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Prospects for Statistical Methods in Animal Breeding 

Robin Thompson l and Esa Mantysaari2 
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SUMMARY 

Accurate prediction of breeding values is of great importance for animal 
improvement programmes. The prediction of breeding values requires 
knowledge of the magnitude of the variances and covariances of random 
effects. This paper gives a short review of methods of estimation of genetic 
variance parameters, contrasting analytical estimates with iterative and 
sampling based methods. 

Key words : Variance component estimation, Residual maximum 
likelihood, Derivative free methods. 

1. Introduction 

A recent GIFT workshop had two papers that discussed future dairy cattle 
research. The two papers (Goddard [10] and Hill et ai. [16]) were in good 
agreement of the future statistical needs. These included methods for test day 
models, international comparisons, non additive variance, non-linear models and 
individual gene models. They also highlighted a trend to more sophisticated 
analysis leading to less biased predictions and more progress at the expense of 
greater variance or risk. Cost of analysis was suggested to be small compared to 
the cost of collection of data. There was a concern that uncertainties in 
parameters might erode possible gains. There was also a hope that prediction 
were robust to bad luck. Variance parameter estimation plays an integral role in 
several of these topics. We therefore intend to review this area hoping to identify 
themes that will lead to more rapid change. Frem Narain has made an 
outstanding contribution to statistical genetics, including the application of 
statistics to plant and animal breeding, so we think our small paper contribution 
is particularly apt to this volume in honour of Prem' s 70th birthday. 

I Roslin Instititute(Edinburgh),Roslin, Midlothian EH25 9PS, Scotland 
2 Agricultural Research Centre, MIT, Institute of Animal Production, FlN-31600, 

Jokioinen, Finland 
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2. Variance Component Estimation 

We consider a linear model
 

y=Xb+Zu+e
 

with var(y) = ZGZ' + R, var(u) = G, var(e) = R
 

The matrices G and R are often linear functions of unknown genetic 
parameters such as genetic and phenotype variance. Estimation of variance and 
covariances by Residual Maximum Likelihood (REML) (Patterson and 
Thompson [33]). 

Here is often the method of choice. The log-likelihood is of the form 

Lac (y - Xb)'V- 1(y - Xb) -logdet(V) -logdet(X'V-IX) 

This is different from the usual likelihood form in that it is a function of 
error contrasts - contrasts that do not tell us about fixed effects. This difference 
has two consequences, the use of the weighted least squares estimate of b, 

b given by 

X'V-Ix[, = X'V-Iy 

The term in det X'V-IX that is sometimes thought of as a penalty function 

because the fixed effects are not known. Mixed model equations 
(Henderson [15]) pay an important part in the analysis process. These are of the 
form 

X'R-IX X'R-IZ ][b] [X'R-Iy]
 
[ Z'R-IX Z'R-IZ+G-I ii = Z'R-1y
 

Terms derived from these include prediction error variances found from 
writing the mixed model equations as 

Cs=R 
so that 

Ivar[~ ]= C-

u-u
 

It is often useful to express relevant quantities in terms of the projection 
matrix 

P = N-1 - X(X'V-IX)-IX'V-1 

Lac y'Py -log det(V) -log(X' V-IX) 

Estimation of a variance parameter 9j involves setting to zero the first 
derivatives 
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aL I aSj = y'p(av I aSj)Py - tr[P(aV I aSj)] 

These could be thought of equating a function of the data to its expectation. 

Normally finding a maximum of the likelihood requires an iterative 
scheme. One suggested by Patterson and Thompson [33] is based on the 
expected value of the second differential, i.e. 

2E(a2L1aS j ) = -(112) tr[p(aV laSj)p(ay lae)p] 

This is called the Expected Information. Using the first and second 
differentials we can update e using the rate that all the terms from solution of 
MME and C l for example 

e= S+ ElnC1(aLlaS) 

Whilst this development is very direct, later developments tried to take 
account of the structure to reduce the computational effort. For example 
eliminating u from the mixed model equations gives weighted least squares 

equations for band u calculated as u=(Z'R-1Z-G-1)-IZ'R-1(y-Xb) and 

similarly C l as (Z'R-1Z+O-1)-IZ'R-1 X(X'y-1X)-1 X'R-1 

Z(Z'R-IZ + G-1)-1 where the second term is a correction for the uncertainty in 

u.	 The correction term used in the first differential can be written as 

trace [(X'y-1X)-1 X'R -IZ(Z'R -IZ + G -I )-1 Z'R-IX] 

Showing that not all the elements of C l need calculation in order to form 
the first differential (Thompson [40]). 

An alternative algorithm was suggested by Dempster et al. [2]. 

This EM algorithm is based on thinking of the random effects 'missing'. 

The estimation is based on using 

s<\2 =u'u + PEV(u) writing this as 

2scrg	 = yV-1(aG I aS j )y-ly + sO'g2 
- tr[y-l (aL I as)] 

we see this as a manipulation of equating first differential to ·zero. It can also be 

written as e= S + InC I (aLI as) with Inf representing the information on the 

complete data. One advantage of this method is 0'; that stays in the parameter 

space O'g2 
~ O. 

Another advantage is that there is an increase in likelihood in each 
iteration. Disadvantages are that the method can be slow to converge (indeed 
this method is said to be the most widely used in terms of numbers of iterations) 
and it requires the inversion of C in each iteration. 
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An important development was the introduction by Smith and Graser [34] 
of an alternative form for the likelihood that naturally leads to sequential 
formation of the likelihood 

L = 10gdet(R) -logdet(G)-logdet(C)- y'py 

If we write equations for n+ I variables in the form 

X nn Xnn+J][Un ]=[Yn][ xn+1n X un+1 Y 

then the contribution from the (n+llh term to y'py::: y2 /x and to 

log det (C) ::: log (x). Using regression coefficient rn+l = xn+1n / x a correction 

to Xnn=Xnn-xnn+lrn+ln,andYn=Yn-yrn+l and can be formed and the 

procedure repeated with n = n -1. If is sparse then this can lead to a xnn+1 

reduction in calculations, especially if it is taken to reorder equations to keep 
sparse.X nn 

To maximize the likelihood with one parameter Smith and Graser [35] 
suggested using a quadratic approximation. With more than one parameter 
simplex methods become a popular flexible alternative as they avoid calculating 
derivatives. The methods were used for Animal and Reduced Animal Models, 
both for univariate and multivariate data (Meyer [29]). After more biological 
appropriate models with genetic components naturally fitted into their 
framework including maternal models with both Wilham and Falconer terms 
(Koerhuis and Thompson [19]) and models with mutation terms (Wray [42]). 

However it was realized that the computational effort for derivative-free 
methods increased dramatically as the number of variance parameters increased. 

An important advance was the rediscovery (Misztal and Perez-Enriso [31]) 
of an algorithm (Takahashi et aI., [37]) that allowed the calculation of the 
'relevant' terms in the inverse of C required for forming the first differentials 
without calculating all the elements of the inverse. Meyer and Smith introduced 
an alternative way of calculating these first differentials by performing the 
'automatic' differentiation of the Choleski decomposition of C. These 
techniques both requiring twice the computational effort of forming the 
likelihood were derived using properties of Choleski decompositions. An 
alternative derivation in terms of sequential of c- l parallels the sequential 
formation of the likelihood (Thompson et aI. [39]). If Xnn'! contains the partition 
of c-1 for the first n elements then terms in col for the first n + 1 elements are 
given by 

I 
X nn - cnn+l]
 

[
 cn+1n C 
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with Cn+ln = Xn+l n Xnn -I 

1 
and c = - + Cn+ln Xnn+1 

Terms in Cn+l only need to calculating if the terms Xn+ln are non-zero 
leading to a major reduction in computation. 

This result allowed the implementation of EM algorithms to estimate 
variance parameters, (Misztal [30]). These were an improvement on derivative 
free methods but could still be slow to converge. It is possible to calculate 
second differentials using the automatic differentation ideas of Smith [34] but 
the calculation of each second differential requires the computation of the order 
of six likelihood calculations (Smith [34]) and this becomes Illore costly as the 
number of parameters increase. There are various suggestions on approxmating 
the second differential. Mantysaari and Van Vleck [25] suggest accelerating the 
EM algorithm based on the observed geometric rate of convergence. Neumaier 
and Groenevald [32] suggest quasi-Newton scheme using first differential 
values to build up an approximate second differential. A third suggestion by 
Thompson and co-workers (Johnson and Thompson [18], Gilmour et al. [9]) is 
based on manipulation of the alternative information mattrices. 

The second differential of C with respect to 0; and OJ is as 

~= .!. tr[p aV P aV ] _ y'F av P av Py 
aejae j 2 ae; aej aej ae j 

and 

Both these terms often called observed and expected information are 
difficult to calculate but the average 

AI[~]=-.!.tr[p av p av]
aSjaS j 2 aS j ae j 

aV av 
can be calculated by using	 - Py and - Pyas working variables and 

ae· ae·
I J 

obtaining the residual cross product between these working variables. This 
calculation is much simpler than calculating either the observed and expected 
information. 

A synthesis of comparisons of these methods was carried out by Hofer [17] 
and is updated in Table 1. These show the expected improvement of EM 
methods over derivative free methods. They also show that most second 
differential methods converge in relatively small number of iterations. Rather 
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embarassingly I think that theoretical calculations suggest that the Jensen et al. 
(1997) times for the AI method can be improved dramatically. 

In some cases transformations can aid in estimation. If we have 
multivariate data with two (p x p) variance matrices to estimate, say G and R, 
then a economical transformation (Thompson [41], Meyer [29]) can help in 
reducing one p x p estimation into p independent analyses. They are 
modifications using the EM algorithm that allow the same techniques to be used 
with missing values (Ducrocq [5]) and with different designs with different 
variates (Ducrocq and Chapuis [6]). 

A related problem is that often we require G and R to be positive definite 
and schemes based on second differentials do not necessarily lead to positive 
definite matrices. One suggestion is to use transformed parameters for example 
a or log a instead of a2

, or multivariate analogues such as Choleski 
transformations (Lindstrom and Bates [21]). 

Table 1. Results of empirical comparison of REML algorithms with regards to rounds of 
iteration (function evaluations for DF and total time (h) to convergence 

Ref' MMEc Para DF EM NRIAI 
F.Eval Time Rounds Time Rounds Time 

1 4895 3 26 0.01 24 0.05 
9790 9 238 0.31 33 0.26 

14685 18 583 1.77 45 1.02 
2 6192 9 699 1.27 6 0.45 

10230 12 1236 2.33 8 0.90 
14274 18 4751 11.10 18 3.33 

3 5731 5 169 0.34 6 0.07 
4 8765 6 927 70.60 109 1.14 7 1.86 
5 5073 2 39 0.02 23 4.97 5 0.02 

10146 6 472 0.52 9 0.09 
6' 233796 55 37021 2083 185 40.10 
7 46581 12 1435 15.2 1006 88.60 6 0.58 

55410 19 5813 30.6 6 1.00 
a Updated from Hofer [17].
 
b References (1) Misztal [30]; (2) Meyer and Smith (1996); (3) Johnson and Thompson
 

[18] (4) Gilmour et al. [9]; (5) Madsen et ai. [24]; (6) Neumaier and Groenevald [32] 
(7) Jansen et ai. (1997) 

c Dimension of mixed model equations (MME) 
d Number of (co)variance components 
e 'DF' =quasi Newton using finite differences 
'NRlAJ' =quasi-Newton using computed analytic differences 

For example, Foulley and Quass [7] use a model y = Xu + ac;Zu·+ e and 
given a predict u with natural mixed model equations. Regression of y on a and 
Zu* (taking into account uncertainty of u) gives a natural way of updating a 
(keeping a2a within the parameter space). For a balanced sire model Foulley and 
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Quass [7] note that the rate of convergence depends on (n /(n + a» with 
0'2 n 

ex. = -to For -- = 0.2, 0.5, 0.8 the rates of convergence for 0"0 using an EM 
O'g n + ex. 

algorithm are 0.27, 0.45, and 0.31, compared with 0.03, 0.25, and 0.63 for a 
scheme based on updating 0"20 , showing the advantage of the 0"0 

parameterization for small values of (n/(n + a». 

A more recent development is the suggestion of Lui et al. [22] who suggest 
a parameter extension or PX-EM algorithm. In our case it involves estimating 
cr2a = (crGl)2 cr

2
Q2 and 0"01 estimated by the linear scheme and 0"202 by the 

quadratic scheme. This scheme at first sight counter-initiative in that 0"202 are 
confounded, has a rate of convergence that again depending on n/(n + a) but is 
faster than the two previous schemes. With rates of convergence of 0.30, 0.60, 
0.80 for (n/(n + a» = 0.2, 0.5 and 0.8. In one sense missingness helps to avoid 
redundancy and 0"01 parameter is perhaps analogous to parameters in conjugate 
gradient methods that decide on the optimal distance to travel in a specified 
direction. 

I have found the following argument in trying to understand some of these 
improved EM schemes. Consider the case when we have N moment matrices 
Mi, (i =1, ... , N) with expectation G + Ri. This might arise in considering a p 
multivariate problem with 'equal designs' with 2 p x p multivariate components 
and we use a spectral decomposition to construct N independent sets of sums of 
squares and cross products. We consider the case when R, is known and we are 
interested in estimating G. We let G = SUS l that allows a wide range of possible 
models. If S = I we have the most common model. If U = I and Slower 
triangular we have a Choleski parameterization. The matrix S could be thought 
representing a set of factors and if S is of size p x f we have V factors, and so 
the parameterization can represent a reduced rank or latent regression 
parameterization. As G is a symmetric matrix, there are p x (p + 1)/2 
parameters. Obviously care needs to be taken with S and V as these have 
p x (2p2 + P + 1)/2 parameters. An estimation procedure based on differentiating 
the likelihood can be informally thought of as thinking of M, as YiYi I with E(Yi) = 
Ui =sfi estimation of the terms of S can be thought of as predicting fj from Yi and 
regressing Yi on the prediction of fi taking into account th~ uncertainty in fi. 
Estimation of U follows the recipe involving the prediction of f j and the 
prediction error variance of fi. Note that formally Yi does not need forming as all 
required terms can be constructed from Mi. A similar algorithm can be 
constructed from PX-EM arguments (B.C. Cullis and A. Smith pers. camm.). I 
have found this argument useful in (a) understanding the PX-BM methodolgy, 
(b) estimation in reduced rank or latent factor models and (c) as a way of 
constructing hybrid iterative schemes. 

We think that AI iterative schemes are all attractive in that they usually 
only need a small number of iterations. The two drawbacks are that they do not 
always improve the likelihood but this difficulty reduces as the parameters get 
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nearer to a minimum value of the likelihood and can lead to estimates outside 
the parameter space. One suggestion is motivated by Lee and NeIder [20] who 
base estimation of variance parameters in hierarchical models of pseudo data 
based on sums of squares of predicted values and their prediction error 
variances. This suggests that AI algorithms are having problems using (PX)-EM 
schemes based on constructing pseudo moment matrices and expectations from 
relevant prediction error matrices for difficult parameters. A maximization of 
this likelihood of this pseudo-data could be perhaps used. This updating should 
get parameters nearer the maximum computationally faster than updating all 
parameters after each (PX)-EM iterate. 

We have concentrated on exact method of analysis because a recent 
excellent book (Soensen and Gianola [36]) have discussed Bayesian and Markov 
Chain Monte Carlo (MCMC) methods. In a sense there is a direct analogy 
between direct and iterative estimation in linear estimation and exact and 
sampling based methods in quadratic estimation. I tend to think of Gibbs 
sampling methods as adding noise at every step of a simplified exact analysis. 
For instance estimate b and add noise. estimate u and add noise, form sums of 
squares for u and add noise to give an estimate of 00

2
. One does not need to 

Bayesian to use MCMC methods and Guo and Thompson [13] use the above 
paradigm with the estimation of d G given by an EM step. In a sense the 
difficulties of calculating prediction error variances is replaced by sampling 
them. Thompson [38] and Groeneveld and Garcia-Cortes [8] have pointed out 
that the sampling error can be reduced when updating 020 taking account of the 
variance of the noise added to u although this is simpler to do for uncorre1ated 
effects. One can also get nearer to exact methods by using block updating but 
this leads to more complicated variance correction formula. It is not always clear 
which computational scheme, exact, Gibbs sampling or intermediate will 
minimize computational effort. 

A recent suggestion by Clayton and Rasbash [1] for imputation can also 
reduce the computational effort. In our model, their idea suggests fitting two 
models 

y-Zii =Xb+e (1) 

and 

y-Xb = Zu+e (2) 

In (1) we fit b and construct b as bplus noise. In (2) we adjust y for b, 
estimate O'~ and 0'; and fit ii and add noise to u.Then y is adjusted for ZIT 

and the procedure repeated. After bum in averages of O'~ and 0'; provide 

estimates of O'~ and (1; in the spirit of Gibbs sampling but avoiding some of 



23 PROSPECTS FOR STATISTICAL METHODS IN ANIMAL BREEDING 

the noise in U when o~ and 0; are estimated. Garcia Cortes, and Sorensen [8] 

and Harville [14] hav_cently discussed related ideas. 

Conclusions 

We have shown that the area of genetic parameter estimation has advanced 
tremendously over the last thirty years allowing more appropriate models to be 
fitted to larger data sets. There are still challenging problems to be solved that 
we think will build on existing knowledge. 
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