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Abstract 1 A spatial autocorrelation analysis was undertaken to investigate the spatial
structure of annual abundance for the pest aphid Myzus persicae collected in
suction traps distributed across north-west Europe.

2 The analysis was applied at two different scales. The Moran index was used to
estimate the degree of spatial autocorrelation at all sites within the study area
(global level). The contributions of each site to the global index were identified
by the use of a local indicator of spatial autocorrelation (LISA). A hierarchical
cluster analysis was undertaken to highlight differences between groups of
resulting correlograms.

3 Similarity between traps was shown to occur over large geographical distances,
suggesting an impact of phenomena such as climatic gradients or land use types.

4 The presence of outliers and zones of similarity (hot-spots) and of dissimilarity
(cold-spots) were identified indicating a strong impact of local effects.

5 Several groups of traps characterized by similarities in their local spatial
structure (correlograms, value of Moran’s Ii) also had similar values for land
use variables (the area occupied by agricultural zones, forest and sea).

6 It is concluded that trap data can provide information about Myzus persicae
that is representative of large geographical areas. Thus, trap data can be used to
estimate the aerial abundance of this species, even if the suction traps are not
regularly and densely distributed.

Keywords Aphids, geographical patterns, LISA, Moran index, Myzus persicae,
spatial autocorrelation, spatial structure, suction trap.

Introduction

Peach-potato aphid Myzus persicae (Sulzer) is a major pest

of potatoes and sugar beet in north-west Europe. It may

produce winter eggs on Prunus persica or, where winters are

warm enough, continue parthenogenetic reproduction year-

round on a range of crop or weed species, particularly

among the Brassicaceae and Asteraceae (Blackman &

Eastop, 2000). Therefore, it appears likely that the

geographical distribution ofM. persicae in Western Europe

is influenced by climatic factors and by the availability of

host plants. However, it is difficult to know what is the

combined effect of these factors onM. persicae distributions

and this difficulty is accentuated by the polyphagous nature

of this species.

Ecologists examine the spatial patterns of species to

understand the mechanisms that control their distribution

(Legendre & Legendre, 1998). Therefore, an understanding

of the spatial distribution of insects has important implica-

tions for planning pest monitoring programmes (Taylor,

1986; Sharov et al., 1996), for predicting population

density at unsampled locations (Liebhold et al., 1991), for

improving pest management strategies and for understand-

ing ecological relationships with different environmental

factors (Quinn et al., 1991; Harrington et al., 1995).

Previous studies have attempted to describe spatial

patterns of organisms with the use of variance-mean methods

[s2/m, ICS, ICF, Lloyd’s patchiness and crowding indices,
Correspondence: Mark Rounsevell. Tel: þ32 (0) 10 472872; fax:

þ32 (0) 10 472877; e-mail: rounsevell@geog.ucl.ac.be

Agricultural and Forest Entomology (2005) 7, 31–43

# 2005 The Royal Entomological Society



Morisita’s index (Id), and the coefficient of Taylor’s Power

Law] (Upton & Fingleton, 1985), but these indices have

focused on the sample count variance and ignored

the spatial location of samples (Liebhold et al., 1991).

Moreover, these approaches are based on the assumption

that sample values are not correlated, and thus the distance

between the samples is ignored and spatial patterns are not

identified (Sharov et al., 1996). Therefore, these techniques

do not appear to be appropriate for ecological studies where

the presence of spatial correlation between samples (i.e. the

presence of correlation between values sampled at different

points in space) is the norm rather than the exception.

Many authors argue that all spatial data fulfil the general-

ization that values from samples near to one another tend to

be more similar than those that are further apart (Liebhold

& Sharov, 1998; Koening, 1999; Epperson, 2000). This

tendency is termed spatial autocorrelation (SA) (Cliff &

Ord, 1973). Consequently, there has been an increasing

interest in the use of variograms, covariance functions and

correlograms for describing spatial patterns, measuring SA

and how its strength varies with distance (Liebhold et al.,

1991). These methods, collectively known as geostatistics,

provide information about the range (distances)

and strength of spatial correlation amongst samples

(Sharov et al., 1996). Such techniques can be used whenever

a sample value is expected to be influenced by its position in

space and its relationship to its neighbours, and this is the

case for suction trap data, which monitor the aerial density

of airborne insects (Woiwod, 1982). The usage of geostatis-

tical methods for quantifying spatial patterns in insect

counts is relatively new and there are only a few published

applications (Sokal et al., 1987; Schotzko & O’Keefe, 1989;

Liebhold et al., 1991, 1993; Schotzko & Knudsen, 1992).

For aphids, Hullé & Gamon (1990) highlighted the

resemblance of Belgian and French suction trap data in

space and time, implying the existence of spatial structure

in aphid data and indicating that a single trap was

representative of a large area (a circle of 100 km radius

being quoted as a reference in areas of similar topography).

Moreover, previous studies by Taylor (1979) found a very

strong correlation between paired aphid samples in two

traps, 81 km apart. In two traps, 389 km apart, there was

still a significant positive correlation. Quinn et al. (1991)

suggest that similar spatial structure can result from shared

environmental characteristics. Knowing how and where

insects are caught has important implications for pest

management and prevention strategies. This knowledge

can also assist the siting of traps to maximize the quality

of risk assessment. Moreover, exploratory research of this

type can also provide insight into the processes that influ-

ence species distributions at different spatial scales.

Although several methods have been used to deal

simultaneously with the location and the variable values of

ecological data, none of these techniques is as generally

applicable to the wide range of data collected by ecologists

as the weighted form of Moran’s I (Jumars et al., 1977; for a

complete review, see also Dale et al., 2002 and Perry et al.,

2002). Variables may be nominal, ordinal or interval, and

points can be regularly or irregularly distributed (Sokal &

Oden, 1978; Sokal, 1978), which is important because trap

coverage is never ideal for practical reasons. Traps can

rarely be placed at regular intervals and the position

and number of traps usually changes with time (Woiwod,

1982).

Although ecologists and biologists can formulate

assumptions regarding the processes that generate a spatial

phenomenon (Legendre & Legendre, 1998), exploratory

approaches can contribute to the development of further

hypotheses. The analysis reported here consists of an inves-

tigation of the presence or otherwise of global spatial struc-

ture in aphid data. If a significant spatial pattern is

identified, then subsequent analyses could explore the

potential underlying factors. Within this framework,

the present study was undertaken to quantify the spatial

distribution ofM. persicae using SA analysis (Moran’s I) at

a global and a local scale. Two hypotheses were tested:

(i) that there is an optimum neighbourhood size between

traps (in terms of similarity between sites) and (ii) that this

size changes because of local landscape effects. Therefore,

an attempt was made to relate spatial structures to environ-

mental factors such as land use. This exploratory analysis

aimed to characterize the global and local spatial structure

of population data and its stability in time, to quantify

spatial dependency with distance lag between traps and to

provide insights regarding the mechanisms that may have

initiated the spatial phenomenon. Thus, the analysis

focused more on the spatial patterns that exist within the

data rather than on the biological processes that underpin

these patterns. The identification of areas where aphid

populations are relatively homogenous should provide

clues as to the possible biogeographical characteristics that

influence the observed patterns in the data. Subsequently,

this could contribute to further studies of population

biology and behaviour. The present study also aimed to

identify and develop hypotheses that could be tested by

other types of analysis.

Materials and methods

Aphid data

Aphid data for the U.K., France and Belgium (34 sites)

were obtained from the EXAMINE database, which covers

the entire European network of aphid suction traps and

comprises daily data for 29 principal pest aphid species

(http://www.rothamsted.bbsrc.ac.uk/examine/; Harrington

et al., 2004). North-west Europe was chosen as a study

area because it has the greatest trap density.

Suction traps in this network collect the aerial aphid

population in a known air volume (2700m3/h) and at a

height of 12.2m above ground (Macaulay et al., 1988;

Bouchery, 1990).

For the analysis presented here, the variable log10(nþ 1)

was used with n being the annual total ofM. persicae caught

at each trap over the years 1989–2001. Annual total is useful

as an indicator of broad spatial structure, but masks

phenological differences.
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Land cover data

An analysis of the relationship between land cover and

aphid annual totals was based on the CORINE

Land Cover (CLC) database (Communautés Européennes

Commission, 1993). The CLC database consists of a

European geographical map with a minimum mapping

element of 25 ha, which is extracted from satellite data. As

a consequence of image data availability, the date of image

acquisition varies between countries over a period of

10 years. For example, the Belgian and the U.K. CLC

databases were based on data for 1989 and 1990 whereas

the French CORINE Land Cover project was carried out

using images from 1987 to 1992. Ancillary information

was used in combination to refine interpretation and

the assignment of the territory into classes described below.

CLC describes land cover (and partly land use) according

to a nomenclature of 44 classes that are organized hierarch-

ically in three levels covering the agricultural, urban and

natural sectors. The areas occupied by the different land

cover classes were extracted for a circle of radius of 50 km

centred on each trap. To ensure inclusion in the trap’s area

of representation, a circle with a radius smaller than the

reference values quoted in the literature was selected [i.e. a

radius of 80 km is suggested for the British network (Taylor,

1979) and a radius of 100 km for the French Agraphid

network (Hullé & Gamon, 1990)].

Only three land cover types were considered: (i) the

agricultural area (classes 2.1 arable land, 2.2 permanent

crops, 2.3 pastures and 2.4 heterogeneous agricultural

areas) that might represent favourable habitats to

M. persicae via the presence of hosts plants; (ii) the forested

zone (class 3.1 forests) and (iii) the area occupied by sea

(calculated as the difference between the circle area and the

surface occupied by all the land cover classes) to represent

habitats where M. persicae is unlikely to be found. The

use of these three land cover types only allows a coarse

characterization of the landscape that has not changed

much during recent decades. However, a small reduction

in agricultural areas due to urban expansion could have

occurred between the 1990s and the 2000s, as already

quantified in Ireland and Germany (Keil et al., 2003)

where the update of the Corine land cover database is

available for the year 2000.

Spatial autocorrelation analysis

Distance matrix. The first step in the analysis is to compute

the Euclidean distance matrix from the x and y co-ordinates

of the individual suction traps (dij is the element in

the distance matrix corresponding to the distance between

the observation pair i,j). The characteristics of the distance

matrices indicated a minimum allowable distance cut-off of

260 km for the years 1989–2001. Beyond that distance, the

matrix does not contain any rows with zero values (i.e.

each trap has at least one neighbour). SPACESTAT software

(version 1.90) can be used to calculate Moran’s I for a

matrix based on a distance lower than the cut-off distance

but, according to Anselin (personal communication), this

changes the scale of the statistic and no comparison

between years is possible. A correction can be made to

compare the results at shorter distances, but this is probably

not relevant because there are only very few points having

neighbours at distances lower than 260 km. Moreover, in

this case, the range of available data is weak and,

consequently, the calculated values of Moran’s I and the

correlogram obtained would be less robust and reliable.

Therefore, distances less than 260 km were not analysed.

This constraint could pose a problem if the autocorrelation

was zero for this cut-off distance. In this case, it would not

be possible to conclude anything about the spatial structure

of the data. However, if the data show a positive or negative

SA for distances greater than 260 km, then it could

be assumed quite reasonably that the SA is even stronger

for smaller distances (Tobler, 1970). Thus, it is the identifi-

cation of distances where SA no longer exists that is

more useful than defining the presence of SA at smaller

distances.

Spatial weight matrix. Next, the information in the distance

matrix was used to create a spatial weights matrix (wij is the

element in the spatial weights matrix corresponding to the

observation pair i,j). At this stage, the simplest situation is

to compute binary contiguity weights by indicating an

upper limit and a lower limit for the distance bands such

that points are, or are not, contiguous. That is to say that

wij¼ 1 for i and j ‘neighbours’ (i.e. with dij< critical dis-

tance) and wij¼ 0 otherwise. For each year, a distance

matrix is created and this is transformed into spatial weights

matrices for different contiguity upper limits: 260, 300, 350,

400, 450, 500, 600, 700, 800, 900 and 1000 km. There are no

accepted ways of choosing these weights and, according to

Jumars et al. (1977), the selection of a very general set of

weights can make the test of SA weak whereas a specific set

can miss the SA that might be shown by another choice of

weightings.

Global spatial autocorrelation. For the most part, measure-

ments of global SA are used to estimate the presence or

otherwise of SA in all of the sites within a study area:

they are taken as whole measurements. Global SA was

quantified in this research by the Moran index (I) that is

given by:

I ¼ N

S0

P
i

P
j wij � zi � zjP
i z

2
i

with zi ¼ ðxi � mÞ and zj ¼ ðxj � mÞ
xi and xj are observations for locations i and j (with mean m);

N is the number of observations and S0 is a scaling

constant: S0 ¼
P
i

P
j wij (i.e. the sum of all weights).

The spatial weights matrix from distances was then row-

standardized so that the sum of the weights for a trap was

equal to one (i.e. wsij ¼ wij=
P

j wij such that
P

j w
s
ij ¼ 1). In

this case, which is the preferred way to implement this test,

the normalizing factor S0 equals N (because each row sums

to 1) (Anselin, 1992). This allowed a comparison of the SA

indices between the various neighbourhood distances
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because, for each of them, identical importance is attached

to all the neighbours independently of their number.

This also enables comparison of the results of the various

years in spite of the fact that the traps do not have the same

operating period. The numerator corresponds to the covari-

ance between contiguous observations. This covariance is

zero in the absence of SA, positive in the presence of

positive SA, and negative in the presence of negative SA.

The covariance is standardized by the denominator, which

is a measure of the variance of the observations. In the

calculation of the index, the mean of the observations is a

reference:

(1) When I¼ 0: the covariance between contiguous

observations is zero, the neighbourhood does not

play any part; there is no SA, the observed spatial

pattern of values is equally as likely as any other

spatial pattern (i.e. abundance is independent of trap

location);

(2) When I> 0: the places are more alike if they are

contiguous; the SA is positive; similar values, either

high or low values, are more spatially clustered than is

expected to occur purely by chance (i.e. traps with

similar locations tend also to have similar aphid

abundance); and

(3) When I< 0: the places are more alike if they are far

apart; the SA is negative (i.e. traps that are closer to

each other have opposed aphid catches, reflecting a lack

of clustering, more so than for a random pattern).

Local spatial autocorrelation. Anselin (1992, 1995) developed

measures of SA at a local scale. These identify the possible

contributions of each site to the global index. The dependence,

or spatial association, between the value of the variable taken

at a site and the value of the variables in its neighbourhood is

then quantified. Local statistics are well suited to identifying

the existence of pockets of spatial association, to assess

assumptions of stationarity and to identify distances beyond

which no discernible association remains (Getis & Ord, 1996).

Applied to spatial datasets lacking global SA, the methods

may find significant local homogeneous (hot-spots) or

heterogeneous (cold-spots) areas (Sokal et al., 1998).

Conversely, when faced with global SA, both Ord & Getis

(1995) and Anselin (1995) recognize that the SA analysis

generates a bias. Ord & Getis (1995) provide a discussion of

the issue that local statistics must be interpreted according to

the degree of global autocorrelation present in the data,

otherwise Type I errors may occur. That is, locations are

identified as hot spots simply because they lie in areas of

generally high (or low) values (Ord & Getis, 2001). However,

in this case, many authors recommend the use of local SA in

an exploratory and indicative manner to see which localities

contribute more than others to the global index (Anselin,

1995; Sokal et al., 1998; Ord & Getis, 2001).

Analysis of spatial outliers allows the identification of

atypical observations. Spatial outliers are defined by

Fotheringham et al. (2000) as areas having very different

values for a variable in comparison with the values taken by

its neighbours. This notion of ‘extremeness’ only indicates

the importance of observation i in determining the global

statistic (Anselin, 1995). Thus, extreme contributors may be

identified by means of simple rules, such as the two-sigma

rule (i.e. when values of the variable are two standard

deviations away from the mean).

The spatial cluster analysis is used to discover local

patterns of spatial association and to identify zones of

similarity (hot spots) and of dissimilarity (cold spots) in

aphid abundance between traps. Local spatial clusters are

defined by Anselin (1995) as sets of contiguous locations for

which the local indicator of spatial autocorrelation (LISA)

is significant. A LISA is defined by Anselin (1995) as any

statistic that satisfies the following two requirements:

(1) The LISA for each observation gives an indication of

the extent of significant spatial clustering of similar

values around that observation and

(2) The sum of LISAs for all observations is proportional

to a global indicator of spatial association.

A local Moran (Ii) can be defined (Anselin, 1992) as:

Ii ¼ zi
X

j
wij � zj

where the observations zi, zj are deviations from the mean.

The interpretation of the local Moran as an indicator of

local instability follows from the relationship between the

local and global statistics. Specifically, the mean of Ii will

equal the global I up to a factor of proportionality:

g ¼ S0 �m2 with m2 ¼
P
i z

2
i . It is also possible to standar-

dize the local index by dividing by m2. When:

(1) Ii¼ 0: there is no SA;

(2) Ii> 0: the SA is positive [i.e. it conveys the presence of

an association of values similar to the place i where the

index is measured: traps in the neighbourhood of trap i

have similar catches whether these are high or low (hot

spots)] and:

(3) Ii< 0: the SA is negative, corresponding to an associ-

ation of values that are opposed to the place i where the

index is measured: surrounding traps have different

catches than trap i (cold spots).

Correlogram. An exploratory and systematic analysis of

local and global Moran’s I indices was carried out on

each spatial weights matrix. A useful aid in interpreting

the autocorrelation coefficients is performed by the

correlogram, which is a graphical display of the Moran

index plotted against the distance lag. The shape of

this curve provides supplementary information. The

correlogram usually takes the shape of a decreasing curve

and the distance where there is no more SA can be identified

(i.e. when the correlogram stabilizes around a value close to

zero).

Statistical inference. An advantage of this technique is that

the significance of the null hypothesis can be tested (i.e. it is

possible to quantify the probability that a spatial pattern

as extreme as that observed could have appeared by

chance). This can be tested experimentally by Monte-Carlo
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permutations of n-values of attributes through n spatial

units several times (999 times in this case) and by calculating

each time the value of the Moran’s index I* according to an

experimental distribution from which I is built. The propor-

tion for which the value of I* is larger than that of I suggests

the probability that a value of I as high as I* can appear by

chance. A confidence interval around I is also given for a

fixed level of confidence a (Fotheringham et al., 2000).

Hierarchical cluster analysis

A hierarchical cluster analysis was used to explore the role of

site characteristics in explaining aphid data. This statistical

procedure combines observations into groups or clusters.

Relatively homogeneous groups can be identified based on

selected characteristics (e.g. land use type). The technique is

based on an algorithm that starts with each trap in a

separate cluster and then combines clusters sequentially

until only one remains (Webster & Oliver, 1990). The

analysis was performed using SPSS (version 10.1; SPSS

Inc., Chicago, Illinois) statistical software using between

group linkage cluster methods with the squared Euclidean

distance as a measure of the relationship between the

individuals. This method seeks to identify a set of groups

that both minimizes within-group variation and maximizes

between-group variation. Other techniques, such as single

linkage grouping, within-group linkage and Ward’s

methods were also tested. Similar results were obtained

from the different clustering techniques that increased con-

fidence in the results. Only the results of the between-group

linkage method are presented in a dendrogram, which is a

tree diagram used to represent the steps in hierarchical

clustering. It indicates how the clusters are combined

and the values of the distance coefficients at each step:

connected vertical lines designate joined traps.

Results

General spatial trends

The first step of the analysis consists of observing the spatial

distributions within the data for each year to explore the

structure of the data and to visualize the general spatial

trends. It is expected that these spatial trends will also be

highlighted by the SA analysis. Figure 1 shows maps of the

spatial distribution of M. persicae annual abundance. To

facilitate the observation of the values taken by the variable,

the data were interpolated in ARC VIEW 3.2 (Environmental

Systems Research Institute Inc., U.S.A.) by using the

inverse distance weights method and a nearest neighbours

approach. These maps suggest the existence of spatial

trends over broad areas in the data with a south-east

towards north-west orientation.

It is important to note that the year 1989 appears to be

different, with very high values for the variable log10(nþ 1).

Furthermore, the trap at Libramont, Belgium (56) is char-

acterized by consistently low values, except in 1991 and

from 1998 to 2000, suggesting that it has characteristics

distinguishing it from the other traps.

In general, the lowest numbers of M. persicae were

trapped in the north and west of the U.K. and in Brittany.

These traps are under oceanic influence, which is likely

to affect aphid numbers. Conversely, the traps that are

characterized more often by larger values of the abundance

variable are mainly located in the east of England [Broom’s

Barn (4), Rothamsted (22), Silwood (24), Writtle (27) and

Wye (28)] and in the centre and south of France [Auxerre

(60), Orléans (67), Valence (72) and Versailles (73)]. These

are important areas where hosts of M. persicae occur: sec-

ondary hosts, including crops, on which parthenogenesis

can occur, are ubiquitous but particularly abundant in the

northern regions, and the primary host, Prunus persica, on

which the egg is laid, is particularly abundant in the

south of France. The observed spatial trends in the data

might therefore be due to broad-extent processes that have

a climatic or landscape origin.

Global Moran

The years 1989, 2000 and 2001 show no SA and values are

rarely significant (Fig. 2). Otherwise, the correlograms

are very similar. The correlograms have been averaged

over the replicate years to achieve consistency. The main

conclusion is that Moran’s I decreases with distance, but the

index is still quite high (> 0.2) over a wide range of distance.

The curve levels off at more or less 700 km. Beyond that

distance, the value of the SA index tends towards zero.

Local Moran

Following the results of the global analysis, the local Moran

test was limited to the distance range: 260 to 500 km.

Outliers. For the whole of the considered period, the traps

that contributed more than their expected share to the

global statistics were traps at Valence (72; seven times),

Montpellier (66; six times), Libramont (56; five times),

Elgin (50; four times) and Ayr (47; four times) (Table 1).

These traps, which occur at the geographical limits of the

study area, represent local exceptions to general trends.

Clusters. Results for the years 1989, 2000 and 2001 are

presented (Table 2) because, in spite of the absence of global

SA, local instability was identified. Because the current

analysis is exploratory, the level of confidence for testing

the significance can be low and a was set to 0.05. Therefore,

only Dundee (48) is significant for at least one distance for

each of these years and the clusters are mainly cold spots.

Some nodes of autocorrelation have been identified, in

particular for the year 2001 where the clusters are essentially

located in the centre of the U.K. Conversely for the year

1989, the cold-spots are mainly located in Scotland and in

Belgium. Zones of heterogeneity and homogeneity are thus

highlighted, even if the aphid data are not structured at a

global scale. Therefore, the calculation of local indices

(Table 2) complements the information given by the overall

distribution of aphid abundance (Fig. 1) by showing the

local spatial variability around each trap. For example in
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2000, Montpellier (66) and Dundee (48) are characterized

by high levels of aphid abundance (Fig. 1), but Montpellier

is within a homogeneous area (positive Ii) whereas the area

surrounding Dundee is heterogeneous (negative Ii). Direct

observation of the data makes it possible to identify

(visually) traps that differ most from the others, but the

local SA adds a criterion of homogeneity or heterogeneity

to this information.

An average local Moran was calculated for each

contiguity distance over the replicate years to achieve

more consistency and to allow generalization (Table 3). In

general, the local index is at its maximum for the smallest

investigated distances (260 km). This is in agreement

with the observations at the global level. If a local index is

maximum among the explored distances from contiguity,

then this distance optimizes the resemblance between the

total annual catches at a given trap and that of its neigh-

bours (i.e. we can determine the radius of the representation

of a trap i for which Ii is calculated). For some traps, the

shortest distance is not the optimal, meaning that there is a

strong impact of local effects [e.g. Hereford (9), Long

Ashton (14), Newcastle (15), Rothamsted (22), Libramont

(56), Auxerre (60) and Reims (71)] (Table 3). Environmental

factors, such as gradients of land use, may have an

influence.

The average correlograms for the years 1989–2001

(Fig. 3) show some groups, arbitrarily defined according to

similarities in the shape of the correlograms and in the value

2001 2000 1999 1998

1997 1996 1995 1994

1993 1992 1991 1990
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50
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47
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1826
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1
4
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28

25 24 12
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61
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64 58
67 60

62
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12. Littlehampton
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Figure 1 The distribution of the variable

log10(nþ 1) annual total Myzus persicae.
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Figure 2 The global correlograms: the Moran Index calculated for each investigated distance. P< 0.05 is indicated by the symbol: & and

P > 0.05 by the symbol ^.
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of the local Moran’s Ii. One Group A of traps Libramont

(56) and Auxerre (60) is characterized by low negative

values of Ii whereas Group C, comprising traps at Ayr

(47), Elgin (50) and Montpellier (66), has high positive

values of Ii and a decreasing curve. The latter group is

composed of traps that have nearest neighbours with

identical catches, whereas the former is characterized by

traps surrounded by neighbours with heterogeneous

catches. Another group B [Hereford (9), Long Ashton (14)

and Reims (71)] has correlograms that increase at short

distances with a peak at approximately 350 km, meaning

that the closest neighbours are not the most similar with

respect to aphid abundance. The other correlograms are

more difficult to differentiate, although traps at Preston

(18) and Wye (28) appear to have some similarity of shape

(Group D).

Hierarchical cluster analysis

Hierarchical cluster analysis allowed further investigation

of the relationships between aphid data structures at a local

scale and the main land use categories. The dendrogram

(Fig. 4) shows that the four groups identified by correlo-

grams (Fig. 3) can also be identified on the basis of land use

Table 2 Presence of pockets of local spatial autocorrelation (Ii) in the absence of global spatial autocorrelation

Traps

Year

Distance

(km) 62 14 55 22 24 48 27 18 56 66 49 9 64 4 5 70

2001 260 �0.54** �0.10* 0.24* 0.08* �0.21* �1.75 0.20 0.37

300 �0.54** �0.05 0.02 �0.15 �1.75* 0.14 �0.23* 0.16 �0,09

350 �0.30 �0.05 �0.06 0.02 �0.10 �1.75* �0.17 �0.09

400 �0.17 �0.02 �0.07 �1.75* �0.30* �0,09

450 �0.21 �1.06 �0.07 �0.30* �0.53 �0.29 �0.04

500 0.08 �0.02 �1.04 �0.30* �0.35 �0.05 �0.42* �0.05

2000 260 �0.12 1.11 �0.58 �1.29* 0.38* 1.78 0.02 0.02

300 �0.08 �0.38 �1.28* 0.38* 1.78* 0.02 0.02

350 �0.08 �0.25 �1.28* 0.22 1.78 0.02 �0.29

400 �0.05 �1.28* �0.16 0.22 1.78* 0.01 �0.36

450 �1.01 �0.13 0.59 0.01 �0.36 �0.61*

500 0.02 �0.84 �0.13 0.59 0.01 0.05 �0.33 �0.32

1989 260 �0.77 �0.59 �0.37* �0.50 �0.16 �0.37* �0.04

300 �0.40 �0.31* �0.50 �0.16* �0.37*

350 �0.36 �0.31* �1.21* �0.50 �0.16* �0.37*

400 �0.40 �0.31* �1.21* �0.50 �0.11 �0.25

450 0.05 �0.41 �0.21 �1.17** �0.08 �0.19

500 �0.16 �0.80* �0.39 0.03*

*P< 0.05; **P< 0.01.

Table 1 Extreme contributors (trap number) identified for each year and for each investigated range of distances. The traps Ayr (47), Elgin (50),

Libramont (56), Montpellier (66) and Valence (72) are the most represented over the period 1989–2001

Distance (km) 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989

260 48 66 66 14 42 47 50 60 60 47 62

72 72 60 22 50 66 50 56

27 72

300 48 66 66 66 62 14 4 50 66 47 66 47 50

72 72 72 66 47 27 72 56 72 50 56

48 72 56 71

350 48 66 62 66 55 4 50 66 47 60 47 56

72 66 72 22 72 56 66 50

48 72 27

400 48 66 72 66 66 55 4 50 66 47 60 47 50

72 72 72 27 72 56 66 50 56

48 50 56

450 48 48 72 66 66 55 4 50 66 47 60 47 50

72 70 56 22 72 56 66 50 58

72 56 50 56

500 48 66 72 66 66 55 56 50 72 56 60 50 72

48 72 72 50 72 56 50

56
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variables. The distance between clusters is sufficiently

large to imply good differentiation between groups,

whereas the distance within clusters is small enough to

indicate that the groups are homogeneous. Thus, the

groups previously identified by the correlograms comprise

homogeneous clusters on a land use basis (i.e. the local

spatial structure, similarity or disparity) relates to land-

scape characteristics such as land use type. However, it is

necessary to consider the information present in Table 4

(i.e. the surfaces occupied by the different land use types

within each circle and in the pie-charts of their mean

relative proportion for each group) (Fig. 5) to understand

what aspects of land use lead to similar groups and thus

to similar correlograms. Comparison of the two main

clusters (identified in Fig. 4) and the pie-charts (Fig. 5)

suggests that the proximity or not of traps to the sea

influences the local spatial pattern in the aphid data.

Traps close to the sea (Groups C and D) are character-

ized by a decreasing curve (i.e. local Moran Ii decreases

with distance) (Fig. 3); the other traps (Groups A and B)

are characterized by an absence of local spatial autocor-

relation at short distance lags. The traps within Group B

are characterized by a prevailing agricultural landscape

whereas the traps within Group C present at least 20%
of each land use category. Consequently, as distance lags

increase, the landscape composition changes: less sea is

likely to be present compared with arable land. Thus, as

the distance lag increases, the traps in the neighbourhood

of a trap in Group C might have less similar catches

and it appears that traps within a neighbourhood of

350–400 km radius might be more similar to traps within

Group B. On the other hand, the traps within Group A

have a considerable forest component whereas the D traps

are marked by a significant oceanic influence. It is not

surprising therefore that the traps within Group A and D

show no or little negative local SA because the landscape

composition is more heterogeneous. Thus, agricultural

areas, forest and sea, appear to have an influence on

the structure of the aphid data. This supports the

assumptions posed earlier following the results of the SA

analysis.

Discussion

Similarities in the spatial distribution of aphid populations

were demonstrated by the correlograms of the global

Moran index. These similarities were consistent with the

hypotheses that spatial structure is present in the aphid

data for Western Europe and that individual traps are

correlated over distances up to approximately 700 km for

M. persicae. This observation is in agreement with the

Table 3 Mean of the significant local index (mean Ii*) over the period 1989–2001 calculated for each contiguity distance and for each trap. (Only

the traps presenting at least one significant Ii (P<0.05) for all the range of distances are shown)

Traps

Distance

(km) 14 22 48 27 18 11 65 56 66 49 50 9 47 15 26 28 4 71 60 25

260 0.00 0.67 0.48 1.24 0.47 0.97 0.35 0.12 2.50 1.06 1.77 0.17 1.57 0.59 0.58 0.54 1.29 �0.04 0.30 �0.46

300 0.05 0.59 0.20 0.90 0.38 0.84 0.32 �0.37 2.32 0.84 1.36 0.03 1.43 0.48 0.60 0.44 1.12 �0.05 �0.14 0.21

350 0.44 0.77 0.13 0.69 0.21 0.67 0.34 �0.57 2.50 0.78 1.36 0.57 1.45 0.45 0.50 0.31 0.94 0.51 �0.04 �0.01

400 0.34 0.48 0.13 0.74 0.04 0.29 0.31 �0.56 2.32 0.78 1.36 0.40 1.29 0.71 0.48 0.30 0.71 0.38 �0.35 0.20

450 0.29 0.56 0.42 0.18 0.04 0.12 0.26 �0.55 1.56 0.70 0.83 0.25 0.99 0.35 0.47 0.22 0.12 0.57 �0.03 0.13

500 0.18 0.15 0.37 0.11 0.04 0.11 0.08 �0.56 1.17 0.75 0.87 0.04 0.64 0.14 0.27 0.12 �0.26 0.60 0.01 0.13

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

260 300 350 400 450 500 distance (km)

Local Moran Ii

14

9

71

56

60

50

47

66

28

18

22

48

27

11

65

49

15

26

4

25

TRAPS

Group B

Group A

Group C

Group D

Figure 3 Mean correlograms over the per-

iod 1989–2001 for the different traps: (4,

Broom’s Barn; 9, Hereford; 11, Kirton; 14,

Long Ashton; 15, Newcastle; 18, Preston;

22, Rothamsted; 25, Starcross; 26, Tad-

caster; 27, Writtle; 28, Wye; 47, Ayr; 48,

Dundee; 49, East Craigs; 50, Elgin; 56,

Libramont; 60, Auxerre; 65, Loos; 66,

Montpellier; 71, Reims). Different groups

can be defined according to similarities in

the shape of the correlograms and in the

value of the local Moran’s Ii: Group A traps

are characterized by low negative values of

Ii; Group B is characterized by correlo-

grams that increase at short distances with

a peak at approximately 350 km; Group C

shows high positive values of Ii and a

decreasing curve; Group D shows a very

low positive value of Ii at short distances

and no SA with larger distance lags.
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conclusions of Taylor (1979) that the similarity between

traps remains important over large distances, suggesting

the influence of broad-extent phenomena. This observation

is important because the analysis conducted here was based

on north-west Europe, which has the highest density of

traps. The implication is that traps in other parts of Europe

that are less densely distributed can still provide informa-

tion about M. persicae that is representative of large

geographical areas. Thus, it appears that there are reason-

able grounds to believe that trap data can be used to

estimate M. persicae aerial abundance at unsampled

locations across large parts of Europe.

The characteristics of the data, the results of the global

analysis at a small scale and, particularly, the shape of the

correlograms (i.e. a monotonically decreasing curve where

nearly all SA values are significant) suggest the presence of

a linear gradient in the data. Legendre (1993) indicates that

there are two kinds of gradients. On the one hand, the

observed gradient may be deterministic, and ‘true gradients’

can be extracted using trend-surface analysis (Legendre &

Legendre, 1998). In this case, no autocorrelation is assumed

in the variable of interest and the spatial structure may result

from the effect of explanatory variables, which themselves

exhibit a spatial structure. The spatial structure may thus be

the result of dependence of the studied variable on one or

several causal variables that are spatially structured

(Legendre & Legendre, 1998). On the other hand, ‘false

gradients’ are structures that may look like gradients, but

that appear in the studied variable because the process

producing the values of annual abundance is spatial and

generates autocorrelation in the data (Legendre &

Legendre, 1998). According to Legendre & Legendre

(1998), it is difficult to determine whether the observed

gradient is deterministic (‘true’) or is part of a landscape

displaying autocorrelation at small spatial scales (‘false’).

The results presented in this study suggest that both effects

could occur and that the factors responsible for the spatial

structures are primarily of climatic and landscape origin.

The spatial dependency over large distance lags indi-

cates the possible influence of broad-extent phenomena

(e.g. autocorrelation in the habitat, dispersal or some

combination of these two factors with dynamic processes

such as the evolution of the main climatic gradients).

Moreover, large variations in temperature and land use

types have a spatial structure at the same scale as the

aphid data (i.e. they are all influenced by latitudinal and

longitudinal gradients). Topography could also play a

significant role in the scale-dependency of these relation-

ships. Areas of high topographic variability tend to have

climates with high spatial variability, and the landscape

characteristics can change rapidly over relatively short

49 14
73 21
60 17
56 16
14 4
27 10
22 7
11 3
9 2

71 20
26 9
4 1

65 18
47 12
66 19
50 15
18 6
48 13
15 5
25 8
28 11

CASE

Label Num

0 5 1010 15 20 25

Dendrogram using Average Linkage (Between Groups)

Rescaled Distance Cluster Combine

Figure 4 Dendrogram obtained from the hierarchical cluster analy-

sis. Homogeneous groups of traps based on land use character-

istics have been identified. Connected vertical lines designate joined

traps. Label identifies the traps by their EXAMINE codes; ‘Num’

identifies the number of the trap in the data file; boxes around traps

represents the four groups identified by the mean correlograms (in

Fig. 4): for traps 14, 9 and 71 (represented in Fig. 4 by a black line);

for traps 60 and 56 (represented in Fig. 4 by a grey line); for traps

47, 66 and 50 (represented in Fig. 4 by a black dotted line); and for

traps 18 and 28 (represented in Fig. 4 by a black dashed line).

Table 4 Surfaces in km2 occupied by the different land use cat-

egories within each circle of radius 50 km around the traps and the

mean values for the traps belonging to each group

Surface (km2)

Group Traps Agricultural area Forested zone Sea

C 50 1803.4 808.9 3170.6

47 2380.4 892.2 1783.8

66 2547.1 1318.4 38.1

D 15 3186.7 349.9 2955.1

28 3315.6 325.8 3442.1

18 3335.4 140.8 2045.4

48 3591.8 311.2 1576.0

A 56 3669.9 3650.7 41.8

D 25 3975.7 382.4 2683.4

A 73 4278.6 1655.8 41.5

49 4348.3 314.1 199.4

60 5252.6 2413.2 41.3

B 27 5264.9 199.1 637.3

14 5408.1 563.5 913.4

22 5494.4 325.0 41.3

26 5637.4 203.4 39.8

71 6084.8 1317.2 38.1

11 6092.1 132.7 932.0

9 6312.4 706.3 40.4

65 6320.6 370.6 39.8

4 7002.6 280.6 38.1

C Mean 2243.6 1006.5 1664.2

D Mean 3325.5 233.3 2743.8

A Mean 4461.2 3031.9 41.5

B Mean 5935.1 862.3 330.6
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distances. (Communautés Européennes Commission,

1993; Parry, 2000).

The analysis on a local scale supported these hypotheses.

Values of annual abundance two standard deviations from

the mean occurred at both the northern [Elgin (50) and Ayr

(47)] and southern [Valence (72) and Montpellier (66)]

extremes of the study area. The influence of more local

landscape characteristics is also possible. Elgin and Ayr

are hilly areas, characterized by cold winter temperature

and, in the latter case, not many crop host plants of

M. persicae are grown. Moreover, there will be high levels

of winter mortality as low temperatures tend to kill the

parthenogens and there are no peach trees on which the

eggs can be laid. This could explain the low densities of

aphids observed in these two places during the whole of the

considered period (Fig. 1). Conversely, in France, peach is

primarily produced in the valley of the Rhone and on the

Mediterranean coast (Hullé et al., 1998) where the traps at

Valence (72) and Montpellier (66) are located. Levels of

winter mortality will also be lower in Montpellier because

the winter climate is milder. These characteristics are thus

more favourable for aphid development and explain the

strong aphid abundance observed for these traps in Fig. 1.

The case of the trap at Libramont (56) is interesting because

it often has unusual catches that are probably due to its

geographical position. The trap at Libramont is located in

an agricultural area, but on a slope, facing an extensive

forested region. The samples are hence influenced by

winds carrying mainly forest aphid species. Consequently,

captures may not be representative of the flight activity in this

region and agricultural pests such as M. persicae may be

under-estimated. The local spatial autocorrelation analysis

has therefore highlighted these particularities and suggests

a need for caution when using these data to extrapolate to

wider areas.

The methodology employed at a local scale also reveals

some similarities between sites with respect to the behaviour

of the local Moran Index (Ii) with distance. Some groups

have been characterized by their local spatial structure

(shape of the correlograms and value of Moran’s Ii) and

59%
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Figure 5 Pie-charts representing the mean composition of the landscape for the four groups identified on the basis of their mean correlograms

(Fig. 3). Proportion (%) of agricultural areas, forest zones and sea for each group (mean values for the traps belonging to each group).
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they also have been identified on the basis of land use

criteria by a hierarchical cluster analysis. The area occupied

by agriculture, forest and sea appears to be related to the

total number of M. persicae caught in a year. Moreover,

agricultural areas have greater numbers of aphids because

they provide host plants.

The present study has illustrated the use of geostatistics

for the spatial analysis of annual abundance of an aphid

species: the three stages of this analysis provide clues as to

the underlying processes that may initiate the observed

spatial structure. Thus, it was shown that this structure is

influenced by processes at broad and fine extent and caused

by climatic or landscape characteristics or by a position

effect (spatial component). Detrending the data could

potentially be of use to separate these different effects.

The aphid data demonstrate global spatial structure over

large distances that is quite stable in time. The existence of

hot-spots allows the definition of biogeographical areas

around traps within which aphid populations are relatively

homogeneous. The local indices could be used in associ-

ation with geographical information systems to create

maps that represent these hot-spots and the homogeneous

biogeographical zones (Anselin & Bao, 1997). These results

have implications for the study of aphid population biology

and suggest lines for further investigation using the spatially

and temporally extensive aphid database. For example,

examination of the interactions between spatial patterns of

aphid abundance and various environmental and landscape

variables could provide biological explanations and further

evidence in support of the hypotheses proposed here.

Other aphid variables such as phenology could also be

analysed. Possible mechanisms behind spatial population

synchrony, such as the Moran effect, are still a major issue

in population ecology (Bjørnstad et al., 1999). Even though

Moran (1953) showed that, for linear models, population

synchrony would be expected, matching the corresponding

environment, few analyses have been able to establish a

parallelism between the structure of environmental factors

and population synchrony (Goodridge, 1991; Lindström

et al., 1996; Sutcliffe et al., 1996; Koening, 1999). The

methodology employed in the present study could be used

for environmental data as well as aphid data.

To date, the practical applications undertaken with suc-

tion trap catches have primarily been at regional, or even

local, scales, providing information to aid in their control

decisions. The results presented here suggest that the

suction trap data are suitable for studies over a large area

and therefore can be important for understanding the likely

impacts of processes such as global environmental change.
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succion de 12 m par une méthode de simulation. Euraphid

Network: Trapping and Aphid Prognosis (ed. by R. Cavalloro),

pp. 83–85. Commission of the European Communities, Luxem-

bourg.

Cliff, A.D. & Ord, J.K. (1973) Spatial Autocorrelation. Pion, U.K.
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