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Improvements in crop productivity are required to meet the dietary demands of

the rapidly-increasing African population. The development of key staple crop

cultivars that are high-yielding and resilient to biotic and abiotic stresses is

essential. To contribute to this objective, high-throughput plant phenotyping

approaches are important enablers for the African plant science community to

measure complex quantitative phenotypes and to establish the genetic basis of

agriculturally relevant traits. These advances will facilitate the screening of

germplasm for optimum performance and adaptation to low-input agriculture

and resource-constrained environments. Increasing the capacity to investigate

plant function and structure through non-invasive technologies is an effective

strategy to aid plant breeding and additionally may contribute to precision

agriculture. However, despite the significant global advances in basic

knowledge and sensor technology for plant phenotyping, Africa still lags

behind in the development and implementation of these systems due to

several practical, financial, geographical and political barriers. Currently, field

phenotyping is mostly carried out by manual methods that are prone to error,

costly, labor-intensive and may come with adverse economic implications.

Therefore, improvements in advanced field phenotyping capabilities and

appropriate implementation are key factors for success in modern breeding

and agricultural monitoring. In this review, we provide an overview of the current

state of field phenotyping and the challenges limiting its implementation in some

African countries. We suggest that the lack of appropriate field phenotyping

infrastructures is impeding the development of improved crop cultivars and will

have a detrimental impact on the agricultural sector and on food security. We

highlight the prospects for integrating emerging and advanced low-cost

phenotyping technologies into breeding protocols and characterizing crop

responses to environmental challenges in field experimentation. Finally, we

explore strategies for overcoming the barriers and maximizing the full potential

of emerging field phenotyping technologies in African agriculture. This review

paper will open newwindows and provide new perspectives for breeders and the

entire plant science community in Africa.
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1 Introduction

The global demand for food is projected to increase in the

coming decades, driven by population growth, climate change,

pandemics, shifts in food consumption and biofuel use (Tilman

et al., 2011; Godfray and Robinson, 2015; van Dijk et al., 2021).

Ensuring that crop production is sufficient to meet future goals is a

challenge for plant and agricultural sciences.

In Africa, agricultural crops provide food and income for

smallholder farmers and consumers. Despite the huge agricultural

potential, agricultural productivity in African countries continues to

remain the lowest in the world (Bjornlund et al., 2020). Many

studies have indicated that yields of several important staple crops

may be stagnating or even declining across the continent (Roudier

et al., 2011; Knox et al., 2012; Ray et al., 2012; Parkes et al., 2018).

This is the case for key staple crops such as maize, rice, wheat,

millet, sorghum, cowpea, cassava and yam, which together account

for a large portion of the population’s diet. Therefore, food

supply systems would be negatively affected if yield gains in these

crops continue to slow due to environmental stresses and

production constraints.

Addressing food security in Africa is a vast challenge that needs

to be tackled in many complementary directions. Infrastructure

development adapted to local needs, good farming practices,

management, and political will are some of the major axes of

development for food security. Improving crop performance and

tolerance/resistance to biotic and abiotic conditions is the challenge

facing the scientific community and innovative methods are needed.

Advanced field phenotyping, e.g. using digital approaches, has

developed substantially over the past decade and provides means

for real-time monitoring of response to environmental stresses and

nutrition, and aids unravelling the relationships between yield and

complex genotypic traits. The identification of genotypes with

superior traits of agricultural interest remains one of the major

targets for the genetic improvement of crops (Varshney et al., 2021).

The genomes of many agricultural crops such as rice

(Matsumoto et al., 2005), sorghum (Paterson et al., 2009), maize

(Schnable et al., 2009), soybean (Schmutz et al., 2010) and recently

wheat (Appels et al., 2018) have been sequenced. However, the

advances made in genomic approaches such as maker-assisted

selection and high-throughput sequencing (Crossa et al., 2017;

Scheben et al., 2018) are yet to be complemented with accurate

field phenotyping methods (Minervini et al., 2015). Most of the

traits of agronomic relevance (e.g., yield) are complex, and

quantitative, requiring tools for their phenotypic assessment in

the field (Reynolds et al., 2020). Furthermore, open field rather

than controlled environment measurements are more likely to be

useful in identifying genotypes that will perform better in farming

practice, especially when large plots that mimic real farm conditions

(i.e., environmental and management conditions) are employed

(Rebetzke et al., 2014).

In addition, precision agriculture (PA) is becoming increasingly

important in today’s technologically advanced world (Langemeier

and Boehlje, 2021; Gobezie and Biswas, 2023) and PA remains one

of the cardinal principles of field phenotyping. The PA farming

management concept relies on modern digital techniques to

monitor and optimize agricultural production processes to

improve crop performance (Hedley, 2015; Gokool et al., 2023).

Despite PA’s contributions to sustainable agriculture, its use in

resource-constrained smallholder farming environments,

particularly in Sub-Saharan Africa (SSA), has been very limited

(Gobezie and Biswas, 2023). Recent developments in sensor

technologies, machine vision, and higher-resolution digital

cameras, in tandem with advanced data processing power and

other portable tools have paved the way for high-throughput

plant phenotyping in the field to benefit crop breeding programs

(Deery et al., 2014; Zhang et al., 2016; Araus et al., 2022; Ahmed

et al., 2023). From the field phenotyping perspective, these emerging

technologies are enabling automated intensive data collection and

increasing the ability to investigate plant function and structure

through non-invasive methods with high accuracy. Such field

phenotyping methods will aid crop improvement efforts to meet

the expected demand for food and agricultural products in

the future.

The development and application of these high-throughput

tools for field phenotyping are currently focused on the main

staple crops grown in the most developed agricultural regions.

Over the decades, breeders and agronomists in Africa have used

traditional phenotyping based on manual methods either for

selecting traits or for improving yields through changes in

agronomic practices (Iizumi and Sakai, 2020). However,

traditional phenotyping in breeding is time-consuming, laborious

and data collection is insufficient to fulfil the needs of plant breeders

which impedes breeding progress. Therefore, further advances in

phenotyping methods and appropriate implementation are

required to increase the effectiveness of selection in breeding

programs, speed up genetic gains, reduce costs and enable

monitoring of plant status more efficiently than is currently

feasible. The sophistication and cost of current plant phenotyping

equipment (Reynolds et al., 2019) have restricted them from being

widely applied in the developing world and especially in Africa.

Additionally, insufficient technical, operational, regulatory

restrictions and conceptual capacity in the plant science

community have further limited implementation. Therefore, it is

timely to begin to apply these technologies more widely, both

geographically and with respect to target crops in Africa.

Affordable high-throughput phenotyping aims to achieve

reasonably priced solutions for all the components comprising the

phenotyping pipeline which will promote their adoption for the

breeding of African crops (Whalen and Yuhas, 2019; Bongomin

et al., 2022).

Few studies have covered the use of modern field phenotyping

approaches employing remote sensing in Africa (e.g., Mutanga

et al., 2016; Chivasa et al., 2017; Buchaillot et al., 2019; Bongomin

et al., 2022; Kassim et al., 2022). For instance, Bongomin et al.

(2022) recently reviewed the status of field phenotyping in Uganda

with focus on the application of drones and image analytics.

In this review, we provide a background on African agriculture

and cover the concept of digital field phenotyping, focused on traits

that may be measured by emerging technologies and which could be

applicable to African crops. The current developments of field

phenotyping in Africa, including initiatives, implementation
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challenges and prospects are comprehensively reviewed. We

observed that the lack of suitable field phenotyping

infrastructures and approaches using digital technologies is

limiting the development of improved crop cultivars and will

negatively affect the agricultural industry and food security in

Africa. We emphasize the potential for incorporating cutting-

edge, low-cost phenotyping tools (i.e., portable field sensors,

UAVs) into breeding schemes and for identifying agricultural

crop responses to environmental constraints through field

experimentation. Finally, we consider policy directions for

tackling the implementation challenges (i.e., practical, financial,

geographical and political) of digital field phenotyping and realizing

the full potential of available field phenotyping resources (i.e.,

technologies, tools and know-how) appropriate for African crops.

2 African crops and the challenges
to production

African countries are important producers of major crops with

diverse agro-climatic and ecological conditions, and cultural

diversity (Leakey et al., 2022). Sub-Saharan West Africa is

composed of a wide variety of ecosystems and an equally high

number of production systems (https://www.fao.org/3/AC349E/

ac349e04.htm). Generally, crop production is concentrated in

areas with a favourable combination of agro-bioclimatic

conditions. In the Sahelian zone, cereals such as millet and

sorghum are the predominant crops with annual rainfall (200-

600 mm), transitioning to maize, groundnuts and cowpeas farther

south in the Sudanian savannah zone (the so-called “Middle Belt”).

These food crops are among the top five harvested crops in the

Sahelian countries – Burkina Faso, Senegal, Mauritania, Mali, Chad

and Niger. According to FAOSTAT (2018a) data, maize is the

major essential staple food in sub-Saharan Africa, accounting for

nearly 20% of total calorie intake. The same source indicates that in

Sub-Saharan West Africa, millet and sorghum account for roughly

64% of total cereal production. Across the rainy forests of the

Guinean zone (1200-2200 mm of rainfall per year) crops are

predominantly root and tuber crops such as cassava and yams

which are mostly cultivated in Ghana, Nigeria, Côte d’Ivoire and

Sierra Leone. Yam is the second most important crop in Africa in

terms of production after cassava (FAOSTAT, 2018a). Rice, on the

other hand, is one of the most widely harvested crops in this humid

zone, ranking first in Guinea, Liberia and Sierra Leone in terms of

area harvested (Soullier et al., 2020; Duvallet et al., 2021).

Crop production in West Africa is mostly rainfed and crop

production is vulnerable to climate change, which manifests itself in

unpredictably high temperatures and erratic rainfall patterns

(Sultan and Gaetani, 2016; Affoh et al., 2022). The five principal

crops in West Africa in terms of harvested area (in millions of

hectares per year on average in the last decade) are cassava (81),

maize (19), millet (10), sorghum (12), yam (57) (FAOSTAT, 2022).

Major cash crops are cocoa, coffee and cotton. Declining soil fertility

and unpredictable climate change impacts (among other factors)

have made it difficult to maintain the yields of these major crops

(Shimeles et al., 2018). Over the last three decades, the agricultural

sector in West Africa has been characterized by strong production

growth in some major staple crops culminating in increased

production volumes for both domestic and export markets (Blein

et al., 2008; FAO, 2015). Similarly to West Africa, Central Africa’s

principal food crops include cassava, peanuts, sorghum, millet,

maize, sesame and plantains. Additionally major cash crops for

export include cotton, coffee and tobacco (Ochieng et al., 2020).

In Northern Africa, particularly Morocco, crop production is

regionally diverse owing to different climatic conditions, agro-

ecological zones, land-crop tenure and farming systems (Ouraich

and Tyner, 2018). This geographical diversity results in varied

agriculture, with crops ranging from cereals and vegetables to

fruits and nuts, grains, legumes, etc., that contribute significantly

towards the country’s agricultural sustainability and food security.

Cereal production accounts for 65% of cultivable agricultural areas

(Ouraich and Tyner, 2018). Most cereal production occurs under

rainfed conditions. As a result, productivity performance is

influenced by precipitation levels. For instance, 7.3 million tonnes

of wheat were produced in 2018 making it the 20th largest producer

in the world and 2.8 million tonnes of barley being the 15th largest

producer in the world (FAOSTAT, 2018b). However, drought is a

persistent threat to crop production especially the lowlands where

cereals are grown are particularly at risk because of the wide

variations in annual precipitation (Verner et al., 2018; Meliho

et al., 2020). In recent years, quinoa has sparked particular

attention in Morocco (Choukr-Allah et al., 2016; Hirich et al.,

2021). It remains one of the most nutrient-dense crops and is

recognized as a ‘Superf Food’ due to its nutritional benefits. Thus,

Morocco is one of the few North African countries capable of

achieving self-sufficiency in food production (Saidi and

Diouri, 2017).

Grains and cereals (e.g., maize, wheat, barley, oats and

sorghum) are South Africa’s most important crops occupying

more than 60% of the acreage under cultivation (FAO, 2022).

Together, these crops account for one of the largest agricultural

industries contributing more than 30% to the total gross value of

agricultural production (FAO, 2022). Maize, the country’s most

important crop and largest locally produced field crop, is a dietary

staple supplying most of the carbohydrate needs, a source of

livestock feed and is an export crop (Epule et al., 2022).

The country has emerged as the largest maize producer and

exporter in the Southern African Development Community

(SADC) region and Africa as a whole (Fisher et al., 2015; FAO,

2022). According to the FAO, 2022, in 2021 South Africa produced

17 million metric tonnes of maize, making it the 9th largest

producer in the world. Moreover, it produced 2.6 million metric

tonnes of potato and 2.3 million metric tonnes of wheat. Largely,

South Africa has a semi-arid climate characterized by summer and

winter rainfall seasons. Unpredictable weather conditions due to

climate change have a severe impact on maize and wheat

production which accounts for more than 36% of the total value

of field crops (Bradshaw et al., 2022).

Smallholder farmers dominate agriculture in East African

countries, contributing up to 90% of total agricultural production

(Salami et al., 2010; Livingston et al., 2011). A cereal‐legume mixed

cropping pattern is the dominant system that includes maize, millet,
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sorghum and wheat (Van Duivenbooden et al., 2000). Over 40% of

the region is covered by the maize mixed cropping system, which is

followed by the pastoral (14%), root crop (12%) and cereal-root

crop mixed system (11%) (Adhikari et al., 2015). Teff is a significant

crop in the Ethiopian highlands, while other significant crops in the

area include cassava, bananas and rice. The mixed cropping system

in East Africa is based on millet in the drier regions and on maize

and cassava in the humid regions (Adhikari et al., 2015). The main

cash crops in most of the East African countries in SSA are coffee,

tea, cotton, tobacco and sugarcane. Rainfall variability negatively

impact on crop production in East African countries (Palmer et al.,

2023). Generally, the major challenges to crop production in Africa

are unproductive soils, pests and diseases, drought, and poor crop

management (Tadele, 2017). The distribution of major crops in

each sub-region except Northern Africa is summarized in Figure 1.

3 Digital and image-based
field phenotyping

Experiments with repeated trials in diverse environments are

often necessary to screen plants for desirable traits. This becomes

problematic when there is the need to screen a large panel of

genotypes for valuable traits (i.e., yield potential or abiotic and

biotic stress tolerance) to assess genotype, environment, and

management (G × E× M) interactions (Araus and Cairns, 2014).

Over the years, the measurement of individual plants in controlled

conditions has dominated most of the phenotyping research.

However, controlled environments often do not accurately mimic

plant growth and development in field conditions (White et al.,

2012). Field phenotyping is becoming more widely recognized as

the approach that gives the most accurate representation of traits in

real-world cropping systems (Tariq et al., 2020). Thus, field

phenotyping is an important component of crop improvement to

assess how the genotype, the environment, and their interaction

(G × E) influence quantitative traits in a complex and dynamic

manner (Fiorani and Schurr, 2013; Araus and Cairns, 2014; Neilson

et al., 2015). Furthermore, field phenotyping is employed to

discover novel traits, identify new germplasm carrying relevant

but complex traits for breeding, and for testing proof of concept to

validate traits (Watt et al., 2020). Traditionally, destructive

sampling has been used to quantify certain observable plant traits,

including laboratory analysis to characterize phenotypes based on

their genetic and physiological functions. Digital phenotyping

approaches seek to reduce this need (Tripodi et al., 2022; Virlet

et al., 2022).

Different measurement approaches including novel

technologies such as non-invasive imaging, robotics and sensor

positioning systems have been incorporated in well-designed field

phenotyping installations for high-throughput phenotyping (e.g.,

Araus and Cairns, 2014; Kirchgessner et al., 2017; Shakoor et al.,

2017; Virlet et al., 2017; Pieruschka and Schurr, 2022). These

significant strides in field phenotyping have fostered a major

international collaborative effort directed toward data and

protocol standardization (Pieruschka and Schurr, 2019; Lorence

and Jimenez, 2022). The appeal of these platforms is the increased

throughput and objectivity in data collection compared to

traditional field approaches.

Non-invasive portable devices, ground-wheeled, motorized

gantry scanalyzer systems, agricultural robots and aerial vehicles

that deploy a wide range of cameras and sensors, together with

high-performance computing are currently required to conduct

field phenotyping in a timely and economical manner (Figure 2).

Together, these platforms are able to phenotype plant

characteristics throughout the season in field environments

(White et al., 2012; Fritsche-Neto and Borém, 2015; Jimenez-

Berni et al., 2018; Furbank et al., 2019; Li et al., 2021).

In recent years, manned and unmanned aerial vehicle (UAV)

remote sensing platforms have emerged as convenient high-

throughput tools for field phenotyping (Pajares, 2015; Shi et al.,

FIGURE 1

Major crop distribution in Sub-Saharan African region based on average production values between 2011-13. Adapted from FAOSTAT (2016). FAO,
http://faostat3.fao.org/.
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2016; Feng et al., 2021). These remote sensing approaches,

particularly UAVs enable quick and non-destructive high

throughput phenotyping, with the benefit of adaptable and

convenient operation (Yang et al., 2017a). These phenotyping

platforms can combine multiple sensors such as digital cameras,

infrared thermal imagers, light detection and ranging (LiDAR),

multispectral cameras and hyperspectral sensors for various

assessments of morphological and physiological plant traits

(Gonzalez-Dugo et al., 2015; Yang et al., 2017a; Camino et al.,

2018; Roitsch et al., 2019).

Alternatively, field phenotyping can be accomplished on the

ground utilizing a fully automated fixed-site phenotyping platform

(e.g., Kirchgessner et al., 2017; Virlet et al., 2017; Bai et al., 2019), hand-

held sensors, portable spectroradiometers, hand-pushed carts or high-

clearance tractors carrying multiple high-resolution sensors to measure

phenotypic features non-destructively (Comar et al., 2012; Andrade-

Sanchez et al., 2014; Crain et al., 2016). The use of rapid non-invasive

portable devices that carry sensors for crop status monitoring has

advanced field data collection due to their applicability and ease of

operation (Parks et al., 2012; Yang et al., 2014; Condorelli et al., 2018).

Recently, field phenotyping has become more flexible by integrating

ground-based and aerial platforms (Potgieter et al., 2018; Furbank et al.,

2019; Ninomiya, 2022). Table 1 summarizes the diverse ground-based

and aerial field phenotyping platforms, their applications, advantages,

and limitations.

4 Traits assessed by sensor
platforms and their relevance
for field phenotyping

For field phenotyping, traits that have been evaluated by sensors

in the field have been reviewed recently by Watt et al. (2020) and

include for example; (a) plant morphological development (i.e.,

including seed establishment and growth of the crop, the timing,

and dynamics of flower and fruit development); (b) functional traits

that are related to the photosynthetic capacity and carbon uptake

during the phenological growth phase; (c) traits related to biotic and

abiotic stress resistance/tolerance; (d) traits that determine crop

water status (e.g., water uptake and transpiration and water-use

efficiency) of plants; (e) yield-related traits and harvest quality of

crops (i.e., biomass yield) and (f) the structural and functional root

traits (i.e., root architecture). These traits have been previously

classified into morphometric and physiological parameters (Qiu

et al., 2018). Traits such as plant height, stem diameter, leaf area or

leaf area index, leaf angle, stalk length and in-plant space are

morphometric parameters. Physiological parameters include traits

such as photosynthetic rate, chlorophyll content, water stress, leaf

water content, biomass, and salt resistance, which together can

impact plant growth. It should be emphasized that different

phenotypic traits have specific time frames within the

phenological cycle of the plant when they are relevant for the

breeder and farmer. Currently, the most researched crops in field

phenotyping are economic crops, such as wheat, maize, barley,

sorghum, tomato, bean and grape because they have significant

economic value for agricultural development. A challenge is to

extend phenotyping into the vast range of African crops, some of

which may be of only local importance.

Field phenotyping makes use of a variety of sensors due to the

large number of phenotypic traits that must be measured. Several

conventional and novel sensors such as digital cameras, range

cameras, depth cameras, spectral sensors, lidar or laser sensors,

thermal sensors, fluorescence sensors, multispectral cameras,

hyperspectral cameras and others are employed and integrated for

plant trait measurement in field phenotyping (Qiu et al., 2018;

Roitsch et al., 2019; Xie and Yang, 2020).

FIGURE 2

Overview of the most common field phenotyping systems and approaches at proximal and remote sensing scales. The proximal sensing approach is
based on ground-based platforms such as handheld spectrometers, hand-pushed carts equipped with sensors, tractor-based platforms fitted with
multiple cameras and gantry scanalyzer systems that collect spectral information of crops in close range or contact. On the other hand, the remote
sensing technique is based on aerial platforms including unmanned aerial vehicles (i.e., drones), manned aircraft and satellites that acquire spectral
imagery of crops without making physical contact but at a distance. Figure 2 was modified from (Pineda et al., 2021).
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Since plants develop rapidly during their early growth stages,

frequent measurements during their establishment are a prerequisite

for the quantitative selection of vigour phenotypes. Drones fitted with

conventional RGB (red-green-blue) cameras, in combination with

advanced image processing pipelines, can automatically detect crop

stands (single plants) and determine seed emergence, germination rates

and timing under extreme climatic events in the field (Liu et al., 2017).

Most plants display strong morphological changes during their

phenological development, which is greatly influenced by the

availability of resources and changes in abiotic and biotic factors.

Therefore, the development of robust, automated, and precise

methods to measure morphological plant traits in field conditions

is still required (Gibbs et al., 2017).

The leaf is one of the important components of a plant. It plays

a major role in plant growth given that its growing status influences

the efficiency of the direct solar energy utilization by plants. Hence,

it is a significant parameter in plant phenotyping. Measurements of

morphometric parameters of the leaf and other canopy features (i.e.,

leaf area, stem height, number of tillers, and inflorescence

architecture) have been evaluated using non-destructive multi-

sensor approaches (Busemeyer et al., 2013; Fiorani and Schurr,

2013; Rahaman et al., 2015). However, the most frequently used

geometric measure of plant canopy is the green leaf area index

(GLAI), which relates the one-sided green leaf area per unit

projected ground area (Chen and Black, 1992). For instance,

UAV multispectral imagery has been used to characterize GLAI

TABLE 1 Applications and limitations of field phenotyping platforms.

Phenotyping
platform

Examples Applications Advantages Limitations References

Ground-based platforms

Fixed-site systems Field scanalyzers
(i.e Rothamsted
field scanalyzer,
Maricopa field
scanalyzer)

Ground cover, canopy
height, plant
geometry, growth, growth
stages,
vegetation indices,
chlorophyll
fluorescence parameters

Unmanned continuous
operation with good
repeatability, deploy a wide
range of sensors, fully
automated. Not limited by
soil conditions

Expensive, monitor a limited number of
plots, limited by weather conditions

Virlet et al.,
2017; Burnette
et al., 2018

Permanent
platforms based on
a cable-suspended
multi-sensor
system

The ETH field
phenotyping
platform, the
University of
Nebraska
phenotyping system

Monitor canopy cover,
canopy height, and traits
related to thermal and
multi-spectral imaging
with selected examples
from winter wheat, maize,
and soybean

Produce precise, high-
resolution images, deploy a
wide range of sensors, fully
automated

Monitor a limited area of crop, difficult
to move, expensive, and limited by
weather conditions

Kirchgessner
et al., 2017; Bai
et al., 2019

Handheld sensors Point
spectroradiometers,
thermal sensors,
chlorophyll meters,
imagers

Estimate chlorophyll
fluorescence, canopy
temperature, nitrogen
status, leaf area, plant
height, yield

Ground truth reference to
validate aerial
measurements (UAVs) and
airplanes, low-cost and easy
to use

Labour intensive and time-consuming,
limited plot coverage, measurement bias

Yang et al.,
2014; Andrianto
et al., 2017;
Garriga et al.,
2017

In-field mobile
platforms

Phenocart,
proximal sensing
cart, phenomobiles,
manned buggies

Estimate biomass, leaf
area index, counting
plants, plant height, early
vigour, and plant maturity

Manually operated, low-
cost, easier to construct,
multiple traits evaluations,
deploy
more sensors, flexibility
with payload and view
angle geometry; very
adaptable

The motorized platforms are costly to
construct and run, need technical
expertise, hard operation for large-scale
experiments. Limited by weather and soil
conditions

White and
Conley, 2013;
Andrade-
Sanchez et al.,
2014; Deery
et al., 2014;
Crain et al.,
2016

Aerial platforms

Unmanned aerial
vehicles (UAVs)

Broadly classified
into Rotocopters,
fixed
wing systems,
parachutes, and
blimps

Traits such as canopy
cover, canopy height, crop
lodging, growth indices,
and canopy temperature
can be estimated from the
imagery

Rotocopters (i.e drones)
can deploy a wide range of
sensors, including thermal,
multispectral, and
hyperspectral cameras, high
hovering capabilities, better
flight time

Lower speeds for image stitching, lens
distortion, and overlap of the acquired
images can affect orthomosaic, battery
use and flying time may be limited by
the payload, and operability is limited in
windy, wet, dull, variable light, or cold
conditions

Sankaran et al.,
2015; Zaman-
Allah et al.,
2015; Chawade
et al., 2019;
Holman, 2020

Satellite imaging Digital Globe
WorldView-2
satellite,
WorldView-3
satellite,
RADARSAT-2

In precision agriculture
for germplasm evaluation,
multi-location yield trials,
field observation of crop
biophysical parameters,
weather predictions

Evaluation of moderate to
large-sized trial, multi-
location evaluation;
provides automated
coverage of isolated field
trials across a larger
geographical area

Affected by weather conditions,
resolution, frequency of imaging, takes a
long time from image acquisition to
access, costly, higher frequency of
satellite revisits, cloud cover can
interfere with imaging

Tattaris et al.,
2016; Yang
et al., 2017b;
Yang, 2018

Modified from Li et al., 2014 and Deery et al., 2014.
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dynamics of a large maize panel under contrasted environmental

conditions and thus holds great potential for yield predictions in

breeding programs (Blancon et al., 2019). LAI can also be evaluated,

indicating plant coverage, from spectral images (Dammer et al.,

2016; Schirrmann et al., 2016).

Plant canopy architecture and other morphological traits of

plant organs have been measured concurrently with 3D proximal

sensing techniques. A body of recent reviews has compared the

performances of the most common 3D sensors for high-throughput

plant phenotyping (Li et al., 2014; Qiu et al., 2019). The 3D

acquisition devices and approaches commonly used are LiDAR

time-of-flight cameras, mono, and multi-view stereo vision and

structure-from-motion. The LiDAR sensors can scan and extract

morphological traits of plant organs from 3D point clouds. For

example, LiDAR was used to estimate plant height, ground cover

and above-ground biomass in wheat (Jimenez-Berni et al., 2018).

However, LiDAR sensors are expensive (Li et al., 2014), take

significant time and there is a need to increase scanning time to

increase the spatial resolution. Deploying a UAV-based system may

reduce this challenge.

Plant height is a key indicator for canopy structure, yield,

carbohydrate storage capacity and lodging occurrence (Holman

et al., 2016; Hassan et al., 2019). Additionally, it has significant

applications in predicting biomass, identifying plant cultivars, plant

stress and phenological stages (Aasen et al., 2015). The traditional

method of measuring height using a metre rule is labor-intensive,

cumbersome and low throughput. In recent years, the development

of drones and imaging sensors that capture high-resolution images

has enabled high-throughput plant height estimation. For instance,

Holman et al. (2016) estimated wheat height using UAV-based

RGB images and terrestrial LiDAR.

Chlorophyll is a vital plant trait because it is strongly related to

crop physiological status and may be indicative of photosynthetic

rate, crop stress, nutrition status, yield, and plant productivity (Peng

et al., 2011; Maimaitijiang et al., 2017). The most popular tools for

evaluating vegetation health using visible and near-infrared light are

spectral sensors. Chlorophyll meters such as the SPAD-502 are

frequently used instruments to measure the relative chlorophyll

content. Handheld chlorophyll meters and fluorescence meters

have been used to assess plant nitrogen status, photosynthesis,

yield and its components in crops (Yang et al., 2014; Andrianto

et al., 2017; Fernández-Calleja et al., 2020). Additionally,

chlorophyll can be measured using NDVI sensors and portable

spectrometers in the field (Bai et al., 2016).

Crop nitrogen content can serve as a proxy for soil fertilizer

availability, assisting farmers in precision nitrogen application to

the soil. UAV-based hyperspectral imaging and ground-level optical

sensors (SPAD-502, Duplex, and Multiplex) have been employed to

estimate nitrogen fertilization status in maize (Quemada et al.,

2014). In another study, Zaman-Allah et al. (2015) used a UAV

equipped with a multispectral sensor (Green, Red, and NIR) to

assess low nitrogen stress tolerance in corn. Additionally, vegetation

indices (VIs) derived from spectral reflectance data captured by

sensors devices such as the CropScan multispectral radiometer (Zhu

et al., 2008), handheld spectroradiometers and the FieldSpec

(Fitzgerald et al., 2006; Tilling et al., 2007; Feng et al., 2008), Tec5

(Erdle et al., 2013) can accurately measure nitrogen status in wheat

and rice.

The above-ground biomass reflects light use efficiency and

growth and is vital for carbon stock accumulation and

monitoring (Swinfield et al., 2019). Brocks and Bareth (2018)

estimated the biomass in barley using RGB images collected by

UAV. Thermal infrared sensors are mostly used to detect crop water

stress since they can provide temperature information for the crop

(Park et al., 2017; Poblete et al., 2018; Bian et al., 2019). Thermal

infrared sensors enable the estimation of canopy temperature which

is a reflection of plant transpiration and plant water status. Kumar

et al. (2020) used a proximal phenotyping cart (phenocart)

mounted with low-cost consumer-grade digital cameras to

characterize wheat germplasm for drought tolerance under field

conditions. Plant yield has been considered an important

agronomic trait for field phenotyping. Bascon et al. (2022)

estimated rice yield using multispectral images.

The features of the sensors (e.g., spectral resolution, spatial

resolution, specificity, and cost) should be considered according to

the specific applications, phenotyping needs and context. In the

African context, low-cost sensors and analysis pipelines which are

not complex would benefit a broader user base for plant phenotypic

trait assessments. The most successful trait assessment approach

incorporates in time (throughout the crop cycle) and space (at the

canopy level) the performance of the crop with respect to capturing

resources (e.g., radiation, water and nutrients) and the efficiency of

resource utilization (Araus et al., 2008). The aforementioned traits

are discussed here with specific examples of sensors and automated

measurement approaches used for their evaluation in the field (see

Table 2). The advantages and limitations of each type of sensor

are indicated.

5 Overview of the status of field
phenotyping in Africa

Despite the recent advances in high-throughput field

phenotyping based on the non-destructive analysis of plant traits,

Africa has yet to consolidate the gains of these cutting-edge

technologies for research into agricultural productivity. In terms

of the deployment of high-end field phenotyping tools and

approaches, Africa cannot keep pace with many regions, even in

the era of artificial intelligence (AI), ‘internet-of-things’ (IoT) and

technological advancements, although more affordable and lean

phenotyping systems are now becoming available. Community-

wide surveys and exchanges conducted by the International Plant

Phenotyping Network (IPPN) and European Infrastructure for

Multi-Scale Plant Phenomics and Simulation (EMPHASIS) within

the growing phenotyping community in recent years have identified

focus areas to assess the status of global plant phenotyping and

crucial bottlenecks in the emerging field.

The major bottlenecks for developing field phenotyping in

Africa were non-invasive phenotyping approaches, data

management and cost among others (IPPN, 2016; Rosenqvist

et al., 2019). This survey further reveals that in terms of using
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TABLE 2 Emerging high-throughput phenotyping techniques and integrated sensor platforms applicable for plant trait assessment for field
phenotyping.

Sensor Examples Crop
species

Trait/phenotypic
parameter

Applications Advantages Limitation References

Hyperspectral sensor VNIR, SWIR Rice,
Wheat

Nitrogen status, nitrogen
use efficiency, water
content, yield estimation,
canopy components

Evaluate spectral
properties,
explore
hyperspectral
bands, estimate
indices for
fertilizer
accumulated in
plant organs,
early detection of
plant stress

Accurate
estimation of
nitrogen content
and other
biochemical or
physiological
status

Update model
for new crop
species, image
processing is
challenging,
sensors are
costly, large data
size

Seiffert et al.,
2010; Deery
et al., 2014;
Sadeghi-Tehran
et al., 2021;
Wang et al.,
2021

Thermal sensor Thermal
infrared
sensor, near-
infrared
camera, FLIR
sensor

Wheat Canopy temperature,
drought tolerance, water
use efficiency

Monitor crop
temperature for
abiotic stresses
e.g., drought
tolerance

Low-cost,
precise and
reliable in
repeated
experiments

Environmental
factors have an
impact on
performance,
very small
temperature
variations are
undetectable,
and cameras
with higher
resolution are
heavier

Costa et al.,
2013; Deery
et al., 2019;
Sagan et al.,
2019

Visible light sensor RGB sensor,
visible light
camera

Rice Shoot growth, phenology,
greenness, plant vigour,
leaf area

Visible
phenotype
parameters,
classification of
crop organs,
greenness,
growth and
health, time
series of
vegetation indices

Affordable
sensors are
available

Visual spectral
bands and
properties are
limited, Changes
in illumination
conditions cause
image blur and
noise errors

Kipp et al.,
2014; Guo
et al., 2015

3D sensor LIDAR
(Light
Detection
and Ranging)
sensor, 3D
laser scanner

Maize,
Wheat

Plant height, canopy
cover, above-ground
biomass, crop architecture

Extract
morphological
traits of plants
organs from 3D
point clouds;
measuring crop
height and
volume

3D plant
information can
be quickly
captured
through close-
range
observation

LIDAR can be
sensitive to
small variations
in path length,
field
applications can
be challenging

Müller-Linow
et al., 2015;
Guo et al.,
2018; Jimenez-
Berni et al.,
2018; Qiu et al.,
2019

Fluorescence sensor Fluorescence
camera, LIFT
fluorometer

Wheat Photosynthetic capacity,
chlorophyll content,
quantum yield

Measure
photosynthesis,
chlorophyll,
water stress

Automatic and
rapid
measurement of
photosynthetic
parameters

Limited for
UAV imagery,
can be affected
by background
noise, difficult to
use in the field

Chaerle and
Van Der
Straeten, 2000;
Zendonadi dos
Santos et al.,
2021

Multispectral sensor Sorghum,
Maize

Disease resistance,
nutrient use efficiency, N
content, biomass, grain
yield

Multiple plant
responses to
nutrient
deficiency, water
stress, diseases,
etc.,

High-resolution,
fast

Sensors can be
expensive,
limited to a few
spectral bands

Zaman-Allah
et al., 2015;
Zhao et al.,
2021

Spectrometer Maize Water content, seed
composition, yield

Leaf and canopy
growth, disease
evaluation, leaf
area, chlorophyll
content, canopy
temperature, and
crop responses

Handy and easy
to use,
inexpensive

The quality of
the data may be
affected by soil
background,
spectral mixing
could occur, and
sensor
calibration
required

Cozzolino,
2014; Andrianto
et al., 2017;
Chivasa et al.,
2020; Cavaco
et al., 2022

Modified from Zhao et al., 2019.
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high-intensity field approaches (e.g., automation, robotics, image

analysis and data storage management) for field phenotyping,

Africa ranks lowest around the world. A recent survey conducted

in the framework of the IPPN and EMPHASIS projects in 2020

(IPPN, 2020) which is reported by Yang et al. (2020) and Fahrner

et al. (2021), indicated that Africa is still behind in the

implementation of high-throughput field phenotyping. This

highlights the need for a broader deployment of high-throughput

field phenotyping techniques, which are essential enablers or

resources for agricultural sciences and breeding to address

upcoming crop production challenges.

The IPPN over the years has been promoting the idea of

strengthening modern plant phenotyping in African countries by

giving travel grants to Africa and inviting students and researchers

for International Plant Phenotyping symposia and internships.

However, only a few institutional members are identified for

collaboration in the region. In recent times, there have been some

high-throughput field phenotyping research and initiatives in

African countries such as South Africa, Ghana, Senegal, Morocco,

Nigeria, Ethiopia, Kenya, Egypt, and Zimbabwe which is

encouraging for the emerging field and will be highlighted in this

review (see section 5.2 and Table 3).

Like in many developing countries, field phenotyping in African

countries is mostly based on conventional and traditional

methodologies which rely heavily on manually recorded

measurements of phenotypic data or visual assessment of plant

parameters. It entails manually inspecting crops and measuring

several crop characteristics that affect yield traits, including plant

TABLE 3 Summary of some major characteristics of field phenotyping activities implemented in some African countries.

Region Country Area of high-throughput field
phenotyping research

Prospects Reference/web link

West
Africa

Ghana Exploration of digital agriculture, deployment
of low-cost sensors and technologies for
breeding, exploration of remote sensing for
precision agriculture, GIS

Digital agriculture,
low-cost precision
agriculture, and
breeding, use of high-
throughput tools

Hall et al., 2018; Kpienbaareh et al., 2019; Kassim et al., 2022;
Sie et al., 2022; https://ftfpeanutlab.caes.uga.edu/Research/
variety-development/high-throughput-phenotyping-in-senegal–
ghana-and-uganda.html

Senegal Exploration of digital agriculture, exploration
of UAV imagery, multi-spectral imaging, GIS

Development of high-
throughput
approaches, digital
agriculture, low-cost
precision breeding

Dingkuhn et al., 2015; Gano et al., 2021; https://
www.devdiscourse.com/article/other/523595-senegals-embrace-
of-the-digital-revolution-in-agriculture-marks-the-way-forward-
for-africa

Nigeria Use of field mobile agricultural robots, digital
imaging, remote sensing, machine learning,
GIS, site-specific analytics, drone imagery

Development of high-
throughput
approaches, digital
agriculture, low-cost
precision breeding,
deployment of digital
technologies and
innovations

Ifeanyieze et al., 2014; Daniel et al., 2016; Ejikeme et al., 2017;
Iseki and Matsumoto, 2019; Alabi et al., 2022; Izuogu et al.,
2023; https://nitda.gov.ng/wp-content/uploads/2020/11/Digital-
Agriculture-Strategy-NDAS-In-Review_Clean.pdf

North
Africa

Morocco High-throughput phenotyping, precision field-
based phenotyping platform for drought/heat
tolerance, development of quinoa phenotyping
methodologies, expanding the precision and
prediction value of phenotyping/genotypic data
for new germplasm emerging from the wheat,
adding an HTPP system for wheat abiotic
stresses

Expanding
phenotyping
capabilities, low-cost
precision breeding,
deployment of digital
technologies and
innovations,
expansion in remote
sensing capabilities

Bijaber et al., 2018; Danzi et al., 2019; Bouras et al., 2020; Jabir
and Falih, 2020; Laachrate et al., 2020; Quahir et al., 2022;
https://www.fao.org/in-action/plant-breeding/
nuestrosasociados/africa/morocco/es/; https://www.icarda.org/
research/projects/precision-field-based-phenotyping-platform-
droughtheat-tolerance-morocco-pwpp

Egypt High-throughput precision phenotyping for
improvement of drought and salt tolerance in
wheat genotypes, implementation of digital
technology (mobile applications) for field
phenotyping, AI-enabled system to enhance
agriculture process, satellite imagery for crop
monitoring

Expanding
phenotyping
capacities, low-cost
precision agriculture,
and breeding

El-Shirbeny et al., 2014; Elsayed et al., 2017; Shokr, 2020; Bahn
et al., 2021; Elmetwalli et al., 2022; Elsafty and Atallah, 2022;
Abdelnabby and Khalil, 2023; Mahdy and Ahmad, 2023; Sayed
et al., 2023; https://globalrust.org/geographic/egypt; https://
www.fao.org/e-agriculture/news/egypt-turns-fao-digital-
transformation-agriculture; https://dailynewsegypt.com/2021/
12/07/government-launches-ai-enabled-system-to-enhance-
agriculture-process/

Southern
Africa

South
Africa

Deployment of field scanalyzer (FieldScan) for
spectral crop measurement, remote sensing for
precision agriculture

Expanding
phenotyping
capacities, low-cost
precision agriculture,
and breeding,
advancing remote
sensing capabilities

Mutanga et al., 2016; Brewer et al., 2022a, b; Buthelezi et al.,
2023

(Continued)
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height, number of tillers, leaf color, leaf shape, leaf area index (LAI),

chlorophyll content, growth stages, above-ground biomass and

stress tolerance (Gedil and Menkir, 2019; Bongomin et al., 2022;

Badu-Apraku et al., 2023). In practice, in traditional field

phenotyping, breeders or research evaluators inspect the trial

fields and rate the plots according to how they feel, taste, smell,

and appear (Kim, 2020). Such phenotyping methods have several

disadvantages such as being low-throughput, time-consuming,

laborious, expensive and error-prone (Chapu et al., 2022; Xiao

et al., 2022). Although these methods have been beneficial in

developing new crop cultivars and improved yields, it is crucial

that more effective phenotyping methods be used to increase the

accuracy of data collection.

In parallel, field phenotyping is undertaken to evaluate the

agronomic performance of crops in breeding programs, germplasm

collections and in biotechnology programs to deliver improved

cultivars that can cope with environmental stresses (e.g., Asare-

Bediako et al., 2019; Gedil and Menkir, 2019; Rezende et al., 2020;

Kavhiza et al., 2022). These phenotyping research targets are

focused on key crops for food security but are predominantly

low-throughput phenotyping based on field trials. In sub-Saharan

Africa, breeding programs championed by the Alliance for a Green

Revolution in Africa (AGRA) have been dedicated to priority crops

such as rice, maize, cassava, yam, beans, cowpea and vegetables

under various regional breeding networks for improved varieties

and seed systems (FAO, 2011; AGRA, 2019).

Previous studies have used a variety of calibration data,

including ground-based survey methods and crop model

simulations, to predict yield in smallholder systems (Burke and

Lobell, 2017; Ogutu et al., 2018). However, there has been emerging

evidence in SSA suggesting inaccurate farmer-reported crop

production estimates in smallholder production systems (World

Bank, 2010; Gourlay et al., 2017; Abay et al., 2019; Wahab, 2020).

These anomalies in crop yield estimation at smallholder, country

and regional levels can cause price fluctuations (i.e., inflation),

wrong national policy decisions and food insecurity among

others. High-throughput and/or digital phenotyping might offer a

better estimation of regional and national crop production.

Recent advances in sensor technology and the availability of free

high-resolution (spatial and temporal) multispectral satellite images

have also presented an opportunity to predict the yield of maize

(Chivasa et al., 2017) and detect leaf spot diseases in groundnut (Sie

et al., 2022), adaptation responses to early drought stress in sorghum

(Gano et al., 2021) as well as mapping spatial distribution on a near

real-time basis for a region, which hitherto was not feasible.

5.1 Field phenotyping initiatives and
programs in Africa

Despite the low implementation of high-throughput field

phenotyping in Africa, there are some efforts by research

organizations to adopt the technology in some countries.

Prominent among these initiatives is a global network for

precision field-based wheat phenotyping. (https://globalrust.org/

content/global-network-precision-field-based-wheat-phenotyping).

Based on a global network of wheat partners, field phenotyping

platforms are being developed with the support of the CGIAR

research program on wheat and co-investing national agricultural

research centers around the world, including some African

countries such as Kenya, Ghana, Nigeria, Ethiopia, and Morocco.

The main goal of this network is to generate high-quality

phenotypic data to assist plant breeders in developing disease and

drought-resistant, high-yielding wheat varieties with a broad

genetic base and maximizing the potential of new genotyping

technologies. Additional but vital goals are to share knowledge

and germplasm to accelerate new germplasm development and

dissemination as well as develop capacities of breeders and plant

scientists in precision field phenotyping. Some examples of these

field phenotyping interventions being implemented include the

development and application of precise phenotyping approaches,

standardized protocols and novel tools for heat stress assessment in

TABLE 3 Continued

Region Country Area of high-throughput field
phenotyping research

Prospects Reference/web link

Zimbabwe UAV-based high-throughput phenotyping,
multispectral remote sensing in maize varietal
response to maize streak virus (MSV) disease,
high-throughput phenotyping of maize
performance under phosphorus fertilization,
remote sensing methodologies for crop
monitoring under conservation agriculture

Expanding
phenotyping
capacities, low-cost
precision agriculture,
and breeding

Kefauver et al., 2015; Zaman-Allah et al., 2015; Gracia-Romero
et al., 2018; Musungwini, 2018; Buchaillot et al., 2019; Chivasa
et al., 2020; Gracia-Romero et al., 2020; Shonhe and Scoones,
2022; Parwada and Marufu, 2023;

East
Africa

Kenya Satellite-based assessment of maize yield
variations in smallholder farms, GIS and
remote sensing capabilities

Expanding
phenotyping
capacities, low-cost
precision agriculture,
and breeding

Kefauver et al., 2015; Kotikot and Onywere, 2015; Zaman-Allah
et al., 2015; Burke and Lobell, 2017; Manzi and Gweyi-
Onyango, 2021

Ethiopia GIS for precision agriculture, imaging
technologies for crop trait analysis

Expanding
phenotyping
capacities, low-cost
precision agriculture,
and breeding

Alemaw and Agegnehu, 2019; Bontpart et al., 2020; Debesa
et al., 2020; Beyene et al., 2022; Debalke and Abebe, 2022
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Sudan, Septoria tritici blotch in durum wheat in Tunisia (Ben

M’Barek et al., 2022), Septoria tritici blotch in durum wheat and

wheat rusts in Ethiopia (Kidane et al., 2017; https://globalrust.org/

content/sources-resistance-septoria-tritici-blotch-identified-

ethiopian-durum-wheat), heat and drought tolerance in spring

wheat in Morocco, yield potential in Egypt and Zimbabwe and

drought and yield potential in Kenya (https://globalrust.org/

content/global-network-precision-field-based-wheat-phenotyping).

Additionally, low-cost high-throughput phenotyping tools

for field selection for disease, drought and crop variety

performance are currently being developed. These tools will be

used in breeding programs in Senegal, Ghana and Uganda and will

serve as “centers of excellence for peanut breeding” in West and

Eastern Africa (https://ftfpeanutlab.caes.uga.edu/Research/variety-

development/high-throughput-phenotyping-in-senegal–ghana-

and-uganda.html).

In West Africa, the field phenotyping network, since its

inception in 2016 in the sub-region, has implemented high-

throughput UAV (drone-based) phenotyping methodologies

which are functional for sorghum, cowpea, pea nut and pearl

millet (Gano et al., 2021; Audebert et al., 2022). The network is

advancing breeding activities through ‘fine phenotyping’, varietal

evaluations in diverse environments to identify hot spots for specific

stresses, including farmers’ fields to test promising breeding lines in

participating countries such as Senegal, Ghana, Mali and

Burkina Faso.

The establishment of the network has facilitated infrastructure

development, equipment acquisition, data management paired with

long-term training of dedicated students, technicians and breeders

capable of doing both breeding and carrying out high-throughput

phenotyping measurements. In the subregion, three sites have been

chosen as prospective hubs for high throughput phenotyping. Each

hub including Bambey (ISRA research station, Senegal), Sotouba

(IER research station, Bamako, Mali) and Farako-ba (INERA

research Station, Bobo Dioulasso, Burkina Faso) exemplifies the

diversity of soil and climate conditions in the region. According to

Audebert et al. (2022), the network setup in Senegal is the most

advanced while Mali and Burkina Faso lag behind mainly due to

limited phenotyping equipment and funding challenges.

Similarly, the Regional Study Centre for the Improvement of

Drought Adaptation (CERAAS) in complementing the field

phenotyping initiatives of the West African field phenotyping

network, has developed robust UAV imagery-based data

collection and spatial modelling methodologies to accurately

measure key traits of cereal crops to advance plant breeding

programs. UAVs equipped with a multispectral imaging system

coupled with a fully automated image processing pipeline can

indirectly measure agronomic and phenological characteristics of

cereal crops in agricultural field trials (Mbaye et al., 2022).

Moreover, to advance the promotion and advancement of

precision agriculture (PA) in Africa, the African Association for

Precision Agriculture (AAPA), an initiative of the African Plant

Nutrition Institute (APNI) is spearheading this goal (https://

paafrica.org/AAPA). Since its establishment in 2020, the AAPA

has worked in partnership with academia, research institutions,

agri-food industry, financial institutions, and public and private

sector organizations to develop and scale up PA strategies and

innovations through sustainable integration into African

agriculture to address food security (i.e., reduce yield gaps)

climate change, and land degradation challenges.

5.2 Field phenotyping research in
African countries

5.2.1 The case in Ghana
Digitalization of Agriculture is a new trend facilitated by digital

platforms aimed at transforming small scale agriculture by

providing agricultural services to smallholder farmers in Ghana

(Atanga, 2020; Abdulai et al., 2023). These digital platforms include

simple devices such as mobile phones or radio to a more

sophisticated devices (e.g., field sensors, GIS, drones, field sensors,

machinery sensors and diagnostics precision systems).

In Ghana some of the notable digital platforms transforming the

small-scale farming sector include the TROTRO Tractor Limited (an

agritech company) that combines mechanization with IoT and

technology to make agricultural machinery (i.e., tractors and

combined harvesters) available, accessible, and affordable to farmers

thereby enhancing their efficiency and productivity (https://

www.trotrotractor.com). The use of remote sensing as a decision

support system (DSS) tool to optimize irrigation and farm

management towards increasing yields has also been demonstrated

(Kpienbaareh et al., 2019). These innovations primarily address the

numerous issues smallholders and rural farmers confront in the

present food systems, such as climate change, low access to inputs

and restricted access to information (Degila et al., 2023).

As in many African countries breeding and field phenotyping is

mostly based on conventional manual methods. However, to evaluate

crop performance and improve breeding competitiveness, modern

technologies using high-throughput techniques are being

implemented but at a slow pace (e.g., Hall et al., 2018; Kassim

et al., 2022; Sie et al., 2022). For instance, the responses of two

populations of groundnut genotypes with various maturities to early

and late leaf spot diseases were assessed under field conditions using

UAV imagery (Kassim et al., 2022). In another breeding program, a

smartphone-based RGB images detected leaf spot resistance and

predicted yield in groundnut (Sie et al., 2022). In a resource

constraint economy, Ghana is faced with numerous challenges such

as lack of research funding, phenotyping infrastructures and technical

personnel among others that can advance rapid characterization of

agriculturally relevant traits (e.g., growth, yield, stress resistance). To

increase its phenotyping capabilities will require a concerted effort

from all stakeholders across the crop production value chain.

5.2.2 The case in Senegal
Senegal is making strides in precision agriculture by employing

digital tools to address crop production challenges (https://

www.apni.net/wp-content/uploads/2020/02/WAFPA-Tine.pdf).

Even though advancement in modern breeding and field

phenotyping methodologies has been slower and predominantly

based on conventional methods (e.g., Dingkuhn et al., 2015), the use

of drones for agricultural monitoring (i.e., stress detection, disease
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surveillance, crop performance) aided by high-throughput

phenotyping has been exploited thanks to initiatives by the

CERAAS and West African field phenotyping network. For

instance, UAV multi-spectral imaging has been employed for the

estimation of shoot biomass, leaf area index (LAI) and plant height

of West African sorghum varieties under severe drought conditions

(Gano et al., 2021). The drone-based field phenotyping approach

developed could help identify essential traits and cultivars for

drought tolerance in sorghum breeding. The main challenges

confronting crop field phenotyping in Senegal are lack of

equipment, technical personnel and funding (Audebert et al.,

2022). However, Senegal being a hub for field phenotyping in

West Africa, has the potential to increase its field phenotyping

capabilities in the future.

5.2.3 The case in Nigeria
According to a recent review by Izuogu et al. (2023), the

digitalization of agriculture in Nigeria has reduced middlemen’s

participation in agriculture, offered small-holder farmers

opportunities to improve their productivity and markets, and

strengthened the connections between extension and research

facilities. The authors demonstrated that for effective

digitalization of agriculture, training was required in the areas of

skills development, use of demand-driven digital services, digital

privacy, and security issues. The challenges of digitalization of

agriculture identified were lack of technical expertise, inadequate

infrastructure, and high purchase and maintenance costs. The use

of remote sensing techniques for precision crop production and

monitoring has been implemented but to a lesser extent. Ifeanyieze

et al. (2014) have previously reviewed the remote sensing

techniques needed for the smooth implementation of precision

crop management by farmers as a climate change adaptation

strategy in Nigeria. Few research groups have utilized remote

sensing techniques for field phenotyping. For instance, Ejikeme

et al. (2017) used a satellite-based crop prediction model to estimate

crop statistics of major crops including rice, cassava, yam, and

maize. Recently, the Institute of Tropical Agriculture (IITA)

through its collaborative soybean breeding programs has

implemented machine learning (ML) models and multispectral

high-resolution UAV imagery to aid rapid high-throughput

phenotypic workflow for soybean yield estimation (Alabi et al.,

2022). Other breeding programs used manual field evaluation

coupled with digital imaging analysis for phenotyping tomato

breeding population (Daniel et al., 2016).

The use of a handheld optical NDVI sensor for the evaluation of

shoot biomass in field-grown staking yam has been implemented

(Iseki and Matsumoto, 2019). Altogether, Nigeria has great

potential for improving its field phenotyping capabilities.

5.2.4 The case in Morocco
Morocco is among the few African countries well-positioned for

widespread agricultural digitalization for precision agriculture and

field phenotyping to increase crop production and cope with

adverse environmental conditions such as drought. Jabir and

Falih (2020), recently reviewed the state of digital agriculture in

Morocco and highlighted the opportunities and challenges that

need to be addressed. The design and implementation of a wireless

sensor network (WSN) and decision support tools (i.e., drones) for

monitoring the agricultural environment have been demonstrated

(Jabir and Falih, 2020). Nevertheless, challenges such as sensor

deployment and inadequate software analytics still exist (Kobo

et al., 2017). Morocco is home to the International Centre for

Agricultural Research in the Dry Areas (ICARDA’s) phenotyping

facilities (ICARDA phenotyping platforms inMorocco), including a

precision phenotyping platform at Sidi el Aidi (Settat) (Figure 3)

and a phenomobile system (PhenoBuggy) situated at the main

research station in Marchouch (Rabat) designed for drought

and heat stress tolerance studies (https://www.cgiar.org/news-

events/news/icardas-phenotyping-facilities-a-game-changing-

solution-for-abiotic-stress-tolerance-in-crops/). The PhenoMA is

another high-throughput phenotyping platform currently

installed in Benguerir (Quahir et al., 2022). Field phenotyping

using various remote sensing techniques has been deployed for

drought monitoring (Bijaber et al., 2018; Bouras et al., 2020;

Laachrate et al., 2020), and grain yield prediction (Belmahi

et al., 2023).

FIGURE 3

The ICARDA's precision field phenotyping platforms installed at Sidi el Aidi (Settat) in Morocco. Images are in courtesy of Andrea Visioni of ICARDA-
Morocco.
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5.2.5 The case in Egypt
Digital agriculture appears promising in addressing the major

challenges facing the agri-food sector in Egypt and across the

Middle East and North Africa (MENA) countries (Bahn et al.,

2021). Available evidence indicates that the adoption of digital and

precision agriculture technologies is still in its infancy and is

typically driven by high-value agricultural production (Elsafty and

Atallah, 2022; Sayed et al., 2023). However, Egypt has made strides

in the utilization of modern technologies for agricultural crop

management employing big data in tandem with cloud support

systems, IoT, UAVs, satellite imagery, AI, machine learning, and

remote sensing (Shokr, 2020; Abdelnabby and Khalil, 2023; Sayed

et al., 2023). Typical high-throughput field phenotyping

methodologies has been implemented in various crops for

quantifying wheat characteristics in the Nile Delta (Elmetwalli

et al., 2022) and estimating the growth performance and yield of

soybean exposed to different drip irrigation regimes under arid

conditions (Elmetwalli et al., 2020). Additionally, remote sensing

techniques based on thermal imaging and passive reflectance have

been used to estimate the crop water status and grain yield in wheat

(El-Shirbeny et al., 2014; Elsayed et al., 2017).

5.2.6 The case in South Africa
The agricultural sector in South Africa has been developing and

moving towards becoming a knowledge-intensive enterprise due to

new innovations and technologies incorporated in the digital

economy (Baumüller and Kah, 2019; Born et al., 2021; Smidt and

Jokonya, 2022). Due to this transformation, conventional

production methods have gradually been replaced with more

advanced, efficient and innovative systems (e.g., remote sensing)

for crop breeding and phenotyping (Mutanga et al., 2016).

Field phenotyping using modern high-throughput

infrastructures and precision agriculture techniques is better

developed in South Africa compared to other countries on the

continent (Nyaga et al., 2021; Mukhawana et al., 2023). Some

research groups are making efforts in championing field

phenotyping and precision agriculture through workshops and

implementation of UAV remote sensing applications and other

approaches for agricultural monitoring (stress detection, nutrient

and irrigation management) (https://www.fabinet.up.ac.za/

index.php/research-groups/remote-sensing). For example, the

Forestry and Agricultural Biotechnology Institute (FABI) and the

Agricultural Research Council (ARC) (https://www.arc.agric.za/

Pages/Home.aspx) are committed to building phenotyping

infrastructures and disseminating emerging technologies for

agricultural development.

Various remote sensing applications have been employed

targeted at different scales of crop monitoring (e.g., crop water

use efficiency) in precision agriculture (e.g., Munghemezulu et al.,

2023; Wellington, 2023). For instance, foliar temperature and

stomatal conductance have been used as indicators of water stress

in maize based on optical and thermal imagery acquired using a

UAV platform (Brewer et al., 2022a). The utility of multispectral

UAV imagery as proxy for predicting chlorophyll content of maize

at various growth stages in smallholder farming systems has been

reported (Brewer et al., 2022b). The physiological processes of the

maize canopy are intimately tied to and influenced by LAI, which is

closely related to its productivity (Peng et al., 2021). Another study

has focused on estimating the LAI of maize in smallholder farms

across the growing season using UAV-derived multi-spectral data

(Buthelezi et al., 2023). Maize is a major crop in South Africa,

therefore, significant research on the crop using high-throughput

techniques will aid in developing improved cultivars for farmers.

South Africa has a great potential for becoming the field

phenotyping hub of Africa due to the massive investment in

modern technologies.

5.2.7 The case in Zimbabwe
In Zimbabwe, the implementation of digitalized agriculture is

low and tilted toward commercial farmers than smallholder

community farmers (Parwada and Marufu, 2023). Specifically,

highly literate, and resource-rich farming communities tend to

use digitalized agriculture more frequently than farmers with

lesser resources. At the communal level, farmers use mobile

phones to obtain farming information relating to crop

management, climate, and weather information (Musungwini,

2018; Zimbabwe Centre For High Performance Computing,

2021). The application of modern digital agriculture tools and

infrastructure (i.e., sensors, robotics, AI, UAVs, and other

advanced machinery is common in a few well-resourced

commercial farms notably, those managed by large multinational

companies (Shonhe and Scoones, 2022). Parwada and Marufu

(2023) recently reviewed the challenges and opportunities for

digitalization of the Zimbabwean agriculture. Key challenges such

as lack of high-throughput infrastructures, digital illiteracy, and

strict regulations for drone deployment among others have been

highlighted for limiting digital agriculture applications. However,

according to the authors, Zimbabwe have the potential for

improving its digital agriculture for crop management, yield

prediction, disease detection, climate forecasting, and soil

management through precision agriculture. In recent years, few

high-throughput phenotyping has been implemented in Zimbabwe

using RGB picture vegetation indexes (Kefauver et al., 2015), and

multi-spectral imaging for field phenotyping of maize (Zaman-

Allah et al., 2015). Other studies include remote sensing

methodologies for crop monitoring under conservation

agriculture (Gracia-Romero et al., 2018; Gracia-Romero et al.,

2020), affordable UAV-based RGB phenotyping techniques for

evaluating maize performance under low nitrogen conditions

(Buchaillot et al., 2019), and accelerating crop improvement in

response to changing climate conditions employing UAV-based

multispectral phenotyping for disease resistance in maize (Chivasa

et al., 2020). Zimbabwe is among the few African countries capable

of advancing its field phenotyping capabilities in the future.

5.2.8 The case in Kenya
Although there are several technologies currently available to

Kenya’s agricultural sector they have not yet become widely used

Cudjoe et al. 10.3389/fpls.2023.1219673

Frontiers in Plant Science frontiersin.org13

https://www.fabinet.up.ac.za/index.php/research-groups/remote-sensing
https://www.fabinet.up.ac.za/index.php/research-groups/remote-sensing
https://www.arc.agric.za/Pages/Home.aspx
https://www.arc.agric.za/Pages/Home.aspx
https://doi.org/10.3389/fpls.2023.1219673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


(Osiemo et al., 2021). Large-scale adoption of digital solutions is

hampered by a lack of digital literacy and infrastructure. Only a few

research groups are skilled in using and maintaining back-end

service operations like data management, blockchain, machine

learning, IoT, GIS, and drones (Osiemo et al., 2021). However,

the application of GIS and remote sensing techniques have been

used to map frost hotspots for mitigating agricultural losses

(Kotikot and Onywere, 2015), climate-smart crop management

(Manzi and Gweyi-Onyango, 2021), and assessment of yield

variations and its determinants in smallholder systems (Burke

and Lobell, 2017). Similarly, high-throughput phenotyping

platforms based on multi-spectral imaging and RGB vegetation

indices have been implemented for field phenotyping of maize

(Kefauver et al., 2015; Zaman-Allah et al., 2015). Kenya has the

potential of expanding its phenotyping capacities through low-cost

precision agriculture and breeding.

5.2.9 The case in Ethiopia
Digital agricultural innovations in precision agriculture have

the potential to increase productivity while minimizing harmful

environmental impacts along the value chains of agriculture and the

food systems in Ethiopia (Alemaw and Agegnehu, 2019; Tamene

and Ashenafi, 2022). In recent years, there have been some

improvement in digital infrastructure in Ethiopia (Abdulai, 2022).

However, the majority of Ethiopia’s smallholder farmers have

limited access to digital farming technologies (Tamene and

Ashenafi, 2022). According to Tamene and Ashenafi (2022),

several challenges such as inadequate technological capacity,

limited funding to develop and disseminate digital tools and lack

of data sharing channels hampers the development of digital

agriculture in Ethiopia. These barriers restrict the deployment of

modern technologies for crop breeding and field phenotyping. Field

phenotyping has relied largely on conventional methods as in the

studies of eco-geographic adaptation and phenotypic diversity of

Ethiopian teff across its cultivation range (Woldeyohannes et al.,

2020) and genetic diversity in Ethiopian Durum Wheat (Mengistu

et al., 2018). Field phenotyping using high-throughput techniques

has been introduced in recent times. Remote sensing and GIS based

methods has been used as crop yield predictors in wheat and maize

(Beyene et al., 2022; Debalke and Abebe, 2022) as well as physical

land suitability analysis for major cereal crops (Debesa et al., 2020).

In essence, Ethiopia has the potential to accelerate its phenotyping

capabilities. Table 3 summarizes some key field phenotyping

activities that exist in the African countries discussed in this review.

5.3 Current developing field phenotyping
platforms in Africa

UAVs have been selected as the technical solution that is most

suited for deployment across sites and trials throughout the several

initiatives that made it possible for the West African field phenotyping

network to get started (Audebert et al., 2022). For instance, in Senegal,

the UAV platform comprises a FeHexaCopterV2 hexaCopter UAV

system (Flying Eye Ltd., Sophia Antipolis, France) fitted with three

cameras mounted on a two-axis gimbal pointing vertically downward.

The camera consists of an RGB ILCE-6000 digital camera (Sony

Corporation, New York, NY, USA), AIRPHEN multispectral camera

(Hiphen, Avignon, France), and infrared thermographic camera Tau 2

(Flir system, Oregon, USA) that collects spectral imagery of crops such

as sorghum, pearl millet and peanut and cowpea (Gano et al., 2021).

The Agricultural Research Council (ARC) of South Africa has

installed a Phenospex planteye multispectral 3D laser scanner (i.e.,

the first of its kind in Africa) in the field (https://phenospex.com/

products/plant-phenotyping/fieldscan-high-throughput-field-

phenotyping/fieldscan-3d-spectral-plant-measurements-in-the-

field-south-africa/). This state-of-the-art facility is fully automated,

carrying a high-resolution sensor that combines the strength of 3D

vision with the power of multispectral imaging. It captures plant

data non-destructively and delivers precise and accurate plant

parameters in real-time. Plant phenotypic features such as digital

biomass, plant height, 3D leaf area, projected leaf area, leaf area

index, leaf inclination, etc., can be measured. The spectral

information allows for the quantification of plant health, disease,

senescence, N-content, chlorophyll levels, etc. Therefore, this

phenotyping facility could assist in the characterization and

development of varieties with improved biotic and abiotic stress

resistance for key crops such as grapefruit, sunflower, green maize

and other cereals in Southern Africa.

Recently, a unique close-to-field high-throughput plant

phenotyping platform “PhenoMA’’ has been installed in Benguerir,

in the arid region of Morocco by the Mohammed VI Polytechnic

University. PhenoMA consists of a 1440 fully automated lysimetric

mini-plots system that can track the dynamics of water use and

simulate drought scenarios. A critical component is a fully

autonomous phenotyping robot (Hiphen PhenoMobile) that

enables plant measurements at the canopy scale, using a range of

sensors including RGB, multispectral, infrared (IR), and LiDAR

cameras to monitor canopy development (Quahir et al., 2022).

Overall, due to the rich agricultural biodiversity of Africa,

phenotyping in Africa has great potential to contribute to the

development of improved crop varieties and enhanced food

security. The utilization of high-throughput tools can boost the

elucidation of new agriculturally proven traits and catalogue these

phenotypes in their natural environment.

6 Challenges limiting the application
of high-throughput field phenotyping
in Africa and the way forward

The application of emerging field phenotyping technologies has

the potential to accelerate plant breeding efforts and crop

production in Africa. On the other hand, most of these

approaches reviewed here are at best relatively new or unknown

to some of the plant science community in Africa. Field

phenotyping is a critical component of crop improvement but

remains a major bottleneck in African agriculture, as is the case

globally. Some of the key challenges limiting the application of high-

throughput field phenotyping in Africa are highlighted below.
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6.1 Lack of appropriate high-throughput
field phenotyping approaches

Phenotypic analysis has become a major limiting factor in

genetic and physiological analyses in plant sciences as well as in

plant breeding in Africa. The inadequate phenotyping

infrastructures and software analytical tools that can be used by

agricultural practitioners to make sense of simple to complicated

phenotypic datasets have contributed to the low implementation of

high-throughput phenotyping. The operational complexity to

support both data acquisition and analysis has limited the use of

these platforms for research activities worldwide (Chapman et al.,

2014), including developing continents like Africa. To this end,

training in image analytics, software, and computer vision to

provide a new generation of skilled personnel must be

implemented by African governments, universities, and the

private sector. Phenotyping advancement is critical for current

breeding progress for crop improvement in Africa. While the

development of efficient high-throughput field phenotyping

remains a challenge for future breeding progress, the growing

interest in low-cost solutions for remote-sensing approaches,

machine vision, as well as data management, may facilitate

technological adoption.

6.2 Cost of phenotyping infrastructures
and maintenance

As a developing continent comprising highly indebted poor

countries (HIPC) (Henri, 2019) and faced with multi-faceted

economic hardships, the major limitation to the adoption and

implementation of high-tech field phenotyping in Africa is the

perceived high entry costs associated with the longer-term footprint

of prototypical platforms (Reynolds et al., 2019). In several African

countries, especially those discussed in this review, basic

phenotyping tools and infrastructure even for the simplest field

measurements and experimentation are scarce.

This prevents many research organizations in Africa such

as IITA, CIAT, and Africa Rice, from implementing demand-

driven approaches due to a lack of investment budget or

avoiding the significant follow-up costs on maintenance of

large phenotyping infrastructures. For instance, the use of

ground vehicles, aerial vehicles and gantries may require

huge investment costs (Pauli et al., 2016; Vergara-Dı ́az
et al., 2016).

Therefore, the requirements for such specialized equipment

may be a bottleneck for widespread use in breeding programs in

poor countries. To alleviate this challenge, low-cost concepts and

methods of high-throughput phenotyping platforms (HTPPs) (e.g.,

sensors and platforms) that rely on easy-to-use technology must be

disseminated in Africa by identifying demands, and relevance, and

adopting the required approach given the current financial

constraints. For instance, conventional digital cameras (i.e., digital

photography) could provide a more convenient method since they

are more affordable, portable, and easy to use (Casadesús and

Villegas, 2014).

6.3 Limited investment and funding

Limited investments in science, technology, and innovation

(STI) on the part of African governments, research institutions

(e.g., academia) and the private sector have partly contributed to the

poor implementation of high-throughput field phenotyping. The

budgetary allocations dedicated to research, development, and

innovation are small. For example, in Ghana, a minimum of 1%

of gross domestic product (GDP) is applied towards research and

development (https://mesti.gov.gh/government-increase-research-

funding/). Similarly, in Morocco, the percentage of GDP to

research as of 2010 was 0.63% (Hamidi and Benabdeljalil, 2013).

This research funding gap is pervasive across the African continent.

Whereas research institutions and universities in developed

economies, such as Europe (see https://eppn2020.plant-

phenotyping.eu/EPPN2020_installations#/), Australia, North

America and Asia, have in recent years invested heavily in large-

scale research infrastructure for automated and high-throughput

field phenotyping, the same cannot be said for Africa. These large

investments for plant phenotyping include funding, research hours

and high-throughput installations (Costa et al., 2019; Rosenqvist

et al., 2019; https://eppn2020.plant-phenotyping.eu/).

Furthermore, crops grown in Africa are frequently too local to

attract international research funding for field phenotyping. Only a

few essential African crop commodities, such as cassava and sweet

potatoes, are funded solely by extrabudgetary sources. Most of the

main staple crops are exclusively funded for phenotyping

exploitation outside of Africa.

In addition to the above considerations, African governments

and the Science Granting Councils Initiative (SGCI) in sub-Saharan

African countries mandated to support the Science Granting

Councils (SGCs), must dedicate enough funding for low-cost

plant phenotyping research infrastructure in the sub-region in the

short to medium term. This could be achieved by developing

financing mechanisms and collaborating with private sector

partners. Donor support to Africa for agriculture and food

security research should also consider projects in modern plant

phenotyping and digital agriculture.

6.4 Lack of Skilled technical personnel

A serious deficit of skilled technical personnel in the plant sciences

and phenotyping ecosystem is evident in African countries. The

building up of such competencies and the development of human

resource capacity is necessary to operate simple-to-sophisticated

equipment to accelerate breeding efforts through high-throughput

phenotyping techniques. Another major barrier is the loss of talented

and skilled personnel who were trained in developed nations and have

contributed to the brain drain due to inadequate job prospects in

Africa. Mostly, funds to pay salaries and absorb project operating costs

Cudjoe et al. 10.3389/fpls.2023.1219673

Frontiers in Plant Science frontiersin.org15

https://mesti.gov.gh/government-increase-research-funding/
https://mesti.gov.gh/government-increase-research-funding/
https://eppn2020.plant-phenotyping.eu/EPPN2020_installations#/
https://eppn2020.plant-phenotyping.eu/EPPN2020_installations#/
https://eppn2020.plant-phenotyping.eu/
https://doi.org/10.3389/fpls.2023.1219673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


are either limited or insufficient, resulting in a reduction of skilled

personnel. Furthermore, due to the inadequacies in research and

infrastructure in many African nations, training acquired overseas is

sometimes unsuited to local demands. To address this constraint,

digital agricultural competencies and sensor technologies should be

integrated into undergraduate and postgraduate learning curricula to

allow students to specialize in digital agriculture through their projects.

This will create a plethora of career opportunities for competent skilled

personnel who can adapt to the emerging technologies for

field phenotyping.

6.5 Regulations controlling
emerging technologies

Emerging technologies such as UAVs offer the advantages of

being flexible, real-time and non-destructive for agricultural

phenotyping, but they must adhere to strict operational standards

to ensure their safe use. Strict airspace regulations in many

jurisdictions around the world and particularly in African

countries due to impact of political instability and military

governments on UAV deployment may prohibit their use or

make them unfeasible in practice (Gago et al., 2015; Yang et al.,

2017a; Ayamga et al., 2021). For instance, authorization from

regulatory authorities, such as the air force, civil aviation and

police, are required to undertake UAV flight campaigns, which

mostly take time to be approved causing issues in time-critical data

collection applications. According to Ayamga et al. (2021), in

Africa, countries with regulations include Ghana, South Africa,

Zimbabwe, Nigeria, Cameroon, Benin, Gabon, Senegal, Botswana,

Namibia, Malawi, Tanzania, Zambia, Madagascar, Rwanda and

Kenya. However, the lack of proper regulation and enforcement

continues to limit the widespread adoption of drones.

Unfortunately, these regulations combine to mean that most

high-throughput techniques can only be implemented by

multinational research institutions, even in those organizations,

deployment of systems is limited to a few high-priority projects.

Commitment of African governments and relevant stakeholders is

crucial in the implementation and enforcement of regulations. The

widespread deployment of drones stands to benefit farmers hence

concerted effort need to be made to sustain its adoption by

promoting public digital literacy on the technology, skill

development for potential users and farmers on drone operation

and developing the necessary policy framework with regulatory

agencies to increase the safety and acceptability of using agricultural

drones in Africa.

6.6 Weakness of phenotyping linkages

At the regional and continental levels, networking is a powerful

tool for increasing scientific collaboration and fostering information

sharing. There seems to be weak collaborations between the African

plant science community and international phenotyping partners

which hampers technological transfer and adoption. As high-

throughput field phenotyping initiatives have started in Africa,

there is a need to strengthen national and institutional efforts

within the continent for the development and application of

accurate and high-throughput field phenotyping capabilities. The

West Africa field phenotyping network should be strengthened and

better resourced to carry out their mandate. Similar initiatives such

as the EMPHASIS (https://emphasis.plant-phenotyping.eu) should

be experimented to provide a more practical use of the available

phenotyping data.

The IPPN should spread its operations to Africa to develop

programs and establish synergies geared towards face-lifting plant

phenotyping projects in the continent. Again, African governments

and their partners should invest in building a center of excellence or

shared facilities for African plant scientists. Finally, a more urgent

challenge is, however, that the international phenotyping

community needs to bridge the gap between advanced economies

and developing regions of the world such as Africa to benefit from

the huge research efforts made internationally.

7 Concluding remarks and
future perspectives

This review provides an overview of high-throughput field

phenotyping and its implications for African crops. It highlights

the prospects of emerging high-throughput phenotyping techniques

and integrated sensor platforms for plant trait assessment for field

phenotyping that could apply to African crops. High-throughput

field phenotyping has superior advantages that facilitate quick, non-

destructive, and high-throughput detection, thus overcoming the

shortcomings of conventional approaches. The readiness and the

potential adoption of high-throughput field phenotyping for

practical implementation in Africa are of paramount interest and

should be demonstrated.

Field phenotyping solutions of immediate to long-term feasibility

for African crops will likely rely on a combination of available

techniques or prototypes of low-cost sensors and imaging

approaches to study crop performance. Manual methods dominate

the field phenotyping ecosystem with only a few countries beginning

to explore high-throughput techniques through digital and precision

agriculture. Notably, high-throughput phenotyping cannot yet

completely replace manual measurements but should be promoted.

The implementation of high-throughput phenotyping in general, and

low-cost methods for field evaluation, is still fraught with challenges

in Africa. Challenges identified by this present review include the

high upfront cost of the prototypical platforms, huge funding gap,

lack of conceptual and technical capacity, lack of technology transfer

infrastructure and methodological approaches, lack of phenotyping

network on the continent and the needed legislation in some cases,

amongst others.

Lack of financial resources, a problem pervasive in African

countries needs to be tackled holistically. Public-private partnerships

could support resolving these financial and investment challenges to

foster political will. Although in some countries, this public-private

drive is already being implemented through close collaboration

between universities and agricultural research organizations, these
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efforts need to be stepped up. In parallel, African governments should

dedicate enough funding, incentives, and tools to breeders to advance

research and innovations regarding high-end plant breeding. We

suggest that donor support to Africa for agriculture and food

security research should also consider projects in modern plant

phenotyping to cope with current and projected climate change.

This will open the possibility of investing more in current sensor and

imaging technologies for field data collection and the use of cost-effective

phenotyping technologies that are already available to increase the

throughput, quantity and quality of phenotypic data. The wide range

of applications for these phenotyping technologies makes them good

candidates and feasible choices for adoption in Africa which hitherto

were prohibitive in terms of cost and deployment. The advantages of

improved sensor-platform integration have facilitated the development

of complete phenotyping systems that can gather, integrate and store

data formany subsystems concurrently in a structured, efficient and cost-

effective way. Such platforms have been widely adopted by research

groups in developed countries and are gradually adopted by plant

breeders in Africa as the technology develops and the benefits are proven.

In addition to the adoption of high throughput field phenotyping

approaches in African countries, precision agriculture will also greatly

benefit and revitalize the establishment of closer interaction between

breeders and farmers to develop protocols mutually for the optimal

use of improved crop varieties. The tools and knowledge exchange are

expected to spur a second green revolution to meet the agricultural

challenges to feed the ever-increasing African population. In terms of

advancing field crop phenotyping in Africa for agricultural crop

sustainability, we propose that breeding priority should be given to

the most important staple crops such as maize, wheat, yam, cassava,

cowpea, sorghum, etc. These crops form the backbone for food

security and hence their improvement is crucial in the wake of

prevailing climate change and production constraints. We suggest

that each country selects traits that are of high demand and relevance

by farmers and consumers when designing breeding strategies. In

parallel, high-throughput phenotyping should be incorporated into

national agricultural research policies and prioritize the practical

implementation of field phenotyping. By and large, these could be

achieved when governmental and private sector participation, as well

as financial support, is readily available.

To overcome the challenges with the deployment of phenotyping

tools and the integration of software to deliver accurate data

acquisition, processing, analysis and management, a multidisciplinary

team of expert-level skills and competencies may be required. This will

necessitate deliberate training and capacity improvement of African

plant scientists and students in software engineering and computer

science domains, including AI, demanding true interdisciplinary

partnerships to provide meaningful results and inform decision-

making, while addressing the issue of training cost and related risks.

In this instance, we recommend technological adoption rather than

complete technological development considering the financial

constraints and the low-level expertise in software and equipment

development. However, as the plant phenotyping industry develops the

development of new technologies from scratch may be feasible

in Africa.

Furthermore, we propose encouraging collaborations between the

African plant science community with their international counterparts

to foster collaborative research, effective technological transfer and

adoption. This review recommends close collaboration with the IPPN

and similar phenotyping networks to benefit from the unprecedented

investments made in field phenotyping infrastructures globally.

Consequently, crop scientists may leverage ground-breaking

advancements in high-throughput field data collection, image

analysis and data management. Efforts should be made to foster

synergies among different African countries by establishing

transnational interdisciplinary networks that incorporate expertise in

all aspects of plant breeding.

To address the limited investments in science, technology and

innovation (STI), a commitment for expanded and long-term

funding of agricultural research and development is essential. At

the policy and operational levels, barriers must be overcome to

allow the smooth establishment of public-private partnerships for

transformational change in research and demand-driven

technologies for breeders and farmers. There is renewed interest

both from private and public institutions in developed countries to

support African agriculture. Hence, African agricultural institutions

need to develop strategies and synergies that include building

partnerships that must be implemented to tackle the challenges,

especially in the face of climate change and food insecurity.

The widespread adoption of high-throughput field phenotyping

techniques in African countries could only be made possible in

plant breeding programs if it can be proven as something

worthwhile in terms of genetic gains attained with resources

invested. Hence, costs must be reasoned in relation to the

precision, repeatability, heritability, cost per unit plot or trait,

prevailing climatic and economic condition, etc., required in a

particular phenotyping activity. Given what has been said, to

ensure that such implementation of field phenotyping can be

translated into yield gains, low-cost phenotyping tools must be

adopted. On this basis, affordable, easy-to-handle, reliable tools, and

phenotyping infrastructures for small to large-scale field

phenotyping may become a strategic choice and pave the way for

practical implementation. Such technologies applicable to

phenotyping methodologies should be available soon due to the

high demands and efforts by the phenotyping community in Africa.
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