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ABSTRACT  

Reynolds, A. M. 2012. Incorporating sweeps and ejections into Lagrangian 
stochastic models of spore trajectories within plant canopy turbulence: 
Modeled contact distributions are heavy-tailed. Phytopathology 
102:1026-1033. 

The turbulent dispersal of fungal spores within plant canopies is very 
different from that within atmospheric boundary-layers and closely 
analogous to dispersal within turbulent mixing-layers. The process is 
dominated by the presence of large coherent flow structures, high-
velocity downdrafts (sweeps) and updrafts (ejections), that punctuate 
otherwise quiescent flow. Turbulent dispersion within plant canopies is 
best predicted by Lagrangian stochastic (particle-tracking) models 
because other approaches (e.g., diffusion models and similarity theory) 
are either inappropriate or invalid. Nonetheless, attempts to construct 
such models have not been wholly successful. Accounting for sweeps and 
ejections has substantially worsened rather than improved model 
agreement with experimental dispersion data. Here we show how this 
long-standing difficulty with the formulation of Lagrangian stochastic 
models can be overcome. The new model is shown to be in good 
agreement with data from a carefully controlled, well-documented wind-

tunnel study of scalar dispersion within plant canopy turbulence. Equally 
good agreement with this data is obtained using Thomson’s (1987) 
Gaussian model. This bolsters confidence in the application of this simple 
model to the prediction of spore dispersal within plant canopy turbulence. 
Contact distributions—the probability distribution function for the 
distance of viable fungal spore movement until deposition—are predicted 
to have “heavy” inverse power-law tails. It is known that heavy-tailed 
contact distributions also characterize the dispersal of spores which pass 
through the canopy turbulence and enter into the overlying atmospheric 
boundary-layer. Plant disease epidemics due to the airborne dispersal of 
fungal spores are therefore predicted to develop as accelerating waves 
over a vast range of scales—from the within field scale to intercontinental 
scales. This prediction is consistent with recent analyses of field and 
historical data for rusts in wheat. Such plant disease epidemics are shown 
to be governed by space-fractional diffusion equations and by Lévy 
flights. 

Additional keywords: dispersive waves, fractional diffusion, infestations, 
plant disease epidemics. 

 
Zadoks (48) identified the spatiotemporal dynamics of epi-

demic expansion of plant diseases from foci as being one of the 
key controversies in plant epidemiology in the 20th century. It is 
well known that the dynamics of plant disease epidemics are very 
sensitive to the functional form of the contact distribution—the 
probability distribution function for the distance of viable fungal 
spore movement until deposition. Plant disease epidemics are 
expected to take the form of a constant-velocity travelling wave 
when the contact distribution has an exponential tail and acceler-
ate over time as a “dispersive” wave when the contact distribution 
has a “heavy” inverse power-law tail that cannot be bound expo-
nentially (11,15,21,22,29). As a consequence, local sources 
dominant disease dynamics when the contact distribution has an 
exponential tail and long-distance dispersal dominates when the 
contact distribution has a heavy tail (39). The latter can give rise 
to clustering of new foci of infection and disease beyond the 
original source (10,24,38,47). Identifying the functional form of 
the contact distribution is therefore of considerable practical 
importance when examining the potential effectiveness of disease 
management strategies, as these are dependent on an accurate 
evaluation of ‘immigrant’ inoculum coming into a managed area 
(2). 

Recent theoretical studies suggest that exponentials and inverse 
power laws are not competing candidate forms of the tails of 
contact distributions but are instead representative of different 
atmospheric conditions (37). Using state-of-the-art Lagrangian 
stochastic (particle tracking) (LS) models, Reynolds (37) pre-
dicted that exponential tails are representative of strongly con-
vective conditions whilst heavy-tails are representative of convec-
tive boundary-layers with some wind shear and stable boundary-
layers. 

Here we extend this line of enquiry by simulating spore dis-
persal within plant canopy turbulence, i.e., turbulence within and 
up to several canopy heights above a plant canopy. Plant canopy 
turbulence is very different in character from turbulence within 
atmospheric boundary-layers. This is because momentum absorp-
tion by the canopy results in an aerodynamically-unstable in-
flected mean velocity profile. This instability leads to the ener-
getic generation large-scale, high-velocity downdrafts (sweeps) 
and updrafts (ejections) that punctuate otherwise quiescent flow 
and thereby make the dominant contribution to turbulent transport 
into and out of plant canopies (16,35). The resulting turbulence is 
inhomogeneous and highly non-Gaussian (Fig. 1) and is ana-
logous to that found in “mixing layers” (35). 

Turbulent dispersal within canopy flows is best predicted by LS 
models because other approaches (e.g., diffusion models and 
similarity theory) are either inappropriate or invalid. Nonetheless, 
attempts to construct such models have not been wholly success-
ful. Accounting for sweeps and ejections has substantially 
worsened rather than improved model agreement with experi-
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mental dispersion data (17). Here we show how this long-standing 
difficulty with the formulation of LS models can be overcome and 
devise a new LS model that is in close agreement with experi-
mental data from a controlled wind-tunnel study of scalar dis-
persion within plant canopy turbulence (23). Model predictions 
for contact distributions are shown to be heavy-tailed. 

This prediction finds support in the empirical studies (5,12,30). 
Cowger et al. (12) and Mundt et al. (30) reported that the wind-
seasonal spread of wheat stripe rust (caused by Puccinia 
striiformis on wheat Triticum aestivum) at field scales (<100 m) is 
consistent with dispersive wave dynamics and so with an inverse 
power-law contact distribution. Aylor et al. (5) used Rotorods and 

unmanned aerial vehicles to quantify the aerial dispersal of 
Phytophthora infestans sporangia from an area source of diseased 
plants in a potato canopy. Although most sporangia were de-
posited within a few meters of their source, some sporangia were 
found at downwind distances of 500 m from the source. 

It is then shown how heavy-tailed contact distributions lead to 
plant disease epidemic dynamics that are governed by space-
fractional diffusion equations and by Lévy flight movement pat-
terns. This provides new opportunities for understanding and 
predicting plant disease epidemics because fractional diffusion 
equations and Lévy flights have been studied intensively in other 
contexts (28). 

 

Fig. 1. A, View from above of the arrangement of roughness elements in the model canopy. B to E, Flow statistics (mean flow U, integral timescale T, Reynolds 
stress <uw> and velocity variances <uu>, <ww>, skewness, and kurtosis statistics) used in the Lagrangian stochastic simulations. 
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THEORY AND APPROACHES 

LS modeling of turbulent dispersion within plant canopies: 
Accounting for sweeps and ejections. LS models for the 
simulation of spore (tracer-particle) trajectories in high Reynolds 
number turbulence take the form of stochastic differential equa-
tions (41) 

( )
( ) ( ) iii

iii

dxbdttxuadu

dtuUdx

ξ+=
+=

,,
 (1) 

where x  is the position of the tracer-particle, U  and u  are the 
mean and fluctuating components of the tracer-particle’s velocity, 
and ξd  is an incremental Wiener processes with zero mean and 
correlation property .)()()( dttdtd ijji τδδ=τ+ξξ  The subscripts 
denote Cartesian coordinates and the underscores denote 
Cartesian vectors. The Markovian assumption is justifiable in the 
limit of large Reynolds numbers because in this limit the Lagran-
gian acceleration autocorrelation function approaches a delta-
function, corresponding to an uncorrelated component of 
Lagrangian acceleration and hence to a Markovian process. The 
constant )(xb  can be determined Kolmogorov similarity theory 
for turbulence in the inertial subrange. According to this theory, 
the Lagrangian velocity structure function dtxCdudu ijji )(0εδ=  
where 0C  is the Kolmogorov constant and ε  is the mean rate of 
turbulent dissipation divided by density. This constraint requires 
that )()( 0

2 xCxb ε= . This specification has found wide spread 
usage in applications of LS models to the simulation of dispersion 
in atmospheric boundary-layers. Outcomes of Kolmogorov simi-
larity theory are, however, emphatically violated by most measure-
ments made within plant canopies because plant structures re-
move energy from large turbulent eddies and diverts it into finer 
scales, where it is rapidly dissipated, thereby ‘short cutting’ the 
inertial eddy-cascade (16). Here, following Flesch and Wilson 
(17) and others, 2)(xb  is here approximated by ),(/)(2 2 xTxwσ  
where )(2 xwσ  is the mean-squared fluctuations in the vertical 
component of velocity and )(xT  is the Lagrangian correlation 
timescale. 

The functional form of ),,( txuai  can be constrained (but in 
general not determined uniquely) by invoking Thomson’s “well-
mixed condition” (41). Thomson’s well-mixed condition currently 
constitutes the most rigorous framework for the formulation of LS 
models of tracer-particle motions in high Reynolds number 
turbulence. It is equivalent to, or more stringent than, all other 
criteria which have so far been identified as distinguishing 
between well and poorly formulated models. Thomson’s well-
mixed condition states that: If at time 0tt =  the joint distribution 
of tracer-particle positions and velocities, ),,,( txuP  is propor-
tional to the Eulerian joint distribution of positions and velocities, 

),,,( txuPE  then at all later times 0tt >  ),,( txuP  must remain pro-
portional to ).,,( txuPE  Mathematically, Thomson’s well-mixed 
condition requires that the model (1) be a solution of the Fokker-
Planck equation, 
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Flesch and Wilson (17) were the first to invoke Thomson’s well 
mixed condition (41) to construct a two-dimensional LS model 
that was exactly comparable with measurements of the first four 
moments of the turbulent velocity distribution made within and 
just above a plant canopy. Other moments were generally not 
correct. Third- and fourth-moments do, however, encapsulate key 
characteristics of sweeps and ejections (16,35). A two-dimen-
sional model allows for an accurate treatment of stream-wise 
dispersion which is necessary within plant canopies where the 
horizontal turbulent intensity is large (23). Model agreement with 
experimental dispersion data (23) was, however, substantially 
worse than that obtained by a LS model which neglected mea-

surements of third- and fourth-order moments and instead 
assumed that velocities are Gaussian distributed; a Gaussian 
distribution is completely characterized by its first- and second-
order moments. This shortcoming cannot be attributed to in-
adequacies in the parameterization of the flow statistics as these 
statistics were precisely documented (43). Flesch and Wilson (17) 
suggested that the poor model performance was, instead, due to 
inaccuracies in the formulation of the modeled velocity distri-
bution. Ambiguities in the specification of this key component in 
the model arise because the turbulent velocity distribution is not 
determined uniquely by measurements of its first four moments. 
Flesch and Wilson (17) utilized a linear combination of two 
multivariate Gaussian distributions. The suggestion of Flesch and 
Wilson (17) found in support in the study of Reynolds (36) who 
showed that an LS model satisfying the well-mixed condition for 
the maximum-missing-information distribution performed well. 
The maximum-missing-information distribution maximizes the 
uncertainty associated with the missing information contained in 
fifth- and higher-order moments and so is the least biased choice 
for the velocity distribution. 

The results of direct numerical simulations of homogeneous 
turbulence subsequently revealed that conditional mean Lagran-
gian accelerations, the focal point of LS modeling, have a qua-
dratic dependency on Lagrangian velocity, at least approximately 
(6). LS models satisfying the well-mixed condition for Gaussian 
turbulence have this quadratic-form whilst the models of Flesch 
and Wilson (17) and Reynolds (36) do not. This suggests that 
model of Reynolds (36) although successful is inappropriately 
formulated, and perhaps unreliable. 

Here we overcome this difficulty by devising a two-dimen-
sional LS model that is both quadratic in velocity and compatible 
with prescribed third- and fourth-order moments of the turbulent 
velocity distribution. This is done following the approach of 
Franzese et al. (18) who showed that a one-dimensional LS 
model, quadratic in velocity, can predict accurately turbulent 
dispersion within convective boundary-layers. Dispersion within 
convective boundary-layers, like that within plant canopy turbu-
lence, is dominated by the presence of updrafts and downdrafts 
that produce non-Gaussian velocity statistics. The approach of 
Franzese et al. (18) has the advantage over Thomson’s well-mixed 
condition (41) of computational efficiency due to algebraic 
simplicity and of utilizing turbulence statistics up to fourth order 
without the need to assume any predefined form of turbulent 
velocity distribution. Satisfaction of the second law thermo-
dynamics is, however, no longer guaranteed as the models could 
predict wrongly that uniformly distributed particles do not remain 
uniformly distributed at all later times (33). Compliance with this 
physical requirement must be tested postea in numerical simu-
lations. 

When LS models have a quadratic dependency on velocity 

kjijkjijii uuxuxxxua )()()(),( γ+β+α=  (3) 

A system of equations that determine the model parameters,
),(xiα  ),(xijβ  and ),(xijkγ  can be obtained by multiplying the 

Fokker-Planck equation 2 successively by integer powers of iu
and then integrating over velocity. For statistical stationary turbu-
lence which is inhomogeneous in only the vertical direction, as is 
typically the case for plant canopy turbulence, this procedure 
yields 
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where the subscripts 1 and 3 denote the stream-wise and vertical 
directions. These 9 equations can constrain but not determine 
uniquely the 12 model parameters when the first four moments of 
the Eulerian-velocity distribution are known. To make further 
progress a closure hypothesis is required. Here the system of equa-
tions 4 was closed using by setting β12 = β21 and .0311111 =γ=γ  
This closure has the advantage over other possible closures of 
ensuring that the model, Equations 1 and 3, reduces to Thomson’s 
model (41) when the turbulence becomes Gaussian (as happens 
well above a canopy) or is taken to be Gaussian. Different models 
produce different predictions for turbulent dispersion, with 
Thomson’s model being in closest agreement with experimental 
dispersal data (36). 

Simulating scalar dispersion within a model plant canopy. 
Model predictions for scalar dispersion will be compared with the 
wind-tunnel study of Legg et al. (23) in which heat was released 
as a passive scalar from line source into a model plant canopy. 
Despite their age, these experiments remain the most detailed 
study of dispersal within canopy turbulence. The model canopy 
was formed from aluminum strips, each 10 mm wide, 1 mm thick, 
and mm60=ch tall, arranged in a regular diamond pattern with 
60 mm crosswind and 44 mm stream-wise spacing, as shown in 
Figure 1A. The line source was perpendicular to the mean flow 
direction and located at a height hs = 0.85hc. 

Turbulent velocity statistics required as model inputs were taken 
from Raupach et al. (34) as reported on by Flesch and Wilson 
(17), and as shown in Figure 1B and C. These turbulent velocity 
statistics closely resemble those found in plant canopies (16). 
Flesch and Wilson (17) reported on turbulent velocity statistics 
for heights up to about 210 mm. Above this height, turbulent 
velocity statistics are taken to be stationary and homogeneous. At 
the ground-level, turbulence statistics are closely Gaussian and so 
perfect reflection can be used to implement an unattainable 
boundary condition that is compatible with the local velocity 
distribution (42). Measurements of the first four Eulerian 
moments of velocity did not encompass the mixed fourth-order 
moments ( uuuw , etc.) required for the solution of equation 4. 
Here the mixed fourth-order moments are prescribed by the 
Millionshchikov approximation 

kjliljkilkjilkji uuuuuuuuuuuuuuuu ++=  (5) 

Initial velocities were drawn randomly from a bi-Gaussian distri-
bution whose first four moments correspond with experimental 
measurements made at the source height. The time-step of 
numerical integration was taken to be )/,min(001.0 ii aTt σ=Δ  
which is sufficient to ensure that inhomogeneities in the flow are 
properly resolved. Model predictions did not change significantly 
when smaller values of tΔ  were used. 

Statistical stationary predictions for profiles of mean tempera-
ture and temperature fluxes were obtained by ensemble averaging 
over 105 simulated tracer-particle trajectories. 

The tail of a contact distribution characterizes the long distance 
dispersal of spores (as well as minute aerially dispersed pests, seeds 
and pollens) that have been lifted above the top of the canopy by 
ejections (32). Model predictions for these tails were obtained by 
simulating the trajectories of many spores from the aforemen-
tioned line source and then recording the distances that they 
travelled after first exiting the canopy. It was assumed these spores 
were deposited at the points where they first reentered the canopy. 

Discriminating between inverse power law and exponential 
tails. The Akaike information criterion (AIC) was used to test 
whether the simulation data from the LS model provided more 
evidence for spore flight distances coming from distributions with 
inverse power-law tails or from distributions with exponential 
tails. The Akaike weight, w , for the inverse power-law tail can be 
considered as the weight of evidence in favor of the distribution 

with the inverse power-law tail being the better model of the 
simulation data. It ranges between 0 (no support) and 1 (complete 
support). The goodness-of-fit of the better model distribution was 
quantified using the G-test. Plots of the survival function (the 
complement of the cumulative distribution function) are also used 
to examine the form of the tails and to determine the extent of 
power-law scaling when present: an approach that is more reliable 
than probability density function plots (46). To construct the 
survival function, the simulation data }{ il  is first ranked from 
largest to smallest }...1{ ni = . The probability that a flight length is 
greater than or equal to il  (the survival function) is then estimated 
as ./ ni  

RESULTS 

Comparison of predicted and measured scalar concen-
trations. Model agreement with the dispersion data of Legg et al. 
(23) is good except for close to the ground (Fig. 2). The under-
prediction of mean temperatures close to the ground may be attrib-
uted to experimental complications. The plume centroid at the source 
was measured by Legg et al. (23) and found to lie significantly 
below the source height. Legg et al. (23) suggested that this was 
due to the existence of an organized re-circulating flow (caused 
by canopy elements) which resulted in an upstream heat transfer 
in the lower canopy. If this is the case then a temperature under-
prediction near the ground would be unavoidable. At long times 
predicted temperature profiles are nearly uniform. This was not 
guaranteed a priori but is required on physical grounds (33). 

Predicted temperature fluxes are also in good agreement with 
experiment (Fig. 2). At most heights the predictions are not statis-
tically different from the measurements and a large fetches the 
model predicts correctly that temperature fluxes approach zero. 

Predicted mean temperatures and temperature fluxes obtained 
using the new model do not differ significantly from those 
obtained using Thomson’s model (41) (Fig. 2). 

Predicted contact distributions. The model prediction for the 
tail of the contact distribution is very well represented by inverse 
power law ( )235df,203,00.1 === Gw  for distances ranging 
between about 5 and 500 canopy heights (Fig. 3). The maximum 
likelihood estimate for 00.1=μ . The simulation data are seen to 
be poorly represented by the best-fit exponential. 

Contact distributions, fractional diffusion, and epidemic 
dynamics. When the density of healthy host plants is not limiting, 
spatiotemporal disease dynamics depend only on the contact 
distribution and are governed by 

( ) ( ) ( )dssxPspRxp nn −= 
∞

∞−
−10  (6) 

where )(xpn is the disease density at position x  after n generations 
(cycles), 0R  is the basic reproduction number, and )(xP  is the con-
tact distribution—the probability distribution function for the dis-
tance of fungal spore movement until deposition (26). Here it is 
shown that equation 6 is equivalent to a fractional diffusion equa-
tion of order 1/2, )( 2/12/1 xpDtp tt ∂∂=∂∂ , when the contact distri-
bution has a –3/2 inverse power-law tail, i.e., when 2/3~)( −xxP  
for large distances. More general cases are presented later. 

The derivation begins by noting that equation 6 with 10 =R  is 
equivalent to 

( ) ( ) ( )kpkPkp nn 1ˆˆˆ −=  (7) 
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are the Fourier transforms of )(xpn  and )(xP . Disease density 
profiles for 10 ≠R  are obtained by rescaling the solutions to 
equation 7 by a factor nR0 . For illustrative purposes consider the 
case where ))(()21()( 2/3

0
2/1

0 xxxxP +=  which has a –3/2 inverse 

power law tail. In this case, 

( ) ( ) ( )
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Fig. 2. Comparison of the measured (23) and predicted (non-Gaussian model, solid lines; Gaussian model, dashed lines) mean scalar concentrations, c, and mean 
scalar fluxes, cu and cw, in the streamwise and vertical directions at three locations =chx /  0.38, 2.78, and 11.6 downwind of a line source located within a plant 
canopy of height ch at a height .85.0 ch  
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where ))/2(( 0kxC π  and ))/2(( 0kxS π  are Fresnel integrals. 
The behavior of )(ˆ kP  at large distances is obtained in the  
limit 00 →kx . As 00 →kx , .21)(ˆ

0kxkP π−→  Inserting the 
long-range asymptotic, 21)(ˆ

0kxkP π−= , into equation 7  
gives n

n kxkp )21()(ˆ 0π−=  when ,1)(ˆ 0 =kp  i.e., when the  
initial disease outbreak is localized around the origin  
( ),()(0 xxp δ=  where )(xδ  is a Dirac delta function). Thus,

)(ˆ)2()(ˆ)(ˆ 01 kpkxkpkp nnn π−=−+ . Transforming back into real 
space and then taking the continuum limit (i.e., replacing the gen-
eration number, n , by time, t  and then replacing )(ˆ)(ˆ 1 xpxp tt −+  
by ,)/( Ttp ∂∂  where T  is the time span between successive gen-
erations) gives a space-fractional diffusion equation of order 1/2: 
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Here as elsewhere and consistent with the results of ordinary 
calculus, the nth order fractional derivative of )(xpn , ),/( n

n
n dxpd  

is defined by its Fourier transform: ).(ˆ)( kpik n
n  

An analogous calculation shows that contact distributions with 
heavy inverse power-law tails, ,~)( μ−xxP  give rise to µth-order 
space-fractional diffusion equation when 31 <μ<  and that 
contact distributions with exponential tails, λ−−λ= /1)( xexP , result 
in ordinary diffusion equations )/)(/()/( 222 xpTtp ∂∂λ=∂∂  with 
diffusivity 12 −λ= TD . 

Spores within plant canopy turbulence undergo Lévy 
flights. Lévy flights, named after the French mathematician Paul 
Lévy, arose in a purely mathematical context in the first half of 
the last century (25). They comprise clusters of short step flights 
with longer movements between them. This pattern is repeated 
across all scales with the resultant clusters creating fractal pat-
terns that have no characteristic scale and such that the distri-
bution of move lengths has an inverse power-law tail, μ−llpl ~)(  
where 31 <μ< .The heavy-tailed contact distribution that charac-
terizes model predictions for spore dispersal within plant canopy 
turbulence is indicative of Lévy flights with .1≈μ  

DISCUSSION 

Ejections (updrafts) and sweeps (downdrafts) make the domi-
nant contribution to turbulent transport into and out of plant 
canopies (16,35). These intermittent (non-Gaussian) turbulent 
flow structures also liberate the spores of important pathogens 
including Puccinia triticina (brown rust), P. striiformis (yellow 
rust), P. graminis (wheat stem rust), powdery mildews like 
Blumeria graminis (wheat powdery mildew), Peronospora 
tabacina (tobacco blue mold), and cucurbit mildews from host 
plant surfaces (1). And they are responsible for the lift-off minute 
aerially dispersed pests such as coccids and mites, and for seed 
abscission (40,44). By carrying these organisms well above the 
canopy, ejections facilitate long-distance dispersal (32), a process 
that can have important consequences for the structuring of plant 
communities (31). It is therefore not surprising to find that several 
attempts have been made to incorporate ejections and sweeps into 
LS models of particle-trajectories in plant canopy turbulence 
(17,36). These attempts have not been wholly successful. The 
models of Flesch and Wilson (17) and Reynolds (36) have a 
highly nonlinear dependency on velocity are so are incompatible 
with the Navier Stokes equations, the governing equations for 
fluid turbulence, and model agreement with experiment is worse 
or no better than that obtained with Thomson’s Gaussian LS 
model (41). Here by drawing on the work of Franzese et al. (18) 
we showed how this long-standing difficulty with the formulation 
of LS models for dispersal in plant canopy turbulence can be 
overcome. Using this approach we devised a two-dimensional LS 
model that takes explicit account of sweeps and ejections and is 
compatible with the Navier Stokes equations. The new LS model 
was shown to predict accurately mean concentrations and 
turbulent fluxes of heat released as a passive scalar from an ex-

tended line source within a model canopy in carefully controlled 
wind tunnel experiments (23). The three-dimensional form of this 
new non-Gaussian model is readily constructed and this would 
facilitate simulations of scalar dispersal from localized sources. 

Equally good predictions were obtained with Thomson’s 
Gaussian model. The utilitarian value of Thomson’s model was 
not obvious a priori as it significantly underestimates the fre-
quency of occurrence of high-velocity ejections and sweeps. 
Indeed, others have shown that predictions for dispersion in 
convective boundary-layers (a simpler flow than plant canopy 
turbulence) depends sensitivity on the parameterization of velocity 
skewness and kurtosis statistics which determine the frequency of 
occurrence of updrafts and downdrafts (13,45). The finding is of 
considerable practical interest because Thomson’s model is 
widely used in phytopathology (3–5) and is relatively easy to 
parameterize. The close correspondence between the predictions 
obtained with the new model and with Thomson’s model sug-
gests, in accordance with the speculations of Flesch and Wilson 
(17), that ‘skewness and kurtosis statistics have a minimal effect 
[on predictions for dispersion within plant canopy turbulence] 
compared with other factors such as the strong gradients in vel-
ocity variance and shear stress’. Nonetheless, because Thomson’s 
model is founded on Gaussian turbulent velocity statistics it 
cannot be coupled directly with realistic non-Gaussian models for 
the removal of passively released pathogenic spores and pollens 
from plant surfaces, and with realistic non-Gaussian models of 
seed abscission (1,40). The number of high-velocity ejections 
(with speeds > 4 ms–1) within the lower half of the model canopy 
of Raupach et al. (34), is for example, underestimated by a factor 
of about 6 when turbulent velocity fluctuations are taken to be 
Gaussian. Much better predicted are the number of ejections with 
speeds > 1 ms–1. 

Model predictions for contact distributions for fungal spores (as 
well as minute aerially dispersed pests, seeds and pollens) were 
found to have heavy inverse power-law tails at the field scale. 
Heavy-tailed contact distributions are also produced by 
Thomson’s model but without the confirmation that the relatively 
high frequency of occurrence of ejections and sweeps can be 
safely neglected, this prediction would have been questionable 
and could have been attributed to inappropriate model formu-
lation. The model prediction is expected to hold true irrespective 
of buoyancy because “one consequence of the mixing-layer 
analogy is that the turbulent eddy structure near the top of the 

Fig. 3. Proportion of spores that are predicted to travel a distance, ,l  after first 
exiting a plant canopy of height ch  and before first reentering it (solid line). 
Shown for comparison is the best fit power-law (dashed line) and the best-fit 
exponential (dotted line). 
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canopy has a similar qualitative behavior (though not identical 
quantitative properties) across a wide range of buoyancy 
conditions” (35). Heavy-tailed distributions albeit with a larger 
scaling exponent, –2, may also characterize spore dispersal within 
convective atmospheric boundary-layers with wind shear (37). 
Consequently, wind-dispersed pathogens are predicted to cause 
accelerating waves of plant disease over a vast range of scales, 
from the field scale through to continental scales. These predic-
tions are supported by recent analyses of field data for wheat 
stripe rust and historical plant disease epidemics (potato late 
blight, wheat stem rust, and southern corn leaf blight) at the 
continental scale (5,12,30). 

It was also shown that plant disease epidemics and infestations 
resulting from heavy-tailed contact distributions are governed by 
fractional diffusion equations and by Lévy flights. Exponential-
tailed contact distributions give rise to ordinary diffusion 
equations. Fractional diffusion equations and Lévy flights have 
now found numerous applications outside of phytopathology (28). 
It would be interesting to see whether this understanding can, as 
with the study of human disease epidemics (7–9,19,20), be 
imported into the study of plant disease epidemics. Brockmann et 
al. (9) and González et al. (19) uncovered Lévy flight charac-
teristics in patterns of human mobility that were later shown to 
have important consequences for quantifying the spread of viruses 
and for the development of models of human disease epidemics 
(8,20). Following Hanert et al. (20), new models of plant disease 
epidemics that account for heavy-tailed fungal spore dispersal 
could be obtained from current reaction-diffusion models by 
replacing the diffusion term with a fractional diffusion term. 
Fractional diffusion leads to an exponential acceleration of the 
epidemic’s front, a power-law decay of the front’s leading tail and 
to clustering of new foci of infection (28). These predictions 
could be compared quantitatively with observations (12,30) so 
that the models can be refined and expanded thereby making them 
as general as possible. The models could then be used to examine 
the potential effectiveness of detection and control strategies that 
strive to reduce or eradicate disease outbreaks whilst minimizing 
costs. This effectiveness could also be examined in numerical 
simulations using synthetic Lévy flights. Lévy flights as vectors 
of disease have only recently appeared in the literature on 
phytopathology (14) and then without much justification because 
such movement patterns have not been observed directly in 
disease-carrying organisms, despite their widespread occurrence 
amongst predators (43). Nonetheless, the development of citrus 
variegated chlorosis does appear to be consistent with the vector 
of disease, suctorial sharp-shooter leafhoppers (Hemiptera: Cica-
dellidae), having Lévy flights movement patterns (27). Missing 
from the study of Dybiec et al. (43) was the realization that fungal 
spores within plant canopy turbulence undergo Lévy flights. 
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