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From research to policy: optimizing the design of a
national monitoring system to mitigate soil nitrous
oxide emissions$

Stephen M Ogle1,2, Klaus Butterbach-Bahl3, Laura Cardenas4,
Ute Skiba5 and Clemens Scheer3

Nitrous oxide (N2O) emissions from agricultural soils are a key

sourceofgreenhousegasemissions inmostcountries. Inorder for

governments to effectively reduce N2O emissions, a national

inventory system is needed formonitoring, reporting and verifying

emissions that provides unbiased estimates with the highest

precision feasible. Inventory frameworks could be advanced by

incorporating experimental research networks targeting key gaps

in process understanding and drivers of emissions, with a multi-

stage survey to collect data on agriculturalmanagement and N2O

fluxes that allow for development, parameterization and

application of models to estimate national-scale emissions.

Verification can be accomplished with independent estimation of

fluxes from atmospheric N2O concentration data. A robust

monitoring system would provide accurate emission estimates,

and allow policymakers to develop programs tomore sustainably

manage reactive N and target mitigation measures for reducing

N2O emissions from agricultural soils.

Addresses
1Natural Resource Ecology Laboratory, Colorado State University,

Fort Collins, CO 80523, USA
2Department of Ecosystem Science and Sustainability, Colorado State

University, Fort Collins, CO 80523, USA
3 Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe

Institute of Technology, Garmisch-Partenkirchen, Germany
4Rothamsted Research, Sustainable Agricultural Sciences, North Wyke,

Okehampton, EX20 1UW, UK
5UKCentre for Ecology andHydrology, Bush Estate, Penicuik,Midlothian, UK

Corresponding author: Ogle, Stephen M (Stephen.Ogle@colostate.edu)

Current Opinion in Environmental Sustainability 2020, 47:28–36

This review comes from a themed issue on Climate change, reactive
nitrogen, food security and sustainable agriculture

Edited byClemens Scheer,David E Pelster and Klaus Butterbach-Bahl

For a complete overview see the Issue and the Editorial

Available online 6th August 2020

Received: 13 April 2020; Accepted: 29 June 2020

https://doi.org/10.1016/j.cosust.2020.06.003

1877-3435/ 2020 The Authors. Published by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

Introduction
Climate shapes the world around us and has a profound

impact on society. The anthropogenic influence of green-

house gas (GHG) emissions on climate is growing with

various lines of scientific evidence demonstrating regional

impacts suchas increasedfrequencyofheatwaves,droughts,

and heavy precipitation events [1]. In turn, there has been

sea level rise, greater risk of catastrophic fires, increased

flooding episodes, impacts on food supplies, changes in

species migrations and ranges, and increased health risk,

among a variety of other impacts that vary regionally [1].

With growing recognition of impacts, there is the possibility

of limiting warming by 2�C or possibly 1.5�C through the

Paris Agreement [208_TD$DIFF][12].

Nitrous oxide (N2O) is one of three main GHGs emitted

through anthropogenic activity, and more than half of

global N2O emissions are from agricultural soil manage-

ment associated with reactive forms of N [2]. These

practices include applications of synthetic mineral N and

livestock manure N; crop residue N inputs to soils;

enhanced mineralization of N from soil organic matter

due to continuous cultivation of land or change in land

use to cropland from grassland, forest or wetlands; as well

as increased cultivation of N-fixing legume species.

There are opportunities to more sustainably manage

reactive N in agricultural lands and reduce soil N2O

emissions by optimizing nitrogen-use efficiency (NUE)

of crops with a greater proportion of available mineral N

incorporated into crop growth [3,4]. In fact, overapplica-

tion of N, which decreases NUE, has been shown to

exponentially increase N2O emissions [5], although not

all studies have found an exponential increase in emis-

sions with higher application rates [6]. Moreover, the

relationship between NUE and soil N2O emissions may

vary due to the complexity of processes driving emis-

sions [4]. For example, improving NUE may not always

equate with less N2O emissions because a larger propor-

tion of crop N uptake may be achieved by a reduction in

other N losses, such as ammonia (NH3) volatilization and

emissions of other nitrogen gases (NOx, N2), as well as

leaching of nitrate and dissolved organic matter.

$ OECD Disclaimer: The opinions expressed and arguments employed in this publication are the sole responsibility of the authors and do not

necessarily reflect those of the OECD or of the governments of its Member countries.
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Similarly, the system’s response to a combination of N

sources, that is, [209_TD$DIFF](mineral and organic fertilizer N, and

crop residue N [210_TD$DIFF]), is also complex and not necessarily

linear [7,8]. Nonetheless there are opportunities to

reduce emissions by improved N management that

targets N application rates, timing, placement and type

of fertilizers [3,4,9].

With knowledge about ways to reduce N2O emissions

from agricultural soils, there are opportunities to incorpo-

rate agricultural soil management into national mitigation

plans [10]. However, robust monitoring, reporting and

verification programs are needed to support climate

change policy. In general, GHG inventories provide

the basis for monitoring national emissions, and assessing

progress in reducing emissions with mitigation programs.

The Intergovernmental Panel on Climate Change

(IPCC) has developed inventory guidelines for monitor-

ing national emissions [11 [211_TD$DIFF],12,13� [207_TD$DIFF]]. Improving inventories

is largely predicated on developing country-specific emis-

sion factors (categorized as Tier 2 methods by the IPCC)

or model-based approaches for deriving dynamic

emission factors both spatially and temporally

(categorized as Tier 3 methods by IPCC), as well as

improving activity data collection [14,15]. Approximately

half of Annex I countries (Table 1) and less than 10% of

non-Annex I countries [15] are using country-specific

emission factors (Tier 2) and/or model-based approaches

(Tier 3) for reporting soil N2O emissions to the UN

Framework Convention on Climate Change. Three

Annex I countries have developed Tier 3 methods that

are used in combination with Tier 1 and/or 2 methods to

estimate soil N2O emissions, including Iceland [16],

Switzerland [17], and USA [18].

Our objective is to describe an inventory framework for

monitoring soil N2O emissions at the national scale that

meets the overarching goal of the IPCC guidance, that is, [212_TD$DIFF]

to produce accurate estimates that are as precise as

feasible [19], and thus provide a basis for governments

to develop and implement policy to more sustainably

manage reactive N and reduce N2O emissions (Figure 1).

The components of the framework include a) an experi-

mental research network; b) multi-stage survey of

land use, management practices, and emissions measure-

ments; c) model selection and parameterization using

N2O measurements from the survey; d) model imple-

mentation to estimate emissions and uncertainties using

land use and management data from the survey and

scaling to the national level; and e) verification of emis-

sions using atmospheric N2O concentration data or other

independent measurements of N2O emissions. This

framework is primarily focused on direct N2O emissions

from agricultural soils although adding reactive N to

agricultural lands creates a cascade effect where N2O is

also emitted indirectly as reactive N is transferred to other

locations in the environment [20]
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Table 1

Soil N2O inventory methods that are used by Annex I Parties for

reporting to the UN Framework Convention on Climate Change

(Convention Reporting)

Country Tier 1 Tier 2 Tier 3

Australia X X

Austria X

Belarus X

Belgium X

Bulgaria X X

Canada X X

Croatia X

Cyprus X

Czechia X X

Denmark X X

Estonia X

Finland X X

France X X

Germany X X

Greece X

Hungary X

Iceland X X

Ireland X

Italy X

Japan X

Kazakhstan X X

Latvia X

Liechtenstein X

Lithuania X

Luxembourg X

Malta X X

Monaco

Netherlands X X

New Zealand X X

Norway X

Poland X

Portugal X X

Romania X

Russian Federation X X

Slovakia X

Slovenia X

Spain X X

Sweden X X

Switzerland X X

Turkey X

Ukraine X X

United Kingdom of

Great Britain and

Northern Ireland

X X

United States of America X X

The Tier 1 method applies equations and default emission factors

provided by the Ref. [11], the Tier 2 method utilizes the equations

provided by the Ref. [11] with country-specific emission factors, and

the Tier 3 method is based on country specific equations and emis-

sions factors. Data extracted from Common Reporting Format

Tables for the 2019 National GHG Emissions Inventory Submissions

to the UN Framework Convention on Climate Change (https://unfccc.

int/process-and-meetings/transparency-and-reporting/

reporting-and-review-under-the-convention/

greenhouse-gas-inventories-annex-i-parties/

national-inventory-submissions-2019)
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Inventory framework for monitoring N2O
emissions from soils
Experimental research network

Experiments provide the basis for understanding the N

cycle and microbial transformations that lead to soil N2O

emissions, and inform the design of monitoring networks

and model development. Experiments are also useful for

evaluating feedbacks on N2O emissions associated with

climate change that may require refinements to mitiga-

tion strategies and updates to inventory frameworks in the

future. Field and laboratory experiments address ques-

tions about factors driving emissions [21]. For example,

experiments can evaluate effects of microbial community

composition and activity on N2O production and con-

sumption, as well as trade-offs leading to different levels

of gaseous N emissions (NH3, NOX, N2O, N2) related to

management and soil conditions. In the field, automated

static chamber systems or eddy-covariance techniques

capture inherent temporal and spatial variability with

‘high-frequency’ measurements that have significantly

improved flux estimates [22,23]. To characterize and

quantify production and consumption processes of

N2O, various tools have been developed, including

flow-through methods to directly measure N2O emissions

[24], use of inhibitors (e.g. acetylene), and different stable

isotope techniques [25 [213_TD$DIFF],26�,27,28]. Portable highly sensi-

tive laser spectroscopy and chamber technologies [29]

have been used to explore spatial variability inN2O fluxes

from sites to landscape scales [30]. Furthermore, field and

laboratory methods have been combined to better under-

stand processes and drivers of N2O emissions [31,32].

Generalizations can be made by analyzing experimental

data from multiple studies via meta-analysis [33� [214_TD$DIFF],82].

Experiments have demonstrated that soil N2O emissions

are primarily generated by microbial processes of

30 Climate change, reactive nitrogen, food security and sustainable agriculture
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nitrification and denitrification, although various other

microbial and physico-chemical processes may be

involved [34]. Soil O2 concentrations are critical in deter-

mining the prevailing process, with nitrification requiring

aerobic conditions, while denitrification occurs in anaero-

bic conditions. Oxygen does not diffuse well in water,

approximately four magnitudes slower than in air, and

therefore soil O2 concentrations are controlled by vari-

ables influencing water content, including soil relative

water content, soil texture and pore size. Together these

variables are expressed as water-filled pore space (WFPS)

[35], or similar measurements such as volumetric water

content and air-filled porosity, and it is assumed that

nitrification leads to more N2O production at lower

WFPS, while denitrification leads to more N2O at higher

WFPS. However, recent research has shown that there is

considerable complexity underlying the relationship

between these processes and WFPS, particularly finer

scale microbial dynamics and gas diffusion through

the soil matrix, which is leading to a more in-depth

understanding of emission patterns [34].

Nitrous oxide emissions from soils exhibit pulses over

time and space, referred to as hot moments and hot spots

of emissions, respectively [36]. Emission pulses can occur

following fertilization in agricultural fields [37], and with

changing soil conditions associated with drying-wetting

and freeze-thaw cycles [38,39�� [215_TD$DIFF]]. The periodicity in emis-

sions requires sufficient sampling frequencies to ensure

pulses are not missed, with more continuous measure-

ments using automated chambers or tower-based eddy

covariance measurements [40,41].

Experimental research networks provide a basis for under-

standing howmanagement influencesN2O emissions [42],

and generate new technologies and management options

for reducing emissions. Research networks span across

national boundaries and through international collabora-

tion among scientists (i.e. https://globalresearchalliance.

org/GRA; https://initrogen.org/), providing greater effi-

ciency in making new discoveries about N2O emissions,

and should be encouraged through international organiza-

tions (e.g. IPCC, UN-FAO, UNEP, and OECD).

National survey

Based on experimental research, it is known that crop

management affects the timing and magnitude of soil

N2O emissions (e.g. Refs. [9,42,43]). Therefore, collec-

tion of management activity data is a key component of a

national monitoring system and can be accomplished

with remote sensing data, questionnaires and expert

knowledge [14]. Surveys can use remote sensing data

in combination with questionnaires for management

information, and can include measurements of N2O

emissions at survey locations. Surveys are cost-effective

because data collection is focused on a subsample of

locations that are randomly selected from the entire

population of the agricultural land base, rather than

‘wall-to-wall’ data collection from the entire domain using

a census approach. Data could be collected using a

hierarchical framework with several stages in the survey

to increase sampling efficiency and reduce costs.

First, data are needed on the managed land base and

underlying area of land use and land use change [11].

Land use data should be collected at all survey locations

as the first stage in the sample. Remote-sensing data are

the most cost-effective approach for collecting these data,

and the information would serve the broader GHG

inventory for land use activities [216_TD$DIFF][11,12]. Data collection

must also address uncertainty in the area estimation based

on the underlying survey design [44].

Second,dataneed tobecollectedonmanagementactivities

such as fertilizer management, livestock andmanure man-

agement, tillage practices, crop selection (including

legumes), cover crops, residue management, and other

related activities. These data could be collected from a

subsample of the survey locations in a second stage of

sampling, and may include use of remote sensing technol-

ogies to reduce costs at least for some practices such as

tillage management [45]. Other data may be collected

through questionnaires to capture management informa-

tion that cannot be collected with remote sensing technol-

ogies, such as the type, rate, timing and placement of

fertilizer. For efficiency, the data collected through ques-

tionnaires may be a subset of the locations in the second

stage of sampling (effectively another stage in the sample

design). Data collection could also involve crowd-sourcing

methods to reduce costs associated with personnel time to

deliver a survey. It is likely that some training is needed

when collecting data through crowdsourcing to ensure

the responses are accurate, reflecting the information

and classifications that are used in the inventory [46].

It may not be possible to collect all management data

from the survey, and so supplemental data from a

regional/national census or other surveys may be used

in the inventory (e.g. UK countryside survey, https://

countrysidesurvey.org.uk). However, it is important to

recognize that this will introduce additional uncertainty.

Ogle et al. [47] conducted an inventory by modeling

emissions based on land use and management histories

for survey locations that are tracked by the US Depart-

ment of Agriculture (USDA) [48]. The USDA survey did

not include all management practices needed for the

inventory, but additional information was compiled in

other datasets. To address uncertainty, Ogle et al. [47]
used a Monte Carlo simulation approach to estimate

emissions multiple times representing variation in the

likely practices at each USDA survey location based on

the supplemental datasets. Even though it is possible to

combine data from different sources, collecting the

majority of management data at the survey locations will

National monitoring system for soil nitrous oxide Ogle et al. 31
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minimize uncertainty. Other data may be needed to

model N2O emissions, such as meteorological data and

soil characteristics [14], which may be part of the survey,

but could be based on other data sources introducing

some additional uncertainty into the inventory.

Third, an optimal survey supporting the monitoring sys-

tem would include measurements of N2O emissions to

select and parameterize the best model for the inventory.

Data collection could also include other components of

the N cycle, such as volatilization of other N gases, losses

of N through leaching and overall water flows, plant N

uptake and microbial immobilization, as well as N inputs

from fertilization, N fixation and deposition. While exper-

imental research will inform model development about

key processes and management activities, emission mea-

surements are often a limiting factor in developing and

parameterizing models, leading to a large source of overall

uncertainty in model predictions (e.g. Ref. [49]). There-

fore, measurement data could be collected in a third stage

of sampling, that is, a subsample of the second stage, with

accepted protocols, for example, Global Research Alli-

ance [ [217_TD$DIFF]81] or the ICOS network protocols [51]. Given that

annual N2O emissions are often dominated by a single or

a few emission events, for example, due to soil freeze-

thaw, soil-rewetting and fertilization events, reliable

emission estimates require continuous daily or even

subdaily measurements [41]. Recent advances in

micro-meteorological measurements of N2O fluxes, such

as eddy covariance or gradient methods, can capture

short-term emission pulses and long-term emission trends

at high temporal resolution and integrate fluxes at the

field and landscape scales [52]. Automated and static

chamber measurements are also an option for capturing

emissions at specific sample locations in a survey design

(e.g. Ref. [53]). Regardless of the measurement technol-

ogy, these data will only capture the total net fluxes of

N2O and cannot provide direct inferences on the impact

of individual sources of N inputs on N2O emissions. This

requires an experimental design with control and treat-

ments in which the N input from a specific source is

modified to understand the impact of a practice. How-

ever, the N2O emission data are informative for parame-

terizing models that are predicting total net N2O fluxes.

Model [218_TD$DIFF]selection and parameterization

Estimation of national emissions could be inferred

directly from the measurements in the survey if there

is sufficient spatio-temporal sampling resolution to

represent the country’s geoclimatic variability, and if

resulting estimates meet expected levels of precision

under government policy programs. However, this level

of sampling may be prohibitively expensive in which case

a model can be used to scale the information in the

measurement data from the third stage to the entire

survey sample for estimation of national emissions.

Models that are used to predict soil N2O emissions for

inventory assessments are either empirically based statis-

tical models or process-based models. These models are

typically designed to quantify the impact of management

practices on N2O emissions, such as application of nitrifi-

cation inhibitors (e.g. Refs. [54,55]), which is critical for

advancing mitigation strategies and verifying outcomes in

policy frameworks.

Empirical models are derived from measurement data

using statistical methods and can be as simple as a single

emission factor derived from the survey measurement

data, or can be more complicated functions such as

regression models [56–59]. Empirical models are useful

in estimating emissions at regional and national scales,

and in some cases are more accurate than more complex

process-basedmodels [60]. However, well-tested process-

based models are likely to capture more drivers of

emissions leading to greater accuracy [61� [219_TD$DIFF]]. In addition,

process-based models can be applied to predict emissions

for mitigation and future climate scenarios, while empiri-

cal models may not be adequate for this purpose if future

conditions are different from conditions that were used to

derive the empirical functions. Several process-based

models have been developed and are currently used to

estimate soil N2O emissions at regional and larger scales,

such as DayCent [62], DNDC [63], LandscapeDNDC

[64], Dynamic Land Ecosystem Model [65], and

SPACSYS [66]. Recent inter-comparisons of process-

based models have been conducted to assess predictabil-

ity of N2O emissions [67�� [220_TD$DIFF],68�].

A subset of measurement data from the survey can be

used to derive an empirical model with statistical

methods, or to parameterize a process-based model using

optimization [69] or Bayesian methods [70� [221_TD$DIFF],71–73].
Models can be evaluated with independent measurement

data from the survey that are not used in model develop-

ment and parameterization. Final model selection can be

made using objective evaluation criteria including

conventional statistics, such as root mean square error

and bias statistics, or Bayesian model selection [74].

Estimate emissions and uncertainty

The selected model is applied to estimate emissions with

the activity data on land use and management practices

from the survey, possibly with supplemental datasets. For

example, a process-based model simulates the histories

over the inventory time period given the crop types,

fertilization management, residue management, tillage

practices, and other relevant management information.

The uncertainty in estimates can be derived by applying

the model several times with multiple iterations in a

Monte Carlo analysis [19,47,49,75]. In each iteration,

model parameters are randomly selected given parameter

distributions, possibly from a Bayesian analysis, and a

random selection of survey weights that can be estimated

based on the survey design. If an empirical model

32 Climate change, reactive nitrogen, food security and sustainable agriculture
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approach is used for the inventory, then uncertainty can

be propagated using a Monte Carlo analysis based on

probability distribution functions for the emission factors

or parameters in the empirically derived functions [19].

Verifying national emissions

National emissions could be verified with N2O emission

measurements from a subsample of sites in the monitor-

ing survey. However, this would only be valid if the

subsample of measurement sites were not used in the

development or parameterization of the model that

was used to estimate national emissions. Alternatively,

national GHG emission inventories could be verified

using atmospheric N2O concentrations and associated

isotopic signatures from tall towers, aircraft campaigns

and possibly remote sensing in the future [76,77]. Glob-

ally, atmospheric concentration samples are available

through the National Oceanic and Atmospheric Admin-

istration Carbon Cycle Cooperative Global Air Sampling

Network and the Commonwealth Scientific and

Industrial Research Organization Network) [78�� [222_TD$DIFF]], and
at regional scales from large tower measurements (i.e. TV

towers) [79� [223_TD$DIFF]]. Combining these data with atmospheric

inversion approaches enables comparisons of ‘top down’

atmospheric measurements with ‘bottom-up’ GHG emis-

sions inventories [80�� [224_TD$DIFF]]. Such an analysis has shown good

agreement between the two methods for UK N2O emis-

sions [79� [223_TD$DIFF]]. At the global scale, inverse modelling results

identified increasing trends of N2O emission from 2000 to

2015 for countries such as China and Brazil, whereas

emissions from Europe and the USA remained stable

[78�� [225_TD$DIFF]]. Although inverse modelling methods are still

under development, the results can already provide use-

ful information for verifying N2O emission inventories,

leading to improved confidence that reported emissions

are accurate, provided that estimated emissions are

consistent between the two approaches. Furthermore,

inconsistencies in emission estimates can lead to identi-

fication of errors and improvements in the inventory.

Conclusions
Implementation of policy to reduce N2O emissions needs

a robust inventory monitoring framework that is devel-

oped and adapted over time with the latest scientific

findings from an experimental research network. A survey

approach with application of a model is an optimal, cost-

effective design for collecting data through remote

sensing, questionnaires, crowd-sourcing, as well as N2O

measurements and related data to constrain N budgets.

With the reliable, useful and credible soil N2O emission

data, the monitoring system could inform development of

mitigation programs for reducing soil N2O emissions, and

be used to monitor emissions ensuring mitigation targets

are met. This would give national governments the

confidence to include more sustainable management of

reactive N as part of their national GHG mitigation plans

under the Paris agreement [10]. In turn, this would lead to

a larger portfolio of mitigation strategies that is likely

needed to achieve the goal of limiting warming to 2�C or

less.
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