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ABSTRACT 18 

Irrigated dryland agroecosystems could become more sustainable if crop and soil 19 

management enhanced soil organic carbon (SOC). We hypothesized that combining high 20 

inputs from cover crops with no-tillage will increase their long-term SOC stocks. 21 

Caatinga shrublands had been cleared in 1972 for arable crops and palm plantations 22 

before implementing field experiments on Mango and Melon systems (established in 23 

2009 and 2012, respectively). Each of the two experiments were managed with no-till 24 

(NT) or conventional till (CT), and three types of cover cropping, either a plant mixture 25 

of 75% (PM1) or 25% (PM2) legumes, or spontaneous vegetation (SV). The RothC model 26 

was used with a daily timestep to simulate the soil moisture dynamics and C turnover for 27 

this dry climate. Carbon inputs added between 2.62 and 5.82 Mg C ha-1yr-1, increased the 28 

depleted SOC stocks by 0.08 to 0.56 Mg C ha-1yr-1. Scenarios of continuous biomass 29 

inputs of ca. 5 Mg C ha-1yr-1 for 60 years are likely to increase SOC stocks in the mango 30 

NT beyond the original Caatinga SOC by between 19.2 to 20.5 Mg C ha-1. Under CT 31 

similar inputs would increase SOC stocks only marginally above depletion (2.75 to 2.47 32 

Mg C ha-1). Under melon, annual carbon inputs are slightly higher (up to 5.5 Mg C ha-33 

1yr-1) and SOC stocks would increase on average by another 8% to 22.3 to 20.6 Mg C ha-34 

1 under NT and by 8 Mg C ha-1 under CT. These long-term simulations show that 35 

combining NT with high quality cover crops (PM1, PM2) would exceed SOC stocks of 36 

the initial Caatinga within 20 and 25 years under irrigated melon and mango cultivation, 37 

respectively. These results present a solution to reverse the loss of SOC by replacing CT 38 

dryland agriculture with irrigated NT plus high input cover crops agroecosystems.  39 

 40 

Keywords: semiarid zone, soil organic carbon, cover crop, no-tillage, irrigation, RothC. 41 
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1. INTRODUCTION 42 

The Intergovernmental Panel on Climate Change (IPCC) has highlighted the need for 43 

carbon sequestration to avoid a rise in global temperature more than 1.5 °C relative to 44 

pre-industrial times (IPCC, 2018). The United Nations has adopted the 2030 Agenda for 45 

sustainable and development (UNGA, 2015) and the first of the 17 Sustainable 46 

Development Goals (SDGs) is to end hunger and poverty. Agriculture needs to embrace 47 

its important roles in both climate regulation and food production. The integration of 48 

agricultural management with land use and climate change objectives (Lorenz et al., 49 

2019) will help to regulate the carbon (C) cycle, avoiding losses and sequestration C into 50 

the soil. The soil organic carbon (SOC) is estimated to be three times larger than the 51 

atmosphere carbon pool (Lal, 2004). Improving SOC through agricultural management 52 

secures the terrestrial ecosystem functions and food production, affecting directly or 53 

indirectly more than half of all SDGs (Jónsson et al., 2016).  54 

This is particularly important for dryland areas, which cover over 40% of the 55 

global land surface, inhabited by nearly 38% of the world population (Cherlet et al., 2018; 56 

Huang et al., 2017). The Brazilian semi-arid covers 1 million km2 and is inhabited by 28 57 

million people. This region has 1.6 million agricultural holdings, 95% being smallholders 58 

(IBGE, 2012). To support its population and develop the region, public policies intend to 59 

change rainfed subsistence agriculture into intensive irrigated agriculture (IIA) with 60 

annual and perennial crops (Araujo Filho, 2013). IIA extend over 1.2 million ha (ANA, 61 

2018), usually as monocultures with high use of external inputs. However, the intensive 62 

use of soil tillage, synthetic fertilizers, and irrigation have caused substantial SOC 63 

reduction, soil salinization, and increased all of water scarcity, which accelerate climate 64 

change (Müller Carneiro et al., 2019; Smith et al., 2015). 65 
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The use of different plant mixtures (PM) for cover cropping and tillage systems 66 

(conventional, CT versus no-till, NT) are components of the new strategy for agriculture 67 

in the semiarid areas to improve SOC storage (Giongo et al., 2016). This will affect other 68 

ecosystem services (Santos et al., 2018) and, eventually, promote food security. In spite 69 

of advancing productivity in IIA, models of sustainable soil management need to be 70 

developed to increase and stabilize the SOC. There are many models available to simulate 71 

SOC dynamics, e.g. RothC (Coleman and Jenkinson, 1996), Century (Parton et al., 1987), 72 

DNDC (Li, 1996) or SOMM (Chertov et al., 1997). Among these models, RothC is one 73 

of the most frequently used to simulate SOC content in the soil surface layer due to the 74 

simplicity and availability of input data (Coleman et al., 1997; Herbst et al., 2018; Liu et 75 

al., 2009; Taniyama et al., 2004).  76 

We hypothesized that forms of tillage (conventional, CT, versus no-till, NT) and 77 

plant mixtures (PM) of cover crops will improve SOC stock in dryland irrigated 78 

agriculture. Eventually, this could even exceed the equilibrium SOC found under natural 79 

dryland forest depending on soil disturbance, soil cover and plant diversity, determining 80 

net biomass C input of the respective agroecosystem. To test these hypotheses, the model 81 

was initially calibrated to reach equilibrium SOC for the Caatinga, we than used the C 82 

inputs and SOC data from two long-term field experiments to calibrate the RothC model. 83 

These experiments compared different multifunctional agroecosystems in terms of C 84 

inputs and SOC enrichment for annual and perennial crops, using different cover crops 85 

and tillage intensities (CT, NT). Once calibrated, we used the model to predict the long-86 

term impact of different management intensities on SOC dynamic in irrigated dryland 87 

agriculture.  88 

 89 

 90 
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2. MATERIALS AND METHODS 91 

2.1. Dataset used 92 

We selected datasets collected for two multi-factorial long-term experiments (1) 93 

a mango orchard (Mangifera indica L., cv. Kent) system (Mango) and (2) melon crop 94 

(Cucumis melo, L.) system (Melon), at Embrapa Semi-Arid (Brazilian Agriculture 95 

Research Corporation), in Petrolina, PE (Figure 1).  96 

>Insert Figure 1 97 

The Mango and Melon experiments started in 2009 and 2011, respectively. The 98 

area, originally under native tropical dry shrublands (hyperxerophilic Caatinga 99 

vegetation), was converted into arable agriculture in 1972. For 16 years it was cultivated 100 

with corn (Zea mays L.), common bean (Phaseolus vulgaris L.) and watermelon 101 

(Citrullus lanatus L.), using conventional tillage (CT). In 1988, a date palm plantation 102 

(Phoenix dactylifera L.) followed for 20 years. Before the Melon experiment there were 103 

more two years of fallow and common bean. Details of the site, soils and experiments 104 

are given in Table 1.  105 

>insert Table 1 106 

 107 

2.2. Climate data 108 

The climate of the region is BSwh’ (semiarid) according to the Köppen 109 

classification; the average annual precipitation is less than 500 mm, concentrated in three 110 

to five months; monthly average temperatures range from 18.7 to 33.6 °C. The sandy 111 

loam soil of the area is classified as Haplic Acrisol (WRB, 2014). Data of mean 112 

temperature, evaporation, and precipitation were measured at the agrometeorological 113 

weather station located at the experimental farm. The irrigation requirement was 114 

calculated using the reference evapotranspiration (ETo), estimated by the Penman-115 
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Monteith method using daily data collected at the meteorological station near by the 116 

experiments. For RothC any water added as irrigation was added to the precipitation 117 

(Figure 2). Standard crop coefficients (Doorenbos and Pruitt, 1977) were used to estimate 118 

the respective actual evapotranspiration (ETc). 119 

>Insert Figure 2.  120 

 121 

2.3 Field Experiments and Treatments  122 

In both long-term field experiments, the treatments consisted of two soil tillage 123 

systems [no-tillage (NT) and conventional tillage (CT)], combined with three mixtures of 124 

cover crops [75% leguminous species + 25% grass and oilseed species (PM1), 25% 125 

leguminous species + 75% grass and oilseed species (PM2) and spontaneous vegetation 126 

(SV)]. The experimental designs were split-plot randomized blocks, in four replicates, 127 

with soil tillage systems in the plot and mixtures of cover crops in the subplots.  128 

In the Mango experiment, each subplot was composed of three rows, with three 129 

mango trees, totaling nine trees per subplot, at 8 x 5 m spacing, with a total area of 360 130 

m2. The mixtures of cover crops were grown in 6-m-long strips between rows, leaving a 131 

free border of 1 m on each side of the mango tree rows. In the Melon experiment, each 132 

plot was 10 x 10 m2 and each block was 600 m2. The seeds were sown in furrows at a 133 

spacing of 0.5 m. 134 

PM1 and PM2 contained 14 species, which included oilseed, grass, and 135 

leguminous plants, but at different proportions between the mixtures (Freitas et al., 2019; 136 

Giongo et al., 2016; Pereira Filho et al., 2019). The SV control was composed of 137 

Desmodium tortuosum (Sw.) DC., Macroptilium lathyroides (L.) Urb., Digitaria bicornis 138 

(Lam.) Roem. Schult., Dactyloctenium aegypitium (L.) Willd., Commelina difusa Burm. 139 

f., Acanthospermum hispidum DC., Euphorbia chamaeclada Ule, Waltheria rotundifolia 140 
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Schrank, Waltheria sp. L., Tridax procumbens L., Ipomoea mauritiana Jacq., Ipomoea 141 

bahiensis Willd. Ex Roem. Schult. and Amaranthus deflexus L. 142 

In the NT systems, cover crops were managed using a manual mower, at the full 143 

flowering of most species, 70 days after sowing. Plants were cut at 5 cm above ground, 144 

and their shoot biomass was deposited on the soil, in between the mango rows and mixed 145 

with melon residues. In the CT systems, the phytomass was incorporated with disc plow 146 

to 20 cm depth, followed by superficial harrowing, with a light open-disc harrow.  147 

 148 

2.4. Soil carbon and aboveground and belowground inputs 149 

2.4.1. Soil organic carbon 150 

The organic matter content of the soil, in the 0-20 cm layer, was measured in 1977 151 

and 1997 by Lopes et al. (1977) and Bassoi et al. (1999). A factor of 1.72 was used to 152 

convert organic matter to SOC based on the assumption that organic matter contains 58% 153 

of organic carbon (Nelson and Sommers, 1996). SOC was measured in 2009, 2013, 2015 154 

and 2017 for Mango, and in 2009, 2012, 2014 and 2017 for Melon. The SOC stocks were 155 

calculated using SOC, soil bulk density data, and depth.  156 

In order to estimate the reference SOC under preserved Caatinga in 1972, an area 157 

of Caatinga forest of 4 ha was divided into four subsections, composite soil samples from 158 

eight individual samples were collected for 0-5 cm, 5-10 cm and 10-20 cm depth in each 159 

subsection. Similarly, composite samples were also taken in each experimental unit of 160 

both long-term experiments. The composite samples were transferred in plastic bags to 161 

the Laboratory of Soil and Plant Analysis of Embrapa Semiarid, air dried and passed 162 

through 2.0 mm sieves to obtain air dry fine earth for analysis. In each experimental unit 163 

and the reference area, undisturbed samples were collected in each layer, using a 5 cm x 164 

5 cm volumetric ring to determine the soil bulk density (Donagema et al., 2011). The total 165 
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C contents were obtained by dry combustion using an elemental analyzer (LECO, model 166 

TRUSPEC CN). The total SOC stocks in each area was obtained calculating the 167 

equivalent soil mass per layer (Ellert et al., 2010).  168 

For the calculation of the equivalent mass, the relative mass of the soil was 169 

considered in the different treatments (Equation 1).  170 

Msoil = ds T A     (1) 171 

where Msoil = soil mass (Mg ha-1); ds = soil bulk density (Mg m-3); T = thickness (m); and 172 

A = area (10,000 m2). 173 

The area under Caatinga was considered as a reference and the thickness was 174 

added or subtracted from the different treatments (Equation 2).  175 

Tad/sub = (Mref - Mtreat) f ha/ds  (2) 176 

Where Tad/sub = soil thickness layer to be added (+) or subtracted (-) (m);  Mref = equivalent 177 

mass of the soil (Mg ha-1) in the reference area (Caatinga);  Mtreat = soil equivalent mass 178 

in each treatment (Mg ha-1); fha = conversion factor from ha to m2 (0.00001 ha m-2); and 179 

ds = soil bulk density (Mg m-3).  180 

Then, the stocks of C in equivalent mass were calculated (Equation 3). 181 

SOCem = cc ds  (T ± Tad/sub) A+  Fkg   (3) 182 

Where SOCem = stock of total SOC, expressed as equivalent mass in Mg ha-1; cc = content 183 

of C, g kg-1;  T = soil thickness of the layer, expressed in m; and Fkg = conversion factor 184 

of kg to Mg (0.001 Mg ha-1). The soil carbon stocks, in the 0-20 cm layer, in each 185 

treatment was obtained through the sum of their respective stocks in the evaluated layers.  186 

 187 
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2.4.2 Aboveground and belowground C inputs 188 

RothC assumes inputs to the soil are from all forms of carbon entering the soil i.e. 189 

shoots and stubble (Cs), roots (Cr), and root exudates (Ce). The annual carbon input from 190 

Caatinga forest was calculated by running RothC in inverse mode to generate the input 191 

required to match the initial stock of SOC in 1972. The calculated plant C inputs obtained 192 

for the period between 1973 and 2008 for Mango or 2010 for Melon were taken from 193 

Lopes et al. (1977) and Bassoi et al. (1999), respectively. From 2008 for Mango and from 194 

2010 for Melon, the aboveground dry matter for corn, common bean and watermelon was 195 

taken from Martins (2010) and Nosoline, (2012). Root biomass for the those crops were 196 

estimated from aboveground dry matter using the method described in Bolinder et al., 197 

(2007). For date palm both aboveground and roots dry matter were taken from Bassoi et 198 

al. (1999). For all crops we assumed that the roots exudate are equivalent to 9% of the 199 

total aboveground biomass dry matter (Kuzyakov and Domanski, 2000).  200 

For both long-term field experiments, the aboveground and roots biomass were 201 

determined by collecting three samples of aboveground and five samples of root biomass 202 

on each subplot. Samples were dried at 65-70°C for 72 h to determine dry biomass and C 203 

contents. In each treatment, trenches were cut (0.2 m x 0.2 m x 1.0 m) to sample the fine 204 

root biomass of the cover crops and melon. To determine root biomass soil blocks with a 205 

volume of 20 cm³ were removed at depths of 0-0.2 m. These soil samples were sieved 206 

and washed through 2 mm sieves to separate the roots from the soil. In the laboratory, the 207 

roots were washed again in distilled water and dried at 65-70°C for 48 h. 208 

To estimative of C input from aboveground and belowground biomass we assumed 209 

a C content of 45% dry matter. Further details about the long-term field experiments can 210 

be found elsewhere (Antonio et al., 2019; Brandao et al., 2017; Freitas et al., 2019; 211 

Giongo et al., 2016; Mouco et al., 2015).  212 
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 213 

2.5. The RothC Model  214 

For this study a daily version of the Rothamsted carbon model (RothC) was used, 215 

to allow a realistic simulation of soil moisture and SOC dynamics in this dry region. Other 216 

than using daily meteorological data and changing the Decomposable Plant Material 217 

(DPM)/ Resistant Plant Material (RPM) ratio no further changes were made to the model. 218 

In RothC SOC is split into four active compartments and a small amount of inert organic 219 

matter (IOM). The four active compartments are DPM, RPM, Microbial Biomass (BIO) 220 

and Humified Organic Matter (HUM). Each compartment decomposes by a first-order 221 

process with its own characteristic rate. The IOM compartment is resistant to 222 

decomposition. For more details see Coleman et al. (1997); Gottschalk et al. (2012); 223 

Kamoni et al. (2007); Smith et al. (1997). 224 

In this semi-arid region, the standard monthly timestep version of RothC was not 225 

able to simulate soil moisture dynamics because the monthly evapotranspiration always 226 

exceeds the monthly precipitation, even when irrigated. This meant the rate modifying 227 

factor for moisture was always 0.2, so SOC increased unrealistically. By using a daily 228 

timestep the model was able to correctly simulate soil moisture dynamics throughout the 229 

year, in both rainfed and irrigated experiments.  230 

 231 

2.5.1 Running the model 232 

For both experimental sites the model was run to equilibrium in inverse mode to 233 

generate the inputs required to match the SOC stock for Caatinga, with a DPM/RPM ratio 234 

of 0.67, the default value for Savana plant material, which is similar to Caatinga and the 235 

inert organic matter (IOM) of 1.6 Mg ha-1 was set using the Falloon et al.(2000) equation 236 

(4).  237 
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IOM= 0.049 SOC1.139                         (4) 238 

After equilibrium the model was run for 16 years of annual cropping using an 239 

input of 0.93 Mg C ha-1 yr1 (Lopes et al. 1977), and for 20 years of date palm with an 240 

annual input of 1.20 Mg C ha-1 yr1 (Bassoi et al., 1999). One year of fallow, before starting 241 

Mango, and one year of fallow plus two years with arable crops before starting Melon 242 

with an input of 0.93 Mg C ha-1 yr1 (Lopes et al., 1977). Daily meteorological data (see 243 

section 2.2) were used. The soil was left bare for 270 (Mango) and 230 (Melon) days in 244 

CT treatments for each year during the experiment. The soil was considered to be covered 245 

with plants/residues for all year in NT treatments. The effect of tillage was simulated 246 

using the plant cover factor in the land management files because the soil is not bare, 247 

either due to vegetation and/or biomass residues on the soil.  248 

For each phase of the experimental site we used the default DPM/RPM ratio, i.e. 249 

1.44, for residues of annual crops and date palm alike. For the phase of the experiment 250 

where green manure was added we used a DPM/RPM ratio of 3.35 (77% DPM and 23% 251 

RPM) as suggested by Yao et al. (2017) and Zhang et al. (2019).  252 

To model future SOC stock changes we used the same annual C inputs, and 253 

DPM/RPM ratio that were used for the Mango or Melon phase of the experiment. The 254 

model was run 50 years into the future, using daily average weather data for Mango and 255 

Melon. We adjusted the DPM:RPM of the green manure to obtain a good fit to present-256 

day measurements, because we wanted to simulate plausible values of the future contents 257 

of carbon in soil. 258 

 259 

2.6 Statistical analysis  260 

The total SOC stocks and total C inputs of aboveground and belowground plant 261 

matter from long-term field experiments were analysed for normality by Shapiro-Will 262 
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test (p > 0.05), the homoskedasticity test was performed by Bartlett test (p >0.05), and 263 

data homogeneity according (Lewis, 1995). The initial value for Caatinga, different land 264 

use before the start of the experiment, and 2017 average (± SEM) of total SOC stocks and 265 

the annual average of total C inputs under Mango and Melon were used to describe the 266 

agroecosystems.  267 

The model performance was evaluated by comparing the simulated values with 268 

those measured in each single treatment, and for each site and both sites in order to 269 

increase the degrees of freedom and hence the robustness of the analysis. The calculations 270 

were made using MODEVAL (Smith et al., 1996, 1997). The correlation coefficient (r) 271 

gives a measure of the degree of association between the simulated and measured values. 272 

The root mean square error (RMSE), mean difference (MD), model efficiency (EF), and 273 

the sample correlation coefficient (r) were calculated. The RMSE is the relative difference 274 

between the observed and simulated values, weighted as a percentage of the mean value 275 

of observed data. The lowest possible value of RMSE is zero, indicating that there is no 276 

difference between simulated and observed data.  The MD is the mean difference between 277 

observed and simulated data and gives an indication of the bias in the simulation. The 278 

MD can be related directly to t. A t value greater than the critical two tailed 2.5% t value 279 

indicates that the simulation showed a significant bias either over or underestimation. The 280 

EF provides a comparison of the efficiency of the chosen model to the efficiency of 281 

describing the data as a mean of the observations.  Values of EF range from 1 to negative 282 

infinity. Best performance at EF=1. Negative values indicate that the average values of 283 

all measured values is a better estimator than the model. The correlation coefficient (r) is 284 

used to assess whether simulated values follow the same pattern as measured values. 285 

Further details can be found in (Smith et al., 1996, 1997). The total SOC stock in the 286 
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Caatinga, which was used to initialise the model in inverse mode, was discarded in the 287 

statistical analyses because it is not an independent value. 288 

 289 

3. RESULTS  290 

3.1 Effect of land use change on SOC 291 

The data on SOC stocks before the start of the two long-term experiments showed 292 

that conventional agriculture decreased the SOC stocks from originally 21.3 Mg C ha-1 293 

under Caatinga to 16.9 Mg C ha-1 under annual cropping, and decreased further under 294 

date palm to 8.9 Mg C ha-1 in 2009, respectively (Table 2). All treatments improved SOC 295 

stocks under Mango and Melon, increasing the overall average SOC stocks in the 0-20cm 296 

soil layer of the NT treatments from 8.9 Mg C ha-1 in 2009 to about 11 to 15 Mg C ha-1 297 

in 2017. In CT treatments cover crops were less effective than under NT (Table 2).  298 

Under Mango, the highest SOC stock change occurred in the NT and two plant 299 

mixtures (NT-PM1 and NT-PM2), about 6 Mg C ha-1 in eight years. NT-SV was similar 300 

to CT-PM1. However, soil tillage affected the SOC stocks across all plant mixtures, with 301 

impacts decreasing from legumes to spontaneous vegetation. In both PM treatments, the 302 

tillage decreased the SOC stocks by 4.5 to 4.8 Mg ha-1. Treatment CT-SV, representing 303 

the conventional mango production system in the region, had the lowest SOC stock 304 

among all treatments (Table 2). 305 

Under Melon, the highest SOC stock increase occurred in PM2, independent of 306 

tillage (NT-PM2 and CT-PM2; Table 2). The soil tillage affected SOC stocks only under 307 

spontaneous vegetation, when conventional tillage (CT-SV) lowered SOC stocks, 308 

similarly to the effect in the Mango system. 309 

For modelling SOC dynamics, it is very important to estimate the annual C inputs 310 

to soils. Our results showed for the Mango and Melon, that the highest annual C input 311 
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was obtained when plant mixtures were introduced. The annual average C input into the 312 

agroecosystems with plant mixtures were 4.89 and 5.56 Mg C ha-1 yr-1 to Mango and 313 

Melon, respectively. In contrast, C inputs from spontaneous vegetation (average from NT 314 

and CT) were only 2.59 and 3.78 Mg C ha-1yr-1 for Mango and Melon, respectively. The 315 

respective higher annual C inputs to the Melon system was due to the additional inputs 316 

from above- and belowground crop residues. Therefore, the final enrichment was higher 317 

in the Melon system.  318 

>Insert Table 2.  319 

In differents combinations of high quality cover crops with main crop lead to high 320 

C enrichment while tillage has a similar effect across all tested “crop x green manure” 321 

combinations. 322 

 323 

3.2 Model performance  324 

The performance the RothC model was tested by comparing modelled versus 325 

observed SOC from these datasets including two long-term field experiments. SOC 326 

change was modeled and evaluated using different organic C inputs from different 327 

agricultural plants, cover crop mixtures and tillage intensities. First, before the field 328 

experiments were initiated, the Roth C model estimated the inputs from native vegetation 329 

to match initial equilibrium SOC stocks of Caatinga in 1972 and land use change to 330 

conventional agriculture (Figure 3). The simulated loss of SOC under arable cultivation 331 

(CT) for a total of 18 years and date palm for another 20 years was 12.71 Mg C ha-1 (20 332 

cm soil profile), compared to the measured loss of 12.43 Mg C ha-1. The overall difference 333 

between measured and simulated SOC was only 0.28 Mg C ha-1 (2%). 334 
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The RothC model was able to predict SOC stock increase in the same proportions 335 

as observed, in both field experiments. For Mango, under NT-PM1, for example, the final 336 

SOC stock measured in 2017 was 15.3 Mg ha-1, compared to the model estimate of 15.7 337 

Mg C ha-1. In the CT-SV, the measured and estimated SOC values were 9.2 and 8.5 Mg 338 

C ha-1, respectively (Figure 3). Under Melon (Figure 4), in 2017, the final SOC stocks 339 

measured for NT-PM1 and CT-SV treatments were 11.3, and 10.8 Mg C ha-1 while RothC 340 

predicted 13.5 and 9.4 Mg C ha-1. In both datasets, one can identify a tendency for RothC 341 

to underestimate the carbon stocks in conventional tillage treatments in the melon crop. 342 

>Insert Figure 3.  343 

 344 

>Insert Figure 4.  345 

The model’s statistical performance for each treatment is presented in Table 3. 346 

Overall, the model described the change of SOC stocks very well. The relative RMSE 347 

was low, ranging from 5 to 18 %, indicating that there is a low relative difference between 348 

observed and predicted SOC. The MD, mean difference (also called Bias), ranged from -349 

0.73 to 1.13 Mg C ha-1. Across all treatments the t values were lower than the critical two-350 

tailed 2.5% t-value, which means that the bias is not significant. 351 

For Mango EF values ranged from 0.72 to 0.94. However, for the Melon EF 352 

ranged from -0.08 to 1.00, showing that the model underestimated SOC enrichment in 353 

CT treatment. The model efficiency provides a comparison of the efficiency of describing 354 

the data as the mean of the observations. Best performance is at EF=1. The positive values 355 

of EF indicate that the modelled values describe the trend in the measured data better than 356 

the mean of the observations in most of the treatments. The correlation coefficient (r) 357 

range from 0.81 to 0.98. Overall, high values of correlation coefficient suggest high 358 

predictability of RothC model in dryland irrigated areas with a significant association, 359 
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and the F values associated with values of r were higher than the critical F values at 360 

P=0.05. 361 

>Insert Table 3.  362 

The RothC model performance was evaluated by comparing the simulated values 363 

with those measured and for all Mango (n=21), Melon (n=21) and, pooling Mango and 364 

Melon (n=40) treatments in order to increase the degrees of freedom and, hence, the 365 

robustness of the analysis. When both data sets are considered, the overall relative RMSE 366 

is low, indicating that there is a low relative difference between observed and predicted 367 

SOC. Individually, the EF of the model is higher for the Mango data set (0.81) than in the 368 

Melon data set (0.31), but pooling both experiments EF increased to 0.52 (Figure 5, 369 

Table3). 370 

>Insert Figure 5.  371 

 372 

3.3 Long-term impacts of agroecosystems’ management on SOC stocks  373 

The observed development of SOC was extrapolated into the future (2019 to 2069) 374 

using the calibrated RothC model. The modelling shows that under current climatic 375 

conditions the proposed agroecosystems have significantly different trends (Figure 6). All 376 

NT scenarios are approaching the Caatinga equilibrium (21.3 Mg C ha-1) but SV less 377 

effectively. Under Mango, only two of the six designs are likely to reach or exceed the 378 

SOC stocks for Caatinga within 30 years (Figure 6a). The best performance was under 379 

NT for both plant mixtures: NT-PM1 and NT-PM2. Our data address the importance of 380 

NT in perennial systems, considering that there is no significant difference between the 381 

carbon input for NT and CT designs (ca. 5 Mg C ha-1yr-1; Table 2). The SV associated 382 

with tillage is likely to have the worst result (CT-SV), even further decreasing SOC 383 
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stocks. In contrast, NT-SV is likely to add about 50% of its residues (2.62 Mg C ha-1yr-1) 384 

whilst expensive plant mixtures combined with tillage are wasted (inputs of 4.90 and 4.76 385 

Mg C ha-1yr-1 for CT-PM1 and CT-PM2, respectively; Table 2).  386 

Three out of six treatments applied to the Melon agroecosystem are likely to reach 387 

the same SOC as Caatinga after 50 years (Figure 6b). The NT-PM designs are able to 388 

reach previous Caatinga SOC stocks after little more than two decades (20 to 23 years, 389 

respectively), which is due to high C inputs (5.56 Mg C ha-1yr-1 ) from PM and melon 390 

residues (NT-PM1, NT-PM2, CT-PM1, and CT-PM2).  Comparable designs for Mango 391 

added only 4.89 Mg.ha-1 yr-1, increasing SOC stocks slightly less, e.g. 0.49 compared to 392 

0.56 Mg C ha-1yr-1 in Melon. The difference in terms of C inputs between Melon and 393 

Mango was 0.67 Mg C ha-1yr-1, and the annual increase of soil carbon was 0.07 Mg ha-1 394 

yr1. Under NT-SV the Caatinga equilibrium is likely to be reached in five decades (47 395 

years). 396 

>Insert Figure 6 397 

 398 

4. DISCUSSION 399 

4.1 Land use and agroecosystems design to increase soil carbon stocks 400 

In this paper, we show a sustainable approach of land management for the semi-401 

arid regions to increase the SOC content by designing multifunctional agroecosystems. 402 

We used experimental evidence for different cover crop mixtures and soil tillage for 403 

perennial (Mango) and annual crops (Melon) in irrigated dryland ecosystems. This 404 

partially reversed the impact of deforestation and conventional agricultural systems that 405 

had reduced the SOC stocks in the semi-arid region (Sacramento et al., 2013; Santana et 406 

al., 2019; Valbrun et al., 2018). The conversion of Caatinga forest into mixed arable and 407 

perennial (date palms) agriculture had caused an exponential carbon loss during a period 408 
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of 35 years. Cover crop systems combined with NT were able to reverse the loss of SOC 409 

in Mango and Melon production systems (Table 3). The SOC stocks (0-20cm soil layer) 410 

increased between 0.041 and 1.068 Mg C ha-1 yr-1, peaking in the NT-PM2 treatment for 411 

Melon and finding its lowest in the SV-CT treatment for Mango in spite of high annual 412 

C additions (5.14 and 2.55 Mg C ha-1 yr-1, respectively). Overall, the highest rates of SOC 413 

increase occurred in agroecosystems combining PM with NT. 414 

Different mixed system approaches have shown to increase SOC in semi-arid and 415 

arid regions, e.g. for the presence of trees in grassland (Mureva et al., 2018). Negative 416 

correlations between precipitation and SOC accumulation (García-González et al., 2018) 417 

seem contradictory as higher precipitation should increase productivity and C inputs into 418 

the soil. Irrigation is crucial to enhance biomass production in dryland ecosystems (Lal, 419 

2004). However, little research has been conducted in irrigated semi-arid areas with the 420 

aim of sustainable intensification of semi-arid agroecosystems, a gap this paper 421 

addressed. 422 

With variable success, we implemented the concept of multi-functionality by 423 

combining different types of cover crops with reduced tillage to demonstrate its impact 424 

on SOC stocks (Giongo et al., 2016; Müller Carneiro et al., 2018; Santos et al., 2018). 425 

Our results were confirmed by García-González et al. (2018) who showed that ten years 426 

of irrigated cover crop cultivation increased the SOC stocks in the 0-20cm layer by 0.42 427 

and 0.18 Mg C ha-1 yr-1 under reduced and conventional tillage, respectively. This was 428 

independent of the type of cover crop (barley, vetch), C input for both being similar (1.6 429 

Mg C ha-1 yr-1). Our data showed the combined effect of tillage and total C input by plant 430 

mixtures of different quality. The higher mean annual temperatures in the Brazilian Semi-431 

arid (26.2 °C compared to 14.6 °C in Spain) and irrigation accelerate the decomposition 432 

process (Freitas et al., 2019; Pereira Filho et al., 2019). However, change to NT combined 433 
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with high input PM are the main controls for mitigating SOC losses. Economically, 434 

savings in tillage could compensate costs of special PM seeding material. 435 

Normally, loss of yield, higher costs, and lower profitability are the main concerns of 436 

the farmers in adopting new agroecosystems designs. However, our results and previous 437 

studies in these trials (Santos et al., 2018; Müller Carneiro et al., 2019) show that NT and 438 

the PM can increase or maintain crop yields (Figure S1, Supplementary Material) and 439 

profitability of mango orchards and melon crops. 440 

Plant mixtures increased mango yields independent of soil management as the long-441 

term economic analysis showed: PM generated higher revenue and profits than the 442 

conventional system (Müller Carneiro et al., 2018). In Melon, PM increase the 443 

productivity mainly when NT is implemented (Santos et al., 2018); they also compared 444 

the experimental data from PM2-CT with the conventional systems (CT-SV) adopted by 445 

farmers, showing higher costs in PM2-CT were offset by higher yields and NT increased 446 

profits due to lower costs. 447 

 448 

4.2. Roth C model  449 

The SOC stocks measured under Caatinga vegetation (21.3 Mg C ha-1) was 450 

perfectly modelled using the standard settings in RothC, only slightly adjusting C inputs 451 

during the spin-up runs (Figures 3 and 4). This first step is essential for the initialization, 452 

which has a significant influence on subsequent RothC model outputs. Residue inputs are 453 

important and should be estimated as accurately as possible (Nemo et al., 2017). Data on 454 

aboveground biomass of the Caatinga vegetation were based on those previously 455 

described by Lima Júnior et al. (2014). The SOC stocks (0 - 20cm) are naturally low, the 456 

average of 23 Mg C ha-1 (Menezes et al., 2012) can range from 17 Mg C ha-1 (Schulz et 457 



20 
 

al., 2016) to 30 Mg C ha-1 (Althoff et al., 2018). Biomass formation and residue inputs 458 

are limited by water and soil fertility, causing these low SOC contents.  459 

The soils of the experiments in the present study have high sand and very low clay 460 

content, characterized as “sandy loams” (Table 1). RothC was sufficiently sensitive to 461 

high turnover in sandy soils (Table 3), similar to results for land management regimes 462 

(tillage intensities x fertility) in African sandy soils (>70% sand, <8% clay) (Mujuru and 463 

Hoosbeek, 2016). Due to the extreme dry climate in our study area, irrigation water must 464 

be added to produce a crop, guarantee C inputs and its turnover simulated by RothC.  465 

The RMSE ranged from 5 to 18% and were within RMSE95% limits. The low 466 

values the RMSE indicated that there was a small difference between the observed and 467 

predicted SOC by RothC, which is important as RMSE is considered one of the best 468 

statistical indicators to measure the model performance (Senapati et al., 2014). 469 

MD values showed a significant bias specifically in the NT-PM1 and CT-PM1, 470 

both under Melon but not for Mango. This maybe due to the effect of melon residues 471 

retarding the decomposition of green manure (PM). There was no overall significant bias 472 

for the other treatments, the values ranging from -0.73 to 1.13 Mg C ha-1 over 8 or 6 years, 473 

respectively. Under Mango,  across all six treatment designs the EFs were satisfactory, 474 

ranging from 0.72 to 0.94 over 8 years. Under Melon, EF values were positive in five of 475 

the six treatments, but very low and negative in the CT-SV. The positive EF indicated 476 

that simulates values are better than the measured mean (Smith et al., 1996). Additionally, 477 

the observed versus modelled SOC are highly correlated (r) indicated significant positive 478 

associations between modelled and measured SOC values (P < 0.05). The statistics shows 479 

clearly that the model has a very small overall uncertainty and therefore the model can be 480 

transferred to other sites of similar soil, climate and management condition. Overall, the 481 

RothC modelling approach represents a promising method to estimate SOC in irrigated 482 
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semi-arid areas (Senapati et al., 2014) and variable cover crops (Yao et al., 2017; Zhang 483 

et al., 2019). We showed that it can be used to estimate the SOC changes according to 484 

differences in agroecosystem management (Table 3), confirming that RothC could model 485 

the effects in irrigated dryland areas and it can discriminate designs of multifunctional 486 

agroecosystems, affecting SOC dynamics. This adaptation of the model may bring further 487 

benefits not only to studies in his region but also for modelling other tropical dry 488 

ecosystems of the world. 489 

4.3. Future SOC under intensified multifunctional agroecosystems 490 

Our future scenario simulations were based on the fact that RothC can describe 491 

the exponential SOC decay for the transition of land use from Caatinga to conventional 492 

management well and its recovery for various cover crop x tillage combinations. For the 493 

simulations we assumed that future climatic conditions would be similar to the current 494 

climate. The scenario results showed that Mango cultivated with cover crops and NT can 495 

reverse previous losses of SOC stock within thirty years using leguminous plant mixtures 496 

(75 or 25% legumes; Figure 6a and b). Scenarios for Melon were even better due to the 497 

likely higher crop residue inputs compare to Mango (Table 2), concluding that NT could 498 

be more important in perennial than annual systems. Overall however, soil tillage is the 499 

most important factor to increase SOC stocks in irrigated systems (Figure 6). The results 500 

also show that the quantity and quality of the residues were less significant for the increase 501 

SOC stocks than the tillage regime. Our results are supported by several studies for the 502 

semi-arid regions (García-González et al., 2018; Pereira Filho et al., 2019; Zhang et al., 503 

2013) that demonstrated an increase in total SOC stocks promoted by changes in land 504 

management (Aquino et al., 2017; Valbrun et al., 2018).  505 

For the Melon system PM treatments combined with NT reached the SOC stocks 506 

of the Caatinga forest after only 23 years while the recovery under NT-SV took five 507 



22 
 

decades (Figure 6b). Leguminous plant mixtures and Melon residues added on average 508 

0.7 Mg ha-1yr-1 more C compared to Mango. In addition, plant mixtures are sown only in 509 

between rows for Mango, whilst they are sown in sequence to Melon, causing a spatial 510 

and temporal difference which is simplified in the model. Overall, in our system, average 511 

SOC accumulation rates are in the range estimated using RothC at the regional level in 512 

Spain (Jebari et al., 2018) which predicted an increase of SOC stock by 0.47 and 0.35 Mg 513 

C ha−1yr−1 under climate change for NT combined with cover crops in irrigated row crops.  514 

Finally, differences in plant litter chemistry, decomposition and accumulation rate 515 

can be attributed to vegetation-type which in RothC is represented by the DPM/RPM ratio 516 

(Yao et al., 2019, 2017; Zhang et al., 2019). The use of specific DPM/RPM ratios (which 517 

describe the residue decomposability) for different plant materials should be modelling 518 

SOC turnover better than the use of default values (Shirato and Yokozawa, 2006; 519 

Zimmermann et al., 2007). Although there is little evidence that litter chemistry controls 520 

SOC over timescales of decades (Lützow et al., 2006), our simulations using high 521 

DPM/RPM ratios for large C inputs from green manure (adding more DPM) showed 522 

clearly a reduced SOC accumulation rate in comparison to using the wider default ratio. 523 

In a meta-analysis with data from 139 plots at 37 different sites, Poeplau and Don (2015) 524 

quantified the potential of cover crops to increase SOC stock, with an annual change rate 525 

of 0.32 +/- 0.08 Mg C ha-1 yr-1 (soil depth of 22 cm). They concluded that 50% of the gain 526 

in SOC stocks is expected to occur within the first two decades. According to Althoff et 527 

al. (2018) and Araújo Filho et al. (2018), it would need 50 to 80 years under current 528 

climate conditions to recover the SOC stock in Caatinga forests. Our multifunctional 529 

irrigated agroecosystems combining NT and leguminous plant mixtures can recover the 530 

SOC in less than half of this timespan. 531 
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Last not least, three thoughts regarding the multi-functionality of the proposed 532 

agroecosystem: First, the intensification is entirely based on the assumption that the 533 

availability of irrigation water is warranted in the future. If this is the case at large scale, 534 

the proposed intensive management of horticultural crops will provide a cooling of this 535 

semi-arid region. Secondly, our C analysis is only considering SOC but not woody 536 

aboveground and belowground biomass C, which over the life time of the Mango system 537 

would accumulate and reduce the difference between Melon and Mango. Lastly Mango 538 

wood could be a renewable source of biofuel. 539 

 540 

 541 

5. CONCLUSIONS 542 

We showed that the design of multifunctional agroecosystems (plant mixtures x 543 

tillage x annual/perennial) is able to increase SOC stocks (0-20cm) when irrigated in the 544 

range of 0.041 (low input Mango, CT) and 1.068 Mg C ha-1 yr-1 (high input Melon, NT). 545 

We showed that leguminous plant mixtures and reduced tillage for annual or perennial 546 

crop can warrant significant impacts on climate change mitigation by sustainably and 547 

socio-economically responsible agricultural management increasing SOC. Simulating 548 

likely SOC changes during the next five decades assuming stable climatic conditions, the 549 

SOC of Caatinga forest (21.3 Mg C ha-1) can be reached under both crops combining 550 

cover crops and NT within 23 to 27 years. We used RothC with a daily timestep to 551 

simulate the wetting and drying of the soil throughout the year, irrespective of irrigation.   552 
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