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Abstract
Identifying the future threats to crop yields from climate change is vital to underpin the continuous
production increases needed for global food security. In the present study, the vulnerability of
European wheat yield to heat and drought stresses around flowering under climate change was
assessed by estimating the 95-percentiles of two indices at flowering under rain-fed conditions: the
heat stress index (HSI95) and the drought stress index (DSI95). These two indices represent the
relative yield losses due heat stress or drought stress around flowering that could be expected to
occur once every 20 years on average. The Sirius wheat model was run under the predicted
2050-climate at 13 selected sites, representing the major wheat-growing regions in Europe. A total
of 19 global climate models (GCMs) from the CMIP5 ensemble were used to construct local-scale
climate scenarios for 2050 (RCP8.5) by downscaling GCMs climate projections with the LARS-WG
weather generator. The mean DSI95 due to extreme drought around flowering under the baseline
climate (1981–2010) was large over Europe (DSI95∼ 0.28), with wide site variation
(DSI95∼ 0.0–0.51). A reduction of 12% in the DSI95 was predicted under the 2050-climate;
however, vulnerability due to extreme drought around flowering would remain a major constraint
to wheat yield (DSI95∼ 0–0.57). In contrast, HSI95 under the baseline climate was very small over
Europe (HSI95∼ 0.0–0.11), but was predicted to increase by 79% (HSI95∼ 0.0–0.23) under the
2050-climate, categorising extreme heat stress around flowering as an emergent threat to European
wheat production. The development of wheat varieties that are tolerant to drought and heat
stresses around flowering, is required, if climate change is not to result in a reduction of wheat yield
potential under the future climate in Europe.

1. Introduction

The increasing probability of more intense and
extreme climatic events occurring in the future, such
as high temperature and drought episodes, is a major
threat to sustaining food production at current levels,
let alone achieving the increases in food production
required for global food security in the coming dec-
ades. An estimated 25%−70% increase in global food
production is required by 2050 to feed the predicted
population by that time of >9 billion people [1, 2], yet
extreme climatic events will increase the risk of yield
loss and crop vulnerability [3, 4]. The Intergovern-
mental Panel on Climate Change (IPCC) has defined
vulnerability to climate change as a ‘predisposition

to be adversely affected’ [5]. Thus, crop resilience
to extreme adverse weather events would be crit-
ical under future climatic conditions. Quantifying
the vulnerability of current crop cultivars to extreme
events under the future climate could provide guid-
ance and direction to plant scientists and breeders for
developing crop adaptation strategies and improving
germplasm to maintain and raise yield potential [6].

Wheat (Triticum aestivum L.) is one of the key
staple cereals in food security, providing about 20%
of the global population’s dietary calories and protein
needs [7]. Europe is a major wheat producer, con-
tributing around 35%of global wheat production [8],
but the frequency and intensity of heat and drought
stresses are predicted to increase across Europe under
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the future climate [9, 10]. Consequently, the prob-
ability of yield loss is expected to rise under future
climatic conditions [11–13]. However, evaluations of
the absolute magnitudes of wheat vulnerability under
the future climate due to extreme but short-term heat
and drought stresses are sparse [14, 15].

The magnitude and types of impacts of heat and
drought stress depend on the crop phenological stage
at which the stress occurs, together with the intens-
ity and duration of the stress [16–18]. Season-long
high temperature and draught negatively impact final
grain yield by affecting both source and sink strengths
in several ways, including restricted transpiration
and photosynthesis, faster leaf senescence, shortened
grain filling duration, early anthesis and maturity,
reduced relocation of mobile reserve carbohydrate
into the grain, decreased floret fertility and primary
grain setting number, and reduced grain size and
weight [19–21]. Severe drought and heat stresses can
even lead to complete crop failure due to abrupt ter-
mination of the crop life cycle. The reproductive stage
or flowering in wheat is the most susceptible to heat
and drought stresses, with reproductive tissues sens-
itive to heat stress as early as the young microspore
stage of pollen development [22, 23]. Heat stress at
the beginning of grain filling also affects early endo-
sperm development and limits the upper limit of
grain weight, but it is the reproductive stage that is
most critical in determining maximum sink strength
and grain yield [18, 21, 24]. The present study there-
fore focuses primarily on the impacts of short-term
extreme heat and drought stress around flowering.

Extreme temperature during reproductive devel-
opment can reducewheat yield by up to 20% for every
1 ◦C rise in average maximum temperature above the
optimum (25 ◦C–30 ◦C at flowering depending on
the genotype) [24–26]. The effects of high temperat-
ure around flowering include abnormal ovary devel-
opment as well as considerably reduced floret fer-
tility, pollen viability, fertilisation and primary seed
set [27–30]. Similarly, short spells of severe drought
stress around flowering can drastically decrease grain
set and yield potential by triggering premature abor-
tion of florets, malfunctioning of male and female
reproductive organs, reduced viability and irrevers-
ible abortion of male and female gametes causing
male and female infertility [20, 23, 31, 32]. Thus, even
a short spell of drought and/or heat stress around
flowering could limit potential sink strength and final
grain yield by reduced spike fertility and primary seed
setting [18, 22, 33].

Well-validated, process-based eco-physiological
crop models are important tools to estimate the
impacts of extreme heat and drought stress on grain
yield in a target environment, such as under future
climatic conditions. Sirius is such a model, which
has been calibrated and extensively validated for
many modern local wheat cultivars across Europe
and the world under diverse climates, including

free-air carbon dioxide enrichment (FACE) exper-
iments to incorporate the effects of increasing CO2

[11, 15, 34–42]. Based on the results of these exper-
iments, the impacts of extreme heat and drought
events around flowering on the potential sink
strength or primary grain set in wheat have recently
been incorporated into Sirius [40, 41].

Predictions of the impacts of extreme climatic
events in the future, such as high temperature and
drought stress, vary due to the uncertainty in future
climate projections from different global climate
models (GCMs). The use of a multi-model ensemble
is therefore recommended for the projection of future
climate and climatic extremes to capture the unavoid-
able uncertainty due to CGMs [43–45]. The impact
of extreme high temperature and drought stress may
also vary with different soil types: soil with high avail-
able water capacity (AWC), for example, could reduce
the impact of both drought and heat stress, whereas
soil with lower AWC could intensify the impact [12].
Agronomic management practices are also import-
ant, such as early sowing,may enable the crop to com-
plete flowering and set seed before being exposed to
heat and drought stress [46].

The main objective of the present study was
to assess wheat vulnerability to extreme heat and
drought stresses around flowering under the projec-
ted 2050-climate across Europe by using the Sirius
wheat model and local-scale climate scenarios down-
scaled from the CMIP5 multi-model ensemble by the
LARS-WG weather generator.

2. Materials andmethods

2.1. Study area
Wheat is the major crop in Europe and a total of
13 sites representing major wheat growing regions
were selected for the present study. These study
sites cover most of the dominant and contrasting
wheat production climatic conditions across Europe
(figures 1 and S1, table S1 (available online at
stacks.iop.org/ERL/16/024052/mmedia)). Two sites
were selected from the north-west (NW) Europe viz.
RR: Rothamsted, UK and WA: Wageningen, Neth-
erlands, and another two sites were selected from
north-east (NE) Europe viz. TR: Tylstrup, Denmark;
KA: Kaunas, Lithuania. Four sites were chosen from
central-east (CE) Europe viz. HA: Halle, Germany;
VI: Vienna, Austria; DC: Debrecen, Hungary and
SR: Sremska, Serbia. Three sites were selected from
central-west (CW)Europe viz. CF: Clermont-Ferrand
and TU: Toulouse, France and MO: Montagnano,
Italy. Two sites were chosen from south-west (SW)
Europe viz. LL: Lleida and SL: Seville, Spain.

2.2. Baseline and future climate scenarios
The LARS-WG stochastic generator (LARS-WG 6.0)
(available at https://sites.google.com/view/lars-wg/)
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Figure 1. (A) Locations of 13 selected study sites, representing major wheat growing regions across Europe, and baseline climate
(1981–2010) viz. average minimum and maximum air temperature, and mean monthly precipitation. (B) Average annual air
temperature and precipitation under baseline, and 2050 climate as predicted by 19 global climate models (GCMs) from the
CMIP5 multi-model ensemble for representative concentration pathways RCP8.5. Each box plot represents the 5th percentile,
25th percentile, median, 75th percentile and 95th percentile of projections based on 19 GCMs. SL: Seville, Spain; LL: Lleida,
Spain; MO: Montagnano, Italy; TU: Toulouse, France; SR: Sremska, Serbia; CF: Clermont-Ferrand, France; DC: Debrecen,
Hungary; VI: Vienna, Austria; HA: Halle, Germany; RR: Rothamsted, UK; WA: Wageningen, Netherlands; KA: Kaunas, Lithuania;
TR: Tylstrup, Denmark.

[45, 47, 48] was used to generate the baseline cli-
mate based on the observed daily weather for the
period 1981–2010, and the predicted future 2050-
climate for the period 2041–2060, based on the cli-
mate projections from 19 GCMs from the CMIP5
ensemble for the RCP8.5 emission scenario [49].
Observed daily weather during 1981–2010 were
collected from local meteorological stations at 13

study sites through the European MACSUR pro-
ject. A 100 year baseline climate was generated by
using LARS-WG for each site with the same statist-
ical characteristics as the observed data for 1981–2010
and an atmospheric CO2 concentration ([CO2]) of
364 ppm. The 100 year, site-specific baseline climates
were used to account for variation in wheat yield
due to inter-annual variability in climate and climatic
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extreme events, and to make our study comparable
with other climate impact studies [15, 34, 39, 50].
The mean annual air temperature and precipitation
of the baseline climate ranged from 7.1 ◦C to 19.2 ◦C
and 344 to 801 mm yr−1, respectively (figure 1). The
north European study areas are generally cooler and
moist, whereas southern are relatively warmer and
drier. A total of 19 GCMs from the CMIP5 multi-
model ensemble [49] used in the IPCC Assessment
Report 5 (AR5) [51] were used for climate projections
for the 2050-climate (period 2041−2060) assuming
a representative concentration pathway RCP8.5 with
an atmospheric [CO2] of 541 ppm (table S2). The
RCP8.5, business-as-usual or a worst-case emission
scenario, combines assumptions about high popula-
tion and modest technological improvements, lead-
ing to high energy demand, with the highest green-
house gas concentration and a radiative forcing of
+8.5 Wm−2 by 2100 [52]. The period 2050 was used
as ‘near future’, usually used in model-based assess-
ments of climate change impact on crop productiv-
ity [11, 50], whereas RCP8.5 was used as the most
extreme or worst emission scenario to assess wheat
vulnerability in Europe [52]. Using 19 GCMs from
the CMIP5 ensemble allowed to estimate uncertainty
in simulated wheat yield and vulnerabilities under
future climate due to GCMs. LARS-WG was used
to downscale GCM projections to a local scale [45].
At each site and for each GCM climate projection
for the 2041−2060 period, with RCP8.5, 100 year of
daily future weather data were generated using LARS-
WG, hereafter defined as the 2050-climate. Aver-
aged over the GCMs, the predicted average annual
air temperature under the 2050-climate increased by
2.4 ◦C compared with the baseline climate, whereas
annual precipitation decreased by 1.2% in Europe
with wide site and seasonal variations (figures 1 and
S1). For example, predicted future 2050 climate in
the northern Europe is characterized with warmer
(1.6 ◦C–2.6 ◦C) and wetter (7%–12%) spring and
winter, whereas warmer (2.0 ◦C–2.4 ◦C) and drier
(4%–7%) summer than the baseline climate. On
the other hand, southern and eastern Europe is
mostly hotter (2.0 ◦C–3.4 ◦C) and drier (3%–19%)
in spring and summer under 2050 climate than the
baseline.

2.3. Sirius
The Siriuswheatmodel [38, 40, 41, 53, 54]was used to
simulate crop growth and grain yield under baseline
and future climatic conditions across Europe. Sirius
is a process-based eco-physiological cropmodel, con-
sisting of different sub-models that describe soil,
plant, water and nitrogen uptake, photosynthesis,
phenological development, and partitioning of pho-
tosynthates into leaf, stem, grain and root. Sirius
runs on a daily time-scale and requires daily weather
data, soil descriptions, cropmanagement and cultivar
information as inputs. Photosynthesis and biomass

production are estimated from intercepted, photo-
synthetically active radiation and radiation use effi-
ciency (RUE), limited by temperature and water
stresses. Radiation interception depends on leaf area
and the light extinction coefficient. Wheat canopy
is simulated as a series of leaf layers associated with
individual mainstem leaves. Leaf area development in
each layer is simulated by a thermal time sub-model.
The final leaf numbers are determined by combined
responses to day length and vernalisation. Crop phen-
ological development is linked to the mainstem leaf
appearance rate (phyllochron), day length and vernal-
ization responses, and duration of grain filling. Leaf
senescence is expressed in thermal time and linked
to the rank of the leaf in the canopy. Total canopy
senescence synchronizes with the end of grain filling.
In Sirius, RUE is proportional to atmospheric CO2

concentration, which agrees well with different field
experiments for a C3 crop such as wheat [55]. Soil
is described as a cascade of 5 cm layers up to a user-
defined depth. Roots continue to grow until reaching
a soil-dependent maximum depth or until anthesis,
whichever occurs first. Each soil layer contains root
available water (RAW) (water potential <−1.5 MPa)
and unavailable water (water potential >−1.5 MPa),
depending on its water retention characteristics. Only
a proportion of the available soil water can be extrac-
ted by plants from each layer of the root zone on
any day, depending on the efficiency of water extrac-
tion and the rate of root water uptake. Daily evapo-
transpiration is calculated as the sum of transpira-
tion and soil evaporation. Temperature, water stresses
and nitrogen shortage could accelerate leaf senescence
and limit photosynthesis and assimilates production,
phenological development, grain filling period and
crop-duration, as well as translocation of the plant
labile photosynthate reserve into the grain, and finally
grain yield.

In addition to the effects of temperature andwater
stresses throughout a crop’s lifecycle, the impacts of
short-term climatic extreme events, such as heat and
drought stresses around flowering, on primary fer-
tile grain setting number and grain size have been
incorporated into Sirius, based on current knowledge
of crop physiology from field experiments [40, 41].
In the absence of heat and drought stresses around
flowering, grain yield will be determined by the
source capacity of the crop, and the potential sink
capacity of the grains (Ypot, g m−2), which is estim-
ated as the product of dry matter accumulation in
ears prior to anthesis (DMear, g m−2), the potential
primary grain setting number per unit of ear drymass
(Npot, grains g−1) and the potential weight of an indi-
vidual grain (Wpot, g grain−1) [40, 41]:

Ypot = DMear ×Npot ×Wpot.

The actual number of primary fertile grains set
(grains g–1) is reduced due to heat and drought
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stresses around flowering, as described below. Table
S3 shows important cultivar parameters used in
Sirius.

2.3.1. Simulation of the impact of heat stress around
flowering in Sirius
To account for the effect of high temperature on mei-
osis and fertilization, the number of fertile grains
produced per unit of ear dry mass is reduced when
the maximum canopy temperature TA

max (◦C) dur-
ing a period from 10 d before to anthesis exceeds a
threshold temperature TN (◦C) by using a heat reduc-
tion factor of fertile grain number (RH, dimension-
less) [41]:

RH = max (0, min ( 1, 1 − ( TA
max −TN) × SN))

where SN (◦C–1) is the slope of the grain number
reduction per unit of canopy temperature above TN.
A frost reduction factor of fertile grain number (RF,
dimensionless) decreases linearly from 1 to 0 if the
minimum canopy temperature TA

min (◦C) during a
period from −3 to +3 d around flowering is below a
threshold of 0 ◦C [41]:

RF = max
(
0, min

(
1,TA

min + 1
))

.

The actual number of grains per unit of ear dry
mass (NH, grains g–1) is the product of the poten-
tial number of grains by the heat and frost reduction
factors [41]:

NH = Npot ×RH ×RF.

The potential weight of each grain (Wpot) could
be limited by heat stress during endosperm develop-
ment. Wpot is reduced if the maximum canopy tem-
perature TS

max (◦C) exceeds a threshold temperature
TW (◦C) around 5–12 d after flowering; i.e. at the
beginning of grain filling. The actualweight of a single
grain limited by heat stress (W, g grain–1) is estimated
as [41]:

W=Wpot × max ( 0, min (1, 1 − ( TS
max −TW) × SW))

where SW (◦C–1) is the slope of the potential weight
reduction per unit of canopy temperature above TW.

2.3.2. Simulation of the impact of drought stress
around flowering in Sirius
Under drought stress around flowering, the num-
ber of primary fertile grains set is reduced due to
abnormal reproductive development and abortion,
and male and female sterility [20, 23]. In Sirius,
the number of primary fertile grains set per unit
of ear dry matter is reduced due to drought stress
around flowering by using a drought stress factor
(DSF, dimensionless) and drought reduction factor
(R, dimensionless) [40]. The DSF is estimated from
the ratio of actual transpiration (Ta) to potential
transpiration (Tp) during reproductive development.

The actual number of grains per unit of ear dry mat-
ter (ND, grains g−1) is estimated as the product of the
potential number of grains and RD [40]:

ND = Npot ×RD

whereRD= 1, ifDSF>DSGNT; RD=DSGNRMax+ S
× (DSF−DSGNS), if DSGNS < DSF < DSGNT;
RD = DSGNRMax, if DSF ⩽ DSGNS; DSGNT is the
drought stress grain number reduction threshold,
while DSGNRMax is the maximum drought stress
grain number reduction, DSGNS is the drought stress
grain number reduction saturation, and S is the slope
of the grain number reduction.

The actual wheat yield limited by drought and
heat stresses around flowering,Y, is calculated as [40]:

Y= DMear × min (NH,ND) ×W

2.4. Model set-up
In the present study, site-specific current local wheat
cultivars were used for both baseline and 2050-
climates, viz. Avalon, Cartaya, Claire, Creso, Mercia
and Thesee (table S1). All cultivars were assumed to
be sensitive to heat and drought stress around flower-
ing [40, 41]. The detailed cultivar characteristics can
be found in table S3. Sirius version 2018 (available at
https://sites. google.com/view/sirius-wheat) was used
in the present study. A common medium soil with
the AWC of 177 mm was used at all sites to elimin-
ate site-specific soil effects from the analysis. Sirius
was run in rainfed conditions with no nutrient lim-
itation. An optimal crop management was assumed
under the baseline and future 2050-climates, i.e. no
yield losses due to disease, pests or competition with
weeds were incorporated. The baseline simulations
(bs) were done by running Sirius for local cultivars
with the medium soil for 100 years of baseline cli-
mate, with an atmospheric [CO2] of 364 ppm. Future
model simulations in 2050 (2050) were done by run-
ning the model for local cultivars with the medium
soil for 100 years of 2050-climate, with an atmo-
spheric [CO2] of 541 ppm as defined in RCP8.5.
In simulations, the atmospheric CO2 concentration
of 364 ppm was fixed under the baseline climate,
whereas CO2 concentration of 541 ppm was fixed for
2050-climate.

In addition to climate change impacts, the effects
of early sowing on wheat yield and yield vulner-
ability were assessed by sowing wheat 30 d earlier
than the corresponding local current sowing dates,
both under baseline climate (bs.30) and 2050-climate
(2050.30). The impact of soil type was assessed by
running Sirius with a soil characterised by low AWC
(125 mm) and high AWC (243 mm) at each site both
under baseline and 2050-climate. These medium, low
and high AWC were selected from Sirius soil data-
set to cover the diverse range of soils in the major
wheat growing regions of Europe. To estimate the
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effect of CO2 concentration on wheat yield under
future climate, Sirius was run for 2050-climate with
an atmospheric [CO2] of 364 ppm (2050.CO2364)
and compared with the grain yield with an atmo-
spheric [CO2] of 541 ppm, as under 2050-climate for
RCP8.5 (2050).

2.5. Indices of yield vulnerability
Wheat yield vulnerability due to extreme or severe
heat and drought stress around flowering was quanti-
fied by computing 95-percentile (95p) of two indexes,
viz. 95p of Heat Stress Index (HSI95) and 95p of
Drought Stress Index (DSI95) [40, 41]. Heat Stress
Index (HSI) is defined as [41]:

HSI = (1−YH/Y)

where Y is the water-limited yield of a cultivar toler-
ant to heat and drought stress around anthesis, while
YH is the water-limited yield of a cultivar sensitive
to heat stress around flowering only. Drought Stress
Index (DSI) is defined as [40]:

DSI = (1−YD/Y)

where YD is the water-limited yield of a cultivar sens-
itive to drought stress around flowering only. HSI95
and DSI95 represent the relative yield losses due heat
stress or drought stress around flowering that could
be expected to occur once every 20 years on average.
HSI95 and DSI95 were used to compare wheat yield
vulnerability under bs and future (2050) climates.

3. Results & discussion

3.1. Simulated current and future wheat yields
under climate change
The simulated grain yield of local wheat cultivars
under bs varies from 6 t ha−1 in SW-Europe (LI,
Lleida, Spain) up to 10 t ha−1 in NW-Europe (RR,
Rothamsted, UK and WA, Wageningen, Nether-
lands), with an average yield of 7.7 t ha−1 over Europe
as a whole (figure 2). These simulated grain yields
represent the yield of current wheat cultivars under
optimal agronomic management in current climatic
conditions across Europe. The current simulated
wheat yields are close to the actual yields achieved in a
good year and the optimal yield potentials under best
management (4–12 t ha−1) across Europe [56–60].
Elevated temperature under a future climate would
accelerate the rate of phenological development,
bringing forward anthesis and maturity [61]. Aver-
aged over GCMs and study sites, simulated anthesis
and maturity were 12 d and 15 d earlier, respectively,
under the predicted 2050-climate compared with the
baseline (figure 3). Thus, mean crop-duration (sow-
ing to maturity) for the currently grown wheat cul-
tivars could be reduced by 5%–8% across Europe
under the 2050-climate, resulting in reduced cumu-
lative intercepted radiation, grain filling period and

ultimately grain yield.On average, a 2.5%yield reduc-
tion was projected under the 2050-climate with a
maximum decrease of 13% at the SL site (Seville,
Spain) if the atmospheric CO2 concentration remains
at the baseline level of 364 ppm. However, the climate
change impact was positive at the TR site due to the
avoidance of drought stress because of early flowering
and maturity (figures 2–4).

Rising atmospheric CO2 concentration was pre-
dicted to increase crop productivity and compensate
for the yield reduction due to warming in 2050.
When the CO2 effect under the 2050-climate was
included (CO2 rising to 541 ppm), the yield of cur-
rent wheat cultivars (2050) varied from 5 to 12 t ha−1

across GCMs and study sites, representing an aver-
age increase in grain yield of 12% compared with the
baseline. A total of 19 GCMs from CMIP5 (table S2)
were used in the present study to assess uncertainty
in the predicted 2050-climate. The mean coefficient
of variation (CV) of yield (2050) due to the different
GCMs was 5.6% (figure 2).

The present study revealed that an increase in
the atmospheric CO2 level to 541 ppm (RCP8.5)
under the 2050-climate could increase wheat yield
by 12%–18% across Europe (figure 2). Although the
magnitude of the effect of CO2 fertilization on crop
yield under the future climate is uncertain, differ-
ent FACE experiments across the world have repor-
ted 8%–26% increases in grain yield with an elev-
ated atmospheric [CO2] of 550 ppm, compared with
360 ppm [62]. Sirius responses to increased temper-
ature and CO2 concentration were calibrated and val-
idated against the Free-Air CO2 Enrichment (FACE)
experiments [35, 37, 63] and tested in several global
AgMIP studies [15, 34, 39]. In Sirius, RUE increases
with increasing atmospheric [CO2], with an increase
in RUE of 30% for a doubling in [CO2] compared
with the baseline of 364 ppm, which agrees well with
different field-scale CO2 enrichment experiments for
C3 crops, including wheat [55]. A similar response
has been used by other wheat models in various stud-
ies [35, 64, 65].Many regional and global studies have
projected both positive and negative climate change
impacts on wheat yield across the world, but most
agreed to a net small positive impact on wheat yield
at higher latitudes, such as in Europe [11, 34, 66].

3.2. Wheat yield vulnerability under future climate
due to extreme drought around flowering
The mean DSI95 due to extreme drought around
flowering under the baseline climate was large
(DSI95∼ 0.28) over Europe, with high site variation.
The highest DSI95 was in NE-Europe (0.46–0.51),
followed by SW- and CE-Europe (0.25–0.38),
NW- and CW-Europe (0–0.29) (figure 4). Early
flowering due to elevated temperature under the
2050-climate would help by increasing RAW slightly
(∼4%) at flowering compared with the baseline
climate, and thus may reduce yield losses to
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atmospheric [CO2] of 541 ppm as in RCP8.5 (2050) and with the baseline atmospheric [CO2] of 364 ppm (2050.CO2364) across
major wheat growing regions in Europe. Each box plot represents the 5th percentile, 25th percentile, median, 75th percentile and
95th percentile including mean (red line) of simulations based on 19 global climate models (GCMs) from CMIP5 multi-model
ensemble.

SL LL MO TU SR CF DC VI HA RR WA KA TR

Fl
ow

er
in

g 
(D

AS
)

90

120

150

180

210

240

270
bs
2050

Site

SL LL MO TU SR CF DC VI HA RR WA KA TR

M
at

ur
ity

 (D
AS

)

120

150

180

210

240

270

300

330

bs
2050
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baseline climate (bs), and under 2050-climate (2050) across major wheat growing regions in Europe. Each box plot represents the
5th percentile, 25th percentile, median, 75th percentile and 95th percentile including mean (red line) of simulations based on 19
global climate models from CMIP5 multi-model ensemble.

some degree from drought stress around flowering
(figures 3 and 4). Hence, mean DSI95 was predicted
to reduce by 12% under the 2050-climate compared
with the baseline. However, DSI95 could increase

under the 2050-climate in some parts of Europe,
particularly SW-Europe where a 9%–12% increase
was predicted. The mean uncertainty in DSI95 due
to the different GCMs 2050 climate projections
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was moderate (CV = 0.40) with a wider variation
across study sites (0 < CV ⩽ 0.90). Neverthe-
less, overall wheat yield vulnerability due to severe
drought around flowering under the 2050-climate in
Europe remained high (DSI95 ∼ 0.25). The highest
wheat vulnerability was predicted in SW- and NE-
Europe (0.15 ⩽ DSI95 ⩽ 0.57), followed by CE-
(0 ⩽ DSI95 ⩽ 0.50), NW- (0 ⩽ DSI95 < 0.50) and
CW-Europe (0 ⩽ DSI95 ⩽ 0.27). Wheat yield loss
due to extreme drought stress around flowering has
been reported to range between 10% and more than
50%, depending on the cultivar and the intensity,
frequency and duration of exposure to the drought
stress [20, 22, 23, 31, 40].

3.3. Wheat yield vulnerability under future climate
due to extreme heat around flowering
In contrast to the DS195, the HSI95 under
the baseline climate was small across Europe
(HSI95∼ 0–0.11), with an average HSI95 of 0.03
over the study sites (figure 4). However, in spite of
early flowering under the 2050-climate, wheat HSI95
was predicted to rise at most of the sites, with an
average increase of 79%. The hot spots of wheat yield
vulnerability due to severe heat events around flower-
ing under future climate were predicted to be in the
CE-Europe (HSI95 up to 0.23 at the SR, DC and HA
sites), NW-Europe (HSI95 up to 0.17 at the WA site),
SW- and NE-Europe (HSI95 up to 0.16 at the SL
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and KA sites). The CV of DSI95 due to GCMs varied
between 0 < CV ⩽ 0.76 across all the sites, with a
mean of 0.24. Grain yield loss due to heat stress varies
widely depending on the timing, duration and intens-
ity of heat stress [16]. The observed wheat grain yield
reduction from field experiment has been reported
to be between 4% and 7% for every 1 ◦C rise in aver-
age maximum temperature above the optimum at
anthesis depending on the wheat cultivar [24].

3.4. Impact of early sowing on future wheat yield
and its vulnerability
The impact of early sowing of current wheat cul-
tivars on future yield vulnerabilities was estimated
by comparing DSI95 and HSI95 for current and
earlier sowing dates. The 30 d early sowing under
the baseline and future climates increased mean
grain yields (bs.30 and 2050.30) overall marginally
(1%–4%) compared with the current sowing dates
(bs and 2050) (figure S2). However, the 30 d early
sowing of current wheat cultivars under the 2050-
climate could reduce the DSI95 by up to 53%, for
example at SL, while increasing the DSI95 at other
sites, for example HA and RR (figure S2). Similarly,
30 d early sowing could reduce the HSI95 under the
2050-climate by up to 77%, for example at the SL and
CF sites, but might increase the HSI95 at some other
sites (figure S2). Some recent studies have indicated
that heat and drought stress impacts on crop yield
could be avoided to some degree under the future cli-
mate by early sowing, as a result of early flowering
before the onset of heat and/or drought stress [46, 67].
However, the benefits of early sowing in this study
were highly site-specific due to local climatic condi-
tions and agronomicmanagement practice, including
the choice of cultivars. Our study indicates that the
average impact of early sowing on wheat yield vulner-
ability due to extreme drought and heat stress around
flowering in the future climate would possibly be rel-
atively small (4%–11%) over Europe.

3.5. Impact of soil type on future wheat yield and
its vulnerability
The simulated grain yield of current wheat cultivars
under the baseline climate with a soil characterised
by low AWC (125 mm: bs.AWC125) varied from
2.8 to 7.4 t ha−1, with a mean yield of 4.8 t ha−1

(figure S3). Mean yield under the future climate
(2050.AWC125) was predicted as 5.4 t ha−1, with
DSI95 andHSI95 at 0.69 and 0.07, respectively (figure
S3). Thus, future wheat yield vulnerability with a
lower AWC (125mm) could be 1.8 times greater from
extreme drought and 15% higher from extreme heat
compared with the corresponding DSI95 and HSI95
with a medium AWC of 177 mm. The reduced grain
yield, and greater future yield vulnerability of current
wheat cultivars grown in a soil with lower AWC result
from lower RAW at flowering due to the lower AWC
(figure S3) [13].

In contrast, the baseline yield with a soil char-
acterised by high AWC (243 mm: bs.AWC243) var-
ied from 7.6 to 11.0 t ha−1, with a mean yield of
8.8 t ha−1 (figure S4). Average grain yield was pre-
dicted as 9.8 t ha−1, with DSI95 and HSI95 under
the 2050-climate at 0.04 and 0.05, respectively (figure
S4). Thus, DSI95 and HSI95 under the 2050-climate
with higher AWC (243 mm) could be 85% and 10%
lower, respectively, compared with the correspond-
ing yield vulnerabilities with a medium soil type
(AWC= 177mm). Increased RAWdue to larger AWC
resulted in higher grain yield, as well as lower yield
vulnerability under the future climate (figure S4).

Wheat-growing soils vary considerably across
Europe and site-specific soils might not represent
the most important wheat-growing soils. It is com-
mon practice to use a representative soil type in
studies of climate change impacts on crop genotypes
in order to eliminate site-specific soil effects from
site comparisons of the climate signal [12, 50, 68].
However, the results presented here show that future
wheat yield as well as yield vulnerability would vary
with soil type. The simulated management optimal
wheat grain yields under rainfed baseline climate
(bs ∼ 6–10 t ha−1; bs.AWC125 ∼ 3–7 t ha−1;
and bs.AWC243 ∼ 8–11 t ha−1) obtained in the
present study, and the reported management optimal
rainfed wheat yields or yield potentials in Europe
(4–12 t ha−1) [56, 58] indicate that a medium soil
type (AWC = 177 mm) is a good representation of
an average wheat-growing soil for a climate change
impact study, such as this one. Our study did not con-
sider irrigation, as the majority of Europe wheat pro-
duction is rainfed and future irrigation opportunit-
ies are likely to be limited by the scarcity of water
resources and existing legal requirements [69].

3.6. Limitation of the study
There are few limitations in the present study. All six
local cultivars selected in this study have the same
set of parameters for heat and drought susceptibility
around flowering due to lack of experimental data for
individual cultivar calibration. Cultivar parameters
for heat stress were calibrated using data sets from the
hot serial cereal experiment and a temperature treat-
ment experiment [41, 70, 71], whereas cultivar para-
meter for sensitivity to drought stress around flower-
ing were based on expert knowledge and previous
experience [40].

The impacts of heat and drought stresses around
flowering on grain numbers and grain yields were
modelled independently, and the combined effect of
heat and drought stresses on yield formation was not
investigated. In the current Sirius implementation,
the potential grain yield will be reduced by the reduc-
tion factor R = min (RH, RD), where RH and RD are
reduction factors of the potential grain number Npot

as a result of heat or drought stress around flower-
ing. As an alternative formulation, reduction factors
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due heat or drought stresses could interact with each
other, e.g. R = RH × RD. The lack of experimental
data did not allow us to differentiate between these
two alternative formulations.

Elevated CO2 generally causes reductions in sto-
matal density, stomatal conductance and as a result
in reduction of leaf transpiration and an increase in
water-use efficiency. Yet, the reverse response might
occur as well, when elevated CO2 interacts with other
climatic factors [72]. In Sirius, elevated CO2 increases
radiation-use efficiency, but stomatal responses to
elevated CO2 was not modelled. Still, Sirius was able
to reproduce well wheat growth and water uptake
for different CO2 and drought treatments in a field
environment in FACE experiments in Maricopa, Ari-
zona compared with other wheat models where sto-
matal responses to elevated CO2 were incorporated
[35]. However, uncertainty still remains if stomatal
responses to elevated CO2 might reduce the effect of
drought during reproductive development on yield
formation.

4. Concluding remarks

Drought is the most significant environmental stress
in rainfed agriculture worldwide and improving
yields in water-limited environments is a major chal-
lenge for plant breeders that must be met if food
security goals are to be achieved [73, 74]. Some
researchers have suggested that the impact of drought
on crop yields will increase in the future under cli-
mate change, emphasising the importance of breed-
ing for drought-tolerant crops globally, including in
Europe [15, 75]. However, the present study demon-
strates that drought stress around flowering will not
increase the vulnerability of the current wheat cul-
tivars under climate change in Europe, and relat-
ive yield losses are likely to decrease. Nevertheless,
extreme drought around flowering will remain a
major constraint (DSI95∼ 0.25) to wheat yield under
future climate in Europe. Recent research develop-
ments have shown that short-term drought stress
around flowering could be most critical for limiting
actual yield potential [4, 20, 23, 33], and drought tol-
erance at flowering has been identified as an import-
ant trait to raisewheat yield potential under the future
climate in Europe [6, 40].

High temperature stress around flowering and
during grain filling also limit crop yield, and recent
studies have shown short-term heat stress around
flowering to be critical in controlling actual yield
potential [3, 24, 25, 27]. Although the impact of high
temperature events onwheat yield vulnerability is rel-
atively small at present, yield loss due to extreme heat
stress around flowering was predicted to increase sub-
stantially (79%) by 2050. Few studies have indicated
heat stress to be an imminent constraint for wheat
yield [26, 29, 76, 77]. However, we identified extreme
heat stress around flowering to be an emergent threat

to European wheat production. New wheat cultivars
tolerant to drought and heat stress at flowering will,
therefore, be required if climate change is not to res-
ult in a reduction of wheat yield potential under the
future climate. In conclusion, given the limited time
and resources available, crop scientists and breed-
ers must select the most appropriate traits for crop
improvement and focus on the development of wheat
varieties that are tolerant to drought and heat stress
around flowering.
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