaccuracy of estimating the con-
centration of SOC from mid-IRb, mid-IRp and vis–NIRp

spectra measured with commercial spectrometers on gro-
und samples. We have also measured the time required to
prepare the samples beforehand and to capture the spectra
themselves from the instruments. From these measure-
ments and the costs of the instruments, we have calculated
the cost per estimate and its effectiveness relative to the
standard laboratory technique with the DC analyser.

We conclude the following:

1. Dry combustion, which is well established as a stan-
dard, should be the first choice when fewer than
50 samples are to be measured per day.

2. The mid-IRb was the most accurate of the spectro-
scopic techniques (R2 = 0.96, RMSE = 0.17,
RPIQ = 3.70); its cost-effectiveness also was excellent,
so it would be a good choice for fairly accurate deter-
minations of SOC on 100–200 soil samples per day
with four or more replicates.

3. The cost-effectiveness of mid-IRp on ≤2 mm is compa-
rable with that of the mid-IRb.

4. Measurements on soil ground to ≤2 mm with the vis–
NIRp spectrometer were the most cost-effective when
more than 250 samples were measured per day.

5. One can increase the E of spectroscopy, that is,
improve its performance, either by reducing the time
of sample preparation and data acquisition to reduce
the cost and increase the capacities or by improving
the accuracy of the spectroscopic modelling.

6. We do not recommend finer grinding of soil samples
for either portable vis–NIR or mid-IR spectrometers
because the small gain in accuracy does not justify the
additional cost of the labour.

Looking ahead, we think that automation with porta-
ble instruments recording spectra directly in the field
should increase efficiency markedly. We recognise that
such measurements would be strongly affected by soil
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water content. It would be necessary to use either direct
standardisation (DS, Ji et al., 2015) or external parameter
orthogonalization (EPO, Minasny et al., 2011) to remove the
effects. Promising results have been reported previously by
(Viscarra Rossel et al., 2017), but are undeveloped in mid-
IRp, which should also be tested in future.
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APPENDIX A

FIGURE A1 The predictions of soil organic carbon

concentrations measured with a DC analyser and three

spectrometers: Mid-IRb, mid-IRp, and Vis–NIRp
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