United States Patent
Bauer et al.

(54) DESATURASE AND METHOD FOR THE PRODUCTION OF POLYUNSATURATED FATTY ACIDS IN TRANSGENIC ORGANISMS

(75) Inventors: Joerg Bauer, Teltow (DE); Johnathan A. Napier, Preston Hertfordshire (GB); Olga Sayanova, St. Albans Hertfordshire (GB)

(73) Assignee: Rothamsted Research Ltd., Hertfordshire (GB)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 757 days.

(21) Appl. No.: 12/990,492
(22) PCT Filed: Apr. 29, 2009
(86) PCT No.: PCT/EP2009/055210
(21)(4) Date: Feb. 15, 2011
(87) PCT Pub. No.: WO2009/133145
PCT Pub. Date: Nov. 5, 2009

(65) Prior Publication Data

(30) Foreign Application Priority Data
Apr. 30, 2008 (EP) 08155461

(51) Int. Cl.
C12P 7/64 (2006.01)
C12N 9/02 (2006.01)
C12N 15/00 (2006.01)
C07H 21/04 (2006.01)
A01H 5/00 (2006.01)
C12N 15/82 (2006.01)
C12N 5/14 (2006.01)
A28K 1/165 (2006.01)
C11B 1/00 (2006.01)

(52) U.S. Cl.
USPC 800/281; 435/134; 435/189; 435/320.1; 435/419; 536/23.2; 536/23.7; 426/52; 426/417; 800/295

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,614,393 A 3/1997 Thomas et al.
FOREIGN PATENT DOCUMENTS
EP 0 550 162 A1 7/1993

OTHER PUBLICATIONS
Bell and Pond 1996 Phytochemistry 41:2 p. 465-471.

(Continued)

Primary Examiner — David T Fox
Assistant Examiner — Matthew Keogh
Attorney, Agent, or Firm — Foley & Lardner LLP

ABSTRACT
The present invention relates to a polynucleotide from Emiliana huxleyi which codes for a desaturase and which can be employed for the recombinant production of polyunsaturated fatty acids. The invention furthermore relates to vectors, host cells and transgenic nonhuman organisms which comprise the polynucleotide according to the invention, and to the polypeptides encoded by the polynucleotide. The invention furthermore relates to antibodies against the polypeptide according to the invention. Finally, the invention also relates to production methods for the polyunsaturated fatty acids and for oil, lipid and fatty acid compositions and to their use as drugs, cosmetics, foodstuffs, feedstuffs, preferably fish food, or food supplements.

15 Claims, 4 Drawing Sheets
References Cited

OTHER PUBLICATIONS

* cited by examiner
Fig 2.

A

B

C

D
Fig. 4

Diagram of biological pathways involving various desaturases and elongases.

- **18:1 Δ⁹-desaturase**
 - 18:2 Δ⁹,12
 - 18:3 Δ⁹,12,15
 - 20:2 Δ¹¹,14
 - 20:3 Δ⁸,11,14
 - 20:4 Δ⁸,11,14,17
 - 20:5 Δ⁵,8,11,14,17
 - 22:4 Δ⁷,10,13,16
 - 22:5 Δ⁴,7,10,13,16,19

- **Δ⁹-elongase**
 - 18:3 Δ⁶,9,12
 - 18:4 Δ⁶,9,12,15

- **Δ⁶-desaturase**
 - 18:3 Δ⁶,9,12
 - 18:4 Δ⁶,9,12,15
 - 20:3 Δ¹¹,14,17

- **Δ⁳-desaturase**
 - 20:4 Δ⁸,11,14,17

- **Δ⁵-desaturase**
 - 20:4 Δ⁸,11,14,17
 - 20:5 Δ⁵,8,11,14,17

- **Δ⁵-elongase**
 - 22:4 Δ⁷,10,13,16
 - 22:5 Δ⁴,7,10,13,16,19

- **Δ⁴-desaturase**
 - 22:5 Δ⁴,7,10,13,16,19

- **Δ³-desaturase**
 - 22:6 Δ⁴,7,10,13,16,19
1 DESATURASE AND METHOD FOR THE PRODUCTION OF POLYUNSATURATED FATTY ACIDS IN TRANSGENIC ORGANISMS

This application is a 371 of PCT/EP09/55210 filed 29 Apr. 2009.

The present invention relates to a polynucleotide from *Emiliana huxleyi* which codes for a desaturase and which can be employed for the recombinant production of polynsaturated fatty acids. The invention furthermore relates to vectors, host cells and transgenic nonhuman organisms which comprise the polynucleotides according to the invention, and to the polypeptides encoded by the polynucleotides. The invention furthermore relates to antibodies against the polypeptides according to the invention. Finally, the invention also relates to production methods for the polynsaturated fatty acids and for oil, lipid and fatty acid compositions and to their use as drugs, cosmetics, foodstuffs, feedstuffs, preferably fish food, or food supplements.

Fatty acids and triacylglycerides have a multiplicity of applications in the food industry, in animal nutrition, in cosmetics and in the pharmacological sector. Depending on whether they are free saturated or unsaturated fatty acids or else triacylglycerides with an elevated content of saturated or unsaturated fatty acids, they are suitable for very different applications. Polynsaturated fatty acids such as linoleic acid and linolenic acid are essential for mammals, since they cannot be produced by the latter themselves. Polynsaturated o3-fatty acids and o6-fatty acids are therefore an important constituent in animal and human nutrition.

Polynsaturated long-chain o3-fatty acids such as eicosapentaenoic acid (EPA, C20:5n-3) or docosahexaenoic acid (DHA, C22:6n-3) are important components in human nutrition owing to their various roles in health aspects, including the development of the child brain, the functionality of the eyes, the synthesis of hormones and other signal substances, and the prevention of cardiovascular disorders, cancer and diabetes (Poulos, A Lipids 30:1-14, 1995; Horrocks, I. A and Yeo Y K Pharmacol Res 40:211-225, 1999). This is why there is a demand for the production of polynsaturated long-chain fatty acids.

Owing to the present-day composition of human food, an addition of polynsaturated o3-fatty acids, which are preferably found in fish oils, is needed for the future particularly important. Thus, for example, polynsaturated fatty acids such as docosahexaenoic acid (DHA, C22:6n-3) or eicosapentaenoic acid (EPA, C20:5n-3) are added to infant formula to improve the nutritional value. The unsaturated fatty acid DHA is said to have a positive effect on the development and maintenance of brain functions.

Hereinbelow, polynsaturated fatty acids are referred to as PUFAs, PUFAs, LCPUs or LCPUs (polynsaturated fatty acids, PUFAs, long-chain polynsaturated fatty acids, LCPUs). The various fatty acids and triglycerides are mainly obtained from microorganisms such as Mortierella and *Schizochytrium* or from oil-producing plants such as soybean, oilseed rape, algae such as Cryptothecodinium or Phaeodactylum and others, where they are obtained, as a rule, in the form of their triacylglycerides (triglycerides—triglycerols). However, they can also be obtained from animals, such as, for example, fish. The free fatty acids are advantageously prepared by hydrolysis. Very long-chain polynsaturated fatty acids such as DHA, EPA, arachidonic acid (=ARA, C20:4n-6), dihomo-γ-linolenic acid (C20:3n-9), or docosapentaenoic acid (DPA, C22:5n-3) are not synthesized in oil crops such as oilseed rape, soybean, sunflower or safflower. Conventional natural sources of these fatty acids are fish such as herring, salmon, sardine, redfish, eel, carp, trout, halibut, mackerel, zander or tuna, or algae.

Depending on the intended use, oils with saturated or unsaturated fatty acids are preferred. In human nutrition, for example, lipids with unsaturated fatty acids, specifically polynsaturated fatty acids, are preferred. The polynsaturated o3-fatty acids are said to have a positive effect on the cholesterol level in the blood and thus on the possibility of preventing heart disease. The risk of heart disease, a stroke or hypertension can be reduced markedly by adding these o3-fatty acids to food. Also, o3-fatty acids have a positive effect on inflammatory, specifically on chronically inflammatory, methods in association with immunological diseases such as rheumatoid arthritis. They are therefore added to foodstuffs, specifically to dietary foodstuffs, or are employed in medicaments. o6-Fatty acids such as arachidonic acid tend to have a negative effect on these disorders in connection with these rheumatic diseases on account of our usual dietary intake.

o3- and o6-fatty acids are precursors of tissue hormones, known as eicosanoids, such as the prostaglandins, which are derived from dihomo-γ-linolenic acid, arachidonic acid and eicosapentaenoic acid, and of the thromboxanes and leukotrienes, which are derived from arachidonic acid and eicosapentaenoic acid. Eicosanoids (known as the PG series) which are formed from o6-fatty acids generally promote inflammatory reactions, whereas eicosanoids (known as the PG series) from o3-fatty acids have little or no proinflammatory effect.

Owing to the positive characteristics of the polynsaturated fatty acids, there has been no luck of attempts in the past to make available genes which are involved in the synthesis of fatty acids or triglycerides for the production of oils in various organisms with a modified content of unsaturated fatty acids. Thus, US 91/13972 and its US equivalent describe a Δ9-desaturase. US 93/11245 claims a Δ15-desaturase and US 94/11516 a Δ12-desaturase. Further desaturases are described, for example, in EP-A-0 550 162, US 94/18337, WO 97/05892, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990; 2014-2014, Wada et al., Nature 347, 1990; 200-203 or Huang et al., Lipids 34, 1999; 669-659. However, the biochemical characterization of the various desaturases has been insufficient up to date since the enzymes, being membrane-bound proteins, present great difficulty in their isolation and characterization (McKee et al., Methods in Enzymol. 71, 1981: 1214-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). As a rule, membrane-bound desaturases are characterized by being introduced into a suitable organism which is subsequently analyzed for enzyme activity by analyzing the starting materials and the products. Δ6-Desaturases are described in WO 93/06712, U.S. Pat. No. 5,614,393, WO 96/21022, WO 00/21557 and WO 99/27111. Their application for production in transgenic organisms is described, for example, in WO 98/46763, WO 98/46764 and WO 98/46765. In this context, the expression of various desaturases and the formation of polynsaturated fatty acids is also described and claimed, see, for example, WO 99/64616 or WO 98/46776. As they can also be used efficiently to desaturase and its effect on the formation of polynsaturated fatty acids, it must be noted that the expression of a single desaturase as described to date has only resulted in low contents of unsaturated fatty acids/lipids such as, for example, γ-linolenic acid and linoleic acid. Moreover, a mixture of o3- and o6-fatty acids was obtained, as a rule.
Especially suitable microorganisms for the production of PUFA s are microalgae such as Phaeodactylum tricornutum, Porphyridium species, Thraustochytrium species, Schizochytrium species or Cryptophycinum species, ciliates such as Stylonchia or Colpidium, fungi such as Mortierella, Entomophthora or Mucor and/or masses such as Physcomitrella, Ceratodon and Marchantia (R. Vaidhappily & F. Chen (1998) Botanica Marina 41: 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060-1062; M. Akimoto et al. (1998) Appl. Biochemistry and Biotechnology 73: 269-278). Strain selection has resulted in the development of a number of mutant strains of the microorganisms in question which produce a series of desirable compounds including PUFA s. However, the mutation and selection of strains with an improved production of a particular molecule such as the polyunsaturated fatty acids is a time-consuming and difficult method. This is why recombinant methods as described above are preferred whenever possible. However, only limited amounts of the desired polyunsaturated fatty acids such as EPA, EPA or ARA can be produced with the aid of the abovementioned microorganisms. Moreover, depending on the microorganism used, these are generally generated as fatty acid mixtures of, for example, EPA, DPA and ARA.

A variety of synthetic pathways is being discussed for the synthesis of arachidonic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Thus, EPA or DHA are produced in marine bacteria such as Vibrio sp. or Shewanella sp., via the polyketide pathway (Yü, R. et al. Lipids 35: 1061-1064, 2000; Takeyama, H. et al. Microbiology 143: 2725-2731, 1997).

An alternative strategy is the alternating activity of desaturases and elongases (Zank, T. K. et al. Plant Journal 31:255-268, 2002; Sakornladi, E. et al. Gene 238:445-453, 1999). A modification of this pathway via Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase and Δ4-desaturase is the Sprecher pathway (Sprecher 2000, Biochim. Biophys. Acta 1486: 219-231) in mammals. Instead of the Δ4-desaturase, a further elongation step is effected here to give C24:4, followed by a further Δ6-desaturation and finally β-oxidation to give the C22 chain length. What is known as the Sprecher pathway is, however, not suitable for the production in plants and microorganisms since the regulatory mechanisms are not yet known.

Depending on their desaturation pattern, the polyunsaturated fatty acids can be divided into two large classes, viz. ω6- or ω3-fatty acids, which differ with regard to their metabolic and functional activities. The starting material for the ω6-metabolic pathway is the fatty acid linoleic acid (18:2ω6:12), while the ω3-pathway proceeds via linolenic acid (18:3ω6:12:15). Linolenic acid is formed by the activity of a Δ15-desaturase (Toccher et al. 1998, Prog. Lipid Res. 37, 73-117; Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113).

Mammals, and thus also humans, have no corresponding desaturation activity (Δ12- and Δ15-desaturase) and must take up these fatty acids (essential fatty acids) via food. Starting with these precursors, the physiologically important polyunsaturated fatty acids arachidonic acid (=ARA, 20:4ω6:11:14), an ω6-fatty acid and the two ω3-fatty acids eicosapentaenoic acid (=EPA, 20:5ω6:11:14:17) and docosahexaenoic acid (DHA, 22:6ω6:11:14:17:20) are synthesized via the sequence of desaturation and elongation reactions. The application of ω3-fatty acids shows the therapeutic activity described above in the treatment of cardiovascular diseases (Shimikawa 2001, World Rev. Nutr. Diet. 88, 100-108), inflammations (Calder 2002, Proc. Nutr. Soc. 61, 345-358) and arthritis (Cleland and James 2000, J. Rheumatol. 27, 2305-2307).

Higher plants comprise polyunsaturated fatty acids such as linoleic acid (C18:2ω6) and linolenic acid (C18:3ω6). ARA, EPA and DHA are not found at all in the seed oil of higher plants, or only in minuscule amounts (E. Ucciani: Nouveau Dictionnaire des Huiles Végétales [New Dictionary of Vegetable Oils], Technique & Documentation—Lavoisier, 1995. ISBN: 2-7430-0000-0). However, the production of LCPUFAs in higher plants (preferably in oil crops such as oilseed rape, linseed, sunflower and soybeans) would be advantageous since large amounts of high-quality LCPUFAs for the food industry, animal nutrition and pharmaceutical purposes might be obtained economically. A potential route is via recombinant methods, where genes which code for enzymes of the biosynthesis of LCPUFAs are introduced and expressed. These genes code for, for example, Δ6-desaturases, Δ6-elongases, Δ5-desaturases or Δ4-desaturases. These genes can be advantageously isolated from microorganisms and lower plants which produce LCPUFAs and incorporate them in the membranes or triacylglycerides. Thus, it has already been possible to isolate Δ6-desaturase genes from the moss Physcomitrella patens and Δ6-elongase genes from P. patens and from the nematode C. elegans. (Zank, T. K. et al. Plant Journal 31:255-268, 2002. Beginn et al. Biochem Soc Trans 28: 661-663, 2000).

The first transgenic plants which comprise and express genes coding for LCPUFA biosynthesis enzymes and which produce LCPUFAs were described for the first time, for example, in DE-A102 19023 (method for the production of polyunsaturated fatty acids in plants). However, these plants produce LCPUFAs in amounts which require further optimization for methoding the oils which are present in the plants. To make possible the fortification of food and of feed with these polyunsaturated fatty acids, there is therefore a great need for a simple, inexpensive method for the production of these polyunsaturated fatty acids, specifically in eukaryotic systems.

The object on which the present invention is based is the provision of such means and measures. This object is achieved by the embodiments which are described in the patent claims and hereinbelow.

The present invention thus relates to a polynucleotide comprising a nucleic acid sequence selected from the group consisting of:

(a) nucleic acid sequence as shown in any of SEQ ID NO: 1;
(b) nucleic acid sequence which codes for a polypeptide having an amino acid sequence as shown in any of SEQ ID NO: 2;
(c) nucleic acid sequence which has at least 70% identity to one of the nucleic acid sequence of (a) or (b), and which codes for a polypeptide with desaturase activity; and
(d) nucleic acid sequence for a fragment of a nucleic acid of (a), (b) or (c), where the fragment codes for a polypeptide with desaturase activity.

According to the invention, the term “polynucleotide” refers to polynucleotides which comprise nucleic acid sequences which code for polypeptides with desaturase activity. The desaturase activities are preferably required for the biosynthesis of lipids or fatty acids. Especially preferably, they take the form of the following desaturase activity: Δ5-desaturase activity. The desaturase is preferably involved in the synthesis of polyunsaturated fatty acids (PUFAs) and especially preferably in the synthesis of long-chain PUFAs (LCPUFAs). Suitable detection systems for this desaturase activity are described in the examples or in WO 2005/083053. The specific polynucleotides according to the invention, i.e. the polynucleotide with a nucleic acid sequence as shown in
SEQ ID NO: 1 or polynucleotides which code for a polypeptide with an amino acid sequence as shown in SEQ ID NO: 2 have been obtained from *Emilia huxleyi*. The term also comprises variants of the abovementioned specific polynucleotides. These may take the form of homologous, orthologous or paralogous sequences. Such variants comprise nucleic acid sequences which feature at least one base substitution, one base addition or one base deletion, it being intended that the variants still code for a polypeptide with the abovementioned biological activity of the respective starting sequence. Variants comprise polynucleotides which are capable of hybridization with the abovementioned polynucleotides, preferably under stringent conditions. Especially preferred stringent conditions are known to the skilled worker and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred example of stringent hybridization conditions are hybridizations in 6x sodium chloride/sodium citrate (—SSC) at approximately 45°C, followed by one or more wash steps in 0.2xSSC, 0.1% SDS at 50 to 65°C. The skilled worker knows that these hybridization conditions differ as a function of the type of nucleic acid and, for example when organic solvents are present, with regard to the temperature and the buffer concentration. Under “standard hybridization conditions”, the temperature differs as a function of the type of nucleic acid between 42°C and 58°C in aqueous buffer with a concentration of from 0.1 to 5xSSC (pH 7.2). If organic solvent is present in the abovementioned buffer, for example 50% formamide, the temperature under standard conditions is approximately 42°C. The hybridization conditions for DNA:DNA hybrids are preferably for example 0.1xSSC and 20°C to 45°C, preferably between 30°C and 45°C. The hybridization conditions for DNA:RNA hybrids are preferably for example 0.1xSSC and 30°C to 55°C, preferably between 45°C and 55°C. The abovementioned hybridization temperatures are determined for example for a nucleic acid of approximately 100 by (—base pairs) in length and a G+C content of 50% in the absence of formamide. The skilled worker knows how to determine the hybridization conditions required with the aid of textbooks, such as the one mentioned hereinabove, or from the following textbooks: Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory, 1989; Hames and Higgins (eds.) 1985, Nucleic Acids Hybridization: A Practical Approach, IRL Press at Oxford University Press, Oxford; Brown (ed.) 1991, Essential Molecular Biology: A Practical Approach, IRL Press at Oxford University Press, Oxford. As an alternative, variants of the specific polynucleotides according to the invention may also be provided by polymerase chain reaction (PCR)-based methods. To this end, it is possible first to derive primers from conserved sequences (for example sequences which code for functional domains in the polypeptide). Conserved sequences can be determined by sequence comparisons with polynucleotides which code for polypeptides with a similar activity. The template used may be DNA or cDNA from bacteria, fungi, plants or animals. DNA fragments obtained by PCR can be used for screening suitable genomic libraries or cDNA libraries in order to—if required—identify the complete open reading frame of the polynucleotide and to determine it by sequencing. Preferred variants comprise polynucleotides which comprise a nucleic acid sequence with at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or at least 99% (or a different percentage than mentioned herein) identity with one of the above-mentioned specific nucleic acid sequences and codes for a polypeptide with the respective biological activity. Equally preferably comprised are polynucleotides which comprise nucleic acid sequences which code for a polypeptide with an amino acid sequence with at least 70%, at least 75%, at least 80%, at least 85%, at least 88%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 95%, at least 97%, at least 98% or at least 99% (or a different percentage than mentioned herein) identity with one of the abovementioned specific amino acid sequences and where the polypeptide has the respective biological activity of the starting sequence.

The percentage of identical nucleotides or amino acids preferably relates to a sequence segment of at least 50% of the sequences to be compared, and especially preferably over the entire length of the sequences to be compared. A multiplicity of programs which implement algorithms for such comparisons are described in the prior art and commercially available. In particular, reference may be made to the algorithms of Needleman and Wunsch or Smith and Waterman, which give particularly reliable results. These algorithms can preferably be implemented by the following programs: Pileip (J. Mol. Evolution., 25, 351-360, 1987, Higgins 1989, CABIOS, 5: 151-153), Gap and BestFit (Needleman 1970, J. Mol. Biol. 48; 443-453 and Smith 1981, Adv. Appl. Math. 2; 482-489), as part of the CGC software (Genetics Computer Group, 575 Science Drive, Madison, Wis., USA 53711, 1991). For the purposes of the present invention, it is especially preferred to determine the percentage (%) of the sequence identity with the GAP program over the entire sequence, with the following set parameters: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 and Average Mismatch: 0.000.

A polynucleotide which only comprises a fragment of the abovementioned nucleic acid sequences is also a polynucleotide according to the invention. Here, it is intended that the fragment codes for a polypeptide which features the biological activity of the starting sequence, or of the polypeptide which the latter codes for. Polypeptides which are encoded by such polynucleotides therefore comprise, or consist of, domains of the abovementioned specific polypeptides (starting polypeptides) which confer the biological activity. A fragment for the purposes of the invention preferably comprises at least 50, at least 100, at least 250 or at least 500 consecutive nucleotides of the abovementioned specific sequences or codes for an amino acid sequence comprising at least 20, at least 30, at least 50, at least 80, at least 100 or at least 150 consecutive amino acids of one of the abovementioned specific amino acid sequences, and confers biological activity, preferably desaturase activity, as described above.

The term “desaturase activity” as used in the present context refers to an enzymatic activity by which a dehydrogenation of fatty acids or fatty acid derivatives as substrates catalyzes. The desaturase activity according to the invention preferably takes the form of delu-5 desaturase (also referred to as Δ5-desaturase activity). Δ5-Desaturases are enzymes with the enzymatic function for the dehydrogenation of C20 fatty acids which are dehydrogenated at the C atom 8-9. Here, the C atoms C5 and C6 are dehydrogenated by in each case one hydrogen atom, giving rise to a double bond between the two C atoms. It is especially preferred that enzymes with desaturase activity—and in particular Δ5-desaturase activity—within the meaning of the present invention also convert acyl-coenzyme A as substrate.

The polynucleotide variants according to the invention preferably feature at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least
80% or at least 90% of the respective biological activity of the polypeptide which is encoded by the starting sequence. That is to say the polypeptides which are encoded by the polynucleotides according to the invention can participate in the metabolism of compounds required for the synthesis of fatty acids, fatty acid esters such as dicarboxylic acids and/or tricarboxylic acids as an organism, preferably in a plant or plant cell, or can participate in the transport of molecules across membranes, which means C1−C18, C2−C8 or C2−C6 carbon chains in the fatty acid molecule with double bonds at least two, advantageously three, four, five or six positions.

The polynucleotides according to the invention either comprise the aforementioned specific nucleic acid sequences or consist of them. That is to say, that the polynucleotides according to the invention may, in principle, also comprise further nucleotides. These may preferably be 3′- or 5′-untranslated regions of the genomic nucleic acid sequence. They preferably consist of at least 70, 200 or 500 nucleotides at the 5′ terminus and of at least 20, 50 or 100 nucleotides at the 3′ terminus of the coding region. Further polynucleotides which comprise additional nucleic acid sequences are those which code for fusion proteins. Such fusion proteins can code for further polypeptide or polypeptide portions, in addition to the abovementioned polypeptides. The additional polypeptide or polypeptide portion may take the form of further enzymes of lipid or fatty acid biosynthesis. Others which are feasible are polypeptides which may act as expression markers (green, yellow, red, blue fluorescent proteins, alkaline phosphatase and others) or so-called “tags” as labels or as an aid for purification (for example FLAG tags, 6-histidine tags, MYC tags and others).

Polynucleotide variants can be isolated from different natural or artificial sources. For example, they can be generated artificially by in-vitro or in-vivo mutagenesis. Homologs or orthologs of the specific sequences can be obtained from a wide range of animals, plants and microorganisms. They are preferably obtained from algae. Algae such as

- Isochrysis
- Euglena or Cryptophyceae, algae/diatoms such as
- Thalassiosira
- Phaeocystis or Thraustochytrium, Pythium, mosses such as Physcomitrella or Ceratodon are preferred, very especially preferred are the algae of the genus Euglena or the diatoms of the class Oomyctea such as the genera
- Pykhium or Phytophthora or fungi from the division Zygomycota from the genera
- Rhizopus. The polynucleotides can also be preferably be obtained from higher plants such as Primulaceae such as
- Alurita
- Calendula stellata, Osteospermum spinosum or Osteospermum hybridae, microorganisms such as fungi, such as Aspergillus, Thraustochytrium, Phytophthora, Entomophthora, Mucor or Mortierella, bacteria such as
- Staphylococcus, yeasts or animals such as nematodes, such as
- Caenorhabditis, insects or fish. The polynucleotide variants are also preferably derived from an animal from the order vertebrates. Especially preferably, the polynucleotides are derived from the class Vertebrata; Eutheleostomi, Actinopetergii; Neopterygii; Teleostei; Euteleostei, Protacanthopterygii, Salmoniformes; Salmonidae or Oncorhynchus and, very especially preferably, from the order Salmoniformes such as the family Salmonidae, such as the genus Salmo, for example from the genera and species Oncorhynchus mykiss, Trutta trutta or Salmon trutta fario. Here, the polynucleotides according to the invention can be isolated by means of standard techniques of molecular biology and of the sequence information provided herein. Also, it is possible, with the aid of comparative algorithms, to identify for example a homologous sequence or homologous, conserved sequence regions at the DNA or amino acid level. These can be employed as hybridization probe and standard hybridization techniques (such as, for example, those described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) for isolating further nucleic acid sequences which are useful in the method. Moreover, it is possible to isolate polynucleotides or fragments thereof by means of primer-directed chain reaction (PCR), where oligonucleotide primers which are based on this sequence or parts thereof are employed (for example, a nucleic acid molecule comprising the complete sequence or part thereof can be isolated by polymerase chain reaction using oligonucleotide primers which have been generated on the basis of this same sequence). For example, it is possible to isolate mRNA from cells (for example by the guanidinium thiocyanate extractive method by Chirgwin et al. (1979) Biochemistry 18:5294-5299, and cDNA can be generated by means of reverse transcriptase (for example Moloney MLV reverse transcriptase, obtainable from Gibco/BRL, Bethesda, Md., or AMV reverse transcriptase, obtainable from Seikagaku America, Inc., St. Petersburg, Fla.). Synthetic oligonucleotide primers for the amplification by means of polymerase chain reaction can be generated on the basis of the polynucleotide and amino acid sequences shown in the SEQ ID numbers. A nucleic acid according to the invention can be amplified using cDNA or, alternatively, genomic DNA as the template and suitable oligonucleotide primers, following standard PCR amplification techniques. The nucleic acid amplified thus can be cloned into a suitable vector and characterized by means of DNA sequence analysis. Oligonucleotides which correspond to a desaturase nucleotide sequence can be generated by standard synthetic methods, for example using an automatic DNA synthesizer.

The polynucleotides according to the invention can either be provided in the form of isolated polynucleotides (i.e. isolated from their natural origin, for example the genomic locus) or else in genetically modified form (i.e. the polynucleotides may also be present at their natural genetic locus, but, in such a case, must be genetically modified). An isolated polynucleotide preferably comprises less than 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleic acid sequence which occurs naturally in its environment. The polynucleotide according to the invention may be present as a single-stranded or double-stranded nucleic acid molecule and may take the form of genomic DNA, cDNA or RNA. Preferably, the polynucleotide according to the invention consists of RNA or DNA. The polynucleotides according to the invention comprise all orientations of the sequences shown in the SEQ ID numbers, i.e. also complementary strands and reverse, or reverse-complementary, orientations. The term furthermore also comprises chemically modified nucleic acids, such as the naturally occurring methylated DNA molecules, or artificial nucleic acids, for example biotinylated nucleic acids.

Owing to the polynucleotides according to the invention, the substrates 20:4Δ5,8,11,14 and 20:5Δ5,8,11,14,17 can be increased in the recombinant production of long-chain PUFAs. The Δ5-desaturase which is encoded by the polynucleotide according to the invention preferentially catalyzes the final synthesis step of 20:3Δ8,11,14 and 20:4Δ8,11,14,17 to give the commercially valuable long-chain polyunsaturated fatty acids. A variety of approaches for isolating Δ5-desaturases have been brought out in the past (for example Domergue et al. (2002), Eur J Biochem. 269(16):4105-13, Kajikawa et al. (2004) Plant Mol. Biol. 54:335-52). It has also been possible to demonstrate that all of the previously known Δ5-desaturases utilize the same acyl carrier phosphatidylethanol (Domergue et al. (2003) J Biol Chem. 278(37):35115-26). For Δ6-desaturases, it has been possible to demonstrate
that the conversion of acyl-coenzyme A (acyl-carrier coenzyme A) is advantageous for the synthesis of long-chain polyunsaturated fatty acids (Domergue et al. (2005) Biochem J. 389(1 Pt 2):483-90). However, it has not been possible to date to identify any enzyme for the class of the 45-desaturases which is capable of converting acyl-coenzyme A as the substrate. Neither do sequence comparisons make it possible to predict the substrate specificity with regard to the acyl carrier. Surprisingly, it was possible to isolate, in the context of the present invention, a sequence from the alga Emiliania huxleyi (Eukaryota; Haptophyceae; Isochrysidales; Noelaeriah-

daceae), which codes for an enzyme with 45-desaturase activity and which converts acyl-coenzyme A substrates. In particular, it has emerged, advantageously, that the polynucleotides according to the invention can be employed particularly efficiently for the recombinant production of polyunsaturated fatty acids in host cells and transgenic organisms. In particular, the polypeptides with 45-desaturase activity which are encoded by the polynucleotide according to the invention are capable of C18, C20, and C22 fatty acids with two, three, four or five double bonds and preferably polyunsaturated C18, C20 fatty acids with three or four double bonds such as C20:3Δ6,9,12 or C20:4Δ6,9,12,14. The polynucleotide and amino acid sequences according to the invention especially preferably lead to an increase in the fatty acids 20:4Δ5,8,11,14 arachidonic acid and 20:5Δ8,11,14,17 (eicosapentaenoic acid).

The invention also comprises oligonucleotides of at least 15 bp, preferably at least 20 bp, at least 25 bp, at least 30 bp, at least 35 bp or at least 50 bp, which are capable of specifically hybridizing under stringent conditions with one of the above-mentioned polynucleotides. The oligonucleotides may consist of DNA or RNA or both. Such oligonucleotides can be employed as primers for the PCR, as expression-inhibitory antisense oligonucleotides, for RNA interference (RNAi) approaches or for chimeroplastic or geneplastic approaches. RNAi methods are described in for example Fire et al., Nature (1998) 391:806-811; Fire, Trends Genet. 15, 358-363 (1999); Sharp, RNA interference 2001. Genes Dev. 15, 485-490 (2001); Hammond et al. Nature Rev. Genet. 2, 1110-1119 (2001); Tuschl, Chem. Biochem. 2, 239-245 (2001); Hamilton et al., Science 286, 950-952 (1999); Hammond et al., Nature 404, 293-296 (2000); Zamore et al., Cell 101, 25-33 (2000); Bernstein et al., Nature 409, 363-366 (2001); Ellbashir et al., Genes Dev. 15, 188-200 (2001); WO 01/29058; WO 99/32619 or Ellbashir et al., 2001 Nature 411: 494-498 and serve for inhibiting gene expression by degrading the mRNA. Chimeroplastic or geneplastic approaches serve the in vivo modification (for example the introduction of point mutations) into genes at their endogenous loci. Corresponding methods are disclosed in U.S. Pat. No. 5,568,350, U.S. Pat. No. 5,736,325, U.S. Pat. No. 5,871,984, U.S. Pat. No. 5,731, 181, U.S. Pat. No. 5,795,972, U.S. Pat. No. 6,573,046, U.S. Pat. No. 6,211,351, U.S. Pat. No. 6,586,184, U.S. Pat. No. 6,271,360 and U.S. Pat. No. 6,479,292.

In this context, it is especially preferred to employ the Δ6-desaturase encoded by the polynucleotide sequence with SEQ ID NO: 5 (d6Des(Pir)), the Δ6-elongase encoded by the polynucleotide sequence with SEQ ID NO: 7 (d6Elo(Pp)), the Δ5-desaturase encoded by the polynucleotide sequence with SEQ ID NO: 1 (d5Des(Eh)), the Δ12-desaturase encoded by the polynucleotide sequence with SEQ ID NO: 9 (d12Des(Eh)), the Δ15-desaturase encoded by the polynucleotide sequence with SEQ ID NO: 13 (d15Des(Eh)), the Δ3-desaturase encoded by the polynucleotide sequence with SEQ ID NO: 11 (d3Des(Eh)), the Δ5-elongase encoded by the polynucleotide sequence with SEQ ID NO: 15 (d5Elo(Ot)), and the Δ4-desaturase encoded by the polynucleotide sequence with SEQ ID NO: 17 (d4Des(Tc)) with the desaturase according to the invention in order to synthesize long-chain polyunsaturated fatty acids. The abovementioned polynucleotides are described in WO2006/100241. Alternatively, it was also possible to employ a Δ9-elongase and a Δ8-desaturase instead of the abovementioned Δ6-desaturase and the Δ6-elongase as described in WO2004/057001. Depending on the fatty acid which is to be prepared, it is possible to coexpress, in the host cells or transgenic organisms described hereinbelow, or to use in the methods according to the invention, a variety of combinations of the polynucleotides according to the invention with the abovementioned desaturases or elongases. Especially preferred combinations for the production of arachidonic acid in table 1. for eicosapentaenoic acid in table 2 and for docosahexaenoic acid in table 3 are detailed hereinbelow.

For example, it is possible to use the Δ5-desaturase according to the invention, alone or in a suitable combination (for example a Δ12-desaturase and a Δ15-desaturase), together with d6Des(Pir), d6Elo(Pp), δ5Des(Tc), δ3Des(Pp) for the production of EPA. Equally, the Δ5-desaturase according to the invention, alone or in a suitable combination, can be used together with d6Des(Pir), d6Elo(Pp), δ5Des(Tc), δ3Des(Pp), d5Elo(Ot), d4Des(Tc) for the production of docosahexaenoic acid.

Preferably, it is the fatty acids in phospholipids or CoA fatty acid esters which are desaturated, advantageously in the CoA fatty acid esters. Thus, a simple, inexpensive production of these polyunsaturated fatty acids is possible, specifically in eukaryotic systems. The unsaturated fatty acids produced by means of the polynucleotides according to the invention can then be formulated as oil, lipid and fatty acid compositions and can be employed in a suitable manner.

The present invention furthermore relates to a vector which comprises the polynucleotide according to the invention.

The term “vector” refers to a nucleic acid molecule which is capable of transporting another nucleic acid molecule, such as the polynucleotides according to the invention, to which it is bound. One type of vector is a “plasmid”; a circular double-stranded DNA loop into which additional DNA segments can be ligated. A further type of vector is a viral vector, it being possible for additional DNA segments to be ligated to the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they have been introduced (for example bacterial vectors with bacterial replication origin). Other vectors are advantageously integrated into the genome of a host cell when they are introduced into the host cell, and thus replicate together with the host genome. Moreover, certain vectors can govern the expression of genes with which they are in operable linkage. These vectors are referred to in the present context as “expression vectors”. Usually, expression vectors which are suitable for DNA recombination techniques take the form of plasmids. In the present description, “plasmid” and “vector” can be used exchangeably since the plasmid is the form of vector which is most frequently used. However, the invention is also intended to comprise other forms of expression vectors, such as viral vectors, which exert similar functions. Furthermore, the term “vector” is also intended to comprise other vectors with which the skilled worker is familiar, such as phages, viruses such as SV40, CMV, TMV, transposons, IS elements, plasmids, phagemids, cosmids, linear or circular DNA, artificial chromosomes. Finally, the term also comprises constructs for the targeted, i.e. homologous, recombination, or the heterologous insertion of polynucleotides.

Vectors can be introduced into prokaryotic and eukaryotic cells via conventional transformation or transfection tech-
11

仅仅是“transformation”和“transfection”，

conjugation and transduction, as used in the present context, are intended to comprise a multiplicity of methods known in the prior art for the introduction of foreign nucleic acid (for example DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemically mediated transfer, electroporation or particle bombardment. Suitable methods for the transformation or transfection of host cells, including plant cells, can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) and other laboratory textbooks such as Methods in Molecular Biology, 1995, Vol. 44, Agrobacterium protocols, Ed.: Gartland and Davey, Humana Press, Totowa, N.J.

Suitable cloning vectors are generally known to the skilled worker. In particular, they include vectors which can replicate in microbial systems, that is mainly vectors which ensure efficient cloning in yeasts or fungi and which make possible the stable transformation of plants. Those which must be mentioned are in particular various binary and co-integrated vector systems which are suitable for the T-DNA-mediated transformation. Such vector systems are, as a rule, characterized in that they comprise at least the vir genes, which are required for the Agrobacterium-mediated transformation, and the T-DNA-bordering sequences (T-DNA border). Preferably, these vector systems also comprise the following cis-regulatory regions such as promoters and terminators and/or selection markers, by means of which suitably transformed organisms can be identified. While in the case of co-integrated vector systems vir genes and T-DNA sequences are arranged on the same vector, binary systems are based at least two vectors, one of which bears vir genes, but no T-DNA, and the other bears T-DNA, but no vir gene. As a result, the last-mentioned vectors are relatively small, easy to manipulate and to replicate both in E. coli and in Agrobacterium. These binary vectors include vectors from the pHIB-HYG series, the pPZP series, the pBeck series and the pCre series. Preferably used according to the invention are Bin19, pH101, pBinAr, pSGTV and pCAMBIA. An overview of binary vectors and their use is found in Helliens et al., Trends in Plant Science (2000) 5, 446-451. The vectors with the inserted polynucleotides according to the invention can be propagated stably under selective conditions in microorganisms, in particular Escherichia coli and Agrobacterium tumefaciens, and make possible a transfer of heterologous DNA into plants or microorganisms. The polynucleotides according to the invention can be introduced into organisms such as microorganisms or plants by means of the cloning vectors and thus used for transforming plants. Vectors which are suitable for this purpose are published in: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Fla.), chapter 67, p. 71-119 (1993); F. F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, vol. 1, Engineering and Utilization, eds.: Kung and R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, vol. 1, Engineering and Utilization, eds.: Kung and R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225.

The vector is preferably an expression vector. The polynucleotide is present in the expression vector according to the invention in operative (i.e. functional) linkage with an expression control sequence. The expression control sequence together with the polynucleotide and optionally further sequence elements of the vector is also referred to as the expression cassette. The expression control sequence ensures that, after transformation or transfection into a host cell, the polynucleotide can be expressed. The expression control sequence to be used preferably comprises cis-regulatory elements such as promoter and/or enhancer nucleic acid sequences, which are recognized by the transcription machinery of the host cells. The term furthermore comprises other expression control elements, for example polyadenylation signals and RNA-stabilizing sequences. These regulatory sequences are described for example in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) or see: Gribier and Crosby, in: Methods in Molecular Biology and Biotechnology, CRC Press, Boca Raton, Fla., eds.: Glick and Thompson, chapter 7, 89-108, including the literature cited therein. Expression control sequences comprise those which govern the constitutive expression of a nucleotide sequence in many types of host cells, and those which govern the direct expression of the nucleotide sequence only in certain host cells under certain conditions. The skilled worker knows that the design of the expression vector may depend on factors such as the choice of the host cell to be transformed, the extent of the expression of the desired protein and the like. The polynucleotides according to the invention may be present in one or more copies in the expression cassette or in the expression vector according to the invention (for example in the form of several expression cassettes). Here, the regulatory sequences or factors can preferably have a positive effect on the gene expression of the introduced genes, as described above, and thereby increase it. Thus, it is possible to enhance the regulatory elements advantageously at the transcription level by using strong transcription signals such as promoters and/or “enhancers”. Besides, it is also possible to enhance the translation, for example by improving the mRNA stability. Further expression control sequences within the meaning of the present invention are translation terminators at the 3′ end of the polynucleotides to be translated. An example which can be used here is the OCS1 terminator. As in the case of the promoters, a different terminator sequence should be used for each polynucleotide to be expressed.

Preferred expression control sequences or regulatory sequences are present in promoters such as the cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacIQ, T7, T5, T3, gal, trc, ara, SP6, λ-PR or λ-PL promoters and are advantageously employed in Gram-negative bacteria. Further advantageous regulatory sequences are, for example, present in the Gram-positive promoters amy and SPI2, in the yeast or fungal promoters ADC1, MFLG, AC, P60, CYC1, GAPDH, TEF, rP28, ADH or in the plant promoters CaMV/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant Mol. Biol. 22 (1993)], SSU, OCS, lb4b, usp, STLS1, B33, nos or in the ubiquitin or phaseolin promoter. Advantageous in this context are also inducible promoters, such as the promoters described in EP-A-0 385 186 (benzenesulphonamide-inducible), Plant J. 2, 1992:397-404 (Gatz et al., tetracycline-inducible), EP-A-0 335 528 (absic acid-inducible) or WO 93/21334 (ethanol- or cyclohexanol-inducible). Further suitable plant promoters are the cytosolic F1-ATPase promoter or the ST-LSI promoter of potato (Stockhaus et al., EMBO J. 8, 1989, 2445), the gfr-1e max phosphonosyl- pyrophosphate amidohydroxylase promoter (Genbank Accession No. U87999) or the node-specific promoter described in EP-A-0 249 676. Especially advantageous promoters are promoters which make possible the expression in tissues which are involved in the biosynthesis of fatty acids. Very especially advantageous are seed-specific promoters, such as the USP promoter, but also other promoters such as the LeL4, DC,
phaseolin or napin promoter. Further especially advantageous promoters are seed-specific promoters which can be used for monocotyledonous or dicotyledonous plants and which are described in U.S. Pat. No. 5,608,152 (oilseed rape napin promoter), WO 98/45461 (Arabidopsis oleosin promoter), U.S. Pat. No. 5,504,200 (Phaseolus vulgaris phaseolin promoter), WO 91/13860 (Brassica Bce4 promoter), by Baemlein et al., Plant J. 2, 2 (1992):233-239 (LepB4 promoter from a legume), these promoters being suitable for dicots. Examples of promoters which are suitable for monocots are the barley Lpt-2 or Lpt-1 promoter (WO 95/15389 and WO 95/23230), the barley hordein promoter and other suitable promoters described in WO 99/16890. In principle, it is possible to use all natural promoters together with their regulatory sequences, such as those mentioned above, as expression control sequences. It is also possible to use synthetic promoters, either in addition or alone, in particular when they mediate seed-specific expression, as described, for example, in WO 99/16890.

In order to achieve a particularly high PUFA content, especially in transgenic plants, the polynucleotides of the present invention should preferably be expressed in oil crops in a seed-specific manner. To this end, seed-specific promoters can be used, or those promoters which are active in the endosperm and/or in the embryo. In principle, seed-specific promoters can be isolated both from dicotyledonous and from monocotyledonous plants. Advantages of preferred promoters are listed here below: USP (unknown seed protein) and vicilin (Vicia faba) [Baemlein et al., Mol. Gen. Genet., 1991, 225(3)], napin (oilseed rape) [U.S. Pat. No. 5,608,152], acyl carrier protein (oilseed rape) [U.S. Pat. No. 5,315,001 and WO 92/18634], oleosin (Arabidopsis thaliana) [WO 98/45461 and WO93/20216], phaseolin (Phaseolus vulgaris) [U.S. Pat. No. 5,504,200], Bce4 [WO 91/13860], legumin H4 (LepB4 promoter) [Baemlein et al., Plant J., 2, 2 (1992), Lpt-2 and Lpt-1 (barley) [WO 95/15389 and WO 95/23230], seed-specific promoters from maize, rice and wheat [WO 99/16890], Amy3b, Amy 6-6 and albumin [U.S. Pat. No. 5,677,474], Bce4 (oilseed rape) [U.S. Pat. No. 5,530,149], glycinin (soybean) [EP 571 741], phosphoenolpyruvate carboxylase (soybean) [JP 06/28270, ADR12-2 (soybean) [WO 98/08692], isocitrate lyase (oilseed rape) [U.S. Pat. No. 5,689,040] or α-aminolevulinic acid (barley) [EP 781 849].

Plant gene expression can also be facilitated via a chemically inducible promoter (see review in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 89-108). Chemically inducible promoters are particularly suitable when it is desired that gene expression should take place in a tissue-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanold-inducible promoter.

To ensure stable integration of the various biosynthesis genes into the transgenic plant over a plurality of generations, each of the polynucleotides according to the invention should be expressed under the control of a separate promoter, preferably a promoter which differs from the other promoters, since repeating sequence motifs can lead to instability of the T-DNA, or to recombination events. In this context, the expression cassette is advantageously constructed in such a way that a promoter is followed by a suitable cleavage site (advantageously in a polynucleotide) for insertion of the nuclear acid to be expressed and, if appropriate, a terminator is then positioned behind the polynucleotide. This sequence is repeated several times, preferably three, four or five times, so that up to five genes can be combined in one construct and introduced into the transgenic plant in order to be expressed. Advantageously, the sequence is repeated up to three times. To express the nucleic acid sequences, the latter are inserted behind the promoter via a suitable cleavage site, for example in the polylinker. Advantageously, each nucleic acid sequence has its own promoter and, if appropriate, its own terminator. Such advantageous constructs are disclosed, for example, in DE 101 02 337 or DE 101 02 338. However, it is also possible to insert a plurality of nucleic acid sequences behind a promoter and, if appropriate, in front of a terminator. Here, the insertion site, or the sequence, of the inserted nucleic acids in the expression cassette is not of critical importance, that is to say a nucleic acid sequence can be inserted at the first or last position in the cassette without its expression being substantially influenced thereby. Advantageously, different promoters such as, for example, the USP, LepB4 or DC3 promoters, and different terminators can be used in the expression cassette. However, it is also possible to use only one type of promoter in the cassette. This, however, may lead to undesired recombination events.

In most cases, the expression of proteins in prokaryotes involves the use of vectors comprising constitutive or inducible promoters which govern the expression of fusion or non-fusion proteins. Typical fusion expression vectors are, inter alia, pGEX (Pharmacia Biotech Inc; Smith, D. B., and
Johnson, K. S. (1988) Gene 67:31-40, pMAI. (New England Biolabs, Beverly, Mass.) and pRT5 (Pharmacia, Piscataway, N.J.), where glutathione S-transferase (GST), maltose-E-binding protein and protein A, respectively, are fused with the recombinant target protein. Examples of suitable inducible nonfusion E. coli expression vectors are, inter alia, pTrc (Aman et al. (1988) Gene 69:301-315) and pET11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 60-89). The target gene expression from the vector pTrc is based on the transcription from a hybrid trp-lac fusion promoter by the host RNA polymerase. The target gene expression from the vector pET11d is based on the transcription of a T7-gnl-lac fusion promoter, which is mediated by a viral RNA polymerase (T7-gnl), which is coexpressed. This viral polymerase is provided by the host strains BL21 (DE3) or HMS174 (DE3) from a resident Apo prophage which harbors a T7 gnl gene under the transcriptional control of the lacUV 5 promoter. Other vectors which are suitable for prokaryotic organisms are known to the skilled worker; these vectors are, for example in E. coli pG338, pACYC184, the pBR vectors such as pBR322, the pUC series such as pUC18 or pUC19, the M13 mp series, the pC30, pREP4, pHS1, pHS2, pLC236, pMBL24, pLG200, pHU290, pLN-I113-B1, zgt11 or pBDCl, in Strepotyepes pSJ10, pSJ64, pSJ70 or pSJ361, in Bacillus pJBI10, pJ194 or pBD214, in Corynebacterium pSA77 or pAJ667.

As an alternative, the polynucleotides of the present invention can also be expressed in insect cells using Baculovirus expression vectors. Baculovirus vectors which are available for the expression of proteins in cultured insect cells (for example Sf9 cells) comprise the pAc series (Smith et al. (1983) Mol. Cell. Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

Preferred plant expression vectors comprise those which are described in detail in: Becker, D., Kemper, E., Schell, J., and Mastror, R. (1992) “New plant binary vectors with selectable markers located proximal to the left border”, Plant Mol. Biol. 20:1195-1197; and Bevan, M. W. (1984) “Binary Agrobacterium vectors for plant transformation”, Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, Eds.: King and R. Wu, Academic Press, 1993, p. 15-38. A plant expression cassette preferably comprises expression control sequences which are capable of governing the expression of genes in plant cells and which are linked operably so that each sequence can fulfill its function, such as transcriptional termination, for example polyadenylation signals. Preferred polyadenylation signals are those which are derived from Agrobacterium tumefaciens Ti-DNA, such as gene 3 of the Ti plasmid pTiAC15 (Giezen et al., EMBO J. 3 (1984) 835 et seq.), which is known as octopine synthase, or functional equivalents thereof, but all other terminators which are functionally active in plants are also suitable. Since plant gene expression is very often not limited to transcriptional levels, a plant expression cassette preferably comprises other sequences which are linked operably, such as translation enhancers, for example the overdrive sequence, which comprises the tobacco mosaic virus 5'-untranslated leader sequence, which increases the protein/RNA ratio (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711). As described above, plant gene expression must be linked operably with a suitable promoter which triggers gene expression with the correct timing or in a cell- or tissue-specific manner. Utilizable promoters are constitutive promoters (Benfey et al., EMBO J. 8 (1989) 2195-2202), such as those which are derived from plant viruses, such as 3SS CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (see also U.S. Pat. No. 5,352,605 and WO 84/02913), or plant promoters, such as the promoter of the small Rubisco subunit, which is described in U.S. Pat. No. 4,962,028. Other preferred sequences for use in operable linkage in plant gene expression cassettes are targeting sequences, which are required for steering the gene product into its corresponding cell compartment (see a review in Kermer, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, into the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chloroplasts, the extracellular spaces, the mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells. As described above, plant gene expression can also be facilitated via a chemically inducible promoter (see review in Gatz, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemically inducible promoters are particularly suitable when it is desired that the gene expression takes place in a time-specific manner. Examples of such promoters are a salicylic-acid-inducible promoter (WO 95/19443), a tetracyclin-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter. Promoters which respond to biotic or abiotic stress conditions are also suitable, for example the pathogen-induced PPR1 gene promoter (Ward et al., Plant Mol. Biol. 22 (1993) 361-366), the heat-inducible tomato hsp80 promoter (U.S. Pat. No. 5,187,267), the chill-inducible potato alpha-amylase promoter (WO 96/12814) or the wound-inducible pinII promoter (EP-A-90 375 091).

Especially preferred are those promoters which bring about the gene expression in tissues and organs in which the biosynthesis of fatty acids, lipids and oils takes place, in seed cells, such as the cells of the endosperm and of the developing embryo. Suitable promoters are the oilseed rape napin gene promoter (U.S. Pat. No. 5,608,152), the Viola faba UBP promoter (Baumleir et al., Mol Gen Genet, 1991, 225 (3):459-67, the Arabidopsis olein promoter (WO 98/45461), the Phaeosolus vulgaris phaseolin promoter (U.S. Pat. No. 5,504,200), the Brassica nap promoter (WO 91/13980) or the legume B4 promoter (LeH4; Baumleir et al., 1992, Plant Journal, 2 (2):233-9), and promoters which bring about the seed-specific expression in monocotyledonous plants such as maize, barley, wheat, rice and the like. Suitable noteworthy promoters are the barley Ip2 or Ip1 gene promoter (WO 95/15380 and WO 95/23230) or the promoters from the barley hordein gene, the rice glutelin gene, the rice orygin gene, the rice prolamine gene, the wheat gliadine gene, the wheat glutelin gene, the maize zeine gene, the oat glutelin gene, the sorghum kasirin gene or the rye secalin gene, which are described in WO 99/16890. Especially suitable promoters are likewise those which bring about the plastid-specific expres-
sion, since plastids are the compartment in which the precursors and some of the end products of lipid biosynthesis are synthesized. Suitable promoters, such as the viral RNA polymerase promoter, are described in WO 95/16783 and WO 97/06250, and the cpl promoter from Arabidopsis, described in WO 99/46394.

As described above, the expression vector can, in addition to the polynucleotides according to the invention, also comprise further genes which are to be introduced into the organisms. It is possible and preferred to introduce into the host organisms, and express in them, regulatory genes, such as genes for inducers, repressors or enzymes which, as a result of their enzymatic activity, engage in the regulation of one or more genes of a biosynthetic pathway. These genes can be of heterologous or homologous origin. Heterologous genes or polynucleotides are derived from an organism of origin which differs from the target organism into which the genes or polynucleotides are to be introduced. In the case of homologous genes or polynucleotides, target organism and organism of origin are identical. The vector therefore preferably comprises at least one further polynucleotide which codes for a further enzyme which is involved in the biosynthesis of lipids or fatty acids. The enzyme is preferably selected from the group consisting of: acyl-CoA dehydrogenase(s), acyl-ACP [-acyl carrier protein] desaturase(s), acyl-ACP thioesterase(s), fatty acid acyltransferase(s), acyl-CoA:lyso- phospholipid acyltransferase(s), fatty acid synthase(s), fatty acid hydroxylase(s), acyl-coenzyme A carboxylase(s), acyl-coenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acyltransferase(s), lipoxygenase(s), tracylglycerol lipase(s), allene oxide synthase(s), hydroperoxide lyase(s), fatty acid elongase(s), Δ4-desaturase(s), Δ5-desaturase(s), Δ6-desaturase(s), Δ8-desaturase(s), Δ9-desaturase(s), Δ12-desaturase(s), Δ15-desaturase(s), Δ12- and Δ15-desaturase(s), o3-desaturase, Δ5-elongase(s), Δ6-elongase(s) and Δ9-elongase(s).

Especially preferred gene combinations are listed in tables 5 and 6 in the examples which follow.

The invention also relates to a host cell which comprises the polynucleotide according to the invention or the vector according to the invention.

In principle, host cells for the purposes of the present invention may be all eukaryotic or prokaryotic cells. They may be primary cells from animals, plants or multi-celled microorganisms, for example from those which are mentioned in another place in the description. The term furthermore also comprises cell lines which can be obtained from these organisms.

However, host cells for the purposes of the invention may also be single-celled microorganisms, for example bacteria or fungi. Especially preferred microorganisms are fungi selected from the group of the families Chaetomiaceae, Choanephoraceae, Cryptococcaceae, Cunninghamellaceae, Dematiaceae, Moniliaceae, Mortierellaceae, Mucoraceae, Pythiaceae, Saccharomycetaceae, Saprolegniaceae, Schizosaccharomyceae, Sordariaceae or Tuberculariaceae. Further preferred microorganisms are selected from the group: Choanephoraceae, such as the genera Blakeslea, Choanephora, for example the genera and species Blakeslea trispora, Choanephora cucurbitarum, Choanephora infundibuliformis var. cucurbitarum, Mortierellaceae, such as the genus Mortierella, for example the genera and species Mortierella isabelina, Mortierella polycephala, Mortierella ramanniana, Mortierella vinacea, Mortierella zonata, the family Mucorales, such as the genera and species Rhizopus oryzae, Rhizopus stolonifer, Fusarium graminearum, Pythiaceae, such as the genera Phytium, Phythophthora, for example the genera and species Phythium debaryanum, Phythium intermedium, Pythium irregular, Pythium megalaicanthum, Pythium paracandrum, Pythium sylvaticum, Pythium ultimum, Phythophthora cactorum, Phythophthora cinnamomi, Phythophthora citricola, Phythophthora citrophthora, Phythophthora cryptogea, Phythophthora drechsleri, Phythophthora erythroseptica, Phythophthora lateralis, Phythophthora megasperma, Phythophthora nidicola, Phythophthora nicotianae var. para- sitica, Phythophthora palmivora, Phythophthora parasitica, Phythophthora syringae, Saccharomycetaceae, such as the genera Hansenula, Pichia, Saccharomyces, Saccharomyces cerevisiae, such as the genera Hansenula anomala, Hansenula caffioniaca, Hansenula canadensis, Hansenula capsulata, Hansenula ciferrii, Hansenula glucozyma, Hansenula hennicii, Hansenula holstii, Hansenula minut, Hansenula nonfermentans, Hansenula phylodendri, Hansenula polymorpha, Hansenula saturna, Hansenula subpellicola, Hansenula wickerhamii, Hansenula vinagei, Pichia alcoholphila, Pichia angusta, Pichia anomala, Pichia bizora, Pichia burtonii, Pichia canadensis, Pichia capsulata, Pichia carsonii, Pichia cebelobiosa, Pichia ciferrii, Pichia farinosa, Pichia fermentans, Pichia finlandica, Pichia ghiuzonya, Pichia guffermondi, Pichia haplopilha, Pichia hennicii, Pichia holstii, Pichia jadinii, Pichia fimniderfi, Pichia membranaefaciens, Pichia methanolica, Pichia minuta var. minuta, Pichia minuta var. nonfermentans, Pichia norvegica, Pichia ohmieri, Pichia pastoris, Pichia phylodendri, Pichia pini, Pichia polymorpha, Pichia quercuum, Pichia rhodanensis, Pichia sargentensis, Pichia stipitis, Pichia strasburgensis, Pichia subpellicola, Pichia toletana, Pichia trehalophila, Pichia vini, Pichia xylostix, Saccharomyces aceta, Saccharomyces bairii, Saccharomyces bayanus, Saccharomyces bisporus, Saccharomyces capsensis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces cerevisiae var. ellipsoides, Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarii, Saccharomyces elegans, Saccharomyces ellipsoides, Saccharomyces fermentati, Saccharomyces florentinus, Saccharomyces fragilis, Saccharomyces heterogenus, Saccharomyces hiemipnis, Saccharomyces insitatus, Saccharomyces italicus, Saccharomyces klyveri, Saccharomyces krusei, Saccharomyces lactis, Saccharomyces marisianus, Saccharomyces microsfoidosae, Saccharomyces montani, Saccharomyces norbensis, Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretoriensis, Saccharomyces reusii, Saccharomyces uvarum, Saccharomycesuodes ludwigii, Yarrowia lipolytica, Schizosaccharomyceae such as the genera Schizosaccharomyces e.g. the species Schizosaccharomyces japonicus var. japonicus, Schizosaccharomyces japonicus var. versatilis, Schizosaccharomyces malidevorans, Schizosaccharomyces octosporus, Schizosaccharomyces pombe var. malidevorans, Schizosaccharomyces pombe var. pombe, Thraustochytridaceae such as the genera Althioruna, Aplanochytrium, Japonochytrium, Schizochytrium, Thraustochytrium e.g. the species Schizochytrium aggregatum, Schizochytrium limacium,
Schizothyrium mangrovei, Schizothyrium minutum, Schizothyrium octosporium, Thraustochytrium aggregatum, Thraustochytrium amoeboides, Thraustochytrium antacticum, Thraustochytrium arundinale, Thraustochytrium aureum, Thraustochytrium bentholica, Thraustochytrium globosum, Thraustochytrium indicum, Thraustochytrium kerguelense, Thraustochytrium kiihei, Thraustochytrium multirudimentale, Thraustochytrium pachydermum, Thraustochytrium proliferum, Thraustochytrium raseum, Thraustochytrium rossii, Thraustochytrium striatum or Thraustochytrium visurgentae.

Equally preferred as microorganisms are bacteria selected from the group of the families Bacillaceae, Enterobacteriaceae, or Rhizobiaceae. It is especially preferred to mention the following bacteria selected from the group: Bacillaceae, such as the genus Bacillus, for example the genera and species Bacillus acidocaldarius, Bacillus acidoterresris, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus amylolyticus, Bacillus brevis, Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus sphaericus subsp. fusiformis, Bacillus galactoliticus, Bacillus globisporus, Bacillus globisporus subsp. marinus, Bacillus halophilus, Bacillus lentus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus polymyxa, Bacillus psychrosaccharolyticus, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp. subtilis or Bacillus thuringiensis; Enterobacteriaceae such as the genera Citrobacter, Enterobacter, Erwinia, Escherichia, Klebsiella, Salmonella or Serratia, for example the genera and species Citrobacter amalonaticus, Citrobacter diversus, Citrobacter freundii, Citrobacter genospecies, Citrobacter gillenii, Citrobacter intermedius, Citrobacter koseri, Citrobacter maritiniae, Citrobacter sp., Edwardsiella hoshinae, Edwardsiella tarda, Edwardsiella tarda, Erwinia alni, Erwinia amylovora, Erwinia ananatis, Erwinia aphidicola, Erwinia billingiae, Erwinia cacticida, Erwinia cancerogena, Erwinia carcinegica, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betaviscum, Erwinia carotovora subsp. odorifera, Erwinia carotovora subsp. vasalae, Erwinia chrysanthemi, Erwinia cypriepidii, Erwinia dissonans, Erwinia herbicola, Erwinia malleovora, Erwinia milleiae, Erwinia nigrifrons, Erwinia nigrifrons, Erwinia persicina, Erwinia psiei, Erwinia pyrifoliae, Erwinia quercia, Erwinia raphontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Escherichia adenosylata, Escherichia anidolica, Escherichia aurescens, Escherichia blattae, Escherichia coli, Escherichia coli var. communon, Escherichia coli-mutabile, Escherichia fergusoni, Escherichia hermannii, Escherichia sp., Escherichia vulneris, Klebsiella aerogenes, Klebsiella edwardsii subsp. atlantae, Klebsiella ohmitohylotica, Klebsiella oxytoca, Klebsiella planticola, Klebsiella pneumoniae, Klebsiella pneumoniae subsp. pneumoniae, Klebsiella terrigena, Klebsiella trevisanii, Salmonella abonyi, Salmonella arizonae, Salmonella bongori, Salmonella choleraesuis subsp. arizonae, Salmonella choleraesuis subsp. bongori, Salmonella choleraesuis subsp. choleraesuis, Salmonella choleraesuis subsp. diarizoneae, Salmonella choleraesuis subsp. houtenae, Salmonella choleraesuis subsp. indica, Salmonella choleraesuis subsp. salamae, Salmonella daresiana, Salmonella enterica subsp. salamae, Salmonella enterica subsp. salamae, Salmonella enteritidis, Salmonella gallinarum, Salmonella heidelberg, Salmonella panama, Salmonella senftenberg, Salmonella typhimurium, Serratia entomophila, Serratia ficaria, Serratia fonticolica, Serratia grimesii, Serratia liquefaciens, Serratia marcescens, Serratia marcescens subsp. marcescens, Serratia marina, Serratia marina, Serratia marinorubra, Serratia odorifera, Serratia plymuthica, Serratia proteamaculans, Serratia proteamaculans subsp. quinovora, Serratia quinovorans or Serratia rubidae; Rhizobiaceae, such as the genera Agrobacterium, Carbophilus, Chelatobacter, Ensifer, Rhizobium, Sinorhizobium, for example the genera and species Agrobacterium atalantae, Agrobacterium fergusonii, Agrobacterium gelatinovorum, Agrobacterium lanyonii, Agrobacterium meteori, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubri, Agrobacterium stellulatum, Agrobacterium tunefaciens, Agrobacterium vitis, Carbophilus carboxidoxis, Chelatobacter heintzii, Ensifer adhaerens, Ensifer arboris, Ensifer fredii, Ensifer kuenenii, Ensifer medaceae, Ensifer melloti, Ensifer saheli, Ensifer terangae, Ensifer xenjiangensis, Rhizobium ciceri, Rhizobium etli, Rhizobium fredii, Rhizobium guineense, Rhizobium gallisepticum, Rhizobium giardinii, Rhizobium hainanense, Rhizobium huakui, Rhizobium huautlense, Rhizobium indigofereae, Rhizobium japonicum, Rhizobium leguminosarum, Rhizobium loti, Rhizobium lupini, Rhizobium mediterraneum, Rhizobium mellioti, Rhizobium mongolense, Rhizobium phaseoli, Rhizobium radiobacter, Rhizobium rhizogenes, Rhizobium rubri, Rhizobium sullae, Rhizobium tianshanense, Rhizobium trifolii, Rhizobium tropici, Rhizobium undicum, Rhizobium vitis, Sinorhizobium adhaerens, Sinorhizobium arboris, Sinorhizobium fredii, Sinorhizobium kostiens, Sinorhizobium kummerowiae, Sinorhizobium medaceae, Sinorhizobium melloti, Sinorhizobium morelense, Sinorhizobium saheli or Sinorhizobium xenjiangensis.

Further useful host cells are detailed in: Goeddle, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Expression strains which can be used, for example those with a lower protease activity, are described in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128. These include plant cells and certain tissues, organs and parts of plants in all their phenotypic forms as anthers, flowers, root hairs, stalks, embryos, calli, cotyledons, petals, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant.

Polynucleotides or vectors can be introduced into the host cell as described above by means of transformation or transfection methods which are known in the prior art. Conditions and media for the cultivation of the host cells are also known to the skilled worker.

The host cell according to the invention preferably additionally comprises at least one further enzyme which is involved in the biosynthesis of lipids or fatty acids. Preferred enzymes have already been mentioned in another place in the description. The enzyme can be present in the host cell in endogenous form, i.e. the host cell already naturally expresses a gene which codes for a corresponding enzyme. Alternatively, it is also possible to introduce, into the host cell, a heterologous polynucleotide which codes for the enzyme. Suitable methods and means for the expression of a heterologous polynucleotide are known in the prior art and are described herein in connection with the polynucleotides, vectors and host cells according to the invention.

The invention also relates to a method of generating a polypeptide with desaturase activity, comprising the steps: (a) expressing a polynucleotide according to the invention as defined above in a host cell; and
obtaining, from the host cell, the polypeptide which is encoded by the polynucleotide.

In this context, the polypeptide can be obtained or isolated by all current protein purification methods. The methods comprise, for example, affinity chromatography, molecular sieve chromatography, high-pressure liquid chromatography or else protein precipitation, if appropriate with specific antibodies. Although this is preferred, the method need not necessarily provide a pure polypeptide preparation.

The invention therefore also relates to a polypeptide which is encoded by the polynucleotide according to the invention or which is obtainable by the abovementioned method according to the invention.

The term “polypeptide” refers both to an essentially pure polypeptide, and also to a polypeptide preparation which additionally comprises further components or impurities. The term is also used for fusion proteins and protein aggregates which comprise the polypeptide according to the invention and additionally further components. The term also refers to chemically modified polypeptides. In this context, chemical modifications comprise artificial modifications or naturally occurring modifications, for example posttranslational modifications such as phosphorylation, myristylation, glycosylation and the like. The terms polypeptide, peptide and protein are interchangeable and are used accordingly in the description and in the prior art. The polypeptides according to the invention have the abovementioned biological activities, that is to say desaturase activities, and can influence the biosynthesis of polyunsaturated fatty acids (PUFAs), preferably the long-chain PUFAs (LC-PUFAs), as herein described.

The invention also comprises an antibody which specifically recognizes the polypeptide according to the invention. Antibodies against the polypeptide according to the invention can be prepared by means of known methods, where purified polypeptide or fragments thereof with suitable epitopes are used as the antigen. Suitable epitopes can be determined by means of known algorithms for the antigenicity determination, based on the amino acid sequences of the polypeptides according to the invention provided herein. The relevant polypeptides or fragments can then be synthesized or obtained by recombinant techniques. After animals, preferably mammals, for example hares, rats or mice, have been immunized, the antibodies can then be obtained from the serum, using known methods. Alternatively, monoclonal antibodies or antibody fragments can be provided with the known methods; see, for example, Harlow and Lane “Antibodies. A Laboratory Manual”, CSH Press, Cold Spring Harbor, 1988 or Köhler and Milstein, Nature 256 (1975), 495, and Galfrey, Meth. Enzymol. 73 (1981), 3.

The antibodies preferably take the form of monoclonal or polyclonal antibodies, single-chain antibodies or chimeric antibodies, and fragments of these such as Fab, Fv or scFv. Further antibodies within the meaning of the invention are the bispecific antibodies, synthetic antibodies or their chemically modified derivatives.

The antibodies according to the invention specifically recognize the polypeptides according to the invention, that is to say they do not cross-react significantly with other proteins. This can be assayed by means of methods known in the prior art. For example, the antibodies can be employed for the purposes of detection reactions, immunoprecipitation, immunohistochemistry or protein purification (for example affinity chromatography).

The invention furthermore relates to a transgenic, nonhuman organism which comprises the polynucleotide, the vector or the host cell of the present invention. The transgenic, nonhuman organism preferably takes the form of an animal, a plant or a multicellular microorganism.

The term “transgenic” is understood as meaning that a heterologous polynucleotide, that is to say a polynucleotide which does not occur naturally in the respective organism, is introduced into the organism. This can be achieved either by random insertion of the polynucleotide or by homologous recombination. Naturally, it is also possible to introduce the vector according to the invention instead of the polynucleotide. Methods of introducing polynucleotides or vectors for the purposes of random insertion or homologous recombination are known in the prior art and also described in greater detail hereinafter. Host cells which comprise the polynucleotide or the vector can also be introduced into an organism and thus generate a transgenic organism. In such a case, such an organism takes the form of a chimeric organism, where only those cells which are derived from the introduced cells are transgenic, i.e. comprise the heterologous polynucleotide.

The transgenic nonhuman organisms are preferably oil-producing organisms, which means organisms which are used for the production of oils, for example fungi such as Rhizopus or Thraustochytrium, algae such as Euglena, Nephroselmis, Pseudoscorefieda, Prasinococcus, Scherfelia, Tetraselmis, Mantoniella, Ostreeococcus, Cryptophyceum, Phaeodactylum, or diatoms such as Pythium or Phvtophthora or plants.

Transgenic plants which can be used are, in principle, all plants, that is to say both dicotyledonous and monocotyledonous plants. They preferably take the form of oil crop plants which comprise large amounts of lipid compounds, such as peanut, oilseed rape, canola, sunflower, safflower (Carthamus tinctoria), poppy, mustard, hemp, castor-oil plant, olive, sesame, Calendula, Panica, evening primrose, verbascum, thistle, wild roses, hazelnut, almond, macadamia, avocado, bay, pumpkin/squash, linseed, soybean, pita- tachios, borage, trees (oil palm, coconut or walnut) or arable crops such as maize, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, Tagetes, Solanaceae plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa or bushy plants (coffee, cacao, tea), Salix species, and perennial grasses and fodder crops. Preferred plants according to the invention are oil crop plants such as peanut, oilseed rape, canola, sunflower, safflower, poppy, mustard, hemp, castor-oil plant, olive, Calendula, Panica, evening primrose, pumpkin/squash, linseed, soybean, borage, trees (oil palm, coconut). Especially preferred are plants which are high in C18:2- and/or C18:3-fatty acids, such as sunflower, safflower, tobacco, verbascum, sesame, cotton, pumpkin/squash, poppy, evening primrose, walnut, linseed, hemp, thistle or safflower. Very especially preferred plants are plants such as safflower, sunflower, poppy, evening primrose, walnut, linseed or hemp. In principle, however, all plants which are capable of synthesizing fatty acids are suitable, such as all dicotyledonous or monocotyledonous plants, algae or mosses. Advantageous plants are selected from the group of the plant families Adelothecaceae, Anacardiaceae, Asteraceae, Apiumaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Cryptophyceae, Cucurbitaceae, Ditrichaceae, Elaeaginaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Liliaceae, Pinnophyceae or vegetable plants or ornamentals such as Tagetes.

Examples which may especially preferably be mentioned are the following plants selected from the group consisting of: Adelothecaceae such as the genera Physcomitrella, for example the genus and species Physcomitrella patens, Anac-
Oleum cocos [coconut], Gramineae, such as the genus Saccharum, for example the genus and species Saccharum officinarum, Juglandaceae, such as the genera Juglans, Wallia, for the genera and species Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Juglans bixbyi, Juglans californica, Juglans hindii, Juglans intermedia, Juglans jamaicensis, Juglans major, Juglans microcarpa, Juglans nigra or Wallia nigra [walnut], Lauraceae, such as the genera Persea, Laurus, for example the genera and species Laurus nobilis [bay], Persea americana, Persea gratissima or Persea persa [avocado], Leguminosae, such as the genus Arachis, for example the genus and species Arachis hypogaea [peanut], Linaceae, such as the genera Linum, Adenolinum, for example the genera and species Linum usitatissimum, Linum hirsutum, Linum austriacum, Linum biebenn, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewissii, Linum narbonense, Linum perenne, Linum perenne var. lewii, Linum pratense or Linum trigrum [linsseed], Lythraceae, such as the genus Panica, for example the genus and species Panicum granatum [pomegranate], Malvaceae, such as the genus Gossypium, for example the genera and species Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, Gossypium herbaceum or Gossypium thurberri [cotton], Marchantiacaeae, such as the genus Marchantia, for example the genera and species Marchantia berteroana, Marchantia foliacea, Marchantia macnropora, Musaceae, such as the genus Musa, for example the genera and species Musa nana, Musa acuminata, Musa paradisiaca, Musa spp. [banana], Onagraceae, such as the genera Camissonia, Oenothera, for example the genera and species Oenothera biennis or Camissonia brevipes [evening primrose], Palmae, such as the genus Elaeis, for example the genus and species Elaeis guineensis [oil palm], Papaveraceae, such as the genus Papaver, for example the genera and species Papaver orientale, Papaver rheas, Papaver dubium [poppy], Pedaliaceae, such as the genus Sesannum, for example the genus and species Sesannum indicum [sesame], Piperaceae, such as the genera Piper, Artanata, Peperomia, Steffania, for example the genera and species Piper aduncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanata adunc, Artanata elongata, Peperomia elongata, Piper elongatum, Steffania elongata [cayenne pepper], Poaceae, such as the genera Hordeum, Secale, Avena, Sorghum, Andropogon, Holcus, Panicum, Orzya, Zea [maize], Triticum, for example the genera and species Hordeum vulgare, Hordeum bulbosum, Hordeum murinum, Hordeum secalinum, Hordeum distichon, Hordeum aestivum, Hordeum hexastichum, Hordeum irregulare, Hordeum sativum, Hordeum secalinum [barley], Secale cereale [rye], Avena sativa, Avena fatua, Avena barbata, Avena fatua var. sativa, Avena hybrida [oats], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgare, Andropogon dracmondii, Holcus bicolor, Holcus sanguineus, Andropogon cernaun, Sorghum arundinaceum, Andropogon coariflorus, Sorghum cernaun, Sorghum sativum, Sorghum halepense, Sorghum saccharatum, Sorghum bicolor, Sorghum halepense, Sorghum arundinaceum, Panicum miliaceum [millet], Orzya sativa, Orzya latifolia [rice], Zea mays [maize], Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hypernum, Triticum macha, Triticum sativum or Triticum vulgare [wheat], Porphyridiaceae, such as the genera Chlorella, Flav廳ella, Porphyridium, Rhodella, Rhodovulcos, Vanhoovenia, for example the genus and species Porphyridium cruentum, Proteaceae, such as the genus Macadamia, for example the genera and species Macadamia integrifolia [macadamia], Prasinophyceae, such as the genera Nephrolepis, Prasinococcus, Scherfellia, Tetraselmis, Monotiella, Ostreococcus, for example the genera and species Nephrolepis olivacea, Prasinococcus capillus, Scherfellia dubia, Tetraselmis chui, Tetraselmis suecica, Monotiella squamata, Ostreococcus tauri, Rubiaceae, such as the genus Coffea, for example the genera and species Coffea spp., Coffea arabica, Coffea canephora or Coffea liberca [coffee], Scrophulariaceae, such as the genus Verbacum, for example the genus and species Verbacum blattaria, Verbacum chais, Verbacum densiflorum, Verbacum lagurus, Verbacum longifolium, Verbacum lyciinii, Verbacum nigrum, Verbacum olympicum, Verbacum phlomoides, Verbacum phoenicum, Verbacum pulverulentum or Verbacum thapsus [verbacum], Solanaceae, such as the genera Capsicum, Nicotiana, Solanum, Lycopersicon, for example the genera and species Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutescens [pepper], Capsicum annuum [paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata, Nicotiana glauca, Nicotiana langsdorfi, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [tobacco], Solanum tuberosum [potato], Solanum melongena [eggplant], Lycopersicon esculentum, Lycopersicon lycopersicum, Lycopersicon perhybridum, Solanum integrifolium or Solanum lycopersicum [tomato], Sterculiaceae, such as the genus Theobroma, for example the genus and species Theobroma cacao [cacao] or Theaeneae, such as the genus Camellia, for example the genus and species Camellia sinensis [tea].

Multicular microorganisms which can be employed as transgenic nonhuman organisms are preferably protists or dinotoms selected from the group of the families Dinophyceae, Turinellidae or Oxytrichidae, such as the genera and species: Cryptocodonium colinitii, Phaeodactylum tricolum, Stylonychia mytilis, Stylonychia pustulata, Stylonychia putrina, Stylonychia notophora, Stylonychia sp., Colpidium campylum or Colpidium sp.

The invention further relates to a method for the production of a substance which has the structure shown in the general formula I hereinbelow:

![Chemical structure](image)

Where the variables and substituents are as follows:

R1 = hydroxyl, coenzyme A (thioester), lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidylglycero, lysophosphatidylserine, lysophosphatidylinositol, sphingos base or a radical of the formula II
R²=hydrogen, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidylcholine, lysophosphatidylserine, lysophosphatidylinositol or saturated or unsaturated C₁₂₋₂₄₋alkylcarboxyl, or R² independently of one another are a radical of the formula I:

\[R² = \text{hydrogen} \]

in which

\[\begin{align*}
& \text{m=2, 3, 4, 5, 6, 7 or 9, n=2, 3, 4, 5 or 6 and p=0 or 3,} \\
& \text{and where the method comprises the cultivation of (i) a host cell according to the invention or (ii) a transgenic nonhuman organism according to the invention under conditions which permit the biosynthesis of the substance. Preferably, the abovementioned substance is provided in an amount of at least 1% by weight based on the total lipid content in the host cell or the transgenic organism.} \\
& \text{R² in the general formula I is hydroxyl, coenzyme A (thioester), lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidylcholine, lysophosphatidylinositol or saturated or unsaturated C₁₂₋₂₄₋alkylcarboxyl.} \\
& \text{Alkyl} radicals which may be mentioned are substituted or unsubstituted, saturated or unsaturated C₁₀₋₃₃₋alkylcarboxyl radicals such as ethylcarboxyl, n-propylcarboxyl, n-butylicarboxyl, n-pentylcarboxyl, n-hexylcarboxyl, n-heptylcarboxyl, n-octylcarboxyl, n-nonylcarboxyl, n-decylcarboxyl, n-undecylcarboxyl, n-dodecylcarboxyl, n-tridecylcarboxyl, n-tetradecylcarboxyl, n-pentadecylcarboxyl, n-hexadecylcarboxyl, n-heptadecylcarboxyl, n-octadecylcarboxyl, n-nonadecylcarboxyl, n-eicosylcarboxyl, n-docosanoylcarboxyl, or n-tetracontanoylcarboxyl which comprise one or more double bonds. The especially advantageous radicals which comprise one or more double bonds are preferred. Especially preferred are saturated and/or unsaturated C₁₀₋₁₈₋alkylcarboxyl radicals such as C₁₀₋₁₈₋alkylcarboxyl, C₁₈₋₂₀₋alkylcarboxyl or C₂₀₋₂₂₋alkylcarboxyl radicals which comprise one or more double bonds. These advantageous radicals can comprise two, three, four, five or six double bonds. The especially advantageous radicals with 20 or 22 carbon atoms in the fatty acid chain comprise up to six double bonds, advantageously three, four, five or six double bonds. Both the abovementioned radicals are derived from the corresponding fatty acids.} \\
& \text{R² in the general formula II is hydrogen, saturated or unsaturated C₁₂₋₂₄₋alkylcarboxyl.} \\
& \text{Alkyl radicals which may be mentioned are substituted or unsubstituted, saturated or unsaturated C₁₀₋₃₃₋alkylcarboxyl chains such as ethylcarboxyl, n-propylcarboxyl, n-butylicarboxyl, n-pentylcarboxyl, n-pentylcarboxyl, n-hexylcarboxyl, n-heptylcarboxyl, n-octylcarboxyl, n-nonylcarboxyl, n-decylcarboxyl, n-undecylcarboxyl, n-tridecylcarboxyl, n-pentadecylcarboxyl, n-hexadecylcarboxyl, n-heptadecylcarboxyl, n-octadecylcarboxyl, n-nonadecylcarboxyl, n-eicosylcarboxyl, n-docosanoylcarboxyl, or n-tetracontanoylcarboxyl which comprise one or more double bonds. Saturated or unsaturated C₁₀₋₁₈₋alkylcarboxyl radicals such as n-decylcarboxyl, n-dodecylcarboxyl, n-tridecylcarboxyl, n-tetradecylcarboxyl, n-pentadecylcarboxyl, n-hexadecylcarboxyl, n-heptadecylcarboxyl, n-octadecylcarboxyl, n-nonadecylcarboxyl, n-eicosylcarboxyl, n-docosanoylcarboxyl, or n-tetracontanoylcarboxyl which comprise one or more double bonds are preferred. Especially preferred are saturated and/or unsaturated C₁₀₋₁₈₋alkylcarboxyl radicals such as C₁₀₋₁₈₋alkylcarboxyl, C₁₈₋₂₀₋alkylcarboxyl or C₂₀₋₂₂₋alkylcarboxyl radicals which comprise one or more double bonds. These advantageous radicals can comprise two, three, four, five or six double bonds. The especially advantageous radicals with 20 or 22 carbon atoms in the fatty acid chain comprise up to six double bonds, advantageously three, four, five or six double bonds. Both the abovementioned radicals are derived from the corresponding fatty acids.} \\
& \text{The abovementioned radicals of R¹ are always bonded to the compounds of the general formula I in the form of their thioesters.} \\
& \text{R² in the general formula II is hydrogen, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidylcholine, lysophosphatidylinositol or saturated or unsaturated C₁₂₋₂₄₋alkylcarboxyl.} \\
& \text{Alkyl radicals which may be mentioned are substituted or unsubstituted, saturated or unsaturated C₁₀₋₃₃₋alkylcarboxyl chains such as ethylcarboxyl, n-propylcarboxyl, n-butylicarboxyl, n-pentylcarboxyl, n-hexylcarboxyl, n-heptylcarboxyl, n-octylcarboxyl, n-nonylcarboxyl, n-decylcarboxyl, n-undecylcarboxyl, n-dodecylcarboxyl, n-tridecylcarboxyl, n-tetradecylcarboxyl, n-pentadecylcarboxyl, n-hexadecylcarboxyl, n-heptadecylcarboxyl, n-octadecylcarboxyl, n-nonadecylcarboxyl, n-eicosylcarboxyl, n-docosanoylcarboxyl, or n-tetracontanoylcarboxyl which comprise one or more double bonds. Saturated or unsaturated C₁₀₋₁₈₋alkylcarboxyl radicals such as n-decylcarboxyl, n-dodecylcarboxyl, n-tridecylcarboxyl, n-tetradecylcarboxyl, n-pentadecylcarboxyl, n-hexadecylcarboxyl, n-heptadecylcarboxyl, n-octadecylcarboxyl, n-nonadecylcarboxyl, n-eicosylcarboxyl, n-docosanoylcarboxyl, or n-tetracontanoylcarboxyl which comprise one or more double bonds are preferred. Especially preferred are saturated and/or unsaturated C₁₀₋₁₈₋alkylcarboxyl radicals such as C₁₀₋₁₈₋alkylcarboxyl, C₁₈₋₂₀₋alkylcarboxyl, C₂₀₋₂₂₋alkylcarboxyl or C₂₂₋₂₄₋alkylcarboxyl radicals which comprise one or more double bonds. These advantageous radicals can comprise two, three, four, five or six double bonds. The especially advantageous radicals with 20 or 22 carbon atoms in the fatty acid chain comprise up to six double bonds, advantageously three, four, five or six double bonds, especially preferably five or six double bonds. All the abovementioned radicals are derived from the corresponding fatty acids.} \\
& \text{The abovementioned radicals of R¹, R² and R³ can be substituted by hydroxyl and/or epoxy groups and/or can comprise triple bonds.} \\
& \text{The polyunsaturated fatty acids produced in the method according to the invention advantageously comprise at least two, advantageously three, four, five or six double bonds. The fatty acids especially advantageously comprise four, five or six double bonds. Fatty acids produced in the method advantageously have 18, 20 or 22 C atoms in the fatty acid chain; the fatty acids preferably comprise 20 or 22 carbon atoms in the fatty acid chain. Saturated fatty acids are advantageously reacted to a minor degree, or not at all, with the nucleic acids used in the method. To a minor degree is to be understood as meaning that the saturated fatty acids are reacted with less than 5% of the activity, advantageously less than 3%, especially advantageously with less than 2%, very}
especially preferably with less than 1, 0.5, 0.25 or 0.125% in comparison with polyunsaturated fatty acids. These fatty acids which have been produced can be produced in the method as a single product or be present in a fatty acid mixture.

Advantageously, the substituents R² or R³ in the general formula I and II are, independently of one another, saturated or unsaturated C₁₈₋₃₂-alkylcarbonyl, especially advantageously, they are, independently of one another, unsaturated C₁₈₋₃₂ or C₂₂-alkylcarbonyl with at least two double bonds.

The polyunsaturated fatty acids produced in the method are advantageously bound in membrane lipids and/or triglycerides, but may also occur in the organisms as free fatty acids or else bound in the form of other fatty acid esters. In this context, they may be present as “pure products” or else advantageously in the form of mixtures of various fatty acids or mixtures of different glycerides. The various fatty acids which are bound in the triclycerides can be derived from short-chain fatty acids with 4 to 6 C atoms, medium-chain fatty acids with 8 to 12 C atoms or long-chain fatty acids with 14 to 24 C atoms; preferred are long-chain fatty acids, more preferably long-chain polyunsaturated fatty acids with 18, 20 and/or 22 C atoms.

The method according to the invention advantageously yields fatty acid esters with polyunsaturated C₁₈₋₃₂ and/or C₂₂ fatty acid molecules with at least two double bonds in the fatty acid ester, advantageously with at least three, four, five or six double bonds in the fatty acid ester, especially advantageously with at least five or six double bonds in the fatty acid ester and advantageously leads to the synthesis of linoleic acid (—LA, C₁₈:2ω₆/ω₃), γ-linolenic acid (—GLA, C₁₈:3ω₆/ω₃/ω₆), stearidonic acid (—SDA, C₁₈:4ω₆/ω₃/ω₆/ω₃), dihomo-γ-linolenic acid (—DGLA, 20:5ω₆/ω₃/ω₆/ω₆/ω₃), α₅-eicosatetraenoic acid (—ETA, C₂₀:4ω₆/ω₆/ω₆/ω₆), arachidonic acid (ARA, C₂₀:4ω₆/ω₆/ω₆/ω₆), eicosapentaenoic acid (EPA, C₂₀:5ω₃/ω₆/ω₆/ω₆/ω₆), n-6-docosapentaenoic acid (C₂₂:5ω₆/ω₆/ω₆/ω₆/ω₆), n-6-docosahexaenoic acid (DHA, C₂₂:6ω₃/ω₆/ω₆/ω₆/ω₆/ω₆), or mixtures of these, preferably ARA, EPA and/or DHA. α₃-Fatty acids such as EPA and/or DHA are very especially preferably produced.

The fatty acid esters with polyunsaturated C₁₈₋₃₂, C₂₀ and/or C₂₂ fatty acid molecules can be isolated in the form of an oil or lipid, for example in the form of compounds such as sphingolipids, phosphoglycerides, lipids, glycolipids such as glycosphingolipids, phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidyserine, phosphatidylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol or diphasatidylglycerol, mononacyleglycerides, diacylglycerides, triacylglycerides or other fatty acid esters such as the acetylcobenzyme A esters which comprise the polyunsaturated fatty acids with at least two, three, four, five or six, preferably five or six double bonds, from the organisms which have been used for the preparation of the fatty acid esters; advantageously, they are isolated in the form of their diacylglycerides, triacylglycerides and/or in the form of phosphatidylcholine, especially preferably in the form of the triacylglycerides. In addition to these esters, the polyunsaturated fatty acids are also present in the organisms, advantageously the plants, as free fatty acids or bound in other compounds. As a rule, the various abovementioned compounds (fatty acid esters and free fatty acids) are present in the organisms with an approximate distribution of 80 to 90% by weight of triglycerides, 2 to 5% by weight of diglycerides, 5 to 10% by weight of monoglycerides, 1 to 5% by weight of free fatty acids, 2 to 8% by weight of phospholipids, the total of the various compounds amounting to 100% by weight.

The method according to the invention yields the LCPUFAs produced in a content of at least 3% by weight, advantageously at least 5% by weight, preferably at least 8% by weight, especially preferably at least 10% by weight, most preferably at least 15% by weight, based on the total fatty acids in the transgenic organisms, advantageously in a transgenic plant. In this context, it is advantageous to convert C₁₈₋₃₂ and/or C₂₂, fatty acids which are present in the host organisms to at least 10%, advantageously to at least 20%, especially advantageously to at least 30%, most advantageously to at least 40% to give the corresponding products such as DPA or DHA, to mention just two examples. The fatty acids are advantageously produced in bound form. These unsaturated fatty acids can, with the aid of the nucleic acids used in the method according to the invention, be positioned at the sn1, sn2 and/or sn3 position of the advantageously produced triglycerides. Since a plurality of reaction steps are performed by the starting compounds linoleic acid (C₁₈:2) and linolenic acid (C₁₈:3) in the method according to the invention, the end products of the method such as, for example, arachidonic acid (ARA), eicosapentaenoic acid (EPA), n-6-docosapentaenoic acid or DHA are not obtained as absolutely pure products; minor traces of the precursors are always present in the end product. If, for example, both linoleic acid and linolenic acid are present in the starting organism and the starting plant, the end products such as ARA, EPA or DHA are present as mixtures. The precursors should advantageously not amount to more than 20% by weight, preferably not to more than 15% by weight, especially preferably not to more than 10% by weight, most preferably not to more than 5% by weight, based on the amount of the end product in question. Advantageously, only ARA, EPA or only DHA, bound or as free acids, are produced as end products in a transgenic plant in the method according to the invention. If the compounds ARA, EPA and DHA are produced simultaneously, they are advantageously produced in a ratio of at least 1:1:2 (EPA:ARA: DHA), advantageously of at least 1:1:3, preferably 1:1:4, especially preferably 1:1:5.

Fatty acid esters or fatty acid mixtures produced by the method according to the invention advantageously comprise 6 to 15% of palmitic acid, 1 to 6% of stearic acid, 7-85% of oleic acid, 0.5 to 8% of vaccenic acid, 0.1 to 1% of arachidic acid, 7 to 25% of saturated fatty acids, 8 to 85% of monounsaturated fatty acids and 60 to 85% of polyunsaturated fatty acids, in each case based on 100% and on the total fatty acid content of the organisms. Advantageously polyunsaturated fatty acids which are present in the fatty acid esters or fatty acid mixtures are preferably at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or 1% of arachidonic acid, based on the total fatty acid content. Moreover, the fatty acid esters or fatty acid mixtures which have been produced by the method of the invention advantageously comprise fatty acids selected from the group of the fatty acids erucic acid (13-docosanoic acid), sterculic acid (9,10-methyleneoctadec-9-enoic acid), malvalic acid (8,9-methyleneheptadec-8-enonic acid), chaulmoogric acid (cyclopentenodecanoic acid), furan fatty acid (9,12-epoxyoctadeca-9,11-dienoic acid), vernolic acid (9,10-epoxyoctadec-12-enonic acid), tataric acid (6-ocatdecanoic acid), 6-monooctadecenoic acid, sultalic acid (11-ocatadec-9-enoic acid), 6,9-docosadienoic acid, pyrulic acid (10-heptadeca-8-ynonic acid), crepenylic acid (9-ocatadec-12-yonic acid), 13,14-dihydroxypropeic acid, octadecane-13-one-9,11-dienoic acid, petroselic acid (cis-6-ocatdecanoic acid), 9c,12-ocatadecadienoic acid, calendulic acid (8(10)12c-ocatadecatrienonic acid), catalic acid (9(11)13c-oc-
Advantageously, the desaturases used in the method according to the invention convert their respective substrates in the form of the CoA-fatty acid esters. If preceded by an elongation step, this advantageously results in an increased product yield. The respective desaturation products are thereby synthesized in greater quantities, since the elongation step is usually carried out with the CoA-fatty acid esters, while the desaturation step is predominantly carried out with the phospholipids or the triglycerides. Therefore, a substitution reaction between the CoA-fatty acid esters and the phospholipids or triglycerides, which would require a further, possibly limiting, enzyme reaction, is not necessary.

Owing to the enzymatic activity of the polypeptides used in the method according to the invention, a wide range of polyunsaturated fatty acids can be produced in the method according to the invention. Depending on the choice of the organisms, such as the advantageous plants, used for the method according to the invention, mixtures of the various polyunsaturated fatty acids or individual polyunsaturated fatty acids, such as EPA or ARA, can be produced in free or bound form. Depending on the prevailing fatty acid composition in the starting plant (C18:2- or C18:3-fatty acids), fatty acids which are derived from C18:2-fatty acids, such as GLA, DGLA or ARA, or fatty acids which are derived from C18:3-fatty acids, such as SDA, ETA or EPA, are thus obtained. If only linoleic acid (=ω-6; C18:2^{ω-6}) is present as unsaturated fatty acid in the plant used for the method, the method can only afford GLA, DGLA and ARA as products, all of which can be present as free fatty acids or in bound form. If only α-linolenic acid (=ω-3; C18:3^{ω-3}) is present as unsaturated fatty acid in the plant used for the method, the method can only afford SDA, ETA and/or DHA as products, all of which can be present as free fatty acids or in bound form, as described above. Owing to the modification of the activity of the enzymes Δ5-desaturase, Δ6-desaturase, Δ4-desaturase, Δ12-desaturase, Δ15-desaturase, o3-desaturase, Δ5-elongase and/or Δ6-elongase which play a role in the synthesis, it is possible to produce, in a targeted fashion, only individual products in the abovementioned organisms, advantageously in the abovementioned plants. Owing to the activity of Δ6-desaturase and Δ5-elongase, for example, GLA and DGLA, or SDA and ETA, are formed, depending on the starting plant and unsaturated fatty acid. DGLA or ETA or mixtures of these are preferably formed. If Δ5-desaturase, Δ5-elongase and Δ4-desaturase are additionally introduced into the organisms, advantageously into the plant, ARA, EPA and/or DHA are additionally formed. Advantageously, only ARA, EPA or DHA or mixtures of these are synthesized, depending on the fatty acids present in the organism, or in the plant, which acts as starting substance for the synthesis. Since biosynthetic cascades are involved, the end products in question are not present as pure substances in the organisms. Small amounts of the precursor compounds are always additionally present in the end product. These small amounts amount to less than 20% by weight, advantageously less than 15% by weight, especially advantageously less than 10% by weight, most advantageously less than 5, 4, 3, 2 or 1% by weight, based on the end product DGLA, ETA or their mixtures, or ARA, EPA, DHA or their mixtures, advantageously EPA or DHA or their mixtures.

In addition to the production, directly in the organism, of the starting fatty acids for the polypeptides used in the method of the invention, the fatty acids can also be fed externally. The production in the organism is preferred for reasons of economy. Preferred substrates are linoleic acid (C18:2^{ω-6}), γ-linolenic acid (C18:3^{ω-6}), eicosadienoic acid (C20:2^{ω-6}), dihomo-γ-linolenic acid (C20:3^{ω-3}),
archidonic acid (C20:4*5,8,11,14), docosahexaenoic acid (C22:6*5,7,10,12,15), and docosapentaenoic acid (C22:5*4,7,10,13,15).

To increase the yield in the described method for the production of oils and/or triglycerides with an advantageously elevated content of polyunsaturated fatty acids, it is advantageous to increase the amount of starting product for the synthesis of fatty acids; this can be achieved for example by introducing, into the organism, a nucleic acid which codes for a polypeptide with a Δ5-desaturase activity according to the invention. This is particularly advantageous in oil-producing organisms such as those from the family of the Brassicaceae, such as the genus Brassica, for example oilseed rape; the family of the Elaeagnaceae, such as the genus Elaeagnus, for example the genus and species Olea europea, or the family Fabaceae, such as the genus Glycine, for example the genus and species Glycine max, which are high in oleic acid. Since these organisms are only low in linoleic acid (Mikolajczak et al., Journal of the American Oil Chemical Society, 38, 1961, 678-681), the use of the Δ5-desaturases for producing the starting arachidonic acid, or eicosapentaenoic acid, or docosahexaenoic acid is advantageous.

The method according to the invention advantageously employs the above-mentioned nucleic acid sequences or their derivatives or homologs which code for polypeptides which retain the enzymatic activity of the proteins encoded by nucleic acid sequences. These sequences, individually or in combination with the polynucleotides according to the invention, are cloned into expression constructs and used for the introduction into, and expression in, organisms. Owing to their construction, these expression constructs make possible an advantageous optimal synthesis of the polyunsaturated fatty acids produced in the method according to the invention.

In a preferred embodiment, the method furthermore comprises the step of obtaining a cell or an intact organism which comprises the nucleic acid sequences used in the method, where the cell and/or the organism is transformed with a polynucleotide according to the invention, a gene construct or a vector as described below, alone or in combination with further nucleic acid sequences which code for proteins of the fatty acid or lipid metabolism. In a further preferred embodiment, this method furthermore comprises the step of obtaining the oils, lipids or free fatty acids from the organism or from the culture. The culture can, for example, take the form of a fermentation culture, for example in the cultivation of microorganisms, such as, for example, Mortierella, Thalassiosira, Mantoniella, Ostreococcus, Saccharomyces or Thraustochytrium, or a greenhouse- or field-grown culture of a plant. The cell or the organism thus produced is advantageously a cell of an oil-producing organism, such as an oil crop, such as, for example, peanut, oilseed rape, canola, linseed, hemp, soybean, safflower, sunflowers or borage.

In the case of plant cells, plant tissue or plant organs, “growing” is understood as meaning, for example, the cultivation on or in a nutrient medium, or of the intact plant on or in a substrate, for example in a hydroponic culture, potting compost or on arable land.

Suitable organisms or host cells for the method according to the invention are those which are capable of synthesizing fatty acids, specifically unsaturated fatty acids, and/or which are suitable for the expression of recombinant genes. Examples which may be mentioned are plants such as Arabidopsis, Aesmeaeae such as Calendula or crop plants such as soybean, peanut, castor-oil plant, sunflower, maize, cotton, flax, oilseed rape, coconut, oil palm, safflower (Carthamus tinctorius) or cacao bean, microorganisms, such as fungi, for example the genus Mortierella, Thraustochytrium, Saprolegniophyta or Pythium, bacteria such as the genus Escherichia or Shewanella, yeasts, such as the genus Saccharomyces, cyanobacteria, ciliates, algae such as Mantoniella or Ostreococcus, or protozoans such as dinoflagellates, such as Thalassiosira or Cryptophyceaceae. Preferred organisms are those which are naturally capable of synthesizing substantial amounts of oil, such as fungi, such as Mortierella alpina, Pythium insidiosum, Pythium infestans, or plants such as soybean, oilseed rape, coconut, oil palm, sunflower, flax, hemp, castor-oil plant, Calendula, peanuts, cacao beans or sunflower, or yeasts such as Saccharomyces cerevisiae, with soybean, flax, oilseed rape, safflower, sunflower, Calendula, Mortierella or Saccharomyces cerevisiae being especially preferred. In principle, suitable as host organisms are, in addition to the above-mentioned transgenic organisms, also transgenic animals, advantageously nonhuman animals, for example Caenorhabditis elegans. Further suitable host cells and organisms have already been described extensively above.

Transgenic plants which comprise the polyunsaturated fatty acids synthesized in the method according to the invention can advantageously be marketed directly without there being any need for the oils, lipids or fatty acids synthesized to be isolated. Plants for the method according to the invention are listed as being intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, flowers, root hairs, stalks, embryos, calli, cotyledons, petioles, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. However, the compounds produced in the method according to the invention can also be isolated from the organisms, advantageously plants, in the form of their oils, fats, lipids and/or free fatty acids. Polyunsaturated fatty acids produced by this method can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant parts, preferably of the plant seeds. In this context, the oils, fats, lipids and/or free fatty acids can be obtained by pressing what is known as cold-pressing or cold-pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they are previously comminuted, steamed or roasted. The seeds which have been pretreated in this manner can subsequently be pressed or extracted with solvent such as warm hexane. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly without further methoding steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. In this manner, more than 90% of the compounds produced in the method can be isolated. Thereafter, the resulting products are methoded further, i.e. refined. In this method, for example the plant mucilages and suspended matter are first removed. What is known as desliming can be effected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. Thereafter, the fatty acids are removed specifically by treatment with a base, for example sodium hydroxide solution. The resulting product is washed thoroughly with water to remove the alkali remaining in the product and then dried. To remove the pigments remaining in the product, the products are subjected to bleaching, for example using fuller’s earth or active charcoal. At the end, the product is deodorized, for example using steam.
The PUFA s or LCPUFAs produced by this method are preferably C16, C18, or C20 fatty acid molecules, advantageously, C16, C18, or C20 fatty acid molecules, with at least two double bonds in the fatty acid molecule, preferably three, four, five or six double bonds. These C16, C18, or C20 fatty acid molecules can be isolated from the organism in the form of an oil, a lipid or a free fatty acid. Suitable organisms are, for example, those mentioned above. Preferred organisms are transgenic plants.

One embodiment of the invention is therefore oils, lipids or fatty acids or fractions thereof which have been produced by the above described method, especially preferably oil, lipid or a fatty acid composition comprising PUFA s and being derived from transgenic plants.

As described above, these oils, lipids or fatty acids advantageously comprise 6 to 15% of palmitic acid, 1 to 6% of stearic acid, 7-85% of oleic acid, 0.5 to 8% of vaccenic acid, 0.1 to 1% of arachidic acid, 7 to 25% of saturated fatty acids, 8 to 85% of monounsaturated fatty acids and 60 to 85% of polyunsaturated fatty acids, in each case based on 100% and on the total fatty acid content of the organisms. Advantageous polynsaturated fatty acids which are present in the fatty acid esters or fatty acid mixtures are preferably at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or 1% of arachidonic acid, based on the total fatty acid content. Moreover, the fatty acid esters or fatty acid mixtures which have been produced by the method of the invention advantageously comprise fatty acids selected from the group of the fatty acids erucic acid (13-docosahexenoic acid), sterculic acid (9,10-methyleneoctadec-9-enoic acid), malvalic acid (8,9-methylenepentadec-8-enolic acid), chaulmoogric acid (cyclopentenedecenoic acid), furan fatty acid (9,12-epoxyoctadeca-9,11-dienoic acid), vernolic acid (9,10-epoxyoctadec-12-enoic acid), erucic acid (6-octadecenoic acid), 6-monodecenoic acid, santallic acid (11-octadecen-9-ynoic acid), 6,9-octadecadienoic acid, pyrillic acid (10-hexadecenoic acid), crepenyric acid (9-octadecen-12-ynoic acid), 3,14-dihydrodyrroplastic acid, octadecen-13-ene-9,11-dienoic acid, petroselanic acid (cis-6-octadecenoic acid), 9c,12-octadecadienoic acid, calendulaic acid (8t10,12-octadecatrienoic acid), catalpic acid (9t11,13-octadecatrienoic acid), elaeostearic acid (9c11,13t15-octadecatrienoic acid), jarcic acid (8c10,12-octadecatrienoic acid), punicalic acid (9c11,13t15-octadecatrienoic acid), parinaric acid (9c11,13t15-octadecatrienoic acid), pinoletic acid (all-cis-5,9,12-octadecatrienoic acid), laballenic acid (5,6-octadecadienallic acid), ricinoleic acid (12-hydroxyoleic acid) and/or cornitic acid (13-hydroxy-9t11-octadecadienoic acid). The abovementioned fatty acids are, as a rule, advantageously only found in traces in the fatty acid esters or fatty acid mixtures produced by the method according to the invention, is to say that, based on the total fatty acids, they occur to less than 30%, preferably to less than 25%, 24%, 23%, 22% or 21%, especially preferably to less than 20%, 15%, 10%, 9%, 8%, 7%, 6% or 5%, very especially preferably to less than 4%, 3%, 2% or 1%. The fatty acid esters or fatty acid mixtures produced by the method according to the invention advantageously comprise less than 0.1%, based on the total fatty acids, or no butyric acid, no cholest er, no elapanonic acid (docosapentanoic acid, C22: 5,6,9,12,15,18,21) and no nisinic acid (tetracosahexaenoic acid, C23: 6,9,12,15,18,21,24,27) 10%

The oils, lipids or fatty acids according to the invention preferably comprise at least 0.5%, 1%, 2%, 3%, 4% or 5%, advantageously at least 6%, 7%, 8%, 9% or 10%, especially advantageously at least 11%, 12%, 13%, 14% or 15% of ARA or at least 0.5%, 1%, 2%, 3%, 4% or 5%, advantageously at least 6% or 7%, especially advantageously at least 8%, 9% or 10% of EPA and/or DHA, based on the total fatty acid content of the production organism, advantageously of a plant, especially advantageously of an oil crop plant such as soybean, oilseed rape, coconut, oil palm, safflower, flax, hemp, castor-oil plant, Calendula, peanut, cacao bean, sunflower, or the abovementioned further mono- or dicotyledonous oil crop plants.

A further embodiment according to the invention is the use of the oil, lipid, the fatty acids and/or the fatty acid composition in feedstuffs, foodstuffs, cosmetics or pharmaceuticals.

The oils, lipids, fatty acids or fatty acid mixtures according to the invention can be used in the manner with which the skilled worker is familiar for mixing with other oils, lipids, fatty acids or fatty acid mixtures of animal origin, such as, for example, fish oils. These oils, lipids, fatty acids or fatty acid mixtures, which are composed of vegetable and animal constituents, may also be used for the preparation of feedstuffs, foodstuffs, cosmetics or pharmaceuticals.

The term "oil", "lipid" or "fat" is understood as meaning a fatty acid mixture comprising unsaturated, saturated, preferably esterified, fatty acids(s). The oil, lipid or fat is preferably high in polyunsaturated free or, advantageously, esterified fatty acids(s), in particular linoleic acid, γ-linolenic acid, dihomo-γ-linolenic acid, arachidonic acid, α-linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid or docosahexaenoic acid. The amount of unsaturated esterified fatty acids preferably amounts to approximately 30%, a content of 50% is more preferred, a content of 60%, 70%, 80% or more is even more preferred. For the analysis, the fatty acid content can, for example, be determined by gas chromatography after converting the fatty acids into the methyl esters by transesterification. The oil, lipid or fat may comprise various other saturated or unsaturated fatty acids, for example, cis-6-octadecenoic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid and the like. The content of the various fatty acids in the oil or fat can vary, in particular depending on the starting organism.

The polyunsaturated fatty acids with advantageously at least two double bonds which are produced in the method, are, as described above, for example sphenolipids, phosphoglycerides, lipids, glycolipids, phospholipids, monoglycerides, diglycerides, triacylglycerol or other fatty acid esters.

Starting from the polyunsaturated fatty acids with advantageously at least five or six double bonds, which acids have been prepared in the method according to the invention, the polyunsaturated fatty acids which are present can be liberated for example via treatment with alkali, for example aqueous KOH or NaOH, or acid hydrolysis, advantageously in the presence of an alcohol such as methanol or ethanol, or via enzymatic cleavage, and isolated via, for example, phase separation and subsequent acidification via, for example, H2SO4. The fatty acids can also be liberated directly without the abovedescribed method.

After their introduction into an organism, advantageously a plant cell or plant, the nucleic acids used in the method can either be present on a separate plasmid or, advantageously, integrated into the genome of the host cell. In the case of integration into the genome, integration can be random or else be effected by recombination such that the native gene is replaced by the copy introduced, whereby the production of the desired compound by the cell is modulated, or by the use of a gene in "trans", so that the gene is linked operably with a functional expression unit which comprises at least one sequence which ensures the expression of a gene and at least one sequence which ensures the polyadenylation of a functionally transcribed gene. The nucleic acids are advantageously introduced into the organisms via multi-expression
cassettes or constructs for multiparallel expression, advantageously into the plants for the multiparallel seed-specific expression of genes.

Mosses and algae are the only known plant systems which produce substantial amounts of polyunsaturated fatty acids such as arachidonic acid (ARA) and/or eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA). Mosses comprise PUFA's in membrane lipids, while algae, organisms which are related to algae and a few fungi also accumulate substantial amounts of PUFA's in the triglyceride fraction. This is why nucleic acid molecules which are isolated from such strains that also accumulate PUFA's in the triglyceride fraction are particularly advantageous for the method according to the invention and thus for the modification of the lipid and PUFA production system in a host, in particular plants such as oil crops, for example oilseed rape, canola, linseed, hemp, soybeans, sunflowers and borage. They can therefore be used advantageously in the method according to the invention.

Substrates which are suitable for the polypeptides according to the invention of the fatty acid or lipid metabolism selected from the group acyl-CoA dehydrogenase(s), acylACP -acyl carrier protein desaturase(s), acyl-ACP thioesterase(s), fatty acid synthase(s), acyl-CoA:phospholipid acyltransferase(s), fatty acid synthase(s), fatty acid hydroxylase(s), acyl-Coenzyme A carboxylase(s), acyl-Coenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acetyltransferase(s), lipoxigenase(s), tricylglycerol lipase(s), allene oxide synthase(s), hydroperoxide lyase(s) or fatty acid elongase(s) are advantageously C₁₀₋₁₁, C₁₆₋₁₇ or C₂₀₋₂₁ fatty acids. The fatty acids converted as substrates in the method are preferably converted in the form of their acyl-CoA esters and/or their phospholipid esters.

To produce the long-chain PUFA's according to the invention, the polyunsaturated C₁₀₋₁₁ fatty acids must first be desaturated by the enzymatic activity of a desaturase and subsequently elongated by at least two carbon atoms via an elongase. After one elongation cycle, this enzyme activity gives C₁₂₋₁₃ fatty acids and after two elongation cycles, C₁₄₋₁₅ fatty acids. The activity of the desaturases and elongases used in the method according to the invention preferably leads to C₁₆₋₁₇, C₂₀₋₂₁ and/or C₂₂ fatty acids, advantageously with at least two double bonds in the fatty acid molecule, preferably with three, four, five or six double bonds, especially preferably with five or six double bonds in the molecule. After a first desaturation and the elongation have taken place, further desaturation and elongation steps such as, for example, such a desaturation in the 45 and 44 positions may take place. Products of the method according to the invention which are especially preferred are dihomo-gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid and/or docosahexaenoic acid. The C₁₀₋₁₁ fatty acids with at least two double bonds in the fatty acid can be desaturated by the enzymatic activity according to the invention in the form of the free fatty acid or in the form of the esters, such as phospholipids, glycolipids, sphingolipids, phosphoglycerides, monoylglycerol, diacylglycerol or triglyceride.

The preferred biosynthesis site of fatty acids, oils, lipids or fats in the plants which are advantageously used is, for example, in general the seed or cell strata of the seed, so that seed-specific expression of the nucleic acids used in the method is sensible. However, it is obvious that the biosynthesis of fatty acids, oils or lipids need not be limited to the seed tissue, but can also take place in a tissue-specific manner in all the other parts of the plant—for example in epidermal cells or in the tubers.

If microorganisms such as yeasts, such as Saccharomyces or Schizosaccharomyces, fungi such as Mortierella, Aspergillus, Phytophthora, Entomophthora, Mucor or Thraustochytrium, algae such as Isochrysis, Mantoniella, Osteosoccus, Phaeodactylum or Cryptothecodium are used as organisms in the method according to the invention, these organisms are advantageously grown in fermentation cultures.

Owing to the use of the nucleic acids according to the invention which code for a desaturase, the polyunsaturated fatty acids produced in the method can be increased by at least 5%, preferably by at least 10%, especially preferably by at least 20%, very especially preferably by at least 50% in comparison with the wild type of the organisms which do not comprise the nucleic acids recombiantly.

In principle, the polyunsaturated fatty acids produced by the method according to the invention in the organisms used in the method can be increased in two different ways. Advantageously, the pool of free polyunsaturated fatty acids and/or the content of the esterified polyunsaturated fatty acids produced via the method can be enlarged. Advantageously, the pool of esterified polyunsaturated fatty acids in the transgenic organisms is enlarged by the method according to the invention.

If microorganisms are used as organisms in the method according to the invention, the growth in the organisms is a manner with which the skilled worker is familiar, depending on the host organism. As a rule, microorganisms are grown in a liquid medium comprising a carbon source, usually in the form of sugars, a nitrogen source, usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as salts of iron, manganese and magnesium and, if appropriate, vitamins, at temperatures of between 0°C and 100°C, preferably between 10°C and 60°C, while introducing oxygen gas. The pH of the nutrient liquid can either be kept constant, that is to say regulated during the culturing period, or not. The cultures can be grown batchwise, semi-batchwise or continuously. Nutrients can be provided at the beginning of the fermentation or fed in semicontinuously or continuously. The polyunsaturated fatty acids produced can be isolated from the organisms as described above by methods known to the skilled worker, for example by extraction, distillation, crystallization, if appropriate precipitation with salt, and/or chromatography.

To this end, the organisms can advantageously be disrupted beforehand.

If the host organisms are microorganisms, the methods according to the invention is advantageously carried out at a temperature of between 0°C and 95°C, preferably between 10°C and 85°C, especially preferably between 15°C and 75°C, very especially preferably between 15°C and 45°C.

In this method, the pH value is advantageously kept between pH 14 and 12, preferably between pH 6 and 9, especially preferably between pH 7 and 8.

The method according to the invention can be operated batchwise, semibatchwise or continuously. An overview over known cultivation methods can be found in the textbook by Clamiel (BioprocessTechnik 1. Einführung in die Biowerkzeugtechnologie 1. Biotechnologie 1. Einführung in die Biowirkstofftechnologie) (Gustav Fischer Verlag, Stuttgart, 1991) or in the textbook by Storhas (Bioreaktoren und periiphere Einrichtungen [Bioreactors and peripheral equipment] (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).

The culture medium to be used must suitably meet the requirements of the strains in question. Descriptions of cul-
nature media for various microorganisms can be found in the textbook “Manual of Methods for General Bacteriology” of the American Society for Bacteriology (Washington D.C., USA, 1981).

As described above, these media which can be employed in accordance with the invention usually comprise one or more carbon sources, nitrogen sources, inorganic salts, vitamins and/or trace elements.

Preferred carbon sources are sugars, such as mono-, di- or polysaccharides. Examples of very good carbon sources are glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose. Sugars can also be added to the media via complex compounds such as molasses or other by-products from sugar raffination. The addition of mixtures of a variety of carbon sources may also be advantageous. Other possible carbon sources are oils and fats such as, for example, soya oil, sunflower oil, peanut oil and/or coconut fat, fatty acids such as, for example, palmitic acid, stearic acid and/or oleic acid, alcohols and/or polyalcohols such as, for example, glycerol, methanol and/or ethanol, and/or organic acids such as, for example, acetic acid and/or lactic acid.

Nitrogen sources are usually organic or inorganic nitrogen compounds or materials comprising these compounds. Examples of nitrogen sources comprise ammonia in liquid or gaseous form or ammonium salts such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate or ammonium nitrate, nitrates, urea, amino acids or complex nitrogen sources such as cornsteep liquor, soya meal, soya protein, yeast extract, meat extract and others. The nitrogen sources can be used individually or as a mixture.

Inorganic salt compounds which may be present in the media comprise the chloride, phosphorus and sulfate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron.

Inorganic sulfur-containing compounds such as, for example, sulfates, sulfites, dithionites, tetrathionates, thiosulfates, sulfides, or other organic sulfur compounds such as mercaptans and thiols may be used as sources of sulfur for the production of sulfur-containing fine chemicals, in particular of methionine.

Phosphoric acid, potassium dihydrogen phosphate or potassium hydrogen phosphate or the corresponding sodium-containing salts may be used as sources of phosphorus.

Chelating agents may be added to the medium in order to keep the metal ions in solution. Particularly suitable chelating agents comprise dihydroxyphenols such as catechol or protocatechuic acid and organic acids such as citric acid.

The fermentation media used according to the invention for cultivating microorganisms usually also comprise other growth factors such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, pantothenate and pyridoxine. Growth factors and salts are frequently derived from complex media components such as yeast extract, molasses, cornsteep liquor and the like. It is moreover possible to add suitable precursors to the culture medium. The exact composition of the media components depends heavily on the particular experiment and is decided upon individually for each specific case. Information on the optimization of media can be found in the textbook “Applied Microbial Physiology, A Practical Approach” (Editors P. M. Rhodes, P. F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). Growth media can also be obtained from commercial suppliers, for example Standard I (Merck) or BH1 (brain heart infusion, DIFCO) and the like.

All media components are sterilized, either by heat (20 min at 121°C) or by filter sterilization. The components may be sterilized either together or, if required, separately. All media components may be present at the start of the cultivation or added continuously or batchwise, as desired.

The culture temperature is normally between 15°C and 45°C, preferably at from 25°C to 40°C, and may be kept constant or altered during the experiment. The pH of the medium should be in the range from 5 to 8.5, preferably around 7.0. The pH for cultivation can be controlled during cultivation by adding basic compounds such as sodium hydroxide, potassium hydroxide, ammonia and aqueous ammonium or acidic compounds such as phosphoric acid or sulfuric acid. Foaming can be controlled by employing anti-foams such as, for example, fatty acid polyglycol esters. To maintain the stability of plasmids it is possible to add to the medium suitable substances having a selective effect, for example antibiotics. Aerobic conditions are maintained by introducing oxygen or oxygen-containing gas mixtures such as, for example, ambient air, into the culture. The temperature of the culture is normally 20°C to 45°C and preferably 25°C to 40°C. The culture is continued until formation of the desired product is at a maximum. This aim is normally achieved within 10 hours to 160 hours.

The fermentation broths obtained in this way, in particular those containing polysaturated fatty acids, usually contain a dry mass of from 7.5 to 25% by weight.

The fermentation broth can then be methodically further. The biomass may, according to requirement, be removed completely or partially from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods or be left completely in the said broth. It is advantageous to method the biomass after its separation.

However, the fermentation broth can also be thickened or concentrated without separating the cells, using known methods such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling-film evaporator, by reverse osmosis or by nanofiltration. Finally, this concentrated fermentation broth can be methoded to obtain the fatty acids present therein.

The polyolefinidates or polypeptides of the present invention which are involved in the metabolism of lipids and fatty acids, PUFAs cofactors and enzymes or in the transport of lipophilic compounds across membranes are used in the method according to the invention for the modulation of the production of PUFAs in transgenic organisms, advantageously in plants, such as maize, wheat, rye, oats, triticale, rice, barley, soybean, peanut, cotton, *Linum* species such as linseed or flax, *Brassica* species such as oilseed rape, canola and turnip rape, pepper, sunflower, borage, evening primrose and *Tagetes*, *Salvia* species such as sage, *Vicia* species, *pea*, *cassava*, *alalfa*, *bushy plants* (*coffee* (*moca* *tea*), *Salix* species, *trees* (*oil palm*, *coconut*) and perennial grasses and fodder crops, either directly (for example when the overexpression or optimization of a fatty acid biosynthesis protein has a direct effect on the yield, production and/or production efficiency of the fatty acid from modified organisms) and/or can have an indirect effect which nevertheless leads to an enhanced yield, production and/or production efficiency of the PUFAs or a reduction of undesired compounds (for example when the modulation of the mevalonate pathway and fatty acids, cofactors and enzymes leads to modifications of the yield, production and/or production efficiency or the composition of the desired compounds within the cells, which, in turn, can affect the production of one or more fatty acids).

The combination of various precursor molecules and biosynthesis enzymes leads to the production of various fatty
acid molecules, which has a decisive effect on lipid composition, since polyunsaturated fatty acids (PUFAs) are not only incorporated into triacylglycerol but also into membrane lipids.

Brassicaeae, Boraginaceae, Primulaceae, or Linaeae are particularly suitable for the production of PUFAs, for example stearidonic acid, eicosapentaenoic acid and docosahexaenoic acid. Linseed (Linum usitatissimum) is especially advantageous for the production of PUFAs with the nucleic acid sequences according to the invention, advantageously, as described, in combination with further desaturases and elongases.

Lipid synthesis can be divided into two sections: the synthesis of fatty acids and their binding to sn-glycerol-3-phosphate, and the addition or modification of a polar head group. Usually, lipids, which are used in membranes comprise phospholipids, glycolipids, sphingolipids and phosphoglycerides. Fatty acid synthesis starts with the conversion of acetyl-CoA into malonyl-CoA by acetyl-CoA carboxylase or into acetyl-ACP by acetyl transacylase. After a condensation reaction, these two product molecules together form acetoacetyl-ACP, which is converted via a series of condensation, reduction and dehydration reactions so that a saturated fatty acid molecule with the desired chain length is obtained. The unsaturated fatty acids from these molecules is catalyzed by specific desaturases, either aerobically by means of molecular oxygen or anaerobically (regarding the fatty acid synthesis in microorganisms, see F.C. Neidhardt et al. (1996), *E. coli* and *Salmonella*, ASM Press: Washington, D.C., pp. 612-636 and references cited therein; Lengeler et al. (1999) *Biology of Procaroytes*. Thieme: Stuttgart, N.Y., and the references therein, and Magnussen, K., et al. (1993) *Microbiological Reviews* 57: 522-542 and references therein). To undergo the further elongation steps, the resulting phospholipid-bound fatty acids must be returned to the fatty acid CoA ester pool from the phospholipids. This is made possible by acyl-CoA: lysophospholipid acyltransferases. Moreover, these enzymes are capable of transferring the elongated fatty acids from the CoA esters back to the phospholipids. If appropriate, this reaction sequence can be traversed repeatedly. Examples of precursors for the biosynthesis of PUFAs are oleic acid, linoleic acid and linolenic acid. These C_{12}, C_{16}, C_{18}, C_{20} fatty acids must be elongated to C_{20}, C_{22} in order to obtain fatty acids of the eicos and docosa chain type. With the aid of the desaturases used in the method, such as the Δ12-, Δ15- and Δ16- and/or Δ20-icosa- and/or Δ6-desaturases and/or of the Δ5-, Δ6-elongases, arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid or docosahexaenoic acid, advantageously eicosapentaenoic acid and/or docosahexaenoic acid, can be produced and subsequently employed in various applications including foods, feedstuffs, cosmetics or pharmaceuticals. C_{20} and/or C_{22} fatty acids with at least two, advantageously at least three, four, five or six, double bonds in the fatty acid molecule, preferably C_{20} or C_{22} fatty acids with advantageously four, five or six double bonds in the fatty acid molecule, can be prepared using the above mentioned enzymes. Desaturation may take place before or after elongation of the fatty acid in question. This is why the products of the desaturase activities and of the further desaturation and elongation steps which are possible result in preferred PUFAs with a higher degree of desaturation, including a further elongation from C_{20} to C_{22}-fatty acids, to fatty acids such as γ-linolenic acid, dihomo-γ-linolenic acid, arachidonic acid, steardonic acid, eicosatetraenoic acid or eicosapentaenoic acid. Substrates of the desaturases and elongases used in the method according to the invention are C_{20}-, C_{18}- or C_{22}-fatty acids such as, for example, linoleic acid, γ-linolenic acid, α-linolenic acid, dihomo-γ-linolenic acid, eicosatetraenoic acid or steardonic acid. Preferred substrates are linoleic acid, γ-linolenic acid and/or α-linolenic acid, dihomo-γ-linolenic acid or arachidonic acid, eicosatetraenoic acid or eicosapentaenoic acid. The synthesized C_{20}- or C_{22}-fatty acids with at least two, three, four, five or six double bonds in the fatty acid are obtained in the method according to the invention in the form of the free fatty acid or in the form of their esters, for example in the form of their glycerides.

The term “glyceride” is understood as meaning a glycerol esterified with one, two or three carboxyl radicals (mono-, di- or triglyceride). “Glyceride” is also understood as meaning a mixture of various glycerides. The glyceride or glyceride mixture may comprise further additions, for example free fatty acids, antioxidants, proteins, carbohydrates, vitamins and/or other substances.

For the purposes of the method according to the invention, a “glyceride” is furthermore understood as meaning glycerol derivatives. In addition to the above described fatty acid glycerides, these also include glycerophospholipids and glycerylglycerides. Preferred examples which may be mentioned in this context are the glycerophospholipids such as lecithin (phosphatidylcholine), cardiolipin, phosphatidylglycerol, phosphatidylinerine and alkylacylglycerylglycerophospholipids.

plant. The term “production efficiency” comprises the time required for obtaining a specific production quantity (for example the time required by the cell to establish a certain throughput rate of a fine chemical). The term “yield or product/carbon yield” is known in the art and comprises the efficiency of the conversion of the carbon source into the product (i.e. the fine chemical). This is usually expressed for example as kg of product per kg of carbon source. By increasing the yield or production of the compound, the amount of the molecules obtained of this compound, or of the suitable molecules of this compound obtained, in a specific culture quantity over a specified period of time is increased. The terms “biosynthesis or biosynthetic pathway” are known in the art and comprise the synthesis of a compound, preferably an organic compound, by a cell from intermediates, for example in a multi-step and strongly regulated method. The terms “catabolism or catalytic pathway” are known in the art and comprise the cleavage of a compound, preferably of an organic compound, by a cell to give catabolites (in more general terms, smaller or less complex molecules), for example in a multi-step and strongly regulated method. The term “metabolism” is known in the art and comprises the totality of the biochemical reactions which take place in an organism. The metabolism of a certain compound (for example the metabolism of a fatty acid) thus comprises the totality of the biosynthetic pathways, modification pathways and catalytic pathways of this compound in the cell which relate to this compound.

By employing, in the method according to the invention, the polynucleotides according to the invention and optionally further polynucleotides which code for enzymes of the lipid or fatty acid metabolism it is possible to achieve various advantageous effects. Thus, it is possible to influence the yield, production and/or production efficiency of the polyunsaturated fatty acids in a plant, preferably in an oil crop plant, or in a microorganism. The number or activity of the polypeptides or polynucleotides according to the invention can be increased, so that larger amounts of the gene products and, ultimately, larger amounts of the compounds of the general formula I are produced. A de novo synthesis in an organism, which, before the gene(s) in question was/were introduced, had been lacking the activity and ability to biosynthesize the compounds, is also possible. The same applies analogously to the combination with further desaturases or elongases or further enzymes of the fatty acid and lipid metabolism. The use of a variety of divergent sequences, i.e. sequences which differ at the DNA sequence level, may also be advantageous in this context, or else the use of gene expression promoters which makes possible a different gene expression as far as timing is concerned, for example as a function of the degree of maturity of a seed or oil-storing tissue.

By introducing, into an organism, a polynucleotide according to the invention alone or in combination with other genes into a cell it is possible not only to increase the biosynthetic flow towards the end product, but also to increase, or to create de novo, the corresponding triacylglycerol composition. Equally, the number or activity of other genes which are required for the import of nutrients for the biosynthesis of one or more fatty acids, oils, polar and/or neutral lipids can be increased, so that the concentration of these precursors, cofactors or intermediates within the cells or within the storage compartment is increased, whereby the ability of the cells to producePUFAs is further enhanced. By optimizing the activity, or increasing the number, of one or more polynucleotides or polypeptides according to the invention which are involved in the biosynthesis of these compounds, or by destroying the activity of one or more genes which are involved in the degradation of these compounds, it may be possible to increase the yield, production and/or production efficiency of fatty acid and lipid molecules from organisms, in particular from plants. The fatty acids obtained in the method are suitable as starting materials for the chemical synthesis of further products of interest. For example, they can be used for the preparation of pharmaceuticals, foodstuffs, animal feeds or cosmetics, either alone or in combination with one another.

It can be seen from what has been said above that the invention also relates to a method for the preparation of an oil, lipid or fatty acid composition, comprising the steps of the method according to the invention and the further step of formulating the substance as an oil, lipid or fatty acid composition.

In a preferred embodiment of this method, the oil, lipid or fatty acid composition is formulated further to give a drug, a cosmetic product, a foodstuff, a feedstuff, preferably fish food, or a food supplement.

Finally, the invention relates to the principle of using the polynucleotide, the vector, the host cell, the polypeptide or the transgenic, nontoxic organism of the present invention for the production of an oil, lipid or fatty acid composition. The latter is then preferably to be employed as drug, cosmetic product, foodstuff, feedstuff, preferably fish food, or food supplement.

The content of all the references, patent applications, patents and published patent applications cited in the present patent application is hereby incorporated by reference to the respective specific disclosure.

FIGURES

FIG. 1: Sequence alignment of the O. tauri Δ6-desaturase (SEQ ID NO: 4) with the sequence from Emiliana huxleyi (SEQ ID NO: 2).

FIG. 2: Gas-chromatographic analysis of the feeding of yeasts transformed with pYES2.1/VS-His-TOPO (A) and pYES-SEQ1(Eh) (B). The substance fed was the fatty acid 20:34,11,14 (C). The Δ5-activity is demonstrated by the appearance of an additional peak with the identity 20:4Δ5,8,11,14 (D).

FIG. 3: Plasmid map of the binary construct LJJ1589, transformed into Brassica napus, for the EPA synthesis in seeds.

FIG. 4: Synthetic pathways for PUFAs.

EXAMPLES

Example 1

General Cloning Methods

The cloning methods such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linkage of DNA fragments, transformation of Escherichia coli cells, bacterial cultures and the sequence analysis of recombinant DNA were carried out as described by Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6).

Example 2

Sequence Analysis of Recombinant DNA

Recombinant DNA molecules were sequenced with an ABI laser fluorescence DNA sequencer by the method of
Example 3

Lipid Extraction from Yeasts and Plants

In addition to measuring the end product of the fermentation, it is also possible to analyze other components of the metabolic pathways which are used for the production of the desired compound, such as intermediates and by-products, in order to determine the overall production efficiency of the compound. The analytical methods comprise measuring the amount of nutrients in the medium (for example sugars, hydrocarbons, nitrogen sources, phosphate and other ions), measuring the biomass composition and the growth, analyzing the production of conventional metabolites of biosynthetic pathways and measuring gases which are generated during the fermentation. Standard methods for these measurements are described in Applied Microbial Physiology: A Practical Approach, P. M. Rhodes and P. F. Stamsbury, Ed., IRL Press, p. 103-129; 131-163 and 165-192 (ISBN: 0199635773) and references cited therein.

One example is the analysis of fatty acids (abbreviations: FAME, fatty acid methyl ester; GC-MS, gas liquid chromatography/mass spectrometry; TAG, triacylglycerol; TLC, thin-layer chromatography).

Unambiguous proof for the presence of fatty acid products can be obtained by analyzing recombinant organisms using standard analytical methods: GC, GC-MS or TLc, as described on several occasions by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dunkirk, 119-169; 1998, Gaschromatographie-Massenpektrometrie-Verfahren [Gas chromatography/mass spectrometry methods], Lipide 33:343-353). The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. After disruption, the material must be centrifuged. The sediment is resuspended in distilled water, heated for 10 minutes at 100 °C, cooled on ice and recentrifuged, followed by extraction for one hour at 90 °C. in 0.5 M sulfuric acid in methanol with 2% dimethoxypropane, which leads to hydrolyzed oil and lipid compounds, which give transmethyalted lipids. These fatty acid methyl esters are extracted in petroleum ether and finally subjected to a GC analysis using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 microM, 0.32 mm) at a temperature gradient of between 170 °C and 240 °C for 20 minutes and 5 minutes at 240 °C. The identity of the resulting fatty acid methyl esters must be defined using standards which are available from commercial sources (i.e. Sigma).

Example 4

Cloning a Desaturase Gene from the Alga Emiliaea huxleyi

A sequence database of Emiliaea huxleyi was searched using the known sequence of the Ostreococcus tauri Δ6-desaturase (Domergue et al. (2005) Biochem J. 389(2):483-90, SEQ ID NO: 3). It was possible to identify a sequence with homology to the amino acid sequence of the Ostreococcus tauri Δ6-desaturase (SEQ ID NO: 4). The sequence was elongated in the 5' and 3' direction by means of RACE-PCR (Clontech, USA) following the manufacturer’s instructions (SEQ ID NO: 1), and the coding amino acid sequence (SEQ ID NO: 2) checked with the amino acid sequence of the Ostreococcus tauri Δ6-desaturase (SEQ ID NO: 4) in a sequence alignment (FIG. 1). According to ClustalW, the sequence alignment gives a sequence identity of 41%. Other amino acid sequences such as, for example, the Mortierella alpina Δ5-desaturase (WO2000/012720) show 22% identity.

To characterize the functions of SEQ ID NO: 1 and of the corresponding amino acid sequence, the open reading frame of the DNA was cloned downstream of the galactose-inducible GAL1 promoter of pYES2.1/V5-His-TOPO (Invitrogen), giving rise to the plasmid pYES-SEQ1(b). This plasmid was then transformed into the yeast strain INVSc1 (Invitrogen) following the manufacturer’s instructions and selected on plates with DOB-U agar on the basis of uracil auxotrophy. Positive colonies were identified by PCR. To this end, in each case 1 μl of defrosted cells, 200 μl dNTPs, 2.5 U Taq polymerase and 100 μM of each primer were used to carry out in a total volume of 50 μl. The PCR conditions are as follows: first denaturation at 95°C. for 5 minutes, followed by 30 cycles of 30 seconds at 94°C, 1 minute at 55°C. and 2 minutes at 72°C., and a last elongation step for 10 minutes at 72°C. In parallel, the empty vector pYES2.1/V5-His-TOPO was transformed in the abovedescribed manner into
Yeast which have been transformed with the plasmids pYES2/S-V-His-TOPO or pYES-SEQ1(ETH) were analyzed as follows:

The yeast cells from the main cultures were harvested by centrifugation (1000xg, 5 min, 20°C) and washed with 100 mM NaCl, pH 8.0 to remove residual medium and fatty acids. Starting with the yeast cell sediments, fatty acid methyl esters (FAMEs) were prepared by acid methanolysis. To this end, the cell sediments were incubated for one hour at 80°C, together with 2 ml of 1 N methanolic sulfuric acid and 2% (v/v) of dimethylsulfoxide. The FAMEs were extracted twice with petroleum ether (PE). To remove non derivatized fatty acids, the organic phases were washed in each case once with 2 ml of 100 mM NaCl, pH 8.0 and 2 ml of distilled water. Thereafter, the PE phases were dried with NaSO₄, evaporated under argon and taken up in 100 µl of PE. The samples were separated on a DB-23 capillary column (30 m, 0.25 mm, 0.25 µm, Agilent) in a Hewlett-Packard 6890 gas chromatograph equipped with flame ionization detector. The conditions for the GLC analysis were as follows: the oven temperature was programmed from 50°C to 250°C with an increment of 5°C min⁻¹ and finally 10 min at 250°C (holding).

Activity and Substrate Determination of the Desaturases Identified

The substrate specificity of SEQ ID NO: 1 was determined after expression and feeding of various fatty acids. Surprisingly, only 20:3Δ8,11,14 and 20:4Δ8,11,14,17 of the fed substrates were converted. Thus, the coding sequence SEQ ID NO: 1 has 4-desaturase activity and is henceinbelow referred to as d5Des(Eh). The specific conversion of the fatty acids fed is shown in FIG. 2. After 48 h, 65-70% of the fed fatty acid is converted into the product, the conversion rate being calculated using the following formula:

\[
\text{Conversion rate in %} = \frac{\text{product quantity} - \text{substrate quantity}}{\text{substrate quantity}} \times 100
\]

TABLE 1

<table>
<thead>
<tr>
<th>Genes</th>
<th>Activity</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6Des(Pi)</td>
<td>Δ6-desaturase</td>
<td>5</td>
</tr>
<tr>
<td>D6Elc(Py)</td>
<td>Δ6-elongase</td>
<td>7</td>
</tr>
<tr>
<td>D5Des(Eh)</td>
<td>Δ5-desaturase</td>
<td>1</td>
</tr>
<tr>
<td>D12Des(Pi)</td>
<td>Δ12-desaturase</td>
<td>9</td>
</tr>
</tbody>
</table>

Further transformation vectors based on pSUN-USP were generated for the transformation of plants. To this end, NotI cleavage sites were introduced at the 5' and at the 3' end of the coding sequence, using the following primer pairs (see Table 7).

Competition of the PRC Mix (50 µl):
- 5.00 µl template cDNA
- 5.00 µl 10x buffer (Advantage polymerase)+25 mM MgCl₂
- 5.00 µl 2 mM dNTP

1.25 µl of each primer (10 µmol/L)
0.50 µl Advantage polymerase

The Advantage polymerase from Clontech is employed.

PCR Reaction Conditions:
- Annealing temperature: 1 min 55°C
- Denaturation temperature: 1 min 94°C
- Elongation temperature: 2 min 72°C
- Number of cycles: 35
TABLE 7

Primer sequences (for cloning transformation vector based on pSU1-USP)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>SEQ ID</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6-Dee (Pl)</td>
<td>Fwd: gcggcgcgcatctgtagctcagcggcttgag</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rv: gcggcgcagctgcaccgcttgagcggcttgag</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>D5-Dee (Eh)</td>
<td>Fwd: gcggcgcgcatctgtagctcagcggcttgag</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rv: gcggcgcagctgcaccgcttgagcggcttgag</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>O3-Dee (Pi)</td>
<td>Fwd: gcggcgcgcatctgtagctcagcggcttgag</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rv: gcggcgcagctgcaccgcttgagcggcttgag</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>D6-Elo (Pp)</td>
<td>Fwd: gcggcgcgcatctgtagctcagcggcttgag</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rv: gcggcgcagctgcaccgcttgagcggcttgag</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>D12Dee (Pv)</td>
<td>Fwd: gcggcgcgcatctgtagctcagcggcttgag</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rv: gcggcgcagctgcaccgcttgagcggcttgag</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>D15Dee (Perf)</td>
<td>Fwd: gcggcgcgcatctgtagctcagcggcttgag</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rv: gcggcgcagctgcaccgcttgagcggcttgag</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>D5Elo (Ot)</td>
<td>Fwd: gcggcgcgcatctgtagctcagcggcttgag</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rv: gcggcgcagctgcaccgcttgagcggcttgag</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>D4Dee (Tc)</td>
<td>Fwd: gcggcgcgcatctgtagctcagcggcttgag</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rv: gcggcgcagctgcaccgcttgagcggcttgag</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

The PCR products were incubated with the restriction enzyme NotI for 4 h at 37°C. The plant expression vector pSU5300-USP is incubated in the same manner. Thereafter, the PCR products and the 7624 bp vector are separated by agarose gel electrophoresis, and the corresponding DNA fragments are excised. The DNA is purified by means of the Qiagen gel purification kit, following the manufacturer’s instructions. Thereafter, vector and PCR products are ligated. The Rapid Ligation kit from Roche is used for this purpose. The plasmids generated are verified by sequencing.

(Primer sequence:

5' - GTGACGCGCCGCTATGCTGCTGAGGTTTACCGGCCGATCC

5' - GCATCTGCTGCTCTGTAAG-3').

The PCR fragment was recut with EcoRI/Sall and inserted into the vector pSU5300 with OCS terminator. This gave rise to the plasmid named pSU1-USP, which can be employed for transforming plants by means of Agrobacterium tumefaciens.

a) Generation of transgenic oilseed rape plants: (modified method of Moloney et al., 1992, Plant Cell Reports, 8:238-242)

To generate transgenic oilseed rape plants, binary vectors such as the pSU plasmids described hereinabove or, by way of example, the derivative LJB1589 (SEQ ID No. 34, plasmid map in FIG. 3) with the relevant gene combinations were transformed into Agrobacterium tumefaciens C58C1: SHAO01 (DeBauer et al., 1984, Nucl. Acids. Res. 13, 4777-4788). A 1:50 dilution of an overnight culture of a positively transformed agrobacterial colony in Murashige-Skoog medium (Murashige and Skoog 1962 Physiol. Plant. 15, 473) supplemented with 3% sucrose (3MS medium) was used for transforming oilseed rape plants (e.g. Kumly, Swalof Weibul, Sweden). Petioles or hypocotyls of freshly germinated sterile oilseed rape plants (in each case approx. 1 cm²) were incubated with a 1:50 agrobacterial dilution for 5-10 minutes in a Petri dish. This was followed by 3 days of co-incubation in the dark at 25°C in 3MS medium supplemented with 0.8% Bacto agar. After 3 days, the cultivation was continued with 16 hours light/8 hours dark and was continued, in a 1-week rhythm, on MS medium supplemented with 500 mg/l Clafor (celotuxin-sodium), 50 mg/l Kanamycyn, 20 microM benzylaminopurine (BAP) and 1.6 g/l glucose. Growing shoots were transferred to MS medium supplemented with 2% sucrose, 250 mg/l Clafor and 0.8% Bacto agar. If no roots had formed after three weeks, the growth hormone 2-indolebutyric acid was added to the medium to promote rooting.

Regenerated shoots were obtained on 2MS medium supplemented with kanamycin and Clafor, transferred into soil once rooted, and after cultivation for two weeks grown in a controlled-environment cabinet or in a greenhouse, flowering was induced, mature seeds were harvested and analyzed for expression of the desaturase or elongase genes by means of lipid analyses as described by way of example in Qu et al. 2001, J. Biol. Chem. 276, 31561-31566.
b) Generation of Transgenic Linseed Plants

Transgenic linseed plants can be generated for example by the method of Bell et al., 1999, In Vitro Cell. Dev. Biol.-Plant.

SEQ LISTING

<160> NUMBER OF SEQ ID NOS: 35
<210> SEQ ID NO 1
<211> LENGTH: 1368
<212> TYPE: DNA
<213> ORGANISM: Emilliana huxleyi

<400> SEQUENCE: 1

atgctatgg ctgctaaaag tgtacgctcg gcgccactctc cgcgtctgga cctactaggat 60
cagcgaact caaatagctc cagactagtct gcagcagacc ttctagctag ttctactgac 120
accttaaag agatcatatc aaggggtcggt tggatgtagg tcctgatttt tattaaaaag 180
cacccggggag gaggattattc taaactctcc ttacgttctag atgcaacaga cgtattcatac 240
aacctccata ttagctctca aaagacgggt aaatgtgtaa gagctttgc gacatagcaca 300
ctcgagtatgg gatagcttag aagcgtcttg tcctgacact tggagcctct gagaagccca 360
cctggcggcag aagtttacatt cgaaccgaat ctgtggctatc tagccattac agttcgtaaa 420
gttctgctga tgacgctggg ggtttgactga cttacttgga cgggttatgtg gtttttagaa 480
gccccttag cgggaatacg tccggggtatc ggggtgctgc ttcagratga ggggtgctatc 540
tatgctctc caggttaaat taaactctgt gcagcagatgc aaatgtgata catgtgataa 600
gttcggagaa tgtgaggttt tccattgga aaccaacata aacaagacca tgacagcagc 660
caacagttgg tgtcagatctc agacocctaaca acactgctctg tgggtgccttg cagtgccttc 720
atgcgttctc agctaggggc agcgaggaag tcgtgtctag catggcagtc tccaattttttc 780
atgtggaggt ttaactgataa tggggtgcctc agttgcctgtg acatccaaag 840
cacagttga gacagggaa ccactacgaa ttagctctga ttgcattcagc atagcattta 900
ttgtgtgacct catggcagttgc tgtgggtctg toagatgtaa cggctttctat 960
gtggcagctg gacaggcaata tattttccag accttgctcg tgtctcacaac actaagggat 1020
gttgctcca acgataacga tatattttgg accttgttatg cttgcaaccc taccactaat 1080
caccttcaac aaccctctagtt caaggtgattg attccatttc tgasattctgt aattgaacet 1140
ccaccttttc tctagactgc acaatatata cacctctatga ttgctggaag agtgaacaa 1200
tgttgaaaaa acttctaggt agactaagat gtcaactattt aagcgaagtct aagtgcgtaatg 1260
acatacgtga atctcctgctg ctggggaaat gctctccatt cccctcttaa cagaaacagag 1320
gactattga ctggcagtgc tcggccgtatg agattcactg cttcatgta 1380
Gly Arg Val Tyr Asp Val Ser Asp Phe Ile Lys Arg His Pro Gly Gly
 50 55 60
Ser Ile Ile Lys Leu Ser Leu Gly Ser Asp Ala Thr Asp Ala Tyr Asn
 65 70 75 80
Asn Phe His Ile Arg Ser Lys Ala Asp Lys Met Leu Arg Ala Leu
 85 90 95
Pro Ser Arg Pro Val Ala Asp Gly Phe Ala Arg Asp Ala Leu Ser Ala
 100 105 110
Asp Phe Gln Ala Leu Arg Ala Gln Leu Glu Ala Glu Gly Tyr Phe Gln
 115 120 125
Pro Asn Leu Trp His Val Ala Tyr Val Ala Ala Glu Val Val Ala Met
 130 135 140
Tyr Trp Ala Gly Ile Arg Leu Ile Trp Ala Gly Tyr Trp Phe Leu Gly
 145 150 155 160
Ala Ile Val Ala Gly Ile Ala Gln Gly Arg Cys Gly Trp Leu Glu His
 165 170 175
Gly Gly His Tyr Ser Leu Thr Gly Asn Ile Lys Leu Asp Arg His
 180 185 190
Met Gln Met Ile Ile Tyr Gly Leu Gly Cys Gly Met Ser Gly Cys Tyr
 195 200 205
Trp Arg Asn Gln His Asn Lys His Ala Thr Pro Gln Lys Leu Gly
 210 215 220
Ala Asp Pro Asp Leu Gln Thr Met Pro Leu Val Ala Phe His Gly Leu
 225 230 235 240
Ile Gly Ala Lys Ala Arg Gly Ala Gly Lys Ser Trp Leu Ala Trp Gln
 245 250 255
Ala Pro Leu Phe Gly Gly Val Ile Thr Thr Leu Val Ser Phe Gly
 260 265 270
Trp Gln Phe Val Gln His Pro Lys His Ala Leu Arg Val Gly Asn Gln
 275 280 285
Leu Gln Leu Gly Tyr Met Ala Leu Arg Tyr Ala Leu Trp Tyr Ala Ala
 290 295 300
Phe Gly His Leu Gly Leu Gly Gly Ala Phe Arg Leu Tyr Ala Phe Tyr
 305 310 315 320
Val Ala Val Gly Gly Thr Tyr Ile Phe Thr Asn Phe Ala Val Ser His
 325 330 335
Thr His Lys Asp Val Val Pro His Asp Lys His Ile Ser Thr Thr Leu
 340 345 350
Tyr Ser Ala Asn His Thr Asn Gln Ser Asn Thr Pro Leu Val Asn
 355 360 365
Trp Trp Met Ala Tyr Leu Asn Phe Gln Ile Glu His His Leu Phe Pro
 370 375 380
Ser Met Pro Gln Tyr Asn His Pro Lys Ile Cys Gly Arg Val Lys Gln
 385 390 395 400
Leu Phe Glu Lys His Gly Val Gly Tyr Asp Val Arg Thr Tyr Ala Lys
 405 410 415
Ser Met Arg Asp Thr Tyr Val Asn Leu Leu Ala Val Gly Asn Ala Ser
 420 425 430
His Ser Leu His Gln Arg Asn Gly Leu Thr Thr Arg Gly Ser Ala
 435 440 445
Ala Val Arg Val Thr Gly His
 450 455
<210> SEQ ID NO: 3
<211> LENGTH: 1371
<212> TYPE: DNA
<213> ORGANISM: Osteococcus tauri

<400> SEQUENCE: 3

atgtgtagtgg agacogagaa caagatgaga atcctactgt tggagatgc tttcagag
60
gagagagaa gactgtaggg taacgttgaag tttctgtgct agaagatgga accttgctgct
120
tggtctagaa cctctgctg atagatctgc gtatagaggg gatgtgtaa cgatgtgacc
180
gatctcaac acctcaggg gactgtaggt ttcactcctc tctctacac tggagctgtat
240
gctactgag gctccagcag gtcctcagaa agacttagaa aggttacagg ggtccttggt
300
gttctgctt ctacatcctgc caagcogagt aagcttgagtg atggtgtagc gtcctcaggat
360
ttcgctgaag ggagagagag gattgacagc ctaggtttct ccaacogcct tcgcctctat
420
gttgattac gattctgctg gtttgctgct gttggtctgcg tcatctgctggtgcaagcctg
480
gtctgtagac tgcgtgcgcct tgcgctgcct tgcgctgcct tgcgctgcct gcggagctgga
540
pggtctctgc acgtcctctgct tgtcctcttcct ttcacactgag acatctggtt gcggatcaca
600
tagctctgatc tttcttcgcc tgcgctgcct tgcgctgcct tgcgctgcct ggtccttggt
660
cacacagc acctacgcag ttcctactga gtcggctcagc acatctggtt gcggatcaca
720
cctctgtctg tttcttcgcc tgcgctgcct tgcgctgcct tgcgctgcct ggtccttggt
780	tcgtctgtca gattctcagc gttgctgctc tttctctggt gttggtctgccttctctgtca
840
ttcgctgctt tttcttcgcc tgcgctgcct tgcgctgcct tgcgctgcct ggtccttggt
900
tccgtcggct gtcgctgcct tttcttcgcc tgcgctgcct tgcgctgcct ggtccttggt
960
tccgtcggct gtcgctgcct tttcttcgcc tgcgctgcct tgcgctgcct ggtccttggt
1020
tccgtcggct gtcgctgcct tttcttcgcc tgcgctgcct tgcgctgcct ggtccttggt
1080
tccgtcggct gtcgctgcct tttcttcgcc tgcgctgcct tgcgctgcct ggtccttggt
1140
tccgtcggct gtcgctgcct tttcttcgcc tgcgctgcct tgcgctgcct ggtccttggt
1200
tccgtcggct gtcgctgcct tttcttcgcc tgcgctgcct tgcgctgcct ggtccttggt
1260
tccgtcggct gtcgctgcct tttcttcgcc tgcgctgcct tgcgctgcct ggtccttggt
1320
tccgtcggct gtcgctgcct tttcttcgcc tgcgctgcct tgcgctgcct ggtccttggt
1371

<210> SEQ ID NO: 4
<211> LENGTH: 456
<212> TYPE: PRT
<213> ORGANISM: Osteococcus tauri

<400> SEQUENCE: 4

Met Cys Val Glu Thr Glu Arg Lys Gly Ile Pro Thr Val Glu Ile 1 5 10 15
Ala Phe Asp Gly Glu Arg Ala Glu Ala Arg Val Lys Leu Ser 20 25
Ala Glu Lys Met Glu Pro Ala Ala Leu Ala Lys Thr Phe Ala Arg Arg 30 35 40 45
Tyr Val Ile Leu Gly Val Glu Tyr Asp Val Thr Arg Pro Gly Thr Val Ile Phe Tyr Ala Leu Ser Arg Thr Gly Ala Asp 50 55 60 65 70 75 80
Ala Thr Glu Ala Phe Lys Glu Phe His His Arg Ser Arg Lys Ala Arg 85 90 95
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Molecule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>120</td>
</tr>
<tr>
<td>60</td>
<td>gaccgccacgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>ttcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>ggggacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>gccgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>1020</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>1080</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>1140</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>1320</td>
</tr>
<tr>
<td></td>
<td>ggcgacccgcggacgtcggagcctaatctatcagtctctcaagctctggtgactcactctaatcaagataagctaa</td>
<td>1380</td>
</tr>
</tbody>
</table>

SEQ ID NO 6

LENGTH: 459

TYPE: PRT

ORGANISM: Python irregulare

SEQUENCE: 6

- **Met Val Asp Leu Lys Pro Gly Val Lys Arg Leu Val Ser Trp Lys Glu**
 - 1 5 10 15
- **Ile Arg Glu His Ala Thr Pro Ala Ala Thr Ala Trp Ile Val Ile His His**
 - 20 25 30
- **Lys Val Tyr Asp Ile Ser Lys Trp Asp Ser His Pro Gly Gly Ser Val**
 - 35 40 45
- **Met Leu Thr Glu Ala Gly Glu Asp Ala Thr Asp Ala Phe Ala Val Phe**
 - 50 55 60
- **His Pro Ser Ser Ala Leu Lys Leu Leu Glu Gln Phe Tyr Val Gly Asp**
 - 65 70 75 80
- **Val Asp Glu Thr Ser Lys Ala Glu Ile Glu Gly Gly Pro Ala Ser Asp**
 - 85 90 95
- **Glu Glu Arg Ala Arg Arg Glu Arg Ile Asn Glu Phe Ile Ala Ser Tyr**
 - 100 105 110
- **Arg Arg Leu Arg Val Lys Val Lys Gly Met Gly Leu Tyr Asp Ala Ser**
 - 115 120 125
- **Ala Leu Tyr Tyr Ala Trp Lys Leu Val Ser Thr Phe Gly Ile Ala Val**
 - 130 135 140
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid</th>
<th>DNA Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>Met</td>
<td>AGT</td>
</tr>
<tr>
<td>150</td>
<td>Val</td>
<td>GGT</td>
</tr>
<tr>
<td>155</td>
<td>Ala</td>
<td>GGT</td>
</tr>
<tr>
<td>160</td>
<td>Ser</td>
<td>GGT</td>
</tr>
<tr>
<td>165</td>
<td>Met</td>
<td>GGT</td>
</tr>
<tr>
<td>170</td>
<td>Gly</td>
<td>GGT</td>
</tr>
<tr>
<td>175</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>180</td>
<td>Val</td>
<td>GGT</td>
</tr>
<tr>
<td>185</td>
<td>Ile</td>
<td>GGT</td>
</tr>
<tr>
<td>190</td>
<td>Cys</td>
<td>GGT</td>
</tr>
<tr>
<td>195</td>
<td>Ala</td>
<td>GGT</td>
</tr>
<tr>
<td>200</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>205</td>
<td>Val</td>
<td>GGT</td>
</tr>
<tr>
<td>210</td>
<td>Try</td>
<td>GGT</td>
</tr>
<tr>
<td>215</td>
<td>Tyr</td>
<td>GGT</td>
</tr>
<tr>
<td>220</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>225</td>
<td>His</td>
<td>GGT</td>
</tr>
<tr>
<td>230</td>
<td>Lys</td>
<td>GGT</td>
</tr>
<tr>
<td>235</td>
<td>Pro</td>
<td>GGT</td>
</tr>
<tr>
<td>240</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>245</td>
<td>Val</td>
<td>GGT</td>
</tr>
<tr>
<td>250</td>
<td>Ala</td>
<td>GGT</td>
</tr>
<tr>
<td>255</td>
<td>Arg</td>
<td>GGT</td>
</tr>
<tr>
<td>260</td>
<td>Ser</td>
<td>GGT</td>
</tr>
<tr>
<td>265</td>
<td>Ala</td>
<td>GGT</td>
</tr>
<tr>
<td>270</td>
<td>Pro</td>
<td>GGT</td>
</tr>
<tr>
<td>275</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>280</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>285</td>
<td>Arg</td>
<td>GGT</td>
</tr>
<tr>
<td>290</td>
<td>Ser</td>
<td>GGT</td>
</tr>
<tr>
<td>295</td>
<td>Tyr</td>
<td>GGT</td>
</tr>
<tr>
<td>300</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>305</td>
<td>Asp</td>
<td>GGT</td>
</tr>
<tr>
<td>310</td>
<td>Gly</td>
<td>GGT</td>
</tr>
<tr>
<td>315</td>
<td>Pro</td>
<td>GGT</td>
</tr>
<tr>
<td>320</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>325</td>
<td>Ala</td>
<td>GGT</td>
</tr>
<tr>
<td>330</td>
<td>Pro</td>
<td>GGT</td>
</tr>
<tr>
<td>335</td>
<td>Tyr</td>
<td>GGT</td>
</tr>
<tr>
<td>340</td>
<td>Ser</td>
<td>GGT</td>
</tr>
<tr>
<td>345</td>
<td>Gly</td>
<td>GGT</td>
</tr>
<tr>
<td>350</td>
<td>Ala</td>
<td>GGT</td>
</tr>
<tr>
<td>355</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>360</td>
<td>Val</td>
<td>GGT</td>
</tr>
<tr>
<td>365</td>
<td>Ser</td>
<td>GGT</td>
</tr>
<tr>
<td>370</td>
<td>Tyr</td>
<td>GGT</td>
</tr>
<tr>
<td>375</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>380</td>
<td>Thr</td>
<td>GGT</td>
</tr>
<tr>
<td>385</td>
<td>Asp</td>
<td>GGT</td>
</tr>
<tr>
<td>390</td>
<td>Met</td>
<td>GGT</td>
</tr>
<tr>
<td>395</td>
<td>Thr</td>
<td>GGT</td>
</tr>
<tr>
<td>400</td>
<td>His</td>
<td>GGT</td>
</tr>
<tr>
<td>405</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>410</td>
<td>Thr</td>
<td>GGT</td>
</tr>
<tr>
<td>415</td>
<td>Lys</td>
<td>GGT</td>
</tr>
<tr>
<td>420</td>
<td>Ser</td>
<td>GGT</td>
</tr>
<tr>
<td>425</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>430</td>
<td>Cys</td>
<td>GGT</td>
</tr>
<tr>
<td>435</td>
<td>Ala</td>
<td>GGT</td>
</tr>
<tr>
<td>440</td>
<td>Val</td>
<td>GGT</td>
</tr>
<tr>
<td>445</td>
<td>Asp</td>
<td>GGT</td>
</tr>
<tr>
<td>450</td>
<td>His</td>
<td>GGT</td>
</tr>
<tr>
<td>455</td>
<td>Leu</td>
<td>GGT</td>
</tr>
<tr>
<td>460</td>
<td>Ala</td>
<td>GGT</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 7
<211> LENGTH: 873
<212> TYPE: DNA
<213> ORGANISM: Physcomitrella patens
<400> SEQUENCE: 7

```
agtggagtag gcattgttag ctagagatgg ggttáttttgc ggcctgttag cccatctgca ggtgtgtaa attttgtaa ccggtgggta cgcgggtgggta aagtttc ggcctgttag cccatctgca ggtgtgtaa attttgtaa ccggtgggta cgcgggtgggta aagtttc
gggtgggtg ttttttttgc ggcctgttag cccatctgca ggtgtgtaa attttgtaa ccggtgggta cgcgggtgggta aagtttc
cgcgggtgggta aagtttc ggtgtgtaa attttgtaa ccggtgggta cgcgggtgggta aagtttc
cgcgggtgggta aagtttc ggtgtgtaa attttgtaa ccggtgggta cgcgggtgggta aagtttc
gggtgggtg ttttttttgc ggcctgttag cccatctgca ggtgtgtaa attttgtaa ccggtgggta cgcgggtgggta aagtttc
cgcgggtgggta aagtttc ggtgtgtaa attttgtaa ccggtgggta cgcgggtgggta aagtttc
gggtgggtg ttttttttgc ggcctgttag cccatctgca ggtgtgtaa attttgtaa ccggtgggta cgcgggtgggta aagtttc
```
ctaaacta aagagagggc gattctgtga taccagttct actgctctaa gtaagttgaa
420
tcgctgata cgctctatat gatctctgaa cgacgacaca ggcgaatagc cttcctccac
480
gggatatcaattcttcaattctctat cttgtaaggtca tttgctatca cgcgtctgga
540
ggctgaagcat tgtgctgcag gcctctgaa tcaagagctgc atgttctotat gttagcgtat
600
tactctctgg tctgctggtc tcaagagttg gcaaaagttaa aaaaaataga cctttttttgg
660
ggaggggtct tgtgacatt ccaagatgtcc cagtttatgc ttgaaccttggt gcaaggcttac
720
taagacatga aagagagggc gctatatga caagtgcgta caagaatttt gtgttactac
780
tagtttggct tgggtggtcct tttgctgcaatt tttatatgtg acaaacctotc
840
gccggagaag aaaaaggtac taaaactgag tga
873

<210> SRQ ID NO 0
<211> LENGTH: 290
<212> TYPE: PRT
<213> ORGANISM: Physcomitrella patens
<400> SEQUENCE: 8

Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser
1 5 10 15
Gln Gly Val Val Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp
20 25 30
Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile
35 40 45
Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu
50 55 60
Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu
65 70 75 80
Leu Gln Ala Leu Val Leu Val His Arg Leu Phe Cys Phe Ala Leu Ser
85 90 95
Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Thr Arg Tyr
100 105 110
Ser Leu Trp Gly Asn Ala Tyr Asn Ser Tyr Pro Tyr His Lys Glu Met Ala Ile
115 120 125
Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Met Asp Thr
130 135 140
Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His
145 150 155 160
Val Tyr His His Ser Ser Ile Ser Leu Ile Thr Ile Thr Ala Ile Ala His
165 170 175
His Ala Pro Gly Gly Glu Ala Tyr Thr Ser Ser Ala Ala Leu Asn Ser Gly
180 185 190
Val His Val Leu Met Tyr Ala Tyr Phe Leu Ala Ala Cys Leu Arg
195 200 205
Ser Ser Pro Lys Leu Lys Ann Lys Tyr Leu Phe Thr Phe Gly Arg Tyr Leu
210 215 220
Thr Gln Phe Gln Met Phe Gln Phe Met Leu Ann Leu Val Gln Ala Tyr
225 230 235 240
Tyr Asp Met Lys Thr Ann Ala Pro Tyr Gln Thr Phe Ile Lys Ile
245 250 255
Leu Phe Tyr Tyr Met Ile Ser Leu Phe Leu Phe Gly Ann Phe Tyr
260 265 270
Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys
<table>
<thead>
<tr>
<th>275</th>
<th>280</th>
<th>285</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr Glu</td>
<td>Glu</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 9
<211> LENGTH: 1197
<212> TYPE: DNA
<213> ORGANISM: Phytophthora sojae

<400> SEQUENCE: 9
atgctatatt tgaacctga ggctgattc gctgcaacc tcgtaactga ttctgaggt 60
aagcgagac aatttgtcga ggctggtac acctagcttg aaggtcttgc tcgctctttg 120
ccttgcagtc tgcctcacttt cctctccaga gacctcagag ctgctatcc tcgaactgct 180
ttcgagatct ctttgcagtc cttcaccctac tacatgatca aaggaagtgt ctacccgctg 240
gtttgctct acgctgctac cttcattgtg agaggtggag gctgctgcttat tcgtctcctgag 300
cctgtgagct ggcttcttgc ggctgcctct gcctgcaggt ggtgccagac aacagctgttc 360
tggcattgt gccctgtccttc gctccgctgt gcgctcttcg gttgcgcagcacctgg ggtgccttg 420
cacttcgct cgcctgagcc tgcctctctct tgcgagatct cttcagccac gccacacttc 480
aaacagggat cttgccggaag cgtgtgagtt ttggctctcg tggaccagcc tggctgagtt 540
tctcctgga aagcacactt ggagagtttc cctctctcc acactcaccg tatacttgctac 600
agtgtggtgt tggagggag actctggaaac cctctctcctgt gcctgcagct ggctgcactgg 660
tactgcgggag agtctggtgag tcctctcacc cctctgtcgg ctctctagtc agtctagggag 720
agtagctggag tctgtgctct ccatttccc tggcctgata tggctggtct tggctagtct 780
tggctgcaac cttctcccttt ccaaccctatag gtaagaagct acgtggggcccc tcgttcatt 840
gtgcgaccct acgttgcttc actggtctct gttcagctact cttcaccacca aacagcactct 900
ttcagacag gagatgtggag gccggaggtacttggtgtgt ggctgctcagctatactt 960
ggctcccttc tcagagcttc gcgtctgctg gcgtctgctg gcgtctgctg gcgtctgctg 1020
ttcgagatct cttcctctcct gttcctggag gcgcctgagc ggcctgcctgc gcgctgcataa 1080
gggaaggtct actgcagggta taccagctct gttcctgttg ctctcttgag acgtctactc 1140
cattgcgaatt cttggtgagaa tggcctgtgct acacacaccc cacacccgt 1197

<210> SEQ ID NO 10
<211> LENGTH: 398
<212> TYPE: PRO
<213> ORGANISM: Phytophthora sojae

<400> SEQUENCE: 10
Met Ala Ile Leu Asn Pro Glu Ala Asp Ser Ala Ala Asn Leu Ala Thr 1 5 10 15
Amp Ser Glu Ala Lys Gln Arg Gln Leu Ala Glu Ala Gly Tyr Thr Thr His 20 25 30
Val Glu Gly Ala Pro Ala Pro Leu Pro Leu Glu Leu Pro His Phe Ser 35 40 45
Leu Arg Asp Leu Arg Ala Ile Pro Lys His Cys Phe Glu Arg Ser 50 55 60
Phe Val Thr Ser Thr Tyr Tyr Met Ile Lys Asn Val Leu Thr Cys Ala 65 70 75 80
Ala Leu Phe Tyr Ala Ala Thr Phe Ile Asp Arg Ala Gly Ala Ala Ala 85 90 95
Tyr Val Leu Trp Pro Val Tyr Trp Phe Phe Gly Ser Tyr Leu Thr
100 105 110
Gly Val Trp Val Ile Ala His Glu Cys Gly His Glu Ala Tyr Cys Ser
115 120 125
Ser Glu Val Val Asn Asn Leu Ile Gly Leu Val Leu His Ser Ala Leu
130 135 140
Leu Val Pro Tyr His Ser Trp Arg Ile Ser His Arg Lys His His Ser
145 150 155 160
Asn Thr Gly Ser Cys Glu Asn Asp Glu Val Phe Val Pro Val Thr Arg
165 170 175
Ser Val Leu Ala Asp Ser Ser Trp Asn Glu Thr Leu Glu Asp Ser Pro Leu
180 185 190
Tyr Glu Leu Tyr Arg Ile Val Tyr Met Leu Val Val Gly Trp Met Pro
195 200 205
Gly Tyr Leu Phe Phe Asn Ala Thr Gly Pro Thr Lys Tyr Trp Gly Lys
210 215 220
Ser Arg Ser His Phe Asn Pro Tyr Ser Ala Ile Tyr Ala Asp Arg Glu
225 230 235 240
Arg Trp Met Ile Val Leu Ser Asp Ile Phe Leu Val Ala Met Leu Ala
245 250 255
Val Leu Ala Ala Leu Val His Thr Phe Ser Phe Asn Thr Met Val Lys
260 265 270
Phe Tyr Val Val Pro Tyr Phe Ile Val Val Ala Tyr Leu Val Leu Ile
275 280 285
Thr Tyr Leu Glu His Thr Asp Thr Tyr Ile Pro His Phe Arg Glu Gly
290 295 300
Glu Trp Aen Trp Leu Arg Gly Ala Leu Cys Thr Val Asp Arg Ser Phe
305 310 315 320
Gly Pro Phe Leu Asp Ser Val Val His Arg Ile Val Asp Thr His Val
325 330 335
Cys His His Ile Phe Ser Lys Met Pro Phe Tyr His Cys Glu Ala Glu
340 345 350
Thr Asn Ala Ile Lys Pro Leu Leu Gly Phe Tyr Leu Lys Asp Thr
355 360 365
Thr Pro Val Pro Val Ala Leu Trp Arg Ser Tyr Thr His Cys Lys Phe
370 375 380
Val Glu Asp Asp Gly Lye Val Val Phe Tyr Lye Asn Lys Leu
385 390 395

<210> SRQ ID NO 11
<211> LENGTH: 1086
<212> TYPE: DNA
<213> ORGANISM: Phytophthora infestans
<400> SEQUENCE: 11
atggtgcga agggcggta tgtgtttccc actctgaagg agatacaagc gtcgtacct
60
aaagacctgt tcgaggcttc ggtgccctcg tgtccctact acacgctgag tggcttggtg
120
atcggtggcg cttactactt cgttttcaca tcgctgccg gctcgacacg
180
ttcggtggct tcggagcgcc actctgcagc ggcctacttt tcgctgagcc gcctcgcttc
240
tggcgtcct tcaacgagtgg gcagacagcg ccctccctgg ccctccctgg ccacagcgtg
300
cctcactctgg ttcgagggct ttcagacgtc tcgctacttc ctcgctttct ccagccgctg
360
actggctaccg accgtcaacc cccacagcag ccggccacag ctcggtgtgc ccagccgctg
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Met</td>
</tr>
<tr>
<td>5</td>
<td>Ala</td>
</tr>
<tr>
<td>10</td>
<td>Thr</td>
</tr>
<tr>
<td>15</td>
<td>Lys</td>
</tr>
<tr>
<td>20</td>
<td>Arg</td>
</tr>
<tr>
<td>25</td>
<td>Ser</td>
</tr>
<tr>
<td>30</td>
<td>Leu</td>
</tr>
<tr>
<td>35</td>
<td>Tyr</td>
</tr>
<tr>
<td>40</td>
<td>Tyr</td>
</tr>
<tr>
<td>45</td>
<td>Thr</td>
</tr>
<tr>
<td>50</td>
<td>Val</td>
</tr>
<tr>
<td>55</td>
<td>Ala</td>
</tr>
<tr>
<td>60</td>
<td>Ala</td>
</tr>
<tr>
<td>65</td>
<td>Asp</td>
</tr>
<tr>
<td>70</td>
<td>Ala</td>
</tr>
<tr>
<td>75</td>
<td>Cys</td>
</tr>
<tr>
<td>80</td>
<td>Gly</td>
</tr>
<tr>
<td>90</td>
<td>Arg</td>
</tr>
<tr>
<td>95</td>
<td>His</td>
</tr>
<tr>
<td>100</td>
<td>Tyr</td>
</tr>
<tr>
<td>105</td>
<td>His</td>
</tr>
<tr>
<td>110</td>
<td>His</td>
</tr>
<tr>
<td>115</td>
<td>Ile</td>
</tr>
<tr>
<td>120</td>
<td>Leu</td>
</tr>
<tr>
<td>125</td>
<td>Thr</td>
</tr>
<tr>
<td>130</td>
<td>Lys</td>
</tr>
<tr>
<td>135</td>
<td>Arg</td>
</tr>
<tr>
<td>140</td>
<td>Pro</td>
</tr>
<tr>
<td>145</td>
<td>Ala</td>
</tr>
<tr>
<td>150</td>
<td>Asp</td>
</tr>
<tr>
<td>155</td>
<td>His</td>
</tr>
<tr>
<td>160</td>
<td>Leu</td>
</tr>
<tr>
<td>165</td>
<td>Ala</td>
</tr>
<tr>
<td>170</td>
<td>Thr</td>
</tr>
<tr>
<td>175</td>
<td>Pro</td>
</tr>
<tr>
<td>180</td>
<td>His</td>
</tr>
<tr>
<td>185</td>
<td>Phe</td>
</tr>
<tr>
<td>190</td>
<td>Arg</td>
</tr>
<tr>
<td>195</td>
<td>Val</td>
</tr>
<tr>
<td>200</td>
<td>Ser</td>
</tr>
<tr>
<td>205</td>
<td>Ala</td>
</tr>
<tr>
<td>210</td>
<td>Tyr</td>
</tr>
<tr>
<td>215</td>
<td>Leu</td>
</tr>
<tr>
<td>220</td>
<td>Gly</td>
</tr>
<tr>
<td>225</td>
<td>Val</td>
</tr>
<tr>
<td>230</td>
<td>Phe</td>
</tr>
<tr>
<td>235</td>
<td>Ser</td>
</tr>
<tr>
<td>240</td>
<td>Met</td>
</tr>
<tr>
<td>245</td>
<td>His</td>
</tr>
<tr>
<td>250</td>
<td>Arg</td>
</tr>
<tr>
<td>255</td>
<td>Thr</td>
</tr>
</tbody>
</table>
Tyr Val Lys Gly Ann Leu Ser Ser Val Asp Arg Ser Tyr Gly Ala Leu
260
265
270
Ile Asp Ann Leu Ser His Ann Ile Gly Thr His Gin Ile His His Leu
275
280
285
Phe Pro Ile Ile Pro His Tyr Lys Leu Leu Lys Ala Thr Ala Ala Phe
290
295
300
His Gin Ala Phe Pro Gin Leu Val Gin Gin Gin Gin Gin Gin Gin Gin
305
310
315
320
Lys Ala Phe Pro Gin Leu Gin Gin Gin Gin Gin Gin Gin Gin Gin
325
330
335
Lys Gin Gin Glu Gin Gin Gin Gin Gin Gin Gin Gin
340
345
350
Glu Ala Ala Gin Gin Gin Gin Gin Gin Gin Gin
355
360

<210> DEQ ID NO 13
<211> LENGTH: 1176
<212> TYPE: DNA
<213> ORGANISM: Perilla fruticosa

<400> SEQUENCE: 13
atggtgttt tttctggagc tagcctttct aagctctggag ctgatgagag ggttctgtat 60
ggacaagac agtaacaggg aataggaaag agagtctcat ataagtttga tctgtcgtgt 120
ccttcctt ctaagaagcg tgatacatcg gctgctattc ctgtctattg ctggtttaga 180
aacctctgga ggagctcttc ttaagcttgct tgggaagctgt gctgctttct gctgtctctt 240
gctgctctg tgtacatctaa cctctggggt tcttgccgtc tgtactgatt gttgcaagga 300
actatgtgct ggtcttctttt cgttcttggga caagatttgg gagacggatc ttttctgtat 360
aacacacttc tttaacacagtt tggcgagacgcggct ctcttcacat tcttattca tgcatttac 420
ccaagagtttg gatctctttc tagacacaag cacagacacg tggacagct tgggaagcat 480
gagtctctgg tgttctctctg tgaacacatg ttggatctttc aacttacgacgctgtctctg 540
tctggtcatacagctttt ccctactgtc gttctctct gccctactgtc tttctactgtc 600
cctggcaaga ccacgatgctt ctctggaacc taactctcgtc atacgacagc tctgtctctc 660
ggactcttttg ctgctctcag tgcatttca ctgctcttgc tttcattcact tctctctctc 720
tttactctt tgggttactt ttcagttcg tgcatttctc tctctctctc tctctctctc 780
tggtgctgg ccgtaattt ccaacaccgg caacgaactac tttacacatgcttgcctcct 840
tttacagcct ccaacagcct gcgtttttttc caggagac gtgatcttgc tttactttct tttactttct 900
tttactttct ggaattccag atccctgatt ctctctctct ctctctctct ctctctctct 960
tttcctctgc ctgtcagctt gccagtctcag cgcgctctttc tctctctctct ctctctctct 1020
acactacta gttacagattc aacagatgc ctctctctct ctctctctct ctctctctct 1080
tttactcttc tgggaacggag tctctctctc tttactctttc tttactctttc tttactctttc 1140
actctctctct cgtctttttc ctctctctct ctctctctct ctctctctct ctctctctct 1176

<210> DEQ ID NO 14
<211> LENGTH: 391
<212> TYPE: PRT
<213> ORGANISM: Perilla fruticosa

<400> SEQUENCE: 14
Met Ala Val Ser Ser Gly Ala Arg Ser Thr Leu Ser Gly Ala Asp Gly
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Val Phe Asp Gly Gln Gln Gln Tyr Gly Ile Gly Lys Arg Ala</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Ala Asp Lys Phe Asp Pro Ala Ala Pro Pro Pro Phe Lys Ile Ala Asp</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Ile Arg Ala Ala Ile Pro Ala His Cys Trp Val Lys Asn Pro Trp Arg</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Ser Leu Ser Tyr Val Val Trp Asp Val Ala Ala Val Phe Ala Leu Leu</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Ala Ala Ala Val Tyr Ile Arg Ser Trp Ala Phe Trp Pro Val Tyr Trp</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Ile Ala Gin Gly Thr Met Phe Trp Ala Leu Phe Val Leu Gly His Asp</td>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Cys Gly His Gly Ser Phe Ser Asp Asn Thr Thr Leu Asn Asn Val Val</td>
<td>115</td>
<td>120</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Gly Gin Val Leu Gin Ser Ser Ser Ile Leu Val Pro Tyr His Gly Trp Arg</td>
<td>130</td>
<td>135</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Ile Ser His Arg Thr His His Gin Asn His Gly His Val Glu Lys Asp</td>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
</tr>
<tr>
<td>Glu Ser Trp Val Pro Leu Pro Glu Asn Leu Tyr Lys Leu Asp Phe</td>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Ser Thr Lys Phe Leu Arg Tyr Lys Ile Pro Phe Pro Met Phe Ala Tyr</td>
<td>185</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro Leu Tyr Leu Trp Tyr Arg Ser Pro Gly Lys Thr Gly Ser His Phe</td>
<td>195</td>
<td>200</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Asn Pro Tyr Ser Asp Leu Phe Lys Pro Asn Gin Arg Gin Leu Lys Ile Val</td>
<td>210</td>
<td>215</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Thr Ser Thr Met Cys Trp Ala Ala Met Gin Val Phe Leu Leu Tyr Ala</td>
<td>225</td>
<td>230</td>
<td>235</td>
<td>240</td>
</tr>
<tr>
<td>Ser Thr Ile Val Gin Pro Asn Met Met Phe Lys Leu Tyr Gly Val Pro</td>
<td>245</td>
<td>250</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Tyr Leu Ile Phe Val Met Trp Leu Asp Thr Val Thr Tyr Leu His His</td>
<td>260</td>
<td>265</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>His Gly Tyr Asp Lys Leu Pro Trp Tyr Arg Ser Lys Glu Trp Ser</td>
<td>275</td>
<td>280</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Tyr Leu Arg Gly Gly Leu Thr Thr Val Asp Gin Asp Tyr Gly Phe Phe</td>
<td>290</td>
<td>295</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Aas Lys Ile Ser His Gin Ile Gly Thr His Val Ile Gin Gin His Leu Phe</td>
<td>305</td>
<td>310</td>
<td>315</td>
<td>320</td>
</tr>
<tr>
<td>Pro Gin Ile Pro His Tyr His Leu Val Gin Ala Thr Arg Gin Ala Lys</td>
<td>325</td>
<td>330</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>Arg Val Leu Gin Asn Tyr Tyr Arg Glu Pro Arg Lys Ser Gly Pro Val</td>
<td>340</td>
<td>345</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Pro Leu His Leu Ile Pro Ala Leu Leu Leu Ser Gin Arg Gin Gin Leu</td>
<td>355</td>
<td>360</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>Tyr Val Ser Ser Gin Gin Gin Ile Tyr Tyr Gin Thr Gin Gin Leu Gin</td>
<td>370</td>
<td>375</td>
<td>380</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 15
<211> LENGTH: 903
<212> TYPE: DNA
<213> ORGANISM: Osteococcus tauri
<table>
<thead>
<tr>
<th>Met</th>
<th>Ser</th>
<th>Ala</th>
<th>Ser</th>
<th>Gly</th>
<th>Ala</th>
<th>Leu</th>
<th>Leu</th>
<th>Pro</th>
<th>Ala</th>
<th>Ile</th>
<th>Ala</th>
<th>Phe</th>
<th>Ala</th>
<th>Ala</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Tyr</td>
<td>Ala</td>
<td>Thr</td>
<td>Tyr</td>
<td>Ala</td>
<td>Tyr</td>
<td>Ala</td>
<td>Phe</td>
<td>Glu</td>
<td>Trp</td>
<td>Ser</td>
<td>His</td>
<td>Ala</td>
<td>Asn</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Asp</td>
<td>Aen</td>
<td>Val</td>
<td>Asp</td>
<td>Ala</td>
<td>Arg</td>
<td>Glu</td>
<td>Trp</td>
<td>Ile</td>
<td>Gly</td>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Ala</td>
<td>Ile</td>
<td>Ala</td>
<td>Thr</td>
<td>Thr</td>
<td>Thr</td>
<td>Met</td>
<td>Tyr</td>
<td>Leu</td>
<td>Phe</td>
<td>Cys</td>
<td>Leu</td>
<td>Val</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Arg</td>
<td>Leu</td>
<td>Met</td>
<td>Ala</td>
<td>Lys</td>
<td>Arg</td>
<td>Glu</td>
<td>Ala</td>
<td>Phe</td>
<td>Asp</td>
<td>Pro</td>
<td>Lys</td>
<td>Gly</td>
<td>Phe</td>
<td>Met</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Tyr</td>
<td>Asn</td>
<td>Ala</td>
<td>Tyr</td>
<td>Gin</td>
<td>Thr</td>
<td>Ala</td>
<td>Phe</td>
<td>Asn</td>
<td>Val</td>
<td>Val</td>
<td>Val</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Phe</td>
<td>Ala</td>
<td>Arg</td>
<td>Glu</td>
<td>Ile</td>
<td>Ser</td>
<td>Gly</td>
<td>Leu</td>
<td>Gly</td>
<td>Leu</td>
<td>Gly</td>
<td>Glu</td>
<td>Pro</td>
<td>Val</td>
<td>Trp</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Met</td>
<td>Pro</td>
<td>Trp</td>
<td>Ser</td>
<td>Asp</td>
<td>Arg</td>
<td>Lys</td>
<td>Ser</td>
<td>Phe</td>
<td>Lys</td>
<td>Ile</td>
<td>Leu</td>
<td>Gly</td>
<td>Val</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>115</td>
<td>120</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Leu</td>
<td>His</td>
<td>Tyr</td>
<td>Aen</td>
<td>Lys</td>
<td>Tyr</td>
<td>Leu</td>
<td>Leu</td>
<td>Asp</td>
<td>Thr</td>
<td>Val</td>
<td>Phe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Val</td>
<td>Ala</td>
<td>Arg</td>
<td>Lys</td>
<td>Tyr</td>
<td>Thr</td>
<td>Lys</td>
<td>Gin</td>
<td>Leu</td>
<td>Ser</td>
<td>Phe</td>
<td>Leu</td>
<td>His</td>
<td>Val</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>His</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
<td>Ile</td>
<td>Trp</td>
<td>Ala</td>
<td>Trp</td>
<td>Leu</td>
<td>Val</td>
<td>Cys</td>
<td>His</td>
<td>Leu</td>
<td>Met</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Aen</td>
<td>Asp</td>
<td>Cys</td>
<td>Ile</td>
<td>Asp</td>
<td>Ala</td>
<td>Tyr</td>
<td>Phe</td>
<td>Gly</td>
<td>Ala</td>
<td>Ala</td>
<td>Cys</td>
<td>Aen</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Ile</td>
<td>His</td>
<td>Ile</td>
<td>Val</td>
<td>Met</td>
<td>Tyr</td>
<td>Ser</td>
<td>Tyr</td>
<td>Leu</td>
<td>Met</td>
<td>Ser</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>200</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Arg</td>
<td>Cys</td>
<td>Pro</td>
<td>Trp</td>
<td>Lys</td>
<td>Arg</td>
<td>Tyr</td>
<td>Thr</td>
<td>Glu</td>
<td>Ala</td>
<td>Glu</td>
<td>Met</td>
<td>Leu</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>215</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Val</td>
<td>Ile</td>
<td>Val</td>
<td>Phe</td>
<td>Ala</td>
<td>His</td>
<td>Ala</td>
<td>Val</td>
<td>Phe</td>
<td>Val</td>
<td>Leu</td>
<td>Arg</td>
<td>Glu</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>230</td>
<td>235</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Pro</td>
<td>Val</td>
<td>Thr</td>
<td>Leu</td>
<td>Pro</td>
<td>Trp</td>
<td>Ala</td>
<td>Glu</td>
<td>Met</td>
<td>Phe</td>
<td>Val</td>
<td>Met</td>
<td>Thr</td>
<td>Aaa</td>
<td>Met</td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Leu</td>
<td>Phe</td>
<td>Gly</td>
<td>Aaa</td>
<td>Phe</td>
<td>Tyr</td>
<td>Leu</td>
<td>Lys</td>
<td>Ala</td>
<td>Tyr</td>
<td>Ser</td>
<td>Aaa</td>
<td>Lys</td>
<td>Ser</td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Gly</td>
<td>Aaa</td>
<td>Gly</td>
<td>Ala</td>
<td>Ser</td>
<td>Ser</td>
<td>Val</td>
<td>Lys</td>
<td>Pro</td>
<td>Ala</td>
<td>Glu</td>
<td>Thr</td>
<td>Thr</td>
<td>Arg</td>
<td>Ala</td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ser</td>
<td>Val</td>
<td>Arg</td>
<td>Arg</td>
<td>Thr</td>
<td>Arg</td>
<td>Ser</td>
<td>Arg</td>
<td>Lys</td>
<td>Ile</td>
<td>Asp</td>
<td>290</td>
<td>295</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 17
<211> LENGTH: 1560
<212> TYPE: DNA
<213> ORGANISM: Thraustochytrium sp.

<400> SEQUENCE: 17

```
tagctgtg gatacagta gcagatcoca ttctgacgaa ttaggctca taacaagc  
gatgatgct ggttgctcag tctggaacag gcggagagtg ttagctcgtc  
catcagaga gagaatattc ttgcggcagct gctgggaagg aagctctgtgt gcttact  
acacatcgt aaagcaggtt ggtctgagtt gttgctgaga ataacagatcctg  
cctacagag gaaacgctcg tttttgcttg acacatcggc tccttgctttc  
tagcagagct tggactcagct ggtcttgcag gttctggagtt ggtctgctct  
catcagagc tatacttgac tttcttttgag gtgttgggc gagcagcttctg  
ttttttgtgctggcctttgtgctgggct gactacacacactgc acgcagcagcgc  
agtaacagtgg tattttgttct gctttgtgctagtttgcagct ccttttctc  
gcagctcagc tccagcagct gttgactcttctagtttggagtttggagt gttcagc  
gatttttgtgctggcctttgtgctgggct gactacacacactgc acgcagcagcgc  
agtaacagtgg tattttgttct gctttgtgctagtttgcagct ccttttctc  
gcagctcagc tccagcagct gttgactcttctagtttggagtttggagt gttcagc  
gatttttgtgctggcctttgtgctgggct gactacacacactgc acgcagcagcgc  
agtaacagtgg tattttgttct gctttgtgctagtttgcagct ccttttctc  
gcagctcagc tccagcagct gttgactcttctagtttggagtttggagt gttcagc  
gatttttgtgctggcctttgtgctgggct gactacacacactgc acgcagcagcgc  
agtaacagtgg tattttgttct gctttgtgctagtttgcagct ccttttctc  
gcagctcagc tccagcagct gttgactcttctagtttggagtttggagt gttcagc  
gatttttgtgctggcctttgtgctgggct gactacacacactgc acgcagcagcgc  
agtaacagtgg tattttgttct gctttgtgctagtttgcagct ccttttctc  
```
gaacattgga gaacatggga aacagaggag actaagagct otggaagaag agctgtgga

<210> SEQ ID NO 18
<211> LENGTH: 819
<212> TYPE: PRT
<213> ORGANISM: Thraustochytrium spp.

<400> SEQUENCE: 19

Met Thr Val Gly Tyr Asp Glu Ile Pro Phe Glu Gin Val Arg Ala
1 5 10 15
His Arg Lys Asp Pro Asp Ala Trp Cys Ala Ile His Gly His Val Tyr
20 25 30
Asp Val Thr Lys Phe Ala Ser Val His Pro Gly Asp Ile Ile Leu
35 40 45
Leu Ala Ala Gly Lys Glu Ala Thr Val Leu Tyr Glu Thr Tyr His Val
50 55 60
Arg Gly Val Ser Asp Ala Val Leu Arg Lys Tyr Arg Ile Gly Lys Leu
65 70 75 80
Pro Asp Gly Gin Gly Gin Ala Lys Gin Glu Gin Gin Gin Gin Gin
85 90 95
Gly Leu Ser Ser Ala Ser Tyr Thr Trp Arg Ser Asp Phe Tyr Arg
100 105 110
Val Met Arg Glu Arg Val Val Ala Arg Leu Lys Gly Arg Lys Ala
115 120 125
Arg Arg Gly Lys Glu Leu Trp Ile Lys Ala Phe Leu Leu Leu Val
130 135 140
Gly Phe Trp Ser Ser Leu Tyr Trp Met Cys Thr Leu Asp Pro Ser Phe
145 150 155 160
Gly Ala Ile Leu Ala Ala Met Ser Leu Gly Val Phe Ala Ala Phe Val
165 170 175
Gly Thr Cys Ile Gin His Asp Gin His Gin Gin Gin Gin Ser
180 185 190
Arg Trp Val Asn Lys Val Ala Gly Trp Thr Leu Asp Met Ile Gly Ala
195 200 205
Ser Gly Met Thr Trp Glu Phe Gin His Val Leu Gin His Gin Asp Tyr
210 215 220
Thr Asn Leu Ile Glu Glu Gin Asn Gin Gin Gin Val Ser Gly Lys
225 230 235 240
Lys Met Gin Lys Leu Ala Gin Gin Gin Ser Gin Gin Gin Gin Gin Gin
245 250 255
Ser Thr Tyr Pro Met Met Asp Leu His Pro Trp His Gin Lys Gin Gin
260 265 270
Tyr His Arg Phe Gin His Ile Tyr Gly Pro Phe Ile Phe Gly Phe Met
275 280 285
Thr Ile Asp Leu Val Thr Gin Lys Gin Gin
Val Asn His Ile Ile Glu Gly Val Ser Tyr Ala Ser Lys Asp Ala Val 370 375 380
Lys Gly Thr Met Ala Pro Pro Lys Thr Met His Gly Val Thr Pro Met 385 390 395 400
Asn Asn Thr Arg Lys Glu Val Glu Ala Glu Ala Ser Lys Ser Gly Ala 405 410 415
Val Val Lys Ser Val Pro Leu Asp Asp Trp Ala Ala Val Gln Cys Gln 420 425 430
Thr Ser Val Asn Trp Ser Val Gly Ser Ser Trp Phe Trp Asn His Phe Ser 435 440 445
Gly Gly Leu Asn His Glu Ile Glu His His Leu Phe Pro Gly Leu Ser 450 455 460
His Glu Thr Tyr His Ile Glu Asp Val Gln Ser Thr Cys Ala 465 470 475 480
Glu Tyr Gly Val Pro Tyr Gln His Glu Pro Ser Leu Trp Thr Ala Tyr 485 490 495
Trp Lys Met Leu Glu His Leu Arg Glu Leu Gly Asn Glu Glu Thr His 500 505 510
Glu Ser Thr Gln Arg Ala Ala 515

SEQ ID NO 19
LENGTH: 31
TYPE: DNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: Primer
SEQUENCE: 31
gogccgcgc catggtggac ctcagccttg g

SEQ ID NO 20
LENGTH: 27
TYPE: DNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: Primer
SEQUENCE: 20
gogccgtta catgctggg aactcgg

SEQ ID NO 21
LENGTH: 33
TYPE: DNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: Primer
SEQUENCE: 21
gogccgcgc catgtcttg gctgctaaag atg

SEQ ID NO 22
LENGTH: 28
TYPE: DNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: Primer
SEQUENCE: 22
gogccgtca atgaacctga aactcaac
<210> SEQ ID NO: 23
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 23

gcggccgagc catgggacag aagggaggct a

<210> SEQ ID NO: 24
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 24

gcggccgagc taccgagact tggtcttgagc c

<210> SEQ ID NO: 25
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 26

gcggccgagc catggagagtc gggagagagtc
gcgtcgagt cc
gcggccgagc taccgagact tggtcttgagc c

<210> SEQ ID NO: 26
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 26

gcggccgagc caccgtctt cc
gcggccgagc taccgagact tggtcttgagc c

<210> SEQ ID NO: 27
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 27

gcggccgca tggctctctt gaccgccgag

<210> SEQ ID NO: 28
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 29

gcggccgagc caccgtctt cc
gcggccgagc taccgagact tggtcttgagc c

<210> SEQ ID NO: 29
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 29

gcggccgagc caccgtctt cc
gcggccgagc taccgagact tggtcttgagc c
<400> SEQUENCE: 29

gggcggccaa tcggcgttttc ttccggtgc 29

<210> SEQ ID NO: 30
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 30

gggaagcct aasctttttt ggaggaag 30

<210> SEQ ID NO: 31
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 31

gggcggccgc ctagacgccc tccggtgccc tg 32

<210> SEQ ID NO: 32
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 32

ggggccgct tagtcacatttt ttcc 23

<210> SEQ ID NO: 33
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 33

gggcggccgc ctagacggtc ggctacgacg ag 32

<210> SEQ ID NO: 34
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 34

ggggccgct cagggcgccc gttgcaag 29

<210> SEQ ID NO: 35
<211> LENGTH: 26755
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid

<400> SEQUENCE: 35

tctataaag ttgctaggtc ccggtaacgt atgtaaggt atcaatttaa atgctggccgc 60
cgagctct gcagggagg cgccgcgct ctagattaat taagggctt agttactaat 120
cagttgcaag attgttgttt cccgcttca gttaaacta tcaagtgttg acaggtata 180
ttggcgggtta aacctaaacag aaaaaagcgt 240
tgaaaaagtt tatccgcttc gccatccttg aatcagctat 300
tgtgttggtgt tgaattttcga tgtgggtgtt ttaggggtgt 360
tttttttttttt tcatctgctag tcctgggggt ttaggggtgtt 420
gccggttt attggtgggt agaaccacag ttaggggtgtt 480
tacccacat ctaggggtga caggtttgaag cggcagctag tcctgggtgt 540
tgaggtcagct cgggagccca cccctctcctg aatcagctat 600
ccttcgcttag cgggagccca cccctctcctg aatcagctat 660
gcttcgttct cgtggttctt gcttcgttct ttaggggtgtt 720
cggggagct ctaggggtgtt ttaggggtgtt 780
tttttttttttt ttaggggtgtt 840
tttttttttttt ttaggggtgtt 900
gccggttt gatacaccgt gccggttt gatacaccgt gcgcgtttgctt 960
tggtcgttct cgtggttctt gcttcgttct ttaggggtgtt 1020
cggggagct ctaggggtgtt ttaggggtgtt 1080
cggggagct ctaggggtgtt ttaggggtgtt 1140
cggggagct ctaggggtgtt ttaggggtgtt 1200
ccggtttgctt gccggtttgctt gccggtttgctt gccggtttgctt 1260
tttttttttttt ttaggggtgtt 1320
gccggtttgctt gccggtttgctt gccggtttgctt gccggtttgctt 1380
atgggaggtcc cccctctcctg aatcagctat 1440
tggatggtta ccgccctctcctg aatcagctat 1500
cgttggtttc ccttcctgtg tttttttttttt 1560
cgttggtttc ccttcctgtg tttttttttttt 1620
cgttggtttc ccttcctgtg tttttttttttt 1680
cgttggtttc ccttcctgtg tttttttttttt 1740
ccggtttgctt gccggtttgctt gccggtttgctt gccggtttgctt 1800
tttttttttttt ttaggggtgtt 1860
tttttttttttt ttaggggtgtt 1920
tttttttttttt ttaggggtgtt 1980
tttttttttttt ttaggggtgtt 2040
tttttttttttt ttaggggtgtt 2100
tttttttttttt ttaggggtgtt 2160
tttttttttttt ttaggggtgtt 2220
tttttttttttt ttaggggtgtt 2280
tttttttttttt ttaggggtgtt 2340
tttttttttttt ttaggggtgtt 2400
tttttttttttt ttaggggtgtt 2460
tttttttttttt ttaggggtgtt 2520
gttcccaatg taagtcgtcct ccacagaaaa gagaaccttctt gcaaatcttctt cccgttctag 2580
gccaatttgc cctctgatct ttgcccgttaca tttaagaaec gggtgatggta gccctctgtg 2640
caggtggtggt ttaggggtata taggtggtcg gcgcagctgc gcgcagctgcct cctccaaactc 2700
gtccctggtt gggtgggttg tattggcttgc cttgaaecg gccctaatacg tattttgga 2760
cctcctggtt gcctgatatc ggttcggttcg atgtggtaag acatgcttcg ctgggctctt 2820
gctggccggt gccgctggtcga gccgctggtcg aacgctgcctc agctggcggt gcctgggataa 2880
gtaaagcggttg gaaagcggca gcaagctgcct gttgagctct gcggggtctc 2940
catatgcgata gcaacagcatc cgcctggttcg gcgcctggtcgc tcagggctct ggctgctttt 3000
gttggacgtgct cttggtccgacc ggcggcgcgtg gccggtgcgct ttttgtgtgttg 3060
cgtgggtcgcc gctccggtct cttggtgcgcttg gggagggcgg ccggccggtg gggatcct 3120
ttttggtgggt ggcggtggtggt gcgggatggt gggagggcgg cgcgcgtgct tggggtgtgttg 3180
gcgacggccag gcggggtggc gtggggtggc tttggtggtgg gggagggcgg gtcggtggtggt 3240
ttagggggaac gcgccatgcc gtaaggatgcga ctctgggttg ggcggttactg 3300
gctggggtgcgc ggtcggcttg aagctgtgct gggatcctgg ctcggttcgg caggtgggcggt 3360
tggtcggggct ccaggtgggct cggccggtgtg gttgagctct gcggggttcttg ggctgctttt 3420
ggctgggtgct ccctgggtggt gcctgggtggt gcggggttttcg ttttgggtgctg gtcgggtgtgttg 3480
cctagctgctg gcggggttcttg ggccggttcttg cggccggttcttg ggccggttcttg cttgggtcttg 3540
ggctgggtgct ccctgggtggt gcctgggtggt gcggggttttcg ttttgggtgctg gtcgggtgtgttg 3600
tggtcggggct ccctgggtggt gcctgggtggt gcggggttttcg ttttgggtgctg gtcgggtgtgttg 3660
ggctgggtgct ccctgggtggt gcctgggtggt gcggggttttcg ttttgggtgctg gtcgggtgtgttg 3720
ccaggtgggct cggccggttcttg ggtggttcgg gtcggttactg 3780
ggctgggtgct ccctgggtggt gcctgggtggt gcggggttttcg ttttgggtgctg gtcgggtgtgttg 3840
ggctgggtgct ccctgggtggt gcctgggtggt gcggggttttcg ttttgggtgctg gtcgggtgtgttg 3900
tggtcggggct ccctgggtggt gcctgggtggt gcggggttttcg ttttgggtgctg gtcgggtgtgttg 3960
ggctgggtgct ccctgggtggt gcctgggtggt gcggggttttcg ttttgggtgctg gtcgggtgtgttg 4020
ccaggtgggct cggccggttcttg ggtggttcgg gtcggttactg 4080
ggctgggtgct ccctgggtggt gcctgggtggt gcggggttttcg ttttgggtgctg gtcgggtgtgttg 4140
ccaggtgggct cggccggttcttg ggtggttcgg gtcggttactg 4200
ccaggtgggct cggccggttcttg ggtggttcgg gtcggttactg 4260
acgtgaacgc gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct 4320
cggccggaacc gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct 4380
acgtgaacgc gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct 4440
acgtgaacgc gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct 4500
acgtgaacgc gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct 4560
acgtgaacgc gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct 4620
acgtgaacgc gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct 4680
acgtgaacgc gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct 4740
acgtgaacgc gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct 4800
acgtgaacgc gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct 4860
acgtgaacgc gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct gcggctgggct 4920
atgcagctg agaacaaga ataacacatt gcggacyctc ttactgtacct gaaattgatt
acgatattc gattaaacct gaggagcc gcccataact gttggttatg tttttgcact cacataatag
ttccttgaattc cttaaagttct aagataact aatttaaagtta ttatgcatg tccatagtg
tactataa cttacctcc tataactac aactattaac ttataacattt taatatatata taaaataagttc
ttactaatc ttttctatag ttatataatt taatttaatg tattctataa atatatatatatatattta
tttttttttt ctttttttttt tttttttttttt gatactctttt ttcttcttttt
agtcttgg agacctggt gatcctcag cccagtatttcc cttattattttt cttctcatttt
ctctctttt tttttttttttt aaccctgag tattttatct ccattttactta tacttaccattt tacccttata
ctctctttt tttttttttt aacttttttt actacttcat ctatattttact atatatttatc atataatattttagttc
ttacacttgagctgatcctag gctgcttgac gctagcctatttc gcttgacttgtatttatttttatttctttcctttt
cttacactt ctcgctgcg cggaccct cggaccttct ctctggcttatttcatctttct tgtgtgttgctgcgtgtgtt

-continued

catcagaac tcagcgaact ttaataagc tcctctccgg gttcctttta ataaatcag 12060
gacactata caacagacc ctttctgactc tcctctttga agttcctaga gaactaactg 12120
taattctgtc tcagctagtgt tcctcattta tgtagctcc tgtatacttag ggtgcccaaga 12180
cgagggctgg ggccagcagct cttccctttag cagcctatga cattgagggc ggcaggggtc 12240
gaggagatgt tgtagtacctgt ggtgctgactgt ggagttagttt gcgggaaatg ggtttatatc 12300
gtgagagactg agggatggggct ggtgagactg taaatcctccg tcgggccatc ggtgctttct 12360
tccgctctcc agctgagtttt acacagcctt atggcagcact ctaatactcc gttttatatc 12420
aatgtgctggg aatacaatatt gcggagatatt ttacctcatg tggcactacg aagtgtcctg 12480
ctgctttatt tctctctgct cttctctgttt cttgcttgct tatttttact ctcccacattct 12540
ccggctctcc atccagctcc tattaagggca gacagaaatgc aagggtggcc aaaaaaaaaaa 12600
agctgatatg tgcctccatt gaggagagatgt caataacgtc ggaagaaaaa taccgtcttt 12660
acctggggtg agaaggtaag gccctatat ccaatacact cgctgctgta attacatgata 12720
tatcacaatg ccatcatac aatgatatgctca tgcagctatc aataagattat aaaggagag 12780
aatggaactatgtt gttctttactg taataacatcct ctaattatttt cctagcatgttt 12840
cagcgtatttt tatttcagcct ccacaaatgct tttctttatac acacaaaaaa 12900

tcttaaaaa atacagtcttt tctcctctatc acacaatcgt ctttttcact ctttccacatc 12960
cctcctatac gacaagaaaaa aagtggaactatgt cttctctcaac cacaaaagaga 13020
cttccgactg cttacctcaat tttaactcacat ctagacatctt ctagattgctt 13080
caactgggat atctctccgaa attttctataca tcatgcttcag atctctcatt ctcacctca 13140
tgaccaaata tcgacactc aaatacttcc ttcgacaccc tctatacact ccagctgtgcc 13200
cttctgttcc gacacatctag ctctcctactg aacatcatac aaaaaacaca ttagaatccg 13260
amcatctgc tattggccag cttaacctgc aggatacaag tcgcacacga ctagccgagc 13320
cttaacccgg gcataagccgg tagatgccgg ctgctctttat agctatataa aacacagatg 13380
ttatttagcc cgtcttctgtt tattcagagaa ttgaatcactc gctgaaatat aggataccaa 13440
gaatgtcgt tttatgcata aattcaccct ctcgcgattt aacctttcct gaccaatattg 13500
tgtatgcgtc atttttagga ggttcttgcata aaatacatatt tattttttgaa atgatagata 13560
 ttgacagtag ataataatct atatatcgtgctttg ttttggatat tgaacttgat 13620
gagaatgtctaa aagaaaaatt ataaaatgc ggagtttgggct agatcctgtaa atatatgct 13680
 tggctttctg ttatgctttg tttatctcttc cctacctatc atataatctat ctctctacat 13740
tagcacttttt ttaaatatga ctaatcttta attatagttt gtaatattgc gcattggttaa 13800
taaatccagct ctgcattttgct gtaataactg gactctccct tatttatttt gttcctcattt 13860
 tattttttg ttatagcttg cctggtgat acagcagact attataggtt ggaaaagttgta aacagcgggta 13920
 taattctggca aaggagagatt gttttggagg cctttgattta tattcactact attcactagaa 13980
 gggaanagct cacattcaa ctgacgtggct ctttatccagaa cagctttgtga 14040
tcccttccag gacgattcgtt gaggagcctttagaag cggcagccgg attgctgcttc 14100
ctctacgctc ggtgtagctatt ctccacaccc ctttagctt ctctctctgtt ctcaacaaggg 14160
tggcttgaga cagttcaggg gaaaggggtga ttgagcttgcg gagtcctactg tgtcttgctg 14220
atctctcttg atagctcctga atctcactcc agagatagtt gttctctcttg aagattacag 14280
cactctcttg acgttacac aggaagcctt cttctctgctt cgttgcttttt ggtgggtggg ccaggttacgc 14340
acagatatac gccacatccg aacaaaatag tcgggacact cgtttagatt ccacatatcg 14400
ataagatagc aaagcaataa gaaagaaacta agccagtataa aataatatgat 21540
gatataccct tagaggggtgta tatatttacaa acaataacata acataagagc tagccagcag 21600
ggagggacaa aatagatata gctcctaattg gaggggtcaggt gcggaggcag cccttatatta 21640
ttcgaactgtctgctttag gcgtgcgtagttag tctcgttaccc ccattttcagt 21720
gaggttcccc aaagtagcttg tcacagctcag acaataagctc atcatcctgttg agttcaggtt 21780
ccacattcctg cgaagaagcga cgaattcttcg gcaagctccaa ggtggtgttag atagaggcat 21840
agaagggaaag aggtgtcttac ttcattgtaga gtttaagatg ccctatcaacag aagtttacca 21900
tctctgagaa ggttggttatc aatggtgttgc atccacagctt ttccttacaccc aagccataagt 21960
cctcagcagc ggaacacccct ccaagttggt tgcagaaagtt cggagaggct cgaagaagctta 22020
gctcctgggaa aaccacaaag tgcctcgagag aggctgttag gattgctag cgggtgatcct 22080
agaactacgc ctaagttcgct agttcctaatt caccagtgca cgcacacgctg caacacaagt 22140
tcggatcctt cctcccttctag aacgcttaga aagttgaggg aagaaacaccc agaagaagcc 22200
caccaattca gagaagcacaag tggagaaagtt ccaatcctgcg aacctgagcc agttacatta 22260
gaaacctccct ctcacctcagc ggtgttgagtc agagtttagg cagagccgctg 22320
atccacact atatggtgctcg tctgtttttag aggagtcagca gggtgttgagtt gttctcattgaa 22380
gttccacatata cttccgcacgcc gacccacgca gtaaatggttc aggtttttcttt 22440
atccacacct atgtttctgtc tttcagagagta gttcctgaca cctgttttaca cctaggccaaa 22500
tcggtcctcg aaggaagtcct cgttacatcc cacgagggc agacgctatc tagcctagat 22560
cagttgagtt cccaaaggtg attacagca cagtcctgtg aacctctgaag cacaagtac 22620
agggagaggg tttgagagtc cctccctttcg aacccctcttc ttcataagcga cgaatctcctg 22680
agctcatcctc ctttacgctgt cttagaggtgt cataagggcga aacgaccaaat 22740
agccttctga gcctttcctgc atctctgcgg gagctcctcttg aagttcctag tagtcagcagc 22800
tcgaggctga agaataccact gcgtcttcctt ggatttttgga aatgcggctgc 22860
atcgctacta acctccctgata ctcctctggtc ttcttacgctg aggttttttag ccaaatcagc 22920
aggtctccat ttcctagagc agaactccctc tgtctgcctgctt catctcact 22980
gaaagctcatg tcaagagtcg gttctctttgct gttccttcacac acatgctgggcc 23040
ggggtcgtgc tgtgctgctc ttactttagg ttccttttggt tatacggttaa gaaacaagaca 23100
agggggaatg ataggtgcaaa aacatgcggaggagggctgt gcgtcctatac gcgtctcctag 23160
actaattata cattggtgac gttgtcctca aacattaggtat aacagccggaac 23220
goagactctg ctgacccacg ttagagcactt ttcacgcaaca ctttatatatga aacagaaagaga 23280
agtattatga tagcttgcac tattctttgac cttttaatctc ttcacaacgg 23340
ttacccacct ctttgcttgg gagctccttcgc ctccattccac acctatatat tagtttactca 23400
gttgagccac gaattacggg tcatttccat cagataagcag aatagatcataa aatattatatgc 23460
aaatagctag atatattgcag atacccataa atattttata aataaatcata tagtattata 23520
tatagttggt ggatctctgag atgtaggcaggt tggataatgtagttttatat aatattatatgg 23580
taggagatat ttttatatt tgcctatgatt ccttattctg ttagattcatt 23640
tttactacac atatatttag atggattttalg gcggtttgaaa aacatcataatttcctattc 23700
tcattaccaatt ttttttttaca gcataccat tggatatca gaaattttatat aaggcgtgga 23760
agaaagctag catagacaaaaa aataatccctt aaacagagc gagaggctatt gttttttttcct 23820
aatattattg atacacccttta tgtataattttta ctaataagggc ctaaatataat aatgtgtag 23880
ttcactttt ctctatcttt ctcttaaaggt caggctgtcct tcaacocat taatttttacg 23940
acgccocctt aagtgtggtg cttcttatcct ccaattacctt ctaatggtcct taaatcttcc 24000
ctcttgtag tattttagtag aaggtgttgg ctaagctgctc ttgataacgta cagaaaggtta 24060
ataagcactatt ttctctccttc ataactttccta gaagtcagacg ttggttattact ttaagttgtcct 24120
ttagctgctt atgaacactgt gcgggcttcttg tgggtgtcacta caaaaatcataa ccctccagtc 24180
ttccagaatt ttctctatag atctctctatag atcataagtt tggcagctgct atacatcat 24240
ttagtttggg aagttgcaac aagcgaatag gtcgaatgcg acactaaaagc gtaaaacctt 24300
aacctttttca attctcataa attctacataa atctataactc tctagcatctc tttagaatag 24360
aacctttttct atataagaaac tctctctaccata ctctatagtt tgggaaggct caggctctca 24420
aacctattag aacctcttccat ctggtttaagaa atagcacaagagt ttgacactct ctggccagct 24480
tttacactag atgctcaagtg atctctctata aacatcgtacag ccaatgttgct tagatttccaa 24540
tggagatcaata cagagttggg aacagtaata ctctttatataa tggagctgatt atagattata 24600
aaccttttttc gcaagtcctaa tgaataacactt tacsattcacta cctcttgct aggctcctggc 24660
cgaaaaagac gtagcagctttc tttctctgatgc cttgttctcttctttgctt 24720
gtaaatcataa gagattctctt acacagcttc tctcaaggtat gcacagacgt ctgctgtgcttt 24780
tgctaatctc tggcacaacta gcacatctata cagagatctgct ggtcagcagctt cgcgcgctc 24840
gatgctgtcgt ctaacattgga ctgatataag gcgcacacgtc tagcgctgcgtctgcctagtgg 24900
atgctgtctgct agtggcggctg ctaagatccta cctctcctactt ccagcagagactgctctgctt 24960
gatgctgtctgct cctatatttta gacggtgtttata ggagattttta aataaatcataa 25020
aatattattt aaggtgattttag tattatatcag atcataacgac aacacatctt cccatctataa 25080
attctctcatg ctgcttctcata ctaacactttag atcattggcata atagctgattgt tggagatcacta 25140
tggagctgata gctgtggagt cggcttcctgg gtaatattataa ctagcatcagcggagatttt 25200
tttttttttg aatagcgcagc gaagctgcctt ccagcagagactt cccatctataa 25260
aatggaggtttc atctcattctg gaggagatcc ttttgataagc gggttctctctctctctct 25320
cagttgagttg cggctggccac ctgtatgagtt gaattgagatcg tggcagcagctttccgtttc 25380
tgacttctaa cacattgtccag aagatccctc ggcgactttg tcttctgttg cacttgcatgt 25440
gaagagtctgt gatgataataa cgcgggtgatt gagaggttag ctaagatcatt 25500
atccatacgt ttagctttccac ctaggtaagac agagaataggc tggtagcattg 25560
tgacactgtgct gccgaatgagag tagctctccaca cttctctccgc gccacactga gataggcacta 25620
cctccatcata cactcctggtg aggagatcga gcagcgactgagagtagagttaa caggtcggcct 25680
acctgtcgtt aaggtggtttc gggtcatcata ctttgattttgc ctggagatgg tggagatcacta 25740
agtcatcacta cctgctgtgtt gcacgactgtgatc cagcagagactt cggcttttatctctctctct 25800
aggggatctt ctactctggta gggagcttgtc ctcagctccac gccaggttcc ctcgagattcc 25860
agtgtaggttag gcggagatcgc ggtgtgggtg tccttctctcg gcagagactt cccatctataa 25920
atcagctgtt cacttcctcg tcgtccggct ccaatcgatgt aataaggctg cctctcttattc 25980
ctcagactgct ttagctttttg cctgctgtgct gcacgagacttg cttctctcatt ccagcagagactt 26040
ttgtagtgct cagcagagactt ccagcagagactt cttctctcatt ccagcagagactt 26100
accttagtgcg taatattttt gacggtgtgtt acctttattcc atcagctgtt cacttcctcg 26160
gttttggcact gttcgtctct ccacactcataa ctctttatctt ccacagacgtc tccgagggcct 26220
We claim:

1. A vector comprising a polynucleotide comprising a nucleic acid sequence selected from the group consisting of:
 (a) a nucleic acid sequence that has at least 95% identity to the sequence of SEQ ID NO: 1 and
 (b) a nucleic acid sequence which codes for a polypeptide having at least 90% identity to the amino acid sequence
 of SEQ ID NO: 2;

wherein the nucleic acid sequences of (a) and (b) code for a polypeptide with desaturase activity.

2. The vector according to claim 1, wherein the polynucleotide consists of RNA or DNA.

3. The vector according to claim 1, wherein the vector is an expression vector.

4. The vector according to claim 1, wherein the vector comprises at least one further polynucleotide which codes for
 a further enzyme which is involved in the biosynthesis of lipids or fatty acids.

5. A nonhuman host cell comprising the vector according to claim 1.

6. The host cell according to claim 5, wherein the host cell additionally comprises at least one further enzyme which is
 involved in the biosynthesis of lipids or fatty acids.

7. The host cell according to claim 6, wherein the enzyme is selected from the group consisting of an acyl-CoA dehy-
 drogenase, an acyl-ACP (acyl carrier protein) desaturase, an acyl-ACP thioredoxin, a fatty acid acyltransferase, an acyl-
 CoA:lyso phospholipid acyltransferase, a fatty acid synthase, a fatty acid hydroxylase, an acyl-coenzyme A carboxylase,
 an acyl-coenzyme A oxidase, a fatty acid desaturase, a fatty acid acetylase, a lipoxigenase, a triacylglycerol lipase,
 an allene oxide synthase, a hydroperoxide lyase, a fatty acid elongase, a Δ4-desaturase, a Δ5-desaturase, a Δ6-desaturase,
 a Δ8-desaturase, a Δ9-desaturase, a Δ12-desaturase, a Δ3-elongase, a Δ6-elongase and a Δ9-elongase.

8. A method of fortifying a food or feed product with a polypeptide with desaturase activity, comprising the steps:
 (a) expressing the vector according to claim 1, in a host cell;
 (b) obtaining, from the host cell, the polypeptide which is encoded by the polynucleotide according to (a); and
 (c) adding the polypeptide to the food or feed product.

9. A transgenic, nonhuman organism comprising the vector according to claim 1.

10. The transgenic, nonhuman organism according to claim 9, wherein the organism is an animal, a plant or a
 multicellular microorganism.

11. A method for the production of a substance which has the structure shown in the general formula I hereinbelow

$$\text{R}_1^1 \text{O} \begin{array}{c} \text{CH}_2 \\ \text{CH} \end{array} \text{CH} = \text{CH} \text{CH}_2 \text{CH}_3$$

where the variables and substituents are as follows:

$$\text{R}_1^1 = \text{hydroxyl}, \text{coenzyme A (thioester), lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphati-
 dylglycerol, lysophosphatidylylglycerol, lysophosphatidylserine, lysophosphatidylinositol, sphingo base or a radical of the f}
$$

$$\text{H}_2\text{C} - \text{O} \begin{array}{c} \text{R}_2^1 \\ \text{H} \end{array}$$

$$\text{R}_2^1 = \text{hydrogen, lysophosphatidylcholine, lysophosphatidylglycerol, lysophosphatidylethanolamine, lypo-
 phosphatidylglycerol, lysophosphatidylserine, lysophosphatidylinositol or saturated or unsaturated C}_2^2 - C_
$$

$$\text{H}_2\text{C} - \text{O} \begin{array}{c} \text{R}_3^1 \\ \text{H} \end{array}$$

$$\text{R}_3^1 = \text{hydrogen, saturated or unsaturated C}_2^2 - C_
$$

$$n=2, 3, 4, 5, 6, 7 \text{ or } 9, m=2, 3, 4, 5 \text{ or } 6 \text{; and } p=0 \text{ or } 3;$$

and wherein the method comprises the cultivation of host cell of claim 5, under conditions which permit the biosyn-

12. A method for the production of a substance which has the structure shown in the general formula I hereinbelow

where the variables and substituents are as follows:

R^3—hydroxyl, coenzyme A (thioester), lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysocephosphatidylglycerol, lysophosphatidylserine, lysophosphatidylinositol, sphingo base or a radical of the formula II:

$$
\begin{align*}
&H_2C\longrightarrow O \longrightarrow R^2 \\
&H \quad O \longrightarrow R^1 \\
&H_2C\longrightarrow O
\end{align*}
$$

R^2—hydrogen, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidylglycerol, lysocephosphatidylglycerol, lysocephosphatidylserine, lysophosphatidylinositol or saturated or unsaturated C_2-C_{24}-alkylcarboxyl,

$$
R^3 = \text{hydrogen, saturated or unsaturated } C_2-C_{24} \text{-alkylcarboxyl, or } R^2 \text{ and } R^3 \text{ independently of one another are a radical of the formula Ia:}
$$

$$
\begin{align*}
&\text{H}_2\text{C} \quad \text{O} \quad \text{H}_2\text{C} \quad \text{O}
\end{align*}
$$

$n = 2, 3, 4, 5, 6, 7 \text{ or } 9, m = 2, 3, 4, 5 \text{ or } 6; \text{ and } p = 0 \text{ or } 3; \text{ and}

\text{wherein the method comprises the cultivation of a transgenic, nonhuman organism of claim 9, under conditions which permit the biosynthesis of the substance.}

13. A method for the production of an oil, lipid or fatty acid composition, comprising the step of the method according to claim 11, and the further step of formulating the substance as an oil, lipid or fatty acid composition.

14. The method according to claim 13, wherein the oil, lipid or fatty acid composition is formulated further to produce a drug, a cosmetic product, a foodstuff, or a feedstuff.

15. The method according to claim 14, wherein the foodstuff is fish food or a food supplement.