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Cerebrospinal fluid proteome 
shows disrupted neuronal 
development in multiple sclerosis
Ellen F. Mosleth1,2*, Christian Alexander Vedeler3,4, Kristian Hovde Liland1,5, 
Anette McLeod1,6, Gerd Haga Bringeland3,4, Liesbeth Kroondijk4, Frode Steingrimsen Berven7,  
Artem Lysenko2,8, Christopher J. Rawlings2, Karim El‑Hajj Eid1,5, Jill Anette Opsahl7, 
Bjørn Tore Gjertsen9,10, Kjell‑Morten Myhr3,4 & Sonia Gavasso3,4*

Despite intensive research, the aetiology of multiple sclerosis (MS) remains unknown. Cerebrospinal 
fluid proteomics has the potential to reveal mechanisms of MS pathogenesis, but analyses must 
account for disease heterogeneity. We previously reported explorative multivariate analysis by 
hierarchical clustering of proteomics data of MS patients and controls, which resulted in two groups 
of individuals. Grouping reflected increased levels of intrathecal inflammatory response proteins and 
decreased levels of proteins involved in neural development in one group relative to the other group. 
MS patients and controls were present in both groups. Here we reanalysed these data and we also 
reanalysed data from an independent cohort of patients diagnosed with clinically isolated syndrome 
(CIS), who have symptoms of MS without evidence of dissemination in space and/or time. Some, but 
not all, CIS patients had intrathecal inflammation. The analyses reported here identified a common 
protein signature of MS/CIS that was not linked to elevated intrathecal inflammation. The signature 
included low levels of complement proteins, semaphorin-7A, reelin, neural cell adhesion molecules, 
inter-alpha-trypsin inhibitor heavy chain H2, transforming growth factor beta 1, follistatin-related 
protein 1, malate dehydrogenase 1 cytoplasmic, plasma retinol-binding protein, biotinidase, and 
transferrin, all known to play roles in neural development. Low levels of these proteins suggest 
that MS/CIS patients suffer from abnormally low oxidative capacity that results in disrupted neural 
development from an early stage of the disease.

Multiple sclerosis (MS) is a serious disease of the central nervous system (CNS) characterised by accumulation 
of lesions with disrupted myelin and axonal damage in the brain and spinal cord1–3. Relapsing–remitting MS is 
characterized by lesions disseminated in both space (multiple locations in the CNS) and time (repeated episodes). 
Patients presenting with the first symptoms of MS without evidence of dissemination in space and/or time are 
diagnosed with clinically isolated syndrome (CIS)4. Miller and co-workers4 reported that between 30 and 70% of 
CIS patients are subsequently diagnosed with MS. Most relapsing–remitting MS patients (85–90%) convert over 
time to secondary progressive MS, which is characterized by steadily worsening disability. A primary progres-
sive disease from onset with gradual accumulation of disability is seen in 10–15% of patients. This publication 
focuses on relapsing–remitting MS and CIS. For simplicity, we use the term MS and not relapsing–remitting 
MS in this publication.

MS is a heterogeneous disorder in terms of clinical features, genetics, pathogenesis, and response to therapies. 
The molecular basis of the disease is unknown, although various hypotheses have been suggested. The most 
widely accepted model is that MS is an autoimmune inflammatory disorder triggered in the periphery through 
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immune dysregulation that causes demyelination3. However, other models consider inflammation as secondary 
to the initial pathological processes in the CNS. Tsunoda and co-workers suggested that viruses spread by axonal 
transport induce axonal injury in the CNS to trigger demyelination, inflammation, and lesion development5. 
Stys and co-workers hypothesized that MS is a disease initiated within the CNS by degeneration of the inner 
myelin sheath, which secondarily triggers inflammation6–8. They argue that models that consider inflammation 
as secondary are supported by several observations in MS brains including lesions with apoptotic oligodendro-
cytes without inflammatory cells9, abnormal lipid biochemistry in otherwise normal appearing brain tissues10, 
global alterations revealed by advanced spectroscopic methodologies before they become visible by commonly 
applied methods such as histochemical staining and conventional magnetic resonance imaging11–13, and epi-
genetic changes in pathology-free regions of multiple sclerosis–affected brains that influence oligodendrocyte 
susceptibility to damage14.

The cerebrospinal fluid (CSF) reflects immunological and other biological processes that take place within 
the CNS. The proteome patterns in the CSF therefore harbour extensive information on biological processes and 
pathological mechanisms of MS15. However, heterogeneity of the disease causes challenges. The aim of the present 
publication was to search for molecular signatures of MS within the CSF proteome pattern while considering 
the heterogeneity of the disease.

Results
Cohort 1.  In the present study, we reanalysed our own published CSF proteomics study16 consisting of 779 
CSF proteins from 37 MS patients and 64 controls. The controls were 50 individuals with other neurological 
disorders and 14 individuals with non-neurological diseases. Unless specifically stated, the controls included all 
64 controls.

In our previous analysis of cohort 116, explorative multivariate analysis by hierarchical clustering separated 
the individuals into two groups with MS patients and controls present in both groups. The group with the most 
controls (55 controls and 7 MS patients) is in the present publication defined as group A, and the group with the 
most MS patients (30 MS patients and 9 controls) is defined as group B (Supplementary Table S1). Based on this, 
we consider two “pseudofactors”: the group affiliation (A or B) and the MS status (MS patient or control). Thus, 

Figure 1.   Cohorts 1 and 2. Design of the study. (a–c) Cohort 1: In our previous study of this material16 the 
101 individuals in this cohort were separated based on proteome patterns into two groups here called groups A 
and B. (a) The data of this cohort is considered as influenced by two “pseudofactors”: Group A versus group B 
and MS versus control, resulting in four combinations of group affiliation and MS status. The four categories of 
individuals led to a two-factorial design for analyses. The numbers of individuals in each category are indicated 
in circles. (b) Confidence intervals of differences between the groups were analysed within MS patients and 
within controls. (c) Confidence intervals of the differences between MS patients and controls were performed 
within both groups. (d and e) Cohort 2: In analogy to cohort 1, two groups were established. Group A are the 
IgG-negative individuals. (d) For this cohort three combinations of group affiliation and CIS status were present. 
(e) Confidence intervals of the differences in the proteome patterns between CIS and controls were performed 
within group A.
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four categories of individuals can be considered in a complete two-factorial design (Fig. 1a). The characteristics 
of the individuals in the four categories are given in Table 1a. It is important to take into account the differences 
in the number of individuals in each category, as the most frequent categories will dominate unless care is taken.

In the present study we first analysed the differences between the groups. This analysis was performed by 
confidence intervals within MS patients and within controls (Fig. 1b), which revealed differential expression of 
259 of the 779 proteins quantified (Supplementary Table S2) that were common in the analysis of MS patients 
and the analysis of controls. The majority of these proteins were increased in group B including most IgG proteins 
(Fig. 2). Thus, although most MS patients in both groups had positive IgG oligoclonal bands (Supplementary 
Table S1), MS patients in group A and B have significantly different patterns of IgG proteins in the proteome 
analysis. This led to the results of the hierarchic cluster analysis presented in our previous publication of this 
cohort16. Other proteins elevated in group B compared with group A were the fibrinogen proteins (FGA, FGB, 
and FGG). There were also some proteins detected at lower levels in group B than group A including cadherin 
EGF LAG seven-pass G-type receptor 2 (CELSR2), peroxiredoxin 2 (PRDX2), and immunoglobulin superfamily 
member 8 (IGSF8).

The aim of this study was to identify a common signature of MS within the two groups. To do this, we deter-
mined confidence intervals of the differences in the proteome patterns between MS and controls within both 
groups as illustrated in Fig. 1c. This identified a proteome signature of MS, unique to MS patients compared to 
controls and consistent within both groups (Supplementary Fig. S1, Supplementary Table S2). The same pattern 
was also identified in a separate analysis that included only the controls without neurological disorders (Sup-
plementary Fig. S1).

For validation of the proteome analysis, two proteins, FGG and IGKC, were analysed by enzyme-linked 
immunosorbent assay (ELISA) in a subset of the patients (n = 24). The results showed the same pattern of varia-
tion as observed in the proteome analysis with correlation coefficients between the proteome analysis and ELISA 
of 0.90 for FGG and 0.85 for IGKC.

KEGG Pathway17–19 and Gene Ontology analyses of the proteins that were significant by the confidence 
analyses are shown in Supplementary Fig.S2. This graph is presented to reflect the consideration of the design 
as affected by two pseudofactors. The graph shows that proteins with increased levels in group B versus group 
A are involved in immune response, antigen binding, and peroxisome proliferator-activated receptor (PPAR) 
signalling pathways. Proteins with decreased levels in group B compared to group A are involved in purine and 
pyrimidine metabolism and G-protein coupled receptor signalling.

Proteins detected at decreased levels in MS patients versus controls within both groups were associated with 
the Gene Ontology terms CNS development, complement and coagulation cascades, response to wounding (i.e., 
bone morphogenetic protein signalling pathway), mineral absorption, extracellular matrix organisation, negative 
regulation of cellular iron ion homeostasis, insulin-like growth factor binding, and fat and vitamin digestion and 
absorption (Supplementary Fig. S2).

Table 1.   Descriptive statistics of cohorts 1 and 2. Gender and the number of MS converters are given as 
numbers of individuals with percentage in brackets, and other values are given as means with standard 
deviations or ranges in brackets.

Cohort no Sex total no

Group A Group B

Controls MS Controls MS

(a) Cohort 1

Total number 101 55 7 9 30

Gender

 Females (%) 67 32 (58%) 6 (85%) 7 (78%) 22 (73%)

 Males 34 23 1 2 8

Age (± SD) [years] 35 (9.9) 33 (4.7) 40 (9.2) 35 (6.9)

Protein concentration [µg/µL] 0.40 (0.11) 0.32 (0.07) 0.44 (0.18) 0.44 (0.10)

Time from first symptom to MS diagnosis [months] Mean: 28
Range: 0–144

Mean: 24
Range: 0–192

Controls CIS Controls CIS

(b) Cohort 2

Total number 62 45 17 0 30

Gender

 Females (%) 54 20 (44%) 11 (65%) 23 F (77%)

 Males 38 25 6 7 M

Age (± SD) [years] 32 (9.4) 32 (11)

Numbers of converters to MS (%) 5 (29%) 16 (53%)

Time from first symptom to MS diagnosis [months] Mean: 29
Range 13–60

Mean: 32
Range 1–103
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Cohort 2.  We also analysed CSF proteomics data from an independent cohort (cohort 2) obtained using 
a similar proteomics platform. This cohort consisted of 47 CIS patients and 45 controls20. Among the 47 CIS 
patients, 28 patients had positive oligoclonal IgG bands and/or increased IgG index > 0.67, 17 patients had nor-
mal CSF IgG levels, and two had unknown IgG status. Of the 47 CIS patients in this cohort, 21 were diagnosed 
with MS during follow-up. The mean time for conversion from CIS to MS was 31.4 months during a follow-up 
time of up to 117 months20. Among the 17 CIS patients with normal CSF IgG CSF levels, 5 converted to MS 
within the observation period (Supplementary Table S3).

For the analyses of cohort 2, we evaluated the 357 proteins that were quantified in both cohorts. Some proteins 
that were significantly lower expressed for MS versus controls within both groups in cohort 1 were not available 
in cohort 2, such as attractin (ATRN). Ig kappa chain C (IGKC) was the only protein in the proteome that was 
significantly increased in CIS patients compared with controls in the previous analysis of these data20. This protein 
was not increased among the 17 CIS patients with normal CSF IgG levels compared to controls (Supplementary 
Fig. S3). Thus, 17 CIS patients in cohort 2 had no evidence of elevated CSF IgG from the IgG index, from the 
oligoclonal IgG bands, or from the CSF proteome pattern. For cohort 2, we defined two groups of patients, A 
and B, analogous to the groups in cohort 1 (Fig. 1d). Group A patients are the 17 IgG-negative CIS patients and 
the 45 controls without any signature of intrathecal inflammation. Group B included the remaining patients and 
no controls. Characteristics of this cohort are presented in Table 1b.

In both cohorts, all CSF samples were taken prior to any disease modifying therapy. Furthermore, the length 
of the period from the first symptom to MS diagnosis did not differ significantly between the two groups in 
either cohorts. The two cohorts include patients at different stages of disease. Common to both cohorts is that 
there was no significant signature of ongoing intrathecal inflammation for patients in group A as validated by 
the proteome data.

Confidence interval analysis of CIS versus controls within group A of cohort 2 (consisting of 17 CIS patients 
and 45 controls, Fig. 1e, Table 1) were analysed for those proteins that were significantly decreased in MS 
patients relative to controls within both groups of as identified in cohort 1, and that were also present among 
the 357 protein that were quantified in cohort 2 (Supplementary Fig. S4). This analysis of cohort 2 revealed that 
the complement proteins significantly lower in abundance for MS versus controls in cohort 1 were also lower in 
CIS patients versus controls in cohort 2. Also expressed at lower levels in MS/CIS patients relative to controls 
were alpha-1B-glycoprotein, biotinidase (BTD), follistatin-related protein 1 (FSTL1), haptoglobin (HP), immu-
noglobulin superfamily containing leucine-rich repeat protein, inter-alpha-trypsin inhibitor heavy chain H2 
(ITIH2), serum amyloid A-4 protein, and transferrin (TF). A separate analysis performed on the CIS patients 
in group A who converted to MS during follow-up compared to controls identified the same pattern of protein 
expression (Supplementary Fig. S4), although with a higher standard deviation due to the lower number of 
patients. In cohort 2, confidence interval could not be analysed within group B as this group consisted of only CIS 
patients. Decreased levels of apolipoprotein A-I (APOA1) and vitamin D-binding protein (GC) were significant 
for cohort 1 (Supplementary Fig. S1), but not for cohort 2 (Supplementary Fig. S4).
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Figure 2.   Cohort 1. Bar plots of IgGs significant by confidence intervals (95%) of the proteome for group A 
versus group B as analysed within MS patients and within controls. Each bar is the mean of one protein for one 
of the four categories: controls in group A (Group A, Ctrl, blue bars, n = 55), MS patients in group A (Group A, 
MS, blue bars, n = 7), controls in group B (Group B, Ctrl, red bars, n = 9), and MS patients in group B (Group B, 
MS red bars, n = 30). The identities of these IgG proteins are given in Supplementary Table S2. The y-axis is the 
abundance levels expressed as z-scores obtained by subtracting means and dividing by standard deviation.
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Combining the data of all individuals within each group across cohort 1 and 2.  The proteome 
data from the two cohorts were combined to perform confidence interval analyses within each group across 
the cohorts (Supplementary Fig. S5). This revealed a highly consistent pattern of variation as the analysis was 
performed by simply merging the data for the groups from the two independent cohorts. Thus, the proteins 
identified by analysis of the cohorts discriminated MS/CIS patients from controls irrespectively of intrathe-
cal inflammation and irrespectively of the stage of the disease as CIS or MS. As there was more power in the 
statistical analysis of the combined cohorts due to the larger number of individuals, the number of significant 
proteins is higher for the combined data sets across the two cohorts than for similar analyses performed within 
the cohorts (Supplementary Figs. S1 and S4).

Multivariate analysis within each cohort.  Next, multivariate analyses were performed to shed light on 
the underlying patterns of variation. As the data are influenced both by group and by MS status, a novel strategy 
was applied to isolate the effects of MS without confounding impact of group affiliation, and vice versa to ana-
lyse the effects of group without impact of MS status. Isolation of the effects was achieved by effect plus residual 
(ER) modelling21. The method is based on a linear model as in an ordinary two-way ANOVA, where the two 
pseudofactors, group affiliation and MS status, were used as the two input design factors. As in ordinary two-
way ANOVA, this results in isolation of the effects of group affiliation and isolation of the effects of MS status for 
each protein. By ER modelling, we added the residuals of the model to each effect as illustrated in Supplementary 
Fig. S6. Applied on all proteins, this results in one data table of the proteome that reflects effects of group affilia-
tion without influence of MS status, and one data table of the proteome that reflects effects of MS status without 
confounding impact of group affiliation. These ER values are provided in Supplementary Table S4. This approach 
allows multivariate exploration of group affiliation and multivariate exploration of MS status across the whole 
cohort (Fig. 3).

The proteins that were decreased for MS versus controls as identified by confidence intervals within both 
groups had a dual pattern of variation (Fig. 4a). These proteins were detected at lower levels in MS patients than 
in controls in both groups, but they were also elevated in group B compared to those in group A. Thus, unless 

Figure 3.   Cohort 1. Schematic description of ER modelling. The data are considered as two-pseudofactors, each 
on two levels, and the impact of one factor is omitted during exploration of the other. ER modelling allows data 
on all controls and all MS patients to be combined in multivariate analyses to identify (a) a disease-associated 
proteome pattern as well as (b) the proteome signature that drives group affiliation.
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both group affiliation and MS status are considered, the group affiliation will cause confounding effects and mask 
the effects of MS. ER modelling solves this by isolating the effects of each factor. Described in another way, by 
ER modelling, the effects of group affiliation are omitted as an offset (Fig. 4b), which enables exploration of the 
effects of MS status without confounding impact of group affiliation (Fig. 4c).
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Figure 4.   Cohort 1. Bar plots of proteins significant for MS versus controls by confidence intervals (95%) 
applied within group A and within group B. Each bar is means of one protein for each of the four categories: 
controls in group A (Group A, Ctrl, blue bars, n = 55), MS patients group A (Group A, MS, blue bars, n = 7), 
controls in group B (Group B, Ctrl, red bars, n = 9), and MS patients in group B (Group B, MS, red bars, n = 30). 
The protein identities are given in Supplementary Table S2. The y-axes are the abundance levels expressed as 
z-scores obtained by subtracting means and dividing by standard deviations. (a) Means of the data, (b) means 
of ER values of group affiliation obtained by ER modelling where impact of MS status is omitted to isolate the 
effects of group, and (c) means of ER values of MS status obtained by ER modelling where the impact of group 
affiliation is omitted to isolate effects of disease. The effects of group (panel b) plus the effects of MS status (panel 
c) gives predicted values (panel a). Importantly, the comparison of MS versus controls when group affiliation 
is ignored (as in panel a) is dominated by the most frequent categories, which are controls in group A (the blue 
bars to the left, n = 55) and MS patients in group B (the red bar to the right, n = 30), with the consequence that 
the lower abundance of these proteins for MS versus controls within group is not observed. Comparisons of 
MS versus controls based on ER values (displayed in panel c), which isolate the MS-specific effects, revealed 
the lower expression of these proteins for MS patients compared with controls without confounding impact of 
group affiliation.
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Partial Least Squares-Discriminant Analysis (PLS-DA)22 was applied for multivariate analyses of ER values in 
cohort 1. PLS-DA, which belongs to the same family of methods as principal component analysis (PCA), projects 
the observed data onto underlying multivariate patterns, PLS factors, that are bi-linear functions of the original 
variables (i.e., protein quantities) where one or more response parameters are used to guide the projection. In 
our case, the response parameters are group affiliation or MS status. As in PCA, the PLS factors are described by 
coefficients (scores) of the individuals and corresponding coefficients of the proteins (loadings). The PLS factors 
reflect, in decreasing order, the variables relevant to the response parameter.

For cohort 1, multivariate analyses were performed on the ER values that isolated the effects of group affili-
ation using an indicator variable (–1 versus 1) of group A versus group B as response, and on ER values that 
isolated the effects of MS status using an indicator variable of MS versus controls as response. The proteins that 
were detected in both cohorts are included in this analysis. The multivariate analysis of cohort 2 only comprised 
data from group A, as group B did not have any controls. The data from group A of cohort 2 was analysed directly. 
Visual outputs of PLS-DA are displayed in Supplementary Fig. S7, and normality plots of residuals are displayed 
in Supplementary Fig. S8. The PLS-DA of group affiliation in cohort 1 separated the groups along the two first 
PLS factors, and the analysis of MS versus controls in cohort 1 resulted in separation of MS versus controls along 
the two first PLS factors as did the analysis of CIS versus controls in cohort 2.

PLS factors reflect the underlying multivariate pattern of variation relevant for the response. To guide the 
interpretation of this pattern, feature selection by Martens’ uncertainty test23 was performed. The signs of the 
regression coefficients in a model with two PLS factors were also considered in the search for a shared pattern 
across the two cohorts. This resulted in a selection of 44 proteins as a common signature of MS/CIS for the 
two cohorts, the majority with negative regression coefficients, indicating a protein pattern expressed at lower 
levels in MS/CIS than controls (Table 2, Supplementary Table S4). The proteins identified as significant for MS 
by confidence intervals within each group in cohort 1, and for CIS within group A in cohort 2 were among the 
proteins selected by Martens’ uncertainly test, with only one exception, HP, which was significant by univariate 
validation but not by the multivariate validation. Ontology analysis of the 44 proteins revealed enrichment in 
complement cascade, glucose metabolism, NAD and NADH metabolic processes, oxaloacetate metabolic process, 
generation of neurons, CNS development, bone morphogenetic protein signalling pathways, axon generation, 
axogenesis, axonal guidance, integrin-mediated signalling pathway, neuron cell adhesion, myelination, modu-
lation of chemical synapsis transmission, positive regulation of long-term synaptic potentiation, regulation of 
transmitter receptor activity, and transition metal ion homeostasis (Supplementary Fig. S9).

Combined analysis of the two cohorts.  The data table of ER values for MS status from cohort 1, which isolated 
the effects of MS versus controls, and the data of group A of cohort 2 were merged into a single table of 163 
individuals (Supplementary Table S4). Calculations of confidence intervals of the differences between MS/CIS 
patients versus controls of the combined data showed that most of the identified proteins had decreased expres-
sion in MS/CIS compared to controls (Fig. 5). Further, this analysis demonstrated that differentially expressed 
proteins were similar in females and males (Fig. 5).

Two-way ANOVA was performed on the combined data of the 163 MS/CIS individuals by considering cohort 
affiliation (cohort 1 versus cohort 2), disease category (MS/CIS patients versus controls), and their interactions as 
inputs, and the quantities of the 357 common proteins as response. Of the 44 proteins selected by the multivariate 
analysis for MS/CIS versus controls within both cohorts, 37 were also significant by ANOVA considering p-values 
adjusted for false discovery rate (FDR) (Table 2, Supplementary Table S4). Thus, there was a consistency in the 
results from the multivariate analysis and the univariate analyses. This did not have to be the case as multivari-
ate analyses consider the effects of the combination of proteins, whereas univariate analyses consider the effects 
of each protein one by one. Thus, in our dataset, most proteins selected by the multivariate analysis were also 
significant when considered one by one. When comparing the univariate analysis performed on the large data 
table of 163 individuals with the univariate confidence intervals performed within groups and within cohorts, the 
power of the statistics is larger with the larger number of individuals, which leads to more significant proteins. A 
more important consideration is that the confidence intervals performed within groups are designed to ensure 
that selected proteins are significant both for MS/CIS with intrathecal inflammation and for those without.

A multivariate approach enables consideration of combined impacts of all molecular fingerprints available. 
The family of multivariate analyses used in the present study has a more fundamental aspect. For multi-correlated 
features, as ‘omics data, PLS-DA projects information down onto an underlying pattern of variation, reflected by 
the PLS factors. It is interpretation of this underlying pattern of variation that can shed light on the biology that 
causes observed effects and gives rise to a correlated pattern of the observed features. In multi-correlated data, 
any feature selection procedure or statistical test is merely a guide in the search to understand this underlying 
pattern of variation.

A correlation plot of the selected proteins of the combined data of the two cohorts revealed strikingly close 
correlations in expression between most of the proteins selected by the multivariate approach (Supplementary 
Fig. S10). However, there were differences between patients and differences between the cohorts for some pro-
teins. This is illustrated by considering the detailed patterns of expression of CFB, TF, and NCCAM2 (Supple-
mentary Fig. S11). The three were all expressed at significantly lower levels for MS/CIS versus controls across 
the two cohorts. TF and CFB were closely correlated across the two cohorts, whereas NCAM2 displayed a dif-
ferent pattern that may reflect a different underlying regulatory mechanism. For some proteins, there were also 
differences between the cohorts. Examples are APOA1 and GC, which were significantly lower in abundance 
for MS patients versus controls in cohort 1, but not for CIS patients versus controls in cohort 2 (Supplementary 
Fig. S12). The intercorrelation between GC and APOA1 were strong within both cohorts, which suggests that 
these proteins have a common regulatory mechanism. Two other proteins, retinol-binding protein (RBP4) and 
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BTD, were detected at significantly lower levels for the MS/CIS patients versus controls in both cohorts; however, 
levels of these proteins were not correlated with levels of APOA1 and GC, which may be due to a relationship 
to the stage of the disease or to individual differences. The low level of BTD for some of the CIS patients was 

Table 2.   Proteins selected by Martens’ uncertainty test23 in the multivariate analysis PLS-DA for 
discrimination of MS/CIS versus controls with consistent negative regression coefficients in a model with 2 
PLS factors. (a) Regression coefficients from PLS-DA within each cohort at two PLS factors. (b) FDR-adjusted 
p-values (presented by one, two or three stars for p > 0.05, p < 0.01 and p < 0001, respectively) based on 
univariate validation by two-way ANOVA of the combined data of 163 individuals from cohort 1, groups A 
and B (after omitting the effects of group affiliation by ER modelling) and cohort 2, group A. The data on 357 
proteins analysed in both two cohorts were considered.

Association Numbers Gene names Protein names

Regression 
coefficients(a) P values(b)

Cohort 1 Cohort 2 Cohorts 1 and 2

P04217 A1BG Alpha-1B-glycoprotein −0.015 −0.012 ***

Q9P0K1 ADAM22 Disintegrin and metalloproteinase domain-contain-
ing protein 22 −0.012 −0.002 **

P05090 APOD Apolipoprotein D −0.007 −0.003 **

P02749 APOH Beta-2-glycoprotein 1 (Apolipoprotein H) −0.011 −0.004 ***

P43251 BTD Biotinidase −0.015 −0.016 ***

Q9NZP8 C1RL Complement C1r subcomponent-like protein −0.012 −0.011 ***

P06681 C2 Complement C2 −0.012 −0.013 ***

P01024 C3 Complement C3 −0.015 −0.006 ***

P10643 C7 Complement C7 −0.008 −0.003 **

P00751 CFB Complement factor B −0.017 −0.010 ***

P08603 CFH Complement factor H −0.007 −0.008 ***

P05156 CFI Complement factor I −0.021 −0.008 ***

P02452 COL1A1 Collagen alpha-1(I) chain −0.005 −0.004 **

P08123 COL1A2 Collagen alpha-2(I) chain −0.008 −0.002 **

Q16610 ECM1 Extracellular matrix protein 1 −0.021 −0.012 ***

P02751 FN1 Anastellin −0.021 −0.009

Q12841 FSTL1 Follistatin-related protein 1 −0.013 −0.007 ***

P22692 IGFBP4 Insulin-like growth factor-binding protein 4 −0.014 −0.004 ***

P01880 IGHD Ig delta chain C region −0.024 −0.011 ***

O14498 ISLR Immunoglobulin superfamily containing leucine-rich 
repeat protein −0.015 −0.009 ***

P19823 ITIH2 Inter-alpha-trypsin inhibitor heavy chain H2 −0.011 −0.012 ***

Q08380 LGALS3BP Galectin-3-binding protein −0.004 −0.003 **

P40925 MDH1 Malate dehydrogenase, cytoplasmic −0.025 −0.007 ***

P13591 NCAM1 Neural cell adhesion molecule 1 −0.011 −0.001

O15394 NCAM2 Neural cell adhesion molecule 2 −0.021 −0.001 **

P19021 PAM Peptidyl-alpha-hydroxyglycine alpha-amidating lyase −0.020 −0.006 **

P30086 PEBP1 Hippocampal cholinergic neurostimulating peptide −0.017 −0.005 **

P07225 PROS1 Vitamin K-dependent protein S −0.003 −0.004 **

P41222 PTGDS Prostaglandin-H2 D-isomerase −0.002 −0.001 *

Q92932 PTPRN2 Receptor-type tyrosine-protein phosphatase N2 −0.009 −0.006 *

P02753 RBP4 Plasma retinol-binding protein (1–176) −0.019 −0.006 ***

P78509 RELN Reelin −0.012 −0.005

P07998 RNASE1 Ribonuclease pancreatic −0.011 −0.010 ***

Q9BZR6 RTN4R Reticulon-4 receptor −0.002 −0.008 *

Q86UN3 RTN4RL2 Reticulon-4 receptor-like 2 −0.021 −0.005 *

P35542 SAA4 Serum amyloid A-4 protein −0.014 −0.007 ***

O75326 SEMA7A Semaphorin-7A −0.020 −0.011 ***

P08294 SOD3 Extracellular superoxide dismutase [Cu–Zn] −0.004 −0.005 *

P02787 TF Transferrin −0.020 −0.006 ***

Q15582 TGFBI Transforming growth factor-beta-induced protein 
ig h3 −0.006 −0.012 **
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not an isolated characteristic of BTD. The same CIS patients low for BTD were low also for other proteins that 
were identified as common characteristics for MS/CIS in the present study such as RBP4, TF, CFB, and NCAM2 
(Supplementary Figs. S11 and S12).

Multivariate analysis of MS status ignoring group affiliation.  Data are normally analysed without 
considerations of the group affiliation such as that discovered in our previous study by explorative analysis of 
the proteome pattern16. To visualise how group affiliation can confound an observed pattern of variation, we 
performed multivariate analyses of cohort 1 without considering the grouping of individuals. A support vector 
model with feature selection24 was applied as described in Materials and Methods, and the results were visualised 
by PCA (Supplementary Fig. S13). This visualisation projects the main information onto principal components 
(PCs), which are bi-linear functions of the original data, with coefficients of the individuals (scores) and cor-
responding coefficients of the proteins (loadings). Using this method, the group affiliation dominated along 
the first and most important PC, even though the model was created to separate MS versus controls. Plots of 
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Figure 5.   Cohort 1 and 2. (a) Confidence intervals (95%) of proteins selected by Martens’ uncertainly test in 
PLS-DA of the data from both cohorts. Confidence intervals are made on the merged data where the data table 
of ER values of MS status from cohort 1 are combined with the data of group A of cohort 2 into a single table 
of 163 individuals. The thick lines are the means, and the grey lines are the confidence borders. (b) Means of 
females (orange) and males (blue) and means of all (black). The protein names are provided in Supplementary 
Table S2 and S4.
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individual proteins also revealed strong confounding impact of group affiliation (Supplementary Fig. S14). This 
analysis showed that when MS patients and controls were analysed without taking into consideration the group 
affiliation, the effects of group precluded identification of a disease-specific protein signature of MS.

Discussion
In this study we reanalysed previously published CSF proteome data from patients with MS (cohort 1)16 and CIS 
(cohort 2)20 and controls without these diagnoses. In previous work on cohort 1, explorative multivariate analysis 
of the CSF proteome separated the individuals into two groups with MS patients and controls present in both 
groups: One group but not the other had significantly increased levels of CSF IgG indicative of inflammation16. 
The strategy taken in the present study was to identify a common molecular signature of MS versus controls by 
removing the confounding influence of group. Cohort 2, which consisted of CIS patients and controls analysed 
with a similar proteomics platform20, was included in this study as an external data set. Among the CIS patients 
were patients with and without evidence of CSF inflammation, and, therefore, this cohort was also separated into 
two groups. The data represent four categories: controls in group A who do not have elevated intrathecal inflam-
mation (Fig. 6a), controls in group B who have elevated intrathecal inflammation (Fig. 6b), MS/CIS patients in 
group A without elevated intrathecal inflammation (Fig. 6c), and MS/CIS in group B with elevated intrathecal 
inflammation (Fig. 6d). Categorisation allowed us to search for effect of MS/CIS that is consistent across the 
groups without confounding impact of group affiliation, which could otherwise mask the effects of MS/CIS. 
By our approach we identified a correlated pattern of the CSF proteins for MS/CIS patients that was consistent 
across the two cohorts and across the two groups.

The proteins that were decreased in abundance in MS/CIS patients relative to controls reflect an underlying 
mechanism of disturbed neural development present from the early phases of the disease. Among the proteins 
that were significantly decreased in CSF from MS/CIS patients with and without intrathecal IgG production 
compared with controls were the complement proteins C1RL, C2, CFB, CFI, C3, C7, and CFH. MS/CIS patients 
may have a predisposition to low complement levels or this may reflect chronic CNS infection25,26. Since Epstein 
Barr virus is a known risk factor for MS27, low levels of the complements may suggest that Epstein Barr virus 
infection could be involved in an early process that contributes to MS disease onset. Complement proteins are 
also involved in non-immune processes during CNS development, progenitor proliferation, neural migration, 
and synaptic pruning from the embryonic stage to the adult stage28–32. During synaptic pruning in the CNS, 
complement proteins tag redundant synapses for elimination, and research indicates that signalling mediated 
by transforming growth factor beta 1 (TGFB1) is involved in the process29.

TGFB1 was shown to be lower in abundance in MS/CIS compared with controls after omitting the confound-
ing impact of group affiliation. TGFB1 is a pleiotropic signalling molecule33 with critical functions in neural 

Figure 6.   Four categories were considered based on disease status (MS versus controls) and group affiliation 
(group A and group B). The signature of intrathecal inflammation is simplified here by indicating only the 
immune cells. (a) Individuals without MS/CIS and without active intrathecal inflammation. (b) Individuals 
without MS/CIS with active elevated intrathecal inflammation. (c) MS/CIS patients without active intrathecal 
inflammation. (d) MS/CIS patients with active elevated intrathecal inflammation. Artwork performed by 
Kristiane Færgestad.
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development and homeostasis that function from the earliest stages of embryogenesis through adulthood34,35. 
TGFB1-mediating signalling is dependent on mitochondrial reactive oxygen species (ROS)36,37. Redox reactions, 
which involve the transfer or excitation of electrons in reversible oxidation–reduction reactions, are important 
for many cellular functions38–47. Within the CNS, redox signalling regulates physiological processes needed for 
neural development38,41,47–63, activation of neural progenitor cells under self-renewal58,59,64, maturation of neurons, 
signalling through extracellular matrix, and regulation of synaptic plasticity-related signalling molecules, recep-
tors, and channels38,65,66. Importantly, redox balance toward oxidation is important in a healthy CNS51,55–57,66. 
Recently, Vicente-Gutierrez and co-workers showed in a transgenic mouse model that downregulation of endog-
enous mitochondrial ROS causes profound changes in brain energy and redox metabolism, leading to neural 
dysfunction and cognitive impairments55.

Two other closely correlated proteins that were decreased in MS/CIS versus controls were TF and RBP4. RBP4 
binds retinol (vitamin A)67, an electron carrier in redox signalling68, known to play a central role in the control 
of energy homeostasis69, neural development38,70, and neural plasticity71. Upon demand for energy, retinol acts 
as catalyst in a reversible oxidation process to increase glucose-derived fuel flux into the citric acid cycle69, which 
implies a shift of the redox balance in the oxidative direction51,68,69. Whereas quiescent neural stem cells use gly-
colytic metabolism, neurons require more energy, and therefore a switch to aerobic mitochondrial respiration 
and oxidative phosphorylation is required during differentiation of neural stem cells38,51,72. The observed low 
level of RBP4 for MS/CIS may suggest disturbance in this process. TF binds and transport iron73. Iron can switch 
between the Fe3+ and Fe2+ oxidation states and is therefore an important co-factor for several redox enzymes 
including various enzymes critical for normal brain development and metabolism38,52,74.

BTD, another protein decreased in MS/CIS patients compared to controls, cleaves biotin (vitamin B7). Bio-
tin is a B-complex vitamin essential for control of energy metabolism75 that promotes energy production and 
myelin synthesis in the CNS76. Biotin is a cofactor for several carboxylases in the citric acid cycle, which oxidizes 
biofuels to carbon dioxide and water, and thus is important for processes including fatty acid metabolism and 
carbohydrate metabolism75. Malate dehydrogenase 1 (MDH1), which was decreased in MS/CIS patients rela-
tive to controls, oxidizes the reduced form of nicotinamide adenine dinucleotide (NADH) to its oxidised form 
(NAD +) in the cytosol, making NAD+ available for the citric acid cycle in the mitochondria77.

The extracellular matrix provides structural support and also regulates many aspects of neural development 
through processes that involve redox signalling78,79. Follistatin-related protein FSTL1, which was also decreased 
in MS/CIS patients, is an extracellular glycoprotein that is involved in CNS development80. Depletion of FSTL1 
in mice severely damages synaptic plasticity and causes altered expression of numerous genes involved in neu-
rotransmitter transport, gamma-aminobutyric acid synaptic transmission, and synaptic plasticity81. ITIH2, 
which was also decreased in MS/CIS patients, contributes to extracellular matrix stability by covalent linkage to 
hyaluronan82. Hyaluronan acts both as a scaffold of the extracellular matrix and as a regulator of formation and 
function of synapse in developing neural networks83. Collagen alpha chain proteins COL1A1 and COL1A2 and 
extracellular matrix protein ECM1 were also decreased in MS/CIS patients versus controls.

Vitamin K-dependent protein ProS184 was also decreased in MS/CIS. Vitamin K, which is expressed at high 
concentrations in brain cell membranes, participates in the synthesis of sphingolipids, which are components 
of cell membranes of oligodendrocytes and myelin. Sphingolipids and other membrane phospholipids serve 
as important structural components of membranes and function in cellular signal transduction, neuronal cell 
proliferation, differentiation, and synaptic transmission85,86. The effects of sphingolipids involve redox87,88, and 
there is a duality: ROS, reactive nitrogen species, and cellular redox potential are tightly linked to sphingolipid 
metabolism, and sphingolipids play important roles in maintaining cellular redox homeostasis88.

The neural cell adhesion molecules NCAM1 and NCAM2, which were also decreased in MS/CIS compared 
with controls, are cell-surface glycoproteins with large extracellular domains. The NCAMs mediate interac-
tions between neurons and the extracellular environment by forming adhesive bonds with proteins located on 
neighbouring cells or by binding to proteins in the extracellular matrix. These proteins are normally abundant in 
the CNS and play roles in neural development, regulation of synapse formation, synaptic activity, and synaptic 
vesicle recycling at distinct developmental and activity stages89,90.

Disintegrin and metalloproteinase domain-containing protein ADAM22, a molecule that bridges the postsyn-
aptic membrane and is known to play a key role in synapse maturation, synapsis transmission, and myelination91, 
was also decreased in MS/CIS patients compared to controls. As reviewed recently92, some ADAM family metal-
loproteinases process reelin, a large extracellular matrix protein that functions in the brain to regulate neuronal 
migration, dendritic growth and branching, dendritic spine formation, synaptogenesis, and synaptic plasticity92,93. 
Reelin was also down-regulated in MS/CIS patients.

Among other proteins that were decreased in MS/CIS patients compared with controls was semaphorin 7A. 
The semaphorins are signaling molecules94 that regulate the morphogenesis and homeostasis in a wide range 
of organ systems95–97. During neural development, semaphorins are involved in signaling necessary for axon 
guidance and neural morphogenesis, which are also redox-regulated processes98–101.

More proteins were quantified in the CSF of individuals in cohort 1 than cohort 2. Attractin ATRN is a protein 
that was detected as significant within both groups in cohort 1; it was not quantified in cohort 2. ATRN is known 
to have a critical role in normal myelination in the CNS. The myelination requires the coordinated synthesis of 
various structural proteins and enzymes, and ATRN serves as an anchor on the surface of neurons or glial cells 
where it mediates the myelination signal through its extracellular domains102.

The differences between the two groups of patients in cohort 1, which both include MS patients and controls, 
affected the expression levels of about one-third of the CSF proteins. Thus, there was a substantial shift in the 
proteome patterns of patients in the two groups of cohort 1, where MS patients and controls in group B, but not 
in group A, had increased levels of IgG and the fibrinogen proteins FGA, FGB, and FGG but decreased levels of 
proteins linked to compensatory mechanisms to reduce inflammation, such as proteins involved in regulation 
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of the purine nucleotide catabolic process and the G-protein coupled receptor signalling pathway103. Increasing 
evidence highlights the central role of fibrinogens in promoting inflammatory processes within perivascular MS 
lesions; these proteins contribute to neuronal damage, and inhibiting tissue repair processes104.

The differences between MS patients in the two groups of cohort 1 were not related to the length of the period 
from the first symptom to the MS diagnosis. One hypothesis is that patients with different genetics and epigenet-
ics, most likely related to the human leukocyte antigens105–107, respond differently to the same cellular signals 
that caused disrupted neural development and disturbed neural homeostasis. Thus, it may be that MS patients 
in group B responded with more inflammation than patients in group A to an underlying dysfunction. Another 
hypothesis is that the patients in the two groups are at different stages of the development of the disease. More 
data are needed to answer this question.

In the original analysis of the CIS data (cohort 2), axon-neuron proteins were shown to be expressed at 
decreased levels in the CSF of CIS patients compared with controls20. Our analysis of only the CIS patients with 
normal CSF IgG levels supports and extends these findings, as we discovered that proteins critical for normal 
CNS development are dysregulated in the CSF of CIS patients independently of intrathecal IgG synthesis, which 
corresponds to the results of cohort 1.

In summary, the proteome CSF pattern characteristic of MS/CIS that we identified supports the hypothesis 
that failure to generate sufficient oxidative redox potential is an important factor in neural health (Fig. 7). Loss 
of oxidative redox potential may represent an event present from the early stage of the pathogenesis of MS as this 
was observed also in CIS patients who have symptoms of MS without any evidence of intrathecal IgG synthesis. 
Thus, our analyses support the hypothesis of MS development presented by Tsunoda and co-workers5 and Stys 
and co-workers6,108–110 that CNS inflammation is a secondary event. However, their models suggest that MS is 
primarily a neurodegenerative disorder, whereas our results indicate that MS is a disorder of disrupted neural 
development. Considered in the context of adult neural development and neural homeostasis111, with dysregu-
lated generation and turnover of myelin112 and neural proteins113, these findings lead us to hypothesize that 
disrupted neural development results in the typical pathological characteristics of MS.

We suggest that future MS therapy should consist of a combination of agents: established immunomodulatory 
drugs and treatments to stimulate remyelination, as emphasised over the last decade114, and also stimulators of 
neurodevelopment in general. Furthermore, it will likely be important to focus on individual patient data. The 
new ER analytical method we applied in this study can be used to enable precision medicine on both group and 
individual levels, not only for MS but also for other heterogeneous diseases and data (Fig. 8).

In conclusion, results of our analysis of the CSF proteome suggest that failure in neural development, which 
disturbs normal neural homeostasis (development and repair), is a common event of MS present from the early 
stage. In contrast, secondary elevated inflammation occurs to various degrees among individual MS patients. 
Future studies should aim to identify strategies to compensate for this failure in neural development and repair.

Figure 7.   Normal neural development and function require oxidative capacity. (a) Requirement for oxidative 
capacity under normal neural development and homeostasis. (b) Loss of oxidative redox potential may be 
present from the early event in the pathogenesis of MS. We hypothesize that MS is a disease of disrupted 
neuronal development and homeostasis leading to the typical pathological characteristics of MS, and that 
inflammation is secondary. The signature of intrathecal inflammation is simplified here by indicating only the 
immune cells. Artwork performed by Kristiane Færgestad.
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Materials and methods
Materials.  Two previously published cohorts of CFS proteomes were re-analysed in the present study. Cohort 
1 consists of our previously published data on CSF proteomes obtained from patients with MS and controls16, 
where the study population consisted of 101 individuals, of whom 37 patients were diagnosed with MS and 64 
were controls. Of the controls, 50 were diagnosed with other neurological disorders and 14 were neurologically 
healthy persons who had undergone spinal anaesthesia for orthopaedic surgery. Unless specified, all individuals 
without MS were considered as controls in the present study. Previously published16 stratification of the patients 
from an explorative multivariate analysis by hierarchical clustering was utilized in the present study: Group 
A had 7 MS patients and 55 controls, group B had 30 MS patients and 9 controls (Table 1). A single sample of 
CSF was analysed for each participant. The CSF samples were obtained from biobanks sampled at the following 
hospitals: i) Departments of Neurology and Anaesthesia & Surgical Services, Haukeland University Hospital, 
Bergen, Norway; (ii) Neurology Department UCL, Universite Catholique de Louvain, Brussels, ´ Belgium; (iii) 
Laboratory of Neuroimmunology, IRCCS, “C. Mondino” National Neurological Institute, Pavia, Italy; and (iv) 
Department of Anaesthesia and Surgical Services, Haukeland University Hospital, Bergen, Norway. All hospitals 
are members of the BioMSeu network for biomarkers in MS (http://www.bioms​eu.com). Samples from all avail-
able individuals were included in the proteome study without any data exclusion.

The proteome data of cohort 1 was first pre-processed as described in our original study by normalisation on 
the median intensities of a set of proteins considered as CNS-specific proteins16. In the present study, we thereafter 
scaled the data to means of zeros and standard deviations of one to give z-scores.

Cohort 2 is previously published data from Stoop and co-workers20. This cohort was obtained from the Eras-
mus MC University Hospital where all patients 18 to 50 years-of-age presenting with a first episode suggestive 
of demyelination were followed prospectively; informed consent was given by all patients. The cohort included 
47 CIS patients and 45 controls. CSF samples, MRI, and clinical data were collected within 2 months after first 
symptom onset. Samples from all available individuals were included in this proteome study without any data 
exclusion. Clinically definitive diagnosis of MS was made if there was clinical evidence of dissemination in space 
and time. In the present study, we determined means over multiple peptides without missing values reflecting 
the same protein. We analysed all proteins that were also available in cohort 1. In the present publication, we 
scaled the data to means of zero and standard deviation of one to give z-scores.

Our analysis of cohort 1 revealed that group stratification in cohort 1 reflected differences in inflammatory 
proteins, which were significantly elevated in group B but not in group A. We defined two groups in cohort 2 
based on IgG bands and IgG index. The presence of many IgG-negative CIS patients in cohort 2 allowed us to 
investigate the effects of CIS versus controls among patients with early signature of the disease without evidence 
of elevated CSF inflammation.

Figure 8.   The ER modelling approach applied to precision medicine. In the present study we separated the 
participants into groups based on abundance of molecular markers and then analysed the data both within each 
group and across all participants using ER modelling to isolate the effects of group and to identify a disease-
specific protein pattern. ER modelling can be utilized for precision medicine on group level to optimize therapy 
for patients in each group and to guide personalised medicine decisions within groups and likewise for other 
heterogenous data.

http://www.biomseu.com
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Method details.  Proteome analyses.  Details of the proteome analyses are described in the respective origi-
nal publications of cohort 116 and cohort 220.

ELISA of two selected proteins.  FGG and IGKC were analysed by ELISA using commercially available kits 
(Kappa Human ELISA kit from Abcam ab157709, lot: GR3174712-5; Fibrinogen Human ELISA kit from Abcam, 
ab108841, lot: GR3177851-6) in a subset of the individuals to confirm the pattern of variation observed in the 
proteome analysis. The analyses were performed as described in the protocol.

Quantification and statistical analysis.  Both univariate and multivariate selection criteria were used to guide 
the unravelling of the underlying phenomenon of the data. Overview over design and analysis performed on 
cohort 1 and cohort 2 is displayed in Table 1, Fig. 1 and 3.

ER modelling.  ER modelling builds on known methods that combine linear models as in ANOVA with multi-
variate analysis21,115–117. Here we applied ER modelling to heterogeneous data with two ‘pseudo-factors’ as main 
effects: group affiliation and MS versus controls. The interaction term was omitted as it did not reveal signifi-
cant impact. ER modelling is described in Supplementary Fig. S15, with R codes provided in Supplementary 
Fig. S16. Equation 4 in Supplementary Fig. S15 is visualised for cohort 1 in Fig. 4 for the proteins significant by 
confidence intervals of one factor within both levels of the other factor.

In ER modelling, linear models are applied as in a two-way ANOVA model, for each protein with group 
affiliation and the disease category (MS versus controls) considered as two “pseudo-factors”. As in ANOVA, a 
linear model estimates the effects of each factor and the residuals of the model. In ER modelling, the residuals of 
the complete model are added to the effects of each factor, hence the name ‘effects plus residual (ER) modelling’. 
The ER modelling method isolates one factor at a time while utilizing the residuals of the complete model to 
output two new data tables. In our case, one table reflected isolated effects of group affiliation and one reflected 
isolated effects of MS, both with the residuals of the complete model available for validation. ER modelling is 
implemented using an R program available on CRAN (https​://cran.r-proje​ct.org/web/packa​ges/ER/index​.html).

Univariate analysis of the proteome considering two pseudo factors: group affiliation and MS.  Univariate analyses 
were applied by confidence intervals (95%) on one factor at a time (group and MS) within both levels of the other 
factor. Thus, confidence intervals were performed on the difference between group B versus group A both within 
MS patients and within controls, and on the difference between MS versus controls within each group. These 
analyses were performed in the R program for ER modelling as described in Supplementary Fig. S15, although 
the same analysis could have been applied by confidence intervals of each factor within both levels of the other 
factors. Proteins found to be significant for MS versus controls in cohort 1 were validated by confidence intervals 
in cohort 2 as external cohort. The two cohorts were also combined within each group, simply by merging the 
data table, and confidence intervals of the differences between MS/CIS and controls were analysed within group 
across the two cohorts.

The data was also combined across the two groups where data of cohort 1 was included as ER values of MS 
status after omitting the impact of group affiliation, and only group A was included from cohort 2, resulting 
in a large data table of 163 individuals. Univariate analysis was performed as two-way ANOVA on this data of 
163 individuals with cohort affiliation and disease category (MS/CIS versus controls) as two input factors. The 
p-values were FDR-adjusted using rotation methodology118. This method was chosen as this test allows evalu-
ation of multicollinear data under the assumption of normality. The program FFMANOVA, written in R and 
available on CRAN (https​://cran.r-proje​ct.org/web/packa​ges/ffman​ova/index​.html), was used to adjust p-values 
by rotation test119. The univariate analyses were programmed in R (version 4.0.0) and RStudio (version 1.2.5019).

Multivariate analysis of the proteome considering two factors: group affiliation and MS status.  To identify rel-
evant features in cohort 1 in a multivariate context we applied PLS-DA22, which analyses the multivariate pattern 
related to each factor, group affiliation and MS or control, one factor at a time to avoid the confounding impact 
of one factor on the effects of the other. For multivariate feature selection, we applied Martens’ uncertainly 
test23, which is a modification of the original jackknife procedure developed for full-rank multivariate models120 
adapted by Martens and Martens to bilinear models. The method performs a t-test of the regression coefficients 
across the cross-validation samples, which results in a selection of features based on the stability of the regres-
sion coefficient when one segment at the time is omitted from the calibration data and used for validation. In 
our analysis we used sample from one individual at the time in the cross-validation segments. When performing 
this test in ER modelling, using the ER package in R, the degrees of freedom is adjusted for the terms included in 
the linear model. PLS-DA was performed on the 357 proteins identified in both cohorts. The analysis of cohort 
1 was applied after ER modelling, whereas the cohort 2 was analysed directly. The ER analysis and PLS-DA were 
programmed in R (version 4.0.0) and RStudio (version 1.2.5019).

Analysis of MS status ignoring the group affiliation.  In cohort 1, multivariate analyses of all 779 available pro-
teins were applied for the comparisons of MS versus controls ignoring the group affiliation. Recursive feature 
elimination with cross validation was validated exploratively using three different models121 to search for opti-
mal discrimination with minimum number of proteins: (1) a logistic regression model with ‘Limited-memory 
Broyden, Fletcher, Goldfarb, Shanno algorithm’ (LBFGS) as solver, (2) a logistic regression model with Library 
for Large Linear Classification (LIBLINEAR) as solver, and (3) a support vector model (SVC) classifier with 
standard scikit-learn solver24. The analyses were performed on 90% of the patients as training data with the 

https://cran.r-project.org/web/packages/ER/index.html
https://cran.r-project.org/web/packages/ffmanova/index.html
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remaining 10% viewed as test data, randomly selected while maintaining same class proportions. This analysis is 
included in the publication for demonstration of the confounding effects of group affiliation when searching for 
MS specific protein pattern. The optimal model for discrimination of MS versus controls was obtained by SVC 
(model 3). PCA was performed to visualise the multivariate pattern of variation of selected proteins21,116. These 
analyses were performed in Python version 3.6.

Protein identification.  Protein and gene names are from the original study of Opsahl and co-workers16 and 
were assigned using the R program “gProfiler2” available on https​://cran.r-proje​ct.org/web/packa​ges/gprof​iler2​
/index​.html.

Two enrichment analyses122,123 are presented, one made of the proteins validated in cohort 1 as significant by 
confidence intervals for group affiliation within both disease status (MS and controls), and for MS status within 
both groups. The other enrichment analysis is presented for proteins identified by multivariate analysis of MS/
CIS versus controls performed within each cohort. The former enrichment analysis present Gene Ontology 
information on biological process, molecular process and KEGG pathway analysis using CytoScape ver. 3 from 
the UniProtKB database and metabolic pathway membership data from KEGG database. Graph annotations were 
performed using the web-service interfaces of these databases, which were accessed using UniProt.ws and KEGG.
db R packages from Bioconductor (ver. 3.6), respectively. The second enrichment Gene Ontology information 
on biological processes is obtained using Enrichr (http://amp.pharm​.mssm.edu/Enric​hr/)123,124, and results were 
visualised using CytoScape ver. 3.

Resource availability
Materials availability The present study involves reanalyses of previous publications16,20.

Data and code availability
Cohort 1 proteome data were previously published by Opsahl and co-workers16, and cohort 2 data were previously 
published by Stoop and co-workers20, downloaded from Supplementary Material “prca1891-sup-0002-suppmat2” 
where we include all proteins available also in cohort 1. The data from the two cohorts are available as Excel files 
(DM.1, DM.1.c, and DM.2.c) and as R files. The Excel sheets present the ‘pseudofactors’ group affiliation (factor 
1) and disease status, MS versus controls (factor 2) and the proteome data after mean centring and scaling to 
z-scores. The file DM.1 is the proteome data in cohort 1 for all available 779 proteins, DM.1c is the proteome 
data in cohort 1 for the proteins that are common proteins for the two cohorts, DM.2c is the proteome data in 
cohort 2 for the common proteins of the two cohorts. https​://nofim​a.no/filea​rchiv​e/publi​catio​ns/2020/multi​
ple_scler​osis/DM.1.xlsx https​://nofim​a.no/filea​rchiv​e/publi​catio​ns/2020/multi​ple_scler​osis/DM.1.c.xlsx https​://
nofim​a.no/filea​rchiv​e/publi​catio​ns/2020/multi​ple_scler​osis/DM.2.c.xlsx. The R files are available as arrays that 
can be plugged directly into the R codes described in Supplementary Fig. S16. The file my.array.1.RData is the 
proteome data for cohort 1 for all available 779 proteins, my.array.1c.RData is the proteome data for cohort 1 for 
the common proteins of the two cohorts, my.array.2c.RData is the proteome data for cohort 2 for the common 
proteins of the two cohorts. https​://nofim​a.no/filea​rchiv​e/publi​catio​ns/2020/multi​ple_scler​osis/my.array​.1.RData​
. https​://nofim​a.no/filea​rchiv​e/publi​catio​ns/2020/multi​ple_scler​osis/my.array​.1.c.RData​. https​://nofim​a.no/filea​
rchiv​e/publi​catio​ns/2020/multi​ple_scler​osis/my.array​.2.c.RData​

Code availability
Program code for ER modelling, is available on CRAN (https​://cran.r-proje​ct.org/web/packa​ges/ER/index​.html), 
and running scripts are given in Supplementary Figs. S15 and S16. Examples of the python code used for the 
multivariate analysis of MS status ignoring group affiliation are shown in Supplementary Fig. S17. The code can 
be run from Jupyter Notebook. The code is also available on Google Colab via this link:https​://colab​.resea​rch.
googl​e.com/drive​/1Vqvb​-Ie3u6​qihwS​GLT0u​3A0RO​qShNL​eU?usp=shari​ng. The code can be run from the link 
on Google Colab. The user will be asked to sign in to a google account.
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