
 

 

Integrating human behaviour and epidemiological modelling: 1 

unlocking the remaining challenges 2 

Edward M. Hilla,b,*,†, Matthew Ryanc,^, David Hawd,^, Mark P. Lynche,^, 3 

Ruth McCabef,^, Alice E. Milneg,^, Matthew S. Turnerh,^, Kavita Vedharai,^, 4 

Fanqi Zengj,^, Martine J Baronsk,†, Emily J. Nixond,†, Stephen Parnelll,†,  5 

Kirsty J. Boltonm,†.  6 

a Civic Health Innovation Labs and Institute of Population Health, University of 7 

Liverpool, Liverpool, United Kingdom. 8 

b NIHR Health Protection Research Unit in Gastrointestinal Infections, University of 9 

Liverpool, Liverpool, United Kingdom. 10 

c The Commonwealth Scientific and Industrial Research Organisation (CSIRO), 11 

Australia. 12 

d Department of Mathematical Sciences, University of Liverpool, Liverpool, United 13 

Kingdom. 14 

e EPSRC & MRC Centre for Doctoral Training in Mathematics for Real-World Systems, 15 

University of Warwick, Coventry, United Kingdom. 16 

f MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial 17 

College London, London, United Kingdom. 18 

g Net-zero and resilient farming, Rothamsted Research, Harpenden, Hertfordshire, 19 

United Kingdom. 20 

h Department of Physics & Centre for Complexity Science, University of Warwick, 21 

Coventry, United Kingdom. 22 

i School of Psychology, Cardiff University, Cardiff, United Kingdom. 23 

j Department of Sociology, University of Oxford, Oxford, United Kingdom. 24 

k Department of Statistics, University of Warwick, Coventry, United Kingdom. 25 



 

 

l School of Life Sciences and The Zeeman Institute for Systems Biology and Infectious 26 

Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom. 27 

m School of Mathematical Sciences, University of Nottingham, United Kingdom. 28 

* Corresponding author: Edward.Hill@liverpool.ac.uk 29 

† Denotes authors who were organisers of the “Mathematical modelling of behaviour to 30 

inform policy for societal challenges” workshop hosted at the University of Warwick 31 

Mathematics Institute on 10 June 2024. 32 

 33 

^ Denotes authors who were presenters at the “Mathematical modelling of behaviour to 34 

inform policy for societal challenges” workshop hosted at the University of Warwick 35 

Mathematics Institute on 10 June 2024.36 

mailto:Edward.Hill@liverpool.ac.uk


 

 

Integrating human behaviour and epidemiological modelling: 37 

unlocking the remaining challenges 38 

Historically, responses to health-related emergencies (whether public health, 39 

veterinary health or plant health related) have exposed the deficiencies of 40 

mathematical models to incorporate data-driven and/or theoretical knowledge on 41 

outbreak behavioural dynamics. Interdisciplinary collaboration is vital to improve 42 

realism in methodological approaches to considering behavioural dynamics in an 43 

unfolding situation. We must bring together novel ideas across the behavioural, 44 

biological, data and mathematical sciences.  45 

The purpose of our article is threefold. We first present our perspective on the 46 

vital role of interdisciplinary collaboration to enable the effective integration of 47 

the dynamics of human behaviour and epidemiological models - we refer to such 48 

integrated models as “epidemiological-behavioural” models. We then summarise 49 

issues to be resolved by interdisciplinary teams of experts within four 50 

contemporary epidemiological-behavioural modelling challenge areas that we 51 

consider to require immediate and sustained research attention: understanding of 52 

human behaviour; data; modelling methodologies and parameterisation; how 53 

modelling (and communication of its findings) affects behaviour. Lastly, to serve 54 

as a resource for research scientists, practitioners and policy makers interested in 55 

getting involved in tackling these epidemiological-behavioural modelling 56 

challenges, we pose recommendations to make progress in each of the challenge 57 

areas and our viewpoint on their potential societal benefits if enacted. 58 

Keywords: Behaviour; epidemiology; infectious diseases; mathematical sciences; 59 

modelling.  60 

Lay summary 61 

When faced with health crises like disease outbreaks or pandemics, scientists have 62 

struggled to accurately predict how they will spread. One issue is that models of 63 

how infections spread in the population do not usually consider how people 64 

behave. 65 

We call models that include both how infections spread and behaviour 66 

“epidemiological-behavioural” models. To improve these models we need experts 67 



 

 

from different research areas to work together. These teams include (but are not 68 

limited to) scientists who study human behaviour, medical and biological experts, 69 

and those who analyse data and who work with mathematical models.  70 

Our article is by organisers and presenters at a workshop on 71 

“Mathematical modelling of behaviour to inform policy for societal challenges” 72 

hosted at the University of Warwick Mathematics Institute on 10 June 2024. This 73 

workshop had participation from behavioural scientists, data scientists, 74 

statisticians and mathematical modellers. We state the current challenges we face 75 

in creating teams with experts from different research areas and to produce 76 

“epidemiological-behavioural” models. We suggest ways to overcome these 77 

challenges and outline potential impacts and benefits to society once these 78 

challenges are unlocked. 79 

 80 

Introduction 81 

Real-world systems are sensitive to human behaviour. The need to quantify the 82 

impact of changes in human behaviour on system outcomes is a ubiquitous open 83 

problem. Challenges arise due to a lack of readily translatable quantitative 84 

behavioural science models that might capture the changing of relevant 85 

behaviours, societal norms and policy directives across individuals and/or 86 

populations, particularly in novel social contexts. Within epidemiology, the 87 

behavioural element in the transmission dynamics of infectious diseases is very 88 

influential; as disease affects behaviour and behaviour affects the infection risk of 89 

others as well as ourselves, unlike for non-communicable diseases. The COVID-90 

19 pandemic particularly highlighted the deficiencies in availability of both 91 

suitable data and of epidemic models to reasonably incorporate data-driven and/or 92 

theoretical knowledge regarding the behavioural response to a pandemic, 93 



 

 

including social contact, mobility, adherence to non-pharmaceutical interventions 94 

(NPIs) and the drivers of voluntary behaviour changes [1,2]. 95 

Coupled with advice to wield caution when applying behavioural science 96 

to policy [3], there has been long standing recognition of challenges to incorporate 97 

the dynamics of behaviour amongst the epidemiological modelling community 98 

[4]. These challenges are not confined to public health. In veterinary and plant 99 

health there are researchers striving to integrate infectious disease and behavioural 100 

dynamics in topics such as animal health [5–7], crop disease [8,9] and tree health 101 

[10]. 102 

To induce the necessary improvements in the behavioural realism of such 103 

models, there is a clear need to connect researchers who share this collective 104 

interest - including but not limited to biologists, data scientists, mathematical 105 

modellers, medical scientists, social scientists - drawing on expertise from 106 

academia, industry, lived experience, policy-facing roles and other stakeholders. 107 

This ambition motivated a workshop titled “Mathematical modelling of behaviour 108 

to inform policy for societal challenges” hosted at the University of Warwick 109 

Mathematics Institute on 10 June 2024 [11], with support from the JUNIPER 110 

partnership (a collaborative network of researchers from across the UK who work 111 

at the interface between mathematical modelling, infectious disease control and 112 

public health policy [12]). Authored by workshop organisers and presenters, this 113 

commentary article summarises the (yet to be resolved but pressing) challenges 114 

faced with bringing together the dynamics of human behaviour and 115 

epidemiological models. Throughout this article we refer to such models as 116 

“epidemiological-behavioural models” - we remark that as the field at the time of 117 

writing is in its relative infancy that there are alternative terms within the 118 



 

 

literature to also be aware of describing this category of model/analytical 119 

approach (for example, “behavioural-epidemiological” [13], “economic-120 

epidemiological” [14,15] and “socio-epidemiological” [16]). 121 

Our intent with this article is threefold. We begin with the need to embrace 122 

interdisciplinary approaches and the provision of support for interdisciplinary 123 

collaboration. We contend those developments are imperative to enable 124 

interdisciplinary teams to usefully tackle questions within four core present-day 125 

epidemiological-behavioural modelling challenge areas: Understanding of human 126 

behaviour, data, modelling methodologies and parameterisation, how modelling 127 

(and communication of its findings) affects behaviour. Within each challenge area 128 

we comment on multiple issues. Note that many of the examples we focus on in 129 

this article are public health based, reflecting the current balance in relevant 130 

literature across the health areas (which has been exacerbated by the COVID-19 131 

pandemic). Nevertheless, we stress the importance that veterinary and plant 132 

sciences are not overlooked; we remark upon a smaller number of examples from 133 

those areas, whilst the learnings from the public health settings are also applicable 134 

to them. We also consider these issues to be generally relevant for modelling real 135 

world systems to support decision-making. We conclude by posing 136 

recommendations to make progress in each of the challenge areas, with our view 137 

on the potential consequential societal benefits were they implemented. These 138 

recommendations can serve as a resource and entry point for research scientists, 139 



 

 

practitioners and policy makers interested in getting involved in tackling these 140 

epidemiological-behavioural modelling challenges. 141 

 142 

The initial challenge: Removing barriers to effective interdisciplinary 143 

working  144 

We first highlight what we contend are pertinent general principles to consider in 145 

delivering effective interdisciplinary research and to support decision-making: (i) 146 

getting the necessary range of expertise amongst the interdisciplinary team; (ii) 147 

establishing a “common language” amongst the team members; (iii) standardisation of 148 

interdisciplinary methods. 149 

(i) Team building: Getting the necessary blend of expertise  150 

To bring about positive societal changes via addressing problems in behavioural 151 

epidemiology, the initial step is the construction of interdisciplinary teams with relevant 152 

expertise. A range of participants are needed, integrating the scientific community, data 153 

providers, stakeholders (including practitioners and decision makers), and funders 154 

(Figure 1). Within the scientific community, connections must be made between 155 

researchers in traditionally siloed disciplines who have this shared collective interest in 156 

wanting to address problems in behavioural epidemiology - (including but not limited 157 

to) biologists, data scientists, mathematical modellers, medical scientists, social 158 

scientists - drawing on expertise from academia, industry and policy-facing roles. 159 

Funding paradigms need to acknowledge the requirements of such interdisciplinary 160 

work, including the time required to develop and sustain good teams. 161 

This approach, constructing an interdisciplinary team for the purpose of 162 

collectively studying problems in behavioural epidemiology, would align with previous 163 

successes of incorporating domain expertise to tackle questions that inherently span 164 



 

 

multiple, traditionally siloed research disciplines. One such example is the Analysis 165 

under Uncertainty for Decision-makers Network (AU4DM). AU4DM is a UK-based 166 

community of researchers and professionals from policy, academia, and industry, who 167 

are seeking to develop a better understanding of decision-making to build capacity and 168 

improve the way decisions are made across diverse sectors and domains. AU4DM have 169 

created multiple toolkits, including resources seeking to narrow the gap between climate 170 

science and climate action (Communicating Climate Risk [17]), and resources to 171 

develop a better understanding of how decisions are made across a wide variety of 172 

sectors and domains and improve the way they are made (Decision Support Tools for 173 

Complex Decisions Under Uncertainty [18]; Visualising Uncertainty: A Short 174 

Introduction [19]).  175 

Another useful methodological approach that naturally onboards and considers 176 

collectively a range of domain expertise is structured expert judgement. Structured 177 

expert judgement refers to a collection of formal methods for obtaining from groups of 178 

experts their views on quantities and the uncertainty in those quantities. Structured 179 

approaches are designed to avoid groupthink and other biases whilst allowing experts to 180 

contribute their honest views. Notable examples of the use and outcomes resulting from 181 

structured expert judgement exercises are present in the statistical literature; for eliciting 182 

probability distributions where data is poor, biased or non-existent [20,21], the Bayesian 183 

ARgumentation via Delphi (BARD) protocol for elicitation of Bayesian networks [22] 184 

and a protocol for adapting an existing Bayesian network model [23]. 185 

(ii) Establishing a common language 186 

For effective working practice interdisciplinary teams need to establish a “common 187 

language”; a foundation of definitions, approaches to data collection, and types of 188 

models and their use that is understood and agreed by team members. 189 



 

 

Agreeing this common language will require resolving tensions between 190 

disciplines’ terminology and quantification. For example, modellers may prefer 191 

participants to specify a precise number of social contacts, but health psychologists will 192 

recognise that this will be difficult for participants to estimate accurately - health 193 

psychologists may alternatively suggest that study participants specify and/or select 194 

from a set list of categorical response options, drawing on expertise to develop surveys 195 

that facilitate participation (e.g. surveys that do not feel long or cumbersome) whilst 196 

also promoting accuracy [24]. An idea to aid the effective establishment of a common 197 

language amongst an interdisciplinary team is to refer to case studies in interdisciplinary 198 

pedagogy, the ways in which novices are taught to think, perform and act with integrity 199 

in their profession. One area where there has been such collaboration has been in 200 

household food insecurity (households that cannot, or are uncertain about whether they 201 

can, acquire an adequate quality or sufficient quantity of food in socially acceptable 202 

ways). This issue is a complex societal problem that requires a multifaceted approach to 203 

evidence-based policy design. For example, the UK is suffering a rise in food insecure 204 

households; in 2022/23 there was an estimated 7.2 million people, or 11% of the 205 

population, in households experiencing household food insecurity [25]. To that end, 206 

a  collaboration between the mathematical sciences and public health nutrition has 207 

successfully co-produced lecture content on the topic, delivered for students in two 208 

universities (one in the UK and one in Australia) with different backgrounds and within 209 

different courses where consideration of food security was part of each course [26]. 210 

There should be consideration of the possible inaccessibility of 211 

mathematical/modelling terminology to people in other research disciplines and vice 212 

versa. There could also be differing awareness of or comfort with different types of 213 

modelling approaches, which can lead to misunderstandings. For example, those who 214 



 

 

are comfortable with statistical (non-mechanistic) modelling approaches may be 215 

unaccustomed to or less trusting of mechanistic modelling approaches or vice versa. We 216 

have also observed the following when working between epidemiology and behavioural 217 

economics. In epidemic models, many of the complexities of disease transmission are 218 

manifest in the Force of Infection (FOI), which describes the rate at which susceptible 219 

individuals in a population acquire an infectious disease in that population, per unit time 220 

[27,28]. FOI can account for population heterogeneities and is the source of nonlinearity 221 

in epidemic models. In contrast, micro-economic models typically describe dynamic 222 

heterogeneities in a population by using utility functions [29], measuring individual 223 

received net benefit from a given scenario. Unlike FOI, there is no one consensus on the 224 

mathematical formulation of utility, owing to its more abstract nature and to the range 225 

of situations in which it can be studied. It is evident that perceived risk/benefit can 226 

impact behaviour, which can impact the FOI experienced by an individual and the 227 

contribution to FOI from an individual at any time [30]. Crucial observations here are: 228 

(i) utility and FOI are dynamic quantities, and FOI is dependent on utility; (ii) perceived 229 

risk and true risk are not the same, so utility does not translate directly to FOI; (iii) the 230 

impact of external mandates, such as enforced lockdowns, may affect an individual's 231 

perception of a scenario, but they also impose a change to FOI that cannot be mitigated 232 

by utility alone. To integrate both outlooks when studying systems of disease 233 

transmission, clarity in the interpretation and limitations of utility is essential in 234 

constructing a link back to FOI. 235 

We lastly comment that trust within an interdisciplinary collaboration may grow 236 

when team members perceive that behaviour is appropriately captured in data collection 237 

and models, according to their discipline specific pedagogical standards. Co-creation is 238 

powerful; people will advocate for models they helped build (one such example is a 239 



 

 

model co-created with personnel from The National Archives to quantify risk to digital 240 

collections [31]). 241 

(iii) Standardising interdisciplinary methods 242 

Investigating questions in behavioural epidemiology involves working with (but not 243 

limited to) high-dimensional and incomplete data from diverse sources, studying 244 

nonlinear dynamics and likely encountering issues of overfitting models to data, and 245 

needing to consider privacy constraints and ethics. There is presently a lack of 246 

standardised interdisciplinary methods to cater to problems with such breadth [32]. 247 

Nevertheless, the recent emergence of other modern interdisciplinary science disciplines 248 

shows how tangible progress on such matters can be made. For example, the 249 

interdisciplinary science of uncertainty quantification has bloomed (combining 250 

statistics, numerical analysis and computational applied mathematics). The research 251 

attention paid to uncertainty quantification has been due to the important real-world 252 

need for mathematical and computational modelling methodologies to estimate 253 

quantities of interest and make predictions related to real-world processes that can take 254 

account of a wide variety of uncertainties [33], especially when these lead to policy. We 255 

therefore argue that motivating and driving forward a standardisation of 256 

interdisciplinary methods associated with epidemiological-behavioural modelling is a 257 

realistic endeavour. 258 



 

 

259 

Figure 1. Interdisciplinary approaches to behavioural epidemiology to unlock solutions 260 

to societal challenges. We group challenges in integrating human behaviour and 261 

epidemiological modelling into four areas: understanding behaviour, data, modelling 262 

methodologies and parameterisation, how modelling (and communication of its 263 

findings) affects behaviour. By addressing these challenges, we envisage improvements 264 

in research practice, behavioural science theory, modelling approaches and decision 265 

making (Improved box; see Delivering societal benefits section). Subsequently, a range 266 

of societal impacts can be realised (Societal impact box; see Delivering societal benefits 267 

section). As these societal impacts are realised, we expect new challenges to be 268 

discovered, renewing the cycle of improved and impactful modelling (dashed arrow). 269 

However, using traditional mono-discipline approaches these improvements are 270 

“locked” and unattainable, meaning the societal impacts may not be achieved. To bring 271 

about positive societal changes via the construction of interdisciplinary teams with 272 

relevant expertise, accessibility of appropriate data and the provision of reliable 273 

analyses to stakeholders and the public, collective input is needed from researchers, data 274 

providers, stakeholders (including practitioners and decision makers), and funders. 275 

  276 



 

 

Unresolved challenge areas for integrating human behaviour and 277 

epidemiological modelling 278 

Unlocking and removing the barriers to effective interdisciplinary working would 279 

be useful progress as a standalone item. Nonetheless, giving the current 280 

knowledge base a functioning interdisciplinary team alone will not be sufficient to 281 

establish informative epidemiological-behavioural models. To target the focus of 282 

interdisciplinary teams working in the area, we describe here four challenge areas 283 

for integrating human behaviour and epidemiological modelling: understanding of 284 

human behaviour; data; modelling methodologies and parameterisation; and how 285 

modelling (and communication of its findings) affects behaviour (Figure 1, 286 

“Challenges in integrating human behaviour and epidemiological modelling” 287 

box). With each challenge area we comment upon multiple issues to address. 288 

 289 

Challenges in our understanding of behaviour  290 

Behavioural science aims to enhance our understanding of human behaviour. This 291 

knowledge can provide practical solutions to address societal challenges and improve 292 

individual and collective outcomes. That being said, human behaviour is studied across 293 

academic disciplines spanning psychology, economics, sociology, statistics, 294 

anthropology and beyond. Within these disciplines there are many different concepts of 295 

behaviours, models and approaches to understanding behaviour and behaviour change 296 

[34]. For epidemiological modelling efforts wanting to reasonably capture behavioural 297 

aspects, a constraint faced is readily drawing on existing behavioural science evidence 298 

and theory (due to its breadth). There are also inherent challenges in the way 299 

behavioural science is conducted that merit attention. Here we outline three issues: (i) 300 

existing behavioural science theory and models are generally limited to explaining 301 



 

 

behaviour only; (ii) generalisability of existing behavioural science evidence; (iii) 302 

appropriateness of behavioural science research methodologies for the quantification of 303 

human behaviour. 304 

 305 

(i) Restrictive, explanatory scope of existing behavioural science theory and models 306 

There is a bank of explanatory models for how a person’s attitudes and behaviours are 307 

related (e.g. theory of reasoned action [35], theory of planned behaviour [36]), self-308 

efficacy (e.g. protection motivation theory [37], social cognitive theory [38]) and 309 

capability (e.g. COM-B model [39]). These explanatory model frameworks can offer us 310 

insight into questions posing “why” and “who”, but have more limited utility when 311 

trying to quantify “when” i.e., to make predictions about behaviour. 312 

 The evidence accrued during the COVID-19 pandemic attests to this [40]. For 313 

example, in the context of human interaction/social distancing numerous studies 314 

identified the factors influencing social distancing (although often limited to ‘intentions’ 315 

to be socially distant, rather than actual behaviour). These findings illuminated both the 316 

“why” and the “who” and also shaped interventions to change behaviour, but could not 317 

be utilised to predict social distancing i.e., provide estimates on how individuals, 318 

communities and the population would respond to the imposition or removal of a public 319 

health intervention, such as restricting the opening of different hospitality or retail 320 

venues, or lifting of a lockdown or travel restrictions. Furthermore, effect sizes of the 321 

existing explanatory models appear modest as suggested by comparisons between 322 

studies with pre-registered analysis plans and not, suggesting that a prerequisite for 323 

obtaining a more reliable picture of population-level behavioural dynamics demands 324 

many more pre-registered studies [41]. Lastly on this issue, the scope of studies of 325 

behaviour focus on behaviour that is too general to predict the response to a particular 326 

intervention [42]. For example, the interaction between social and environmental factors 327 



 

 

in determining the transmission risk is uncertain; more initiatives are needed in this area 328 

akin to the PROTECT COVID-19 National Core Study on transmission and 329 

environment - a UK-wide research programme improving our understanding of how 330 

SARS-CoV-2 is transmitted from person to person, and how this varies in different 331 

settings and environments [43].  332 

 333 

(ii) Perils of generalising existing behavioural science evidence  334 

It is relevant to scrutinise the generalisability of existing behavioural science evidence 335 

due to the known biases and challenges with reproducibility in behavioural science 336 

study populations. For example, it is known that historically psychological research 337 

drew heavily on participants from academic institutions [44]. However, data suggest 338 

that generalising from students to the general public can be problematic when personal 339 

and attitudinal variables are used, as students vary mostly randomly from the general 340 

public [45]. There is also a reliance on WEIRD (western, educated, industrialised, rich 341 

and democratic) populations as participants in behavioural science, but WEIRD 342 

populations comprise a minority of the worldwide population [46]. Social groupings, 343 

such as class, are often omitted. Furthermore, behavioural science theory has often not 344 

been designed to describe variation in individual behaviour when applied to study of 345 

intervention effect for policy purposes [47]. 346 

 Thus, in order to challenge and improve existing behavioural science theories 347 

and models, there is a need to both scrutinise existing data assets, maximising the 348 

information from them accounting for potential demographic biases in the participants, 349 

and create novel behavioural science data sets with more diverse samples. We describe 350 

and comment on other data-associated items in the Data-related challenges section 351 

below. 352 

 353 



 

 

(iii) Advancements in behavioural science research methodologies needed for the 354 

quantification of human behaviour 355 

Behavioural research implements many different research methodologies, with 356 

presently there being a reliance on qualitative self-report, retrospective and correlational 357 

designs. Some of these approaches describe processes (cognitive, social) and their 358 

relationship to behaviour only qualitatively, often via path diagrams [47], and are 359 

considered validated in experimental or observational studies if the proposed 360 

correlations are observed or are consistent with causal analysis of the data. Furthering 361 

our understanding will require collection of quantitative, real-time and objective data on 362 

behaviour, synthesising across multiple forms of analysis. Human analytics is a data-363 

driven approach to understanding human behavioural choices, with there being great 364 

potential for digitally derived empirical data to inform our understanding of health 365 

behaviour [48]. Another analysis construct is sentiment analysis, which may inform 366 

behavioural choices by providing information on an individual's ideology and politics 367 

[49]. In sum, progression of what are the commonly used behavioural science research 368 

methods can enable the collection of real-time and objective data on behaviour. 369 

Data-related challenges  370 

Establishing an evidence base for conjectured behavioural science theory requires 371 

empirical observation across controlled laboratory settings, managed trials and 372 

population-based contexts. Acquiring informative behavioural data, which are 373 

amenable to use in mathematical models, is just one part of the epidemiological-374 

behavioural model data cycle. Models can be used as an exploratory tool, 375 

discerning what model parameters contribute the most to uncertainty in model 376 

outputs and/or the model parameters the model outputs are most sensitive to. 377 

Findings from these analyses can inform what data attributes would be most 378 



 

 

useful to collect in the next round of data collection. This cyclic process can both 379 

improve the “plug and play” potential of the data into models and reduce 380 

uncertainty in model outcomes. 381 

The three data-related issues in epidemiological-behavioural modelling we 382 

expand on here are: (i) ability to leverage existing data into existing models; (ii) 383 

identifying the relevant data for use in appropriate models; (iii) ethical 384 

considerations for the collection, processing and storage of data. 385 

 386 

(i) Leveraging existing data into existing models 387 

There is recognition of a lack of context awareness and standardisation amongst 388 

existing data on health-related behavioural dynamics. We commented in the previous 389 

section about the over-reliance on WEIRD populations for behavioural science study 390 

participation (see Challenges in our understanding of behaviour). Several existing data 391 

are also reliant on self-report approaches for data collection (rather than objective 392 

driven data collection); self-report data may suffer from recall bias [50] and responses 393 

influenced by social expectations [51]. Collecting data from hidden or vulnerable 394 

populations is key to tackle health-related challenges [52]. 395 

Another acknowledged data issue is the intention-behaviour gap. The 396 

relationship between behavioural intentions and realised behaviour is notoriously 397 

complex; predicting behavioural intentions has proved to be easier than predicting 398 

behaviour [42]. To reasonably account for the intention-behaviour gap in 399 

epidemiological-behavioural models, an open research question is: can the intention-400 

behaviour gap be reliably quantified [53]? This is a relevant question for NPIs such as 401 

usage of face masks and social distancing. For such NPIs there can be divergence 402 

between the intention to adopt/not adopt the behaviour and the actual behaviour carried 403 



 

 

out. Modelling the uptake of NPIs may also be complicated by variations in the 404 

adoption of NPIs across social settings [54]. There is potential to bridge the intention-405 

behaviour gap through increased data sharing and predictive modelling. For example, 406 

linking self reported social distancing (which may suffer from recall bias and conflation 407 

with intention in reporting past behaviour) to mobility data [55], or intended face mask 408 

usage to observed face mask prevalence in security footage [56,57]. 409 

An additional facet to the quantification of the intention-behaviour gap is to 410 

include the difference between adequate and inadequate behaviours. For NPIs such as 411 

face mask wearing, models also need to quantify the level of intentional or unintentional 412 

misuse of face masks (e.g. wearing a mask under your nose). Although many will intend 413 

to and actually wear face masks, many will do so inadequately [58]. However, face 414 

masks are only effective when worn properly and hygienically [59]. Improving the 415 

adequate-inadequate behaviour gap through education is a clear avenue where 416 

behavioural science, scientific communication, and health policy can make a tangible 417 

impact on society for future infectious disease. 418 

Despite the known biases and limitations of existing data that may be of use for 419 

epidemiological-behavioural modelling, by delving into these existing data and model 420 

applications there is an opportunity to identify individual- and population-scale drivers 421 

of mobility and interactions in response to public health restrictions. This is particularly 422 

pertinent in the context of the COVID-19 pandemic, which has seen swathes of data 423 

collected, from contact tracing, behavioural surveys, social media, infection and 424 

genomic data, travel and retail data. Independent producers of official statistics, such as 425 

the Office for National Statistics in the United Kingdom, offer another very useful 426 

source of data relevant to epidemiological-behavioural modelling. For example, 427 

demographic data from a census (e.g. available for England and Wales from the Office 428 



 

 

for National Statistics [60]) can inform the overall population structure in an area and 429 

can help build epidemiological-behavioural models in localised populations. 430 

There is past precedent for revisiting existing data and models to glean novel 431 

insights. One example is Google Flu Trends data. Preis and Moat [61] demonstrated 432 

how taking precautions to allow for the fact that human behaviour changes over time 433 

could enable public health professionals to use data on the number of Google searches 434 

for influenza-related symptoms to improve their estimates of influenza prevalence. 435 

Another example is the work by Durham and Casman [62], who demonstrated an 436 

application of the Health Belief Model to model the prevalence of facemask use 437 

observed over the course of the 2003 Hong Kong SARS epidemic (which is a well-438 

documented example of behaviour change in response to a disease outbreak). These 439 

examples show how we have yet to extract from existing data the maximum 440 

understanding of behavioural response to a pandemic and public health measures. 441 

(ii) Identifying the relevant data for use in appropriate models 442 

Models can help inform the data we need, but the data we have guides the models we 443 

can usefully use. Using varied data sources, including first-hand and secondary data, has 444 

different impacts on epidemiological-behavioural models. Whereas public or secondary 445 

data may lack detailed individual information due to privacy concerns, it is challenging 446 

and costly for researchers to collect first-hand data at a large scale, such as the national 447 

level, which is often supplied by specific institutes or stakeholders. 448 

Infectious disease models including human behaviour inconsistently use data to 449 

parameterise and validate their results. Different data sources can be used depending on 450 

the model and purpose. For example, if we want to know vaccine rates we may use 451 

epidemiological data to infer these [63], but if we want to know the behavioural and 452 

social drivers of vaccine uptake then survey data may be more appropriate [64,65]. 453 



 

 

Moreover, the lack of robust behavioural and social data limits the efforts of 454 

epidemiological-behavioural models to inform policy [32], while the increased 455 

psychological complexity in a model does not necessarily lead to a more precise or 456 

insightful accurate model [66]. 457 

A comprehensive consideration of the data selection as well as model building 458 

are two sides of the same coin when modelling epidemiological behaviours. 459 

Consequently, what are “relevant” data and “appropriate” models is non-trivial. 460 

Questions that must be addressed include: What data do epidemiological-behavioural 461 

modellers need to make their models interpretable and usable?; Do we have the 462 

infrastructure and investment for robust data collection, storage and access?; Is the 463 

idealised data even a feasible ask? Balancing between behavioural detail and model 464 

complexity will guide the data necessary to effectively calibrate epidemiological-465 

behavioural models to said data.  466 

(iii) Ethical considerations for the collection, processing and storage of data 467 

Many of the proposed approaches for data collection we have mentioned have strong 468 

potential to improve real-time modelling and response in the face of new epidemics, 469 

such as self-used mobile applications [67]. Nevertheless, there are clear ethical 470 

considerations that warrant attention. Transparent policy and communication with 471 

individuals from whom the data are collected is vital. From the scientific standpoint, we 472 

must strike a balance between the need for comprehensive data and ethically piecing 473 

together (and interpreting) large, complex and varied behavioural data [68]. For 474 

example, integrating computer vision and machine learning techniques to detect real 475 

time prevalence of protective health behaviours is a useful tool in real-time public 476 

health planning [56,57]. However, these methods involve processing and storing (at 477 

least for a short period) sensitive personal and biometric data, opening the door for 478 



 

 

privacy risks [56]. Having secure systems in place to account for these privacy risks are 479 

essential to ensuring the safety of these data collection methods. It is important to 480 

establish public or user confidence in the security measures in place. 481 

Challenges in modelling methodologies and parameterisation  482 

Human behaviour in relation to epidemics is based on attitudes, belief systems, 483 

culture, opinions and awareness of a disease. All of these factors can change over 484 

time, both in an individual and in the entire population [69]. Here we review three 485 

issues that will naturally arise when attempting to combine and calibrate all these 486 

factors into a generalised model of epidemiological and behavioural dynamics: (i) 487 

balancing model complexity and interpretability - contained within we have a 488 

more expansive view into the role of “simplified models” in the context of 489 

epidemiological-behavioural modelling; (ii) ability to select appropriate models, 490 

calibrate them and validate them; (iii) useability of developed modelling tools for 491 

non-experts. 492 

(i) Balancing model complexity and interpretability 493 

Generalised models can sometimes come to resemble a “black box”, with many 494 

parameters that intend to capture as many epidemiological-behavioural dynamic 495 

processes that may plausibly be part of the system. It can be hard with such models to 496 

gain a deep understanding of how many factors contribute together to produce complex 497 

outcomes. In some contexts, including in medicine, model users may have to take legal 498 

responsibility for their decisions and this can inhibit the use of models they do not fully 499 

understand. It is also important to balance the realism of behavioural model components 500 

with that of the epidemiological model. There would be less value in analysing a 501 

detailed behavioural model and overly simplified epidemiological model and vice versa. 502 



 

 

In contrast to generalised models, simplified models are often more 503 

interpretable. Many problems in mathematics often employ and expand upon the use of 504 

simplified mathematical models of that problem, the idea being to make many 505 

controlled assumptions, often rather strong, to gain a deeper understanding of a 506 

particular phenomenon. We now discuss the potential contributory role of simplified 507 

models in the context of epidemiological-behavioural modelling. 508 

— 509 

Deeper dive into simplified modelling 510 

In epidemiological modelling, simple outbreak dynamics may be obtained using 511 

an SIR (susceptible-infected-recovered) type disease status construct, with a number of 512 

associated assumptions (e.g. the population is assumed to be homogenous and of a fixed 513 

size, transmission is assumed to be proportional to the number of infectives, and the 514 

disease is assumed to not have multiple strains, or the ability to reinfect individuals, 515 

etc). These simple SIR models are often used to compare with the results of an extended 516 

model to gain new insights. 517 

In the epidemiological-behavioural context, the SIR model can be thought of as 518 

a “non-behavioural” case. Then as a “behavioural” case, one could modify the 519 

transmission term in the SIR model to mimic a population that reduces their contact rate 520 

in the presence of a very large number of infectives [70]. It is of benefit to find, propose 521 

and explore these highly simplified models with their heavy (and likely unrealistic) 522 

assumptions on behaviour. As we then explore the high-dimensional space of models or 523 

assumptions about human behaviour, the simplified cases provide reference points and 524 

help quantify and locate the uncertainty. 525 

To illustrate the benefit of building from simple behavioural models, consider 526 

the process of mechanistically incorporating the rationality of individuals into a 527 



 

 

mathematical model. Like the SIR model in “pure” epidemiological modelling, we first 528 

identify a simplified model with epidemiological-behavioural aspects that can and is 529 

being built upon. In this instance, game theory provides useful tools to study simple 530 

conflicts of individuals choosing between actions of differing costs and benefits. Some 531 

of the basic assumptions that underlie this theory are that individuals pursue well 532 

defined objectives (they are rational), and that they take into account the behaviour of 533 

other decision makers when deciding on how to behave (they are strategic). It is 534 

recognised that this provides a very idealised scenario [71,72], but the focus is not in 535 

predicting what decisions people will make, but rather the interest is in the mechanisms 536 

of that decision making [73,74]. In epidemiology, the field is mostly used to model 537 

vaccine uptake [75,76] in order to better understand the relative costs and  decision-538 

making process behind choosing to vaccinate (whether that be yourself or farmers 539 

vaccinating livestock). However, recent work has been concerned with modelling 540 

contact patterns and social distancing as games [77,78]. 541 

Whilst the assumptions made by these model frameworks may not be realistic 542 

compared to our current understanding of human rationality (e.g. the whole population 543 

is perfectly rational and able to act that way; everyone acts in their own self-interest or 544 

in the global good; everyone has the same preferences and costs; individuals have 545 

perfect information available to them), we then seek to extend the simplified models 546 

(e.g. the population does not act perfectly rational, individuals care about other 547 

members of the population and act accordingly, different sub-populations have different 548 

costs/preferences (i.e. young and old, unequal opportunity, compassionate and 549 

uncompassionate); non-perfect information). 550 

We give examples of three avenues in which researchers have sought to break 551 

free of the constraints of simplified models of rationality. Rational social distancing 552 



 

 

practices used by individuals will vary depending on the response of others and how 553 

these responses change the epidemic. A simplified model by Reluga [77] does this by 554 

setting up an epidemic as a differential game, where preferences of individuals are 555 

given by cost functions that are minimised with respect to control and state variables 556 

obeying some system of differential equations (e.g SIR Model). This differential game 557 

is played by individuals in a population reacting to population behaviours. This model 558 

takes many of the assumptions as given above. Others have since extended this model to 559 

consider different aspects of rationality. In the first extended example, Fenichel et al. 560 

[79] introduced specific contact rates as an individual's measure of social distancing, 561 

rather than a simplified willingness to social distance. Ultimately, it is individual 562 

contacts between susceptible and infected individuals that lead to disease spread. As a 563 

consequence, modelling the utility gained and risk of infection from each of these 564 

individual contacts gives insights into the individuals desire to interact with a certain 565 

number of other individuals in a given time frame. Second, in many epidemiological-566 

economic models, the population is assumed to be making decisions in the absence of 567 

government policy. Schnyder et al. [80] relaxed this constraint by introducing rational 568 

responses to government incentives to social distance. This interplay was then directly 569 

compared to the simplified model to show the specific effect of government policy 570 

during an epidemic. Rationality here was not assumed to be complete coherence to 571 

government policy, or a social planner, unlike in simplified models. Thus, this approach 572 

provides a tool for policymakers to see how a population might react to any given 573 

intervention. Third, and finally, whilst much research assumes just one behavioural 574 

compartment, recent work has considered the rational behaviours of individuals 575 

dependent on infection status. We note work done by Bethune and Korinek [81], which 576 

links to measured economic factors in the US economy during the COVID-19 577 



 

 

pandemic. They find that rational infected individuals do not see it beneficial to social 578 

distance when thinking purely in their own self-interest, raising questions of whether 579 

such selfish behaviour is truly rational. 580 

This illustrative example portrays how simplified models of the rationality of 581 

human decision making clearly have many steps to take to bring them up to speed with 582 

“pure” epidemiological models. However, if this splicing of epidemiological and 583 

behavioural models is done early enough, in simple scenarios with many assumptions, 584 

such models would provide a useful framework to build on to arrive at integrated, 585 

generalised epidemiological-behavioural models. It may not be necessary to capture in 586 

detail the differing variability in sub-populations for the insights to be useful. 587 

 588 

 589 

Figure 2. Illustration of assumptions within a simplified behavioural model of 590 

rationality and contemporary work on more generalised models that relax those 591 

assumptions. We show an example of a simplified behavioural model of epidemics 592 



 

 

incorporating rational behaviour (centre circle), assumptions of the simplified model 593 

(inner ring) and how different groups have sought to extend such simplified models 594 

(relaxing a particular assumption to “break-free” of such constraints) as they seek more 595 

realistic, generalisable models (outer ring). Fenichel et al. [79] is an earlier paper which 596 

generalises to include human to human contact behaviour as being adaptive. Schnyder 597 

et al. [80] takes the assumption of no government policy involvement and adds in how 598 

populations would respond to government incentives to social distance. Bethune and 599 

Korinek [81] take the assumption of a single behavioural class for the whole population 600 

and instead consider behavioural classes dependent on infection status. 601 

 602 

— 603 

 604 

(ii) Ability to select appropriate models, calibrate them and validate them 605 

The most appropriate method for modelling behaviour depends on the problem that is 606 

being addressed and the data available. For systems relatively abundant in data it may 607 

be possible to derive useful empirical relationships that describe the key drivers of 608 

decision making. It is more likely, however, that an underlying theoretical framework is 609 

needed to underpin the model structure. Here we can draw on social theory, building on 610 

frameworks such as the theory of reasoned action [35], the theory of planned behaviour 611 

[36] or the Health Belief Model [82], or work with social theorists to develop bespoke 612 

frameworks relevant to the problem. 613 

Once the underlying theory is decided upon or derived then it can be 614 

parameterised. With sufficient resources, a survey or questionnaire can be designed to 615 

fully parameterise the model. Other more innovative means can also be employed, such 616 

as scenario exploration through role play (serious games [83]). All too often, however, 617 

this is not feasible and so we must rely on secondary sources of data or expert 618 



 

 

judgement to parameterise models. As with other types of models, sensitivity analysis 619 

can be done to determine the importance of each of the parameters on the modelled 620 

outcomes, helping to quantify uncertainties, direct future effort for data collection or 621 

caveat research findings. 622 

Many models are theoretical and do not necessarily undergo validation. 623 

Validation of proposed model structures is relatively rare [84]. El Fartassi et al. [85] 624 

proposed the use of structural equation modelling to validate the form of their proposed 625 

behaviour model that described farmer behaviour in relation to sustainable water 626 

management. This approach is resource intensive as typically questionnaires need to be 627 

carefully developed to align with and test the modelled constructs. Sonnenschein et al. 628 

[86] highlight that behaviour is one of the most challenging aspects to model and 629 

validate. They propose a deep learning approach for extracting evidence from scientific 630 

articles to validate the structure of simulation and projection models. However, this 631 

innovative method relies on a large evidence base. Another more pragmatic approach to 632 

this challenge is through “peer review”, i.e. validation of model assumptions through 633 

consultation with independent epidemiological modellers and social scientists. 634 

In the context of the timely development of epidemiological models to inform 635 

outbreak response efforts, Swallow et al. [87] expressed an overarching challenge of 636 

conducting robust parameter estimation at speed and in the face of considerable 637 

uncertainty. Those authors remark how such estimation challenges are contingent on 638 

challenges associated with both the model frameworks and the data that feed into 639 

estimation approaches. This is particularly pertinent in the early stages of an outbreak, 640 

where policy decisions must be made despite scarce data. We therefore reiterate the call 641 

that challenges across these areas should not be considered in isolation. 642 

(iii) Useability of modelling tools for non-experts 643 



 

 

Although the sharing of analytical tools with practitioners can be beneficial, they 644 

can sometimes be used or interpreted incorrectly. As part of our role as scientists we 645 

should give careful attention to the way we make software available [87]. 646 

Comprehensive model documentation, transparent clear code scripts and implementing 647 

modular programming can help maximise the accessibility and useability of such 648 

analytical tools. User interfaces must be built in collaboration with users to identify 649 

their needs and conventions. These factors will ensure that models can be utilised on a 650 

technical basis, but it is also important to ensure that non-experts are aware of model 651 

limitations and relevant areas of application. Key to conveying such information is 652 

ensuring full transparency in terms of the model assumptions and sources of 653 

information used to construct and parameterise models, and their uncertainty. 654 

A more systematic approach to help circumvent the accessibility and useability 655 

issues of software tools by practitioners is participatory modelling [88]. Participatory 656 

modelling has active involvement of stakeholders in the design, development, and use 657 

of models. This co-production process can ensure that it is clearly defined to all parties 658 

who are the intended users of the developed analytical tools, the user context (what are 659 

the outputs, what decisions will they help with) and improve the reliability of model 660 

output interpretations (thus aiding decision making). Using a stakeholder workshop 661 

approach, Purse et al. [89] demonstrated that co-production of models is particularly 662 

important to capture complex interactions in disease systems strongly influenced by 663 

human behaviour. Modelling the risk of the tick-borne Kyasanur Forest Disease the 664 

authors identified the socio-ecological factors that determine human cases; this required 665 

participatory modelling to capture the joint influences of the vector and pathogen 666 

dynamics together with the human activities that underpin exposure. Participatory 667 



 

 

modelling ensured that a wide range of a priori knowledge and data sources were 668 

integrated into the model. 669 

Participatory approaches can also be expected to enhance non-expert 670 

understanding and confidence in the model outputs. Indeed, participatory modelling has 671 

been shown to improve knowledge capture in complex systems and encourage 672 

participation and use of models by a diverse range of stakeholders [90]. Co-production 673 

can thus facilitate intersectoral collaboration, which is needed to meet the challenges of 674 

epidemics which have multiple drivers encompassing, e.g., environmental as well as 675 

human and behavioural aspects [91]. Usability and uptake of models can also be 676 

enhanced through their integration into live simulation exercises and role-playing [92], 677 

which can be used to adapt models and improve their usability. Live simulation 678 

exercises and role-playing can also help us better understand the role of modelling as 679 

one particular input to contingency planning or outbreak response.    680 

Challenges in how modelling (and communication of its findings) affects 681 

behaviour 682 

Modelling is an important tool that aids our understanding of transmission 683 

dynamics, the potential health impacts of a pathogen and can help inform health 684 

policy. Another strand of the language and interpretability discussed earlier is the 685 

importance of clear communication. 686 

During the early stages of a multidisciplinary endeavour, it quickly 687 

becomes clear that the signature pedagogies of the contributors - recall that these 688 

are the ways in which novices are taught to think, perform and act with integrity 689 

in their profession - can lead to difficulty in mutual understanding. In language, 690 

this can take the form of conveying the same concepts with different language or 691 

using common terminology for disparate concepts. In addition, clashing concepts 692 



 

 

of which approaches are rigorous can hinder forward progress until the relevant 693 

negotiations have taken place. 694 

This communication between scientists, policy makers and the public has 695 

been previously noted amongst challenges for epidemiological modelling [93,94]. 696 

There is a bi-directional relationship between behaviour and modelling. As noted 697 

extensively throughout this article, behaviour has to be accurately captured within 698 

modelling to produce reliable outputs, but then the publicised outputs of 699 

mathematical modelling then often influence behaviour, whether that be through 700 

(mandated) policies directly or through public health messaging [95]. 701 

The two issues we expand on here are: (i) challenges and opportunities in 702 

the communication of epidemiological-behavioural models; (ii) ethical 703 

implications of epidemiological-behavioural modelling affecting behaviour. 704 

 705 

(i) Challenges and opportunities in the communication of behavioural-706 

epidemiological models   707 

Challenges in the communication of modelling are well-documented [96]. One 708 

prominent example is how to balance the very limited space/time the available 709 

communication channels, such as the media, have to communicate results (e.g. a news 710 

headline), or a scientific advisor to a decision-maker (e.g. a very brief summary in a 711 

meeting), with all of the nuance that underpins a modelling result (e.g. the model 712 

assumptions and parameterisation, often requiring large paper appendices to detail 713 

properly). For example, the literature on the effect of face masks on controlling the 714 

transmission of SARS-CoV-2 is varied and dependent on a range of assumptions 715 

including, but not limited to, the quality of the mask and how it is worn [97]. This 716 

makes the decision on whether or not to advise mask-wearing during a public health 717 



 

 

emergency difficult to summarise briefly, including in a headline format. Progress is 718 

being made in the communication of nuanced messages - guidelines for scientific 719 

communicators have been shared by the Winton Centre for Risk and Evidence 720 

Communication at the University of Cambridge (with advice based on their experience 721 

communicating personal risk from COVID-19) [98]. 722 

There are a few ways in which the public consume information about 723 

mathematical modelling. Studies have shown that the news media is an important means 724 

for this [94,99]. However, a drive in the field for integrated epidemiological-725 

behavioural modelling is not newsworthy by itself until it begins to inform an 726 

emergency response. Further considerations of the behavioural impact of 727 

communicating modelling is required to strike the careful balance where modelling 728 

enhances public health. 729 

For those who are not in the modelling field, it is unlikely that most are actively 730 

searching for updates on integrated modelling, which raises questions as to how we can 731 

effectively ensure the public are aware of modelling developments such as these ahead 732 

of a public, veterinary or plant health emergency? We must draw on the experiences of 733 

initiatives tackling other prominent societal challenges in constructing a decision-734 

making value chain incorporating all stakeholders. The Communicating Climate Risk 735 

toolkit is one such example; bringing together best practice on the effective 736 

communication of climate information from across STEM, social sciences, and arts and 737 

humanities, the toolkit provides users with insights, recommendations, resources for all 738 

forms of climate-related communication and decision-making, and identifies open 739 

problems [17]. 740 

Ultimately, citizens are the people who will drive an epidemic. Being able to 741 

demonstrate the effect that their everyday actions can have on disease dynamics we 742 



 

 

conjecture would act as powerful messaging and could increase engagement with 743 

models and/or adherence to public health policies and/or messaging. 744 

(ii) Ethical implications of epidemiological-behavioural modelling affecting 745 

behaviour. 746 

Citizens are key stakeholders of modelling being used to inform policy. It is important 747 

that the public are well-informed and see their behaviour reflected in these models. For 748 

example, under what conditions is the monitoring of human interactions acceptable to 749 

the public? Empirical approaches need to be predicated on trust, respect and consent. It 750 

is critical to consider different settings and communities, because as we have seen, the 751 

response to public, veterinary and plant health emergencies can affect all within our 752 

society. This was underlined with the NHS COVID-19 contact tracing app [100,101], 753 

with studies showing the decision not to subscribe was driven by privacy concerns 754 

[102]. User understanding of the privacy preserving mechanisms in place is key to 755 

confidence. The NHS COVID-19 contact tracing app was ultimately looking at contact 756 

patterns, so as well as helping individual people to inform their decisions, these data 757 

were then analysed to answer key public health questions applicable for the whole 758 

population [103,104]. Overall, it is imperative we ensure our efforts to understand, 759 

develop and evaluate approaches to understand human behaviour are informed by and 760 

co-created with the public. 761 

Recommendations to deliver societal benefits   762 

The previously mentioned challenges for developing useful epidemiological-763 

behavioural models reveals a potentially overwhelming collection of issues to 764 

address. To serve as a resource for all those interested in getting involved in 765 

tackling these epidemiological-behavioural modelling challenges (including 766 



 

 

research scientists, practitioners and policy makers), we outline in Table 1 our 767 

recommended action points. Per issue within each challenge area, we provide a 768 

recommendation that is “short-term actionable” (i.e. what can plausibly be 769 

usefully done now) and a recommendation that is “long-term thinking” (i.e. steps 770 

to unlock a long-term vision of how in an idealised setting we envisage studies 771 

being conducted). We also link to, but do not comprehensively review, existing 772 

evidence of similar actions in other established interdisciplinary fields, drawing 773 

from bioinformatics, mathematical biology, neuroscience, climate science, 774 

environmental science and health science. 775 

Many of our recommendations for enabling interdisciplinary working echo 776 

existing commentary on this topic [4,32,93], but we reiterate them here together 777 

with some topic specific suggestions. We emphasise that many of the actionable 778 

recommendations require resources from universities and/or funding bodies to 779 

execute. The longer-term interdisciplinary success also hinges on the practicality 780 

of taking these nascent collaborations further with the continued support of 781 

funding, academic institutions and policy makers. Furthermore, for our 782 

recommendations related to behavioural science, we stress that we do not wish to 783 

dictate the direction of the behavioural science field as a whole. Rather, we 784 

provide recommendations to aid translation of behavioural science for 785 

epidemiological modelling. 786 

Table 1. Recommended action points by challenge area and issue within each challenge 787 

area. We group the recommendations according to those that are “short-term 788 

actionable” (i.e. what can plausibly be usefully done now) and those that are “long-term 789 

thinking” (i.e. steps unlock a long-term vision of how in an idealised setting we 790 

envisage studies being conducted). 791 



 

 

Challenge area Issue Recommendation Examples / references 

Actionable Long term thinking 

Interdisciplinarity Constructing a team 

with required blend 

of expertise 

Apply for small-scale funding to 

create networking opportunities 

through joint seminars and 

workshops, with emphasis on 

building a common language and 

goal set. 

Funding bodies to support 

longer term cross disciplinary 

collaborations. Develop training 

opportunities to support new 

researchers in this 

interdisciplinary field.  

Bottom-up models for 

generation of 

interdisciplinary 

science common [105]. 

 

Seed funding from 

universities can quickly 

respond to promising 

interdisciplinary ideas 

[105,106].  

 

Top-down approaches 

sometimes successful, 

e.g. funding for Human 

Genome Project largely 

drove the emergence of 

bioinformatics [107].  

Establishing a 

common language 

Medical practitioners, 

epidemiologists and the 

mathematical modelling 

community to identify and define 

relevant behaviours for infectious 

disease modelling (perhaps 

differentiated by pathogen type), 

Promote use of this common 

language and use it to develop 

common methodologies that 

will address agreed aims via 

long-term collaborations with 

regular meetings, cross-

disciplinary placements, 

Importance of 

developing a common 

understanding often 

recognised, e.g. through 

analyses of joint field 

work [108].  

 



 

 

publishing and advertising them 

to encourage discussion, 

refinement and use of these 

definitions.  

development of dedicated 

interdisciplinary journals.  

Neuroscience “rapidly 

evolved as a 

consequence of a series 

of symposia, 

conferences, 

publications,...” (from 

Sabbatini & Cardoso 

[109]).  

Standardisation of 

interdisciplinary 

methods 

Behavioural science and 

infectious disease modelling 

community to collaborate to test 

existing behavioural science 

models on existing data sets (e.g. 

large-scale data sets on behaviour 

during the COVID-19 pandemic) 

- establishing the utility of 

existing theory in the context of 

infectious disease modelling.   

Support cross-sector 

collaboration - e.g. with policy 

makers to ensure models inform 

current policy questions, with 

the business and technology 

sectors to support new methods 

of data collection.  

Emulating methodology 

of successful fields can 

accelerate progress in 

interdisciplinary 

research and can lend 

emerging 

interdisciplines 

legitimacy [110].   

 

Potential to expand 

forecasting hubs for 

COVID-19 modelling 

(e.g. Loo et al. [111]) to 

incorporate behavioural 

data and behavioural 

predictions.  

Behavioural science  Limitations in 

existing behavioural 

science theory and 

models 

Encourage pre-registered studies 

of objective measures of 

behaviours to better support 

Invest in interdisciplinary 

collaborations to design studies 

that inform key behaviours for 

Increased prevalence 

of pre-registered studies 

has improved the 



 

 

reproducibility, quantify drivers 

and effect sizes.  

(epidemiological-behavioural) 

models. 

quality of social 

sciences [112].   

Generalisability of 

existing behavioural 

science evidence 

Investigate, by co-measurement 

or meta-analysis of existing 

data/literature, dependence 

between relevant behaviours so 

that adoption of new 

(disease/pathogen specific) 

behaviours can be more readily 

predicted by existing evidence. 

Combine qualitative and 

quantitative data, to develop 

consensus models that can be 

tested against (emerging data). 

Reviews of mixed 

methods research in 

health aim to build on 

approaches to analyse 

qualitative and 

quantitative data within 

the same study [113].  

Appropriateness of 

behavioural science 

research 

methodologies for 

the quantification of 

human behaviour 

Review methodology to 

synthesise evidence across 

experimental and observational 

studies, highlighting limitations 

and fruitful avenues of research.  

Development of predictive 

models (enabled by new ways 

of collecting data, see Data 

recommendations below). 

Other established 

interdisciplines, e.g. 

climate science, have 

grappled with 

translating information 

from closed systems 

(experiments) and open 

systems (observational 

studies) [114].  

Data Ability to leverage 

existing data into 

existing models 

Identify existing data repositories 

and explore potential for linkage 

to, e.g. health records and 

demographic data. Identify 

limitations of existing data 

repositories; representation, 

missing data, other biases. 

Support post-hoc analyses of 

epidemiological events to 

explore capabilities of existing 

data and models, enabling 

cyclic iteration of both data and 

models to address limitations.  

Build on work by 

organisations such as 

Health Data Research 

UK that enable safe 

sharing of sensitive data 

[115].  



 

 

Identifying the 

relevant data for use 

in appropriate 

models 

For plausible/emerging models, 

test inference framework with 

synthetic data to identify 

necessary data and granularity 

(individual vs population 

average) to accurately 

parameterise existing models, 

potentially for  different relevant 

behaviours and pathogens. 

Engage with researchers across 

disciplines (e.g. anthropology, 

philosophy) to support collation 

of representative data including 

hard to reach populations. Build 

cohort generating data on 

baseline behaviour, available to 

test emerging models for 

behavioural change in epidemic 

scenarios. 

Funding of large 

representative cohorts 

to measure health and 

health behaviours (e.g. 

ONS COVID-19 

Infection Survey [116]; 

Our Future Health 

[117]). 

Ethical 

considerations for 

the collection, 

processing and 

storage of data 

Build on existing guidelines for 

the storage of sensitive data to 

develop and publicise clear 

guidelines for the storage of 

behavioural data.  

Co-create design of data assets 

(e.g. relevant behaviours) with 

participants. Ensure systems are 

in place to enable researchers to 

follow guidelines for generating 

and using behavioural data.   

The UK Data Service 

provides guidance on 

social science research 

outputs [118].  

Modelling 

methodologies and 

parameterisation 

Balancing model 

complexity and 

interpretability  

Survey successes of 

incorporating behaviour into 

models (within infectious disease 

modelling and in other applied 

mathematics, e.g., computational 

social science, cultural 

anthropology, energy systems 

modelling) to help elucidate 

likely relevant behaviours.  

Design model structures that 

make use of emerging (perhaps 

individual level) data on 

relevant behaviours and their 

adaption. 

Past successes within 

epidemic modelling 

have been broadly 

surveyed in articles 

such as Funk et al. 

[4,69], Bedson et al. 

[32], and help provide a 

roadmap for future 

research.  

Ability to select 

appropriate models, 

Perform identifiability analysis, 

sensitivity analysis and/or 

Ensure statistical expertise is 

embedded into co-design of 

Identifiability analyses 

are widely used to 



 

 

calibrate them and 

validate them 

Bayesian inference on epidemic 

models that include behaviour to 

identify key data gaps. 

data and modelling to enable 

robust model estimation. 

Explore use of AI to discover 

new models for disease 

transmission and behaviour 

change, either standalone or 

hybrid with mechanistic 

models. 

inform model and 

experimental design in 

e.g. mathematical 

biology (Browning et 

al. [119]).  

Useability of 

developed modelling 

tools for non-experts 

Researchers and journals to 

champion clear and 

comprehensive model 

documentation. Create a 

checklist that suggests, for a 

given model type, what data are 

priority, highly recommended 

(but could do something still 

without, but with limitations) and 

would be nice to have (but not 

anticipated to vastly increase 

uncertainty in outcomes if not 

included). 

Liaise with, or co-create where 

possible, models with policy 

makers to ensure they capture 

relevant potential policy 

responses (i.e. participatory 

modelling). 

Checklist for 

environmental science 

modellers to aid 

translation to policy 

(e.g. van Voorn et al. 

[120]).   

How modelling (and 

communication of 

its findings) affects 

behaviour 

Challenges and 

opportunities in the 

communication of 

epidemiological-

behavioural models 

Standardise reporting standards 

to aid reproducibility and 

facilitate comparisons between 

models (e.g., meta-analyses). 

Develop and share guidelines for 

communicating uncertainty in 

models, important for building 

To build public trust in 

modelling and behavioural 

science, have public 

involvement integrated as a 

standard component of 

epidemiological-behavioural 

modelling research projects. 

Standardisation of 

reporting and 

documentation of 

integrated assessment 

modelling has increased 

the number of climate 



 

 

and maintaining public trust. This 

may be facilitated by working 

with specialised scientific 

communicators, such as the 

Science Media Centre [121]. 

Help develop public 

communication of the relevance 

of behavioural feedback in 

epidemiological systems, 

drawing on best practice from 

other applied modelling.  

models informing 

policy [122].  

Ethical implications 

of epidemiological-

behavioural 

modelling affecting 

behaviour.  

Understand relationship between 

scientific communication and 

influence of epidemic state on 

behaviour. 

Understand relative influence of 

data sources (friends, family, 

media, social media) and 

promote reliable/official 

communication of epidemic 

status. 

Bioethics has been 

developed to support 

bioinformatics (and 

other biological 

research) [123]; new 

fields of ethics may also 

be required to support 

applications of 

behavioural science.  
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Envisaged societal benefits 793 

We anticipate the process of embedding behavioural science theory and associated 794 

data into epidemiological models can result in these direct improvements for the 795 

scientific community (Figure 1, “Improved” box): (i) Research practice: Creation 796 

and sustainability of interdisciplinary teams; (ii) Behavioural science theory: 797 

Advancements in our understanding of behaviour; (iii) Models: Creation of novel 798 

theoretical frameworks which are explainable, transparent and appropriately 799 

reported; (iv) Decision making: Enhanced by availability and accessibility of 800 

improved data streams & analytic tools. 801 

We believe such scientific progress can bring about a swathe of societal 802 

benefits, categorised in four ways: prepared, represented, change and policy 803 

(Figure 1, “Societal Impact” box). 804 

Prepared: Not only will there be the personnel capacity and supporting resources to 805 

enable the formation and maintenance of interdisciplinary epidemiological-behavioural 806 

teams, but the ability to respond to the need for scientific advice in a timely manner. 807 

Together, they provide enhanced preparedness against health-related events. 808 

Represented: Improved representation of the community throughout all stages of 809 

epidemiological-behavioural modelling analysis (behavioural science theory, data 810 

collection, model structure and parameterisation, communication of findings). 811 

Crucially, this would not merely be limited to improving the representation of typically 812 

thought of demographic characteristics (e.g. age), but also cultural traits. 813 

Change: More informed modelling and interdisciplinary science capabilities, through 814 

improved research practice, behavioural science theories and modelling constructs, will 815 

change the way behavioural research is conducted in the field of epidemiology. 816 



 

 

Improved decision making will change how society perceives and trusts the decision 817 

makers and the science behind these decisions. 818 

Policy: More robust research studies, whose findings and implications are effectively 819 

communicated to both the wider population and decision makers in policy arenas. 820 

On realising these societal benefits, we expect new challenges in behavioural-821 

epidemiological modelling will be unlocked.  These new challenges will renew the 822 

cycle of improvement and societal benefits achievable through this interdisciplinary 823 

approach (Figure 1, dashed arrow).  824 

We once more stress that we consider embracing interdisciplinary working as 825 

fundamental in making the aforementioned scientific progress. Mono-discipline 826 

approaches would not be capable of delivering these improvements and, therefore, not 827 

be able to attain as substantial a level of societal benefits. 828 

Conclusion 829 

It is all too apparent that epidemiological events are sensitive to human behaviour. The 830 

recent SARS-CoV-2 pandemic has brought to the fore a disconnect between 831 

behavioural science knowledge, epidemiological model capabilities and data needs. In 832 

this article we have outlined a myriad of challenges that present hurdles to the robust 833 

design and validation of epidemiological models that incorporate the dynamics of 834 

human behaviour. Nonetheless, reaffirming two conclusions from Funk et al. [4], it 835 

remains important that we endeavour to identify the limits of predictability of human 836 

behaviour and to propagate uncertainty in the dynamics of behaviour onto 837 

epidemiological model uncertainty. 838 

https://www.zotero.org/google-docs/?In1yc6


 

 

Despite these challenges, we view that there is a growing interest in 839 

incorporating behavioural realism in mathematical modelling. By bridging 840 

interdisciplinary gaps, unlocking the ability to reasonably tackle the core 841 

epidemiological-behavioural modelling challenges and actioning measures to address 842 

them, we can initiate a new field of mathematical behavioural science to address 843 

societal challenges in a truly interdisciplinary fashion. The production of a new 844 

generation of epidemiological-behavioural models can be an integral and relevant tool 845 

to inform policy decisions, providing evidence-based interventions for the benefit of 846 

public, veterinary and plant health. 847 
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