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ABSTRACT 


The production of Jersey Royal potatoes is an important industry for the island of 

Jersey. The crop is grown annually, and sometimes biannually, so there is no 

opportunity to practise crop rotation in order to control potato cyst nematodes 

(PCN) , Globodera pallida and G. rostochiensis. Control of these pests in Jersey 

has traditionally relied on the use of nematicides, but with increased public 

pressure to reduce the use of pesticides and the intention of the Government of 

Jersey to eventually ban them, there is a desire for an alternative methods of 

control to be developed. 

Three nematophagous fungi, Plectosphaerella cucumerina, Paecilomyces 

lilacinus and Verticillium chZamydosporium, were isolated from PCN cysts taken 

from potato fields in Jersey. The efficacy of these fungi for the control of PCN 

was studied to determine their suitability for use in an integrated pest management 

programme. 

The radial growth rates of the nematophagolls fungi were reduced when grown on 

media amended with the fungicides Gambit and Rizolex, commonly used for the 

control of Rhizoctonia solani, another major pathogen of potatoes. Radial growth 

of V. chlamydosporium was also inhibited by Monceren and the nematicide 

Vydate. Growth of R. solani was inhibited by P. lilacinus at 20°C and lOoC in 
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vitro and by V. chlamydosporium at 20°C, but the strain of V. chlamydosporiurn 

used did not grow at W°c. Plectosphaerella cucumerina was a poor saprophytic 

competitor when grown against R. solani, P. lilacinus and V. chlamydosporium, 

therefore it may not be a suitable soil applied agent as it is out grown by other 

fungi in the soil. Paecilomyces lilacinus in a pelleted support matrix made from 

an alginate, gave better control of R. solani than non-formulated P. lilacinus 

alone. 

Of the different formulations of nematophagous fungi tested in pots, P. lilacinus 

incorporated into alginate pellets reduced the numbers of peN by the most 

(79.5%) and when applied in a field trial, reduced PCN population increase by 

approximately 60%. Plectosphaerella cucumerina, when incorporated into 

alginate pellets, also reduced field population increase by appr~ximately 60%. A 

combination of these two formulated fungi tested in a plunge trial gave a poorer 

level of control than the fungi added individually. The fungi remained viable in 

alginate pellets for at least 18 months. 

The population composition of PCN in Jersey was previously unknown. Using an 

ELISA technique, this study has shown both PCN species are present, but the 

proportions were not determined. To ascertain whether the early lifting of Jersey 

potatoes was selectively reducing levels of one of the species of PCN, DNA was 

extracted from nematodes stained in situ in the roots of potatoes. The results were 

inconclusive and further work is required. 
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1 INTRODUCTION 

1.1 ECONOMIC IMPORTANCE OF peN IN JERSEY 

The potato cyst nematode (PCN) is a serious pest of potatoes in the UK. and is 

among the most highly specialised and successful plant parasitic nematodes. 

There are two species of PCN, Globodera paUida Stone and G. rostochiensis 

Woll. Globodera pallida is becoming the dominant speQies possibly due to two 

factors. The first is the lack of nematicides able to give effective control over this 

species, and the second is the lower temperature threshold of G. paUida enabling 

it to hatch earlier in the year. Both species of peN originated ,from the Andean 

region of Peru and Bolivia (Evans & Stone, 1977). peN were first recognised in 

the UK. in 1917 but were not recorded in Jersey until 1938. peN can cause crop 

losses both directly and indirectly. The direct damage caused by peN is in the 

root, with the amount of damage caused being proportional to the numbers of 

invading juveniles. Tuber yield begins to decline when the population of PCN 

present at time of planting exceeds the tolerance threshold (Evans, 1993). The 

indirect cost of PCN infestation is measured in terms of the cost of chemical 

control applied. 

1 



---------------------------

The production of Jersey Royal potatoes is an important industry for the island. In 

1998, 29% of the island was used for growing Royals, including steep south 

facing slopes called "cotils" that have to be ploughed by hand (Figure 1.1). 

In 1998, 37,590 tonnes of Jersey Royal potatoes were exported from Jersey, with 

an average value per tonne of £824 giving a total value of £30.98 million. Fields 

are cropped with Jersey Royals annually, and occasionally biannually with Royals 

or with Royals followed by tomatoes or other potato cultivars, all of which are 

hosts of PCN (Mai & Lownsbery, 1948). Continuous cropping with a susceptible 

host can lead to multiplication of peN. peN infestation is regularly assessed by 

the Jersey Department of Agriculture and Fisheries. 

Table 1.1 Number of peN eggs per gram of soil in fields in Jersey in 1996 as 

categorised by the Department of Agriculture and Fisheries. 

Category I II III IV 

Eggs g soil-! PCN not found 1-6 7-60 >60 

% of fields 20% 50% 25% 5% 

area of land (ha) 619 1547.5 773.75 154.75 

Use of granular nematicides is only recommended in category III and IV fields 

(Table 1.1). In 1996, it was estimated that 50% of potato fields were category II, 

25% category ITI and 5% category IV. These figures have remained stable since 

1991. In 1994 the Department of Agriculture and Fisheries in Jersey advised 

growers not to treat category II fields with nernaticides, and this has not resulted 

in an increase in peN. 
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1.2 PCN LIFE CYCLE 


Globodera pallida and G. rostochiensis are distinguishable by their colour when 

the females are present on the roots; the female of G. paWda is white and that of 

G. rostochiensis is golden. There are also morphological differences between the 

second stage juveniles and cysts of the two species. The life cycles of G. pallida 

and G. rostochiensis are similar, except that hatching occurs over a longer period 

for G. paUida. peN have four juvenile stages before the adult stage (Figure 1.2). 

The first stage juvenile moults within the egg, to the second stage juvenile (12), 

which will overwinter until spring when it hatches in response to hatching factors 

in the exudate from the potato roots (Clarke & Perry, 1977). 

The hatched J2s enter the root via the root tip or at a lateral root and migrate away 

from the root tip, cutting through the cell walls and leaving a trail of ruptured 

cells. The J2 settles with its head towards the stele and begins feeding on 

pericycle, cortex or endodermis cells. At this point in its development the juvenile 

becomes sedentary, injecting saliva through its hollow mouth stylet and later 

withdrawing some of the cell's contents, forming a large syncytial transfer cell 

with dense, granular cytoplasm. Sex determination occurs at the third stage 

juvenile, and is controlled by nutrition (Trudgill et ai., 1987). The nematode 

remains in the transfer cell until it reaches maturity. The females enlarge to such 

an extent that they rupture the root cortex and are exposed on the outside of the 

root. The adult male remains vermiform and is only active for ten days, no longer 

feeds and dies after mating. 
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Figure 1.2 Life cycle of Globodera spp. (Taken from Evans & Stone, 1977). 
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The female dies when mature and the cuticle tans, becoming toughened to form a 

cyst that contains 200-400 embryonated eggs. Eventually the cyst will become 

detached from the root and fall into the soil. The eggs can remain viable within 

the cysts for up to twenty years and can withstand long periods of desiccation. 

1.3 CURRENT CONTROL MEASURES 

There are a number of control measures for PCN currently practised in the UK, 

but not all are suitable for application to potato cultivation on Jersey island. 

1.3.1 CROP ROTATION 

Rotation is an effective measure for control of PCN populations, as the number of 

nematodes declines in the absence of a host crop. The decline rate is dependent on 

a number of factors, such as soil type, but for comparison G. rostochiensis 

declined at 33% per annum compared to G. pallida which declined at 15% per 

annum in the same situation in the absence of a host crop (Evans, 1993). Adequate 

control can be achieved by growing three non-host crops in rotation with one 

resistant variety and one non-resistant variety potato crop treated with 

nematicides. This is not an option in Jersey, as only Jersey Royals can be 

exported, and therefore other varieties are not commonly grown. Due to the 

intensive cropping of Jersey Royals and the limited amount of land which is· 

available, it is uneconomic and impractical to practise crop rotation. 
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1.3.2 RESISTANT CULTIVARS 

Globodera rostochiensis can be controlled by the use of resistant potato cultivars 

containing the HI gene which has been bred in to varieties such as Maris Piper, 

reducing the initial nematode population by 70-80% per annum (Trudgill et al., 

1987). Some varieties have partial resistance to G. pallida, for example Sante, 

Midas and Rocket, can reduce the multiplication of G. pallida by up to 80% 

compared to the initial population. Growing a cultivar resistant to G. rostochiensis 

together with cultivars with partial resistance to G. paUida will reduce the 

multiplication of both species. Jersey Royal potatoes ~e susceptible to both 

species of PCN. 

1.3.3 NEMATICIDES 

There are a number of nematicides available with various modes of action. Soil 

fumigants such as methyl bromide, 1,3 and 1,2-dichloropropafie (DD) and 1,2 

dibromo-3-chloropropane (DBCP) are broad spectrum pesticides which also 

adversely affect other organisms. Methyl bromide is not only damaging to 

organisms in the rhizosphere but is also ozone depleting, hence a world wide ban 

will be imposed by 2010. Fumigant nematicides control plant parasitic nematodes 

by the release of toxic gas which kills the juveniles within the cysts; some have to 

be applied prior to planting as they ire toxic to plants, however DBCP is non 

phytotoxic. The total amount of DD used in Jersey in 1996 was 20,493 litres over 

601 vergee (1 vergee;:;: 0.17 hectare). 

7 



The other group of nematicides are non-volatile chemicals. Aldicarb (Temik lOG; 

10% a.i. w/w aldicarb; RP Agric.) and oxamyl (Vydate lOG; 10% a.i. w/w; 

DuPont) are soil applied systemic carbamate/carbamoyloxime nematicides that 

prevent the nematode from finding the host by releasing nerve toxins. Granular 

nematicides have to be applied immediately before planting, as they start to break 

down to non-toxic products as soon as they are applied. As granular nematicides 

are non-phytotoxic, multiple cropping within a single season was introduced in 

the 1970's in the UK and USA, to increase output per hectare. However, the 

nematicides and their degradation products were subsequently found in drinking 

water in Long Island, New York (Kerry, 1993). Poor control of G. pallida by 

nematic ides has been identified as the major contributor to the emerging 

dominance of this species over G. rostochiensis (Halford et al., 1995). This is due 

to the spread of hatch over a longer period of time by G. p~llida and greater 

reserves of lipids in their second stage juvenliee, improving the chance of survival 

once the concentration of nematicide in the soil has declined. The nematicide 

ox amyl, for example, has a half-life of two or three weeks (Figure 1.3), whereas 

the peak hatch for G. paUida is at six weeks. In Jersey in 1996, the two granular 

nematicides Temik and Vydate, were applied over 218 hectares at a rate of 2.4 kg 

per hectare and 40 kg per hectare over 1071 hectares, respectively. 
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Figure 1.3 Hatching patterns for G. rostochiensis and G. paUida under a 

potato crop and decay curves for oxamyl preparations with two or three 

week half-lives. (Taken from Evans, 1993). 

1.3.4 REMOVAL OF VOLUNTEERS 

Volunteers are tubers which remain in the ground after harvest. Leaving the host 

in the ground. bridges the interval between crops and. allows the peN to continue 

to reproduce and build up in the soil. Foliage and rotten and damaged potatoes 

which remain post-harvest can also add to the problem. The early harvest dates in 
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Jersey may serve to limit the rate of increase in population of peN, as it is 

possible that not all the female peN are reaching full maturity before harvest. 

This would make removal of volunteers particularly significant, as failure to 

remove them would negate the beneficial effect of the early harvest date. Removal 

of volunteer potatoes is actively encouraged in Jersey by the Department of 

Agriculture and Fisheries. Nematicide subsidies are withheld from farmers if this 

method of control has not been practised. 

1.3.5 TRAP CROPPING 

This method of control involves planting an early crop to stimulate nematode 

hatch. Once the nematodes have invaded the roots the plant is lifted. Trap 

cropping can potentially reduce peN populations by 80%, but timing is crucial. If 

the crop is left in the soil for too long peN numbers can multiply. Research by 

Halford et at (1999) found that trap cropping was time-consuming and labour 

intensive with few immediate benefits for the grower. Experiments so far have 

.involved hand-lifting the potatoes and roots. It is not yet known if mechanical 

lifting of trap crops will remove enough root to prevent the nematodes developing 

further in the soil. 

1.4 BIOLOGICAL CONTROL 

"Biological control is the use of parasitoid, predator, pathogen, antagonist, or 

competitor populations to suppress a pest population, making it less abundant and 
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less damaging than it would otherwise be" (Van Driesche & Bellows, 1996). 

There are two types of biological control:- a) induced, resulting from application 

of the agent by man; and b) natural, resulting from a build up of natural enemies 

in the soil. 

Due to intensive cropping practices of the single cultivar, the PCN populations 

would be expected to be higher than they are in Jersey, given that the expected 

rate of reproduction on a susceptible cultivar is approximately x 70 per growing 

season (Evans 1999, pers. com.). The use of nematicides has achieved some 

control, but since the cessation of the use of nematicides in Category II fields in 

1994 the PCN populations have remained stable. This is possibly due to natural 

control by micro-organisms (fungi, bacteria, mites and other nematodes). Natural 

control has previously been shown to occur when susceptible crops are grown 
" 

intensively in the presence of the pest, and the antagonist has had time to build up 

(Crump, 1989). Natural control has been well documented for cyst populations 

(Roessner, 1990; Heijbroek, 1983). 

1.5 NEMA TOPHAGOUS FUNGI 

There are three types of nematophagous fungi which are categorised depending on 

their method of attack (Table 1.2). Firstly, predatory fungi trap nematodes by 

means of adhesive nets, hyphae, branches, knobs or nets, or non-adhesive 

constricting rings and non-constricting rings (Saxena et at., 1991). Secondly, 

endoparasites of vermiform nematodes produce adhesive or non-adhesive spores 
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which remain dormant until either adherence to or ingestion by the nematode 

occurs. Once germination has occurred hyphae penetrate the cuticle and colonise 

the host. The hyphae of endoparasites are only present inside the nematode, with 

the exception of conidiophores which are produced externally, and do not 

parasitise the eggs. Both of these types of nematophagous fungi attack vermiform 

nematodes. The final group of nematophagous fungi, which are able to parasitise 

cyst nematodes and their eggs, includes the fungi Plectosphaerella cucumerina 

(Lindfors) W. Gams, Paecilomyces lilacinus (Thorn.) Samson and Verticillium 

chlamydosporium Goddard, which are used in this investigation. The process of 

infection occurs by in-growth of vegetative hyphae. The host is exploited by the 

hyphae as a source of nutrition, thereby increasing fungal biomass and spore 

production which in tum increases the likelihood of survival of the fungus 

(Nordbring-Hertz, 1988). 

Willcox & Tribe (1974) conducted a survey of plant parasitic nematodes infected 

with fungi in Great Britain. It was found that G. rostochiensis cysts were not 

extensively or even moderately infected with fungi. In a review, Dackman (1990), 

postulated that, due to the pest having been introduced, there were no indigenous 

antagonists. Fungi found on peN in Great Britain are therefore more likely to be 

opportunistic saprophytes than highly adapted parasites. Saprophytic fungi are 

less effective as biological control agents than parasitic fungi. As saprophytes are 

capable of utilising other sources of nutrients they may not parasitise the pest if 

another food source is available. However, these fungi can be cultured artificially 

and survive in the absence of their host. 
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Strategy for infection Mode of action Example 	 Reference 

Nematode trapping fungi 	 Adh~sive networks Arthrobotrys oligospora Pennark & Nordbring-Hertz (1997) 

Constricting rings Dactylaria sp. Nordbring-Hertz (1988) 

Adhesive knobs Dactylaria scaphoides Konig et al. (1996) 

Adhesive branches Monacrosporium cionapagium Saxena & Mittal (1995) 

Endoparasites of vermiform Adhesive spores Drechmeria coniospora Jansson (1993) 

nematodes Non-adhesive Harposporium anguillae Hodge et al. (1997) 

Parasites of eggs and cysts Egg parasite Verticillium chlamydosporium Crump & Irving (1992) 

Cyst parasite Paecilomyces lilacinus Morgan-Jones et al. (1993) 

Acremonium sp. Nigh et al. (1980) 
I 

Obligate parasite Plectosphaerella cucumerina Yu & Coosesman (1998) 

Table 1.2 Examples of nematophagous fungi and their modes of action. 
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Obligate parasites are, by their nature, likely to give good levels of control and 

once the host population is infected the epizootic may be self-sustaining. 

However, it may be difficult to reintroduce the obligate parasite to the soil. A 

promising parasitic fungus, the obligate parasite Nematophthora gynophila Kerry 

and Crump, found in soil of the cereal cyst nematode (CCN) , also gave a high 

level of control for PCN (Crump & Moore, 1990). Research and development of 

this fungus was hampered by the complex media needed for its culture. 

1.5.1 PLECTOSPHAERELlA CUCUMER/NA 

Plectosphaerella cucumerina (Lindfors) W. Gams is very similar in morphology 

to Acremonium sp. (Palm et al., 1995) and in fact the strain used in the project 

was initially identified as Acremonium. This hyphomycete has been found in 

arable soil and is frequently identified as a component of the rhizosphere. The 

only published finding that P. cucumerina infects plant parasitic nematodes was 

by Yu and Coosemans (1998), who found P. cucumerina was present on 

Meloidogyne hapZa egg masses isolated from tomato fields in Belgium. 

1.5.2 PAECILOMYCES LIlAC/NUS 

Paecilomyces lilacinus was originally classified in the genus Penicillium Link as 

Penicillium Zilacinus Thorn, but was reclassified Paecilomyces Bainier by 

Samson. This fungus is a facultative parasite of plant parasitic nematodes. 
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Paecilomyces lilacinus is a tropical or sub-tropical fungus that has not been 

isolated from nematodes on mainland UK. The strain used in these experiments 

was isolated from Jersey soils, where the warmer climate may favour the growth 

of this fungus. 

Most reports of P. lilacinus infection on nematodes were for Meloidogyne spp. 

(Mertens & Stirling, 1993; Morgan-Jones et al., 1984; Bonants et ai., 1995), but 

results from field trials have been variable probably due to the associated climate 

conditions and strain selection. Saifullah & Gul (1991) however, successfully 

controlled G. rostochiensis with P. lilacinus in Pakistan. This species has been 

produced as a biological control agent, 'Biocon', in the Philippines. The eggs of 

Meloidogyne hapla are infected by P. liiacinus by the production of lytic enzymes 

that degrade the vitellin which is located on the outside of the eggs and is the first 
,. 

barrier to the fungus (Bonants et al., 1995). Djian (1991) detected acetic acid, 

which has nematicidal properties, in culture filtrates of P. lilacinus . 

.. 
1.5.3 VERTICILLIUM CHLAMYDOSPORIUM 

Verticillium chlamydosporium is a facultative parasite of Meloidogyne sp. 

(Bourne et at., 1996) and is thought to be the cause of the natural decline of CCN 

in cereal monocultures (Crump & Irving, 1992). Strain selection is important 

when using V. chlamydosporium as a biological control agent since pathogenicity, 

optimum temperature for growth and production of chlamydospores may vary 

between strains. The main proteinase produced by V. chZamydosporium, VCPI, 
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facilitates infection of the nematode egg by removing the outer layer of the shell. 

However, proteinases purified from V. chlamydosporium growing on 

Meloidogyne sp. do not attack Globodera sp., suggesting a host specifk­

determining factor (Segers et al., 1996). Verticillium chlamydosporium produces 

chlamydospores on aerial mycelia that are for dispersal and survival of the fungus. 

These spores are 20-25 ~m in diameter and consist of walls, 6-9 cells deep. 

Conidia are also produced on phialides. 

1.6 REGISTRA TION 

The three fungi used for this research were those most frequently isolated from 

PCN cysts in Jersey, and were all known to be parasites of plant parasitic 

nematodes. There were two reasons why isolates from Jersey were selected for 

these experiments; firstly, these fungi are the natural enemies of the Jersey peN 

population and, therefore have co-evolved with the Jersey nematodes. Secondly, 

the fungi selected were indigenous to Jersey, which will facilitate registration. 

For a biological control agent to be commercialised, a number of tests need to be 

conducted. The minimum amount of information needed to register a product is: 

define the active agent taxonomically; define the culture methods; demonstrate the 

commercial product is free from contamination by other dangerous microbes; and 

demonstrate that the product is not infectious to man or domestic animals. 

Depending on the individual country's requirements, more detailed information 

and further rigorous tests may be needed, for example: biological properties, i.e. 

16 



..­
host spectrum; natural geographic occurrence; residues on the crop post-harvest 

and in the environment; infectivity and toxicity in mammals; or information on 

environmental hazards and effects on wildlife (bumble bees, parasitoids, 

earthworms and birds). 

1.7 AIM AND OBJECTIVES 

The overall aim of this thesis was to assess the efficacy of three nematophagous 

fungi, indigenous to Jersey and previously recorded as parasites of plant parasitic 

nematodes, for their suitability as potential biological control agents for 

controlling peN ina commercial potato crop and in particular to detennine if an 

agent based on one or more of these fungi could be incorporated in to the unique 

farming practices found on Jersey island. Specific objectives were: 

• 	 to determine whether there is variation in growth, development, and infectivity 

between monoconidial fungal isolates; 

• 	 to test the suitability of the nematophagous fungi for use in combination with 

fungicides and nematicides as part of an IPM strategy; 

• 	 to study colonial and hyphal interactions between the nematophagous fungi, 

plant pathogens and soil saprophytic fungi, to determine whether the 

nematophagous fungi will survive in the soil; 

• 	 to develop a fonnulation suitable for application of the nematophagous fungi 

in the field using existing machinery; 
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• to test the efficacy of the formulated nematophagous fungi in pot and field 

trials; 

• to determine the composition of the PCN population in Jersey using RAPD­

PCR and ELISA techniques to investigate whether one species of Globodera 

is more susceptible to nematophagous fungi than the other. 
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2 MATERIALS AND METHODS 

2.1 ISOLATION OF NEMATOPHAGOUS FUNGI 

The three fungal strains used in this study, P. lilacinus, V. chlamydosporium and 

P. cucumerina, were isolated from infected PCN females by plating the infected 

cyst on to W AA. Small sections of fungal mycelium, 3 mm2 , were cut out of the 

agar and transferred aseptically on to CMA containing aIItibiotics (section 2.2) to 

aid sporulation and identification. The fungi were then stored on PDA slopes 

under light white mineral oil (section 2.3.1). Sections, measuring 3 mm2, of the 

agar containing the fungi were cut using a flame sterilised Borrodaile needle from 

the agar slope, transferred on to a PDA plate and incubated at 20°C for 3 weeks 

prior to experimentation. The identities of the fungi were confirmed by 

mycologists at CABI Bioscience and assigned an identification number: P. 

cucumerina (380408), P. lilacinus (380406) and V. chlamydosponum (380407). 

2.2 ISOLATE AND GROWTH MEDIA 

Potato dextrose agar (PDA, Oxoid1 CM139) and Cornmeal agar (CMA, Oxoid, 

CM103) were made up according to the manufacturer's instructions. Water agar 

contained 8 g rl agar, technical grade (Oxoid, LP013). Modified Pachlewska 
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medium (MPM) contained 9 g rl soluble starch, 1 g rl anhydrous glucose 

(AnalaR@), 1 g rl KH2P04.7H20 (AnalaR@), 0.65 g rl Na2HP04.12H20 

(AnalaR@), 0.5 g rl MgS04.7H20, 0.5 g rl ammonium tartrate,S mg rl iron 

citrate and 0.5 mg rl thiamine hydrochloride. MPM was solidified where required 

by the addition of 1.2% (w/v) agar, technical grade. SNA (Synthetischer 

Nahrboden Agar; Nirenberg, 1976) contained 1 g r1 KH2P04, 1 g r1 KN03,0.5 g 

r1 MgS04.7H20, 0.5 g rl KCl, 0.2 g r1sucrose and 20 g rl agar, technical grade). 

Straw agar was prepared by boiling 40 g straw in 1 I of distilled water for 30 min 

and straining through a 53 !lm sieve. Straw agar was solidified by the addition of 

8 g r1 agar, technical grade. Malt extract broth CMEB) contained 20 g rl malt 

extract (Oxoid, CM57). Media were sterilised by autoclaving at 121°C for 20 min. 

Water antibiotic agar (WAA) and modified Pachlewska antibiotic medium 

(MPAM) were prepared by the addition of each chloramphenicol, streptomycin 

sulphate and chlortetracyline (0.05 g rl respectively) to the agars when cooled to 

45°C. 

2.3 PRESERVATIONOFCULTURES 

2.3.1 UNDER MINERAL OIL 

Fungal cultures were kept on PDA slopes under mineral oil. Plectosphaerella 

cucumerina, V. chlamydosporium and P. lilacinus were streaked across the 

surface of the agar and incubated at 200e for 11 days. Light white mineral oil 

(Sigma) was sterilised by heating overnight at 80°C. The mineral oil was allowed 
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to cool and poured over the slope to a depth of 5 mm. Cultures were kept at room 

temperature in the dark. 

2.3.2 LIQUID NITROGEN 

Sections of agar (0.5 cm3) on which P. lilacinus, P. cucumerina or V. 

chlamydosporium were originally grown, were cut and placed into cryovials. The 

cryovial was filled with 10% glycerol and sealed. The samples were slowly 

cooled to -35°C by placing them in a polythene box with 400 g dry ice and 75 ml 

90% ethanol. Samples were then plunged into liquid -nitrogen for long tenn 

storage. 

2.4 LARGE SCALE PRODUCTION OF FUNGAL BIOMASS 

To produce large amounts of fungal biomass for the pot and field trials, a twenty 

litre fermenter was used (Figure 2.1 & 2.2). 

2.4.1 PREPARATION AND INOCULUM 

Approximately, 40 plugs (5 mm diameter) cut from colonies of either 

P. cucumerina or P. lilacinus growing on PDA were added to four universal 

bottles, 10 plugs per bottle, each containing 20 ml MEB. The bottles were 

whirlimixed for 45 s to dislodge the conidia from the agar. The resulting 80 ml of 
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conidial suspension, containing approximately 1 x 108 conidia mr\ was decanted 

from the plugs and used to inoculate 15 I of malt extract in a 20 I modified 

polypropopylene carboy (Nalgene®, UK) (Figures 2.1 and 2.2) which had been 

sterilised by autoclaving at 121°C for 40 min. This fermenter was maintained at 

18-22°C and agitated and aerated by sparging with filter-sterilised air at 91 min-I. 

Approximately 0.02 ml antifoam 289 (Sigma, A8436) was added when the 

fermenter was inoculated to prevent the build up of foam. 

2.4.2 VALIDATION OF METHODOLOGY 

To determine the optimum growth period for P. lilacinus and P. cucumerina in 

liquid culture, the biomass dry weight and optical densities were determined. 

2.4.2.1 Dry weight determination 

Triplicate 10 ml samples of biomass were taken using the sample tube of the 

fermenter every 24 h for 7 d. The samples were passed through pre-dried 47 mm 

diameter glass microfibre filters (Whatman), that were held in a 3 piece filter 

funnel (47 mm diameter, Whatman). The biomass was washed three times with 

10 ml distilled water, and dried for 24 h at 1OS°e. The filter papers were dried to 

constant weight in a desiccator (Gray & Markham, 1997) (Figure 2.3a & b). 
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2.4.2.2 	 Optical densities of PaeciIomyces 1i1acinus and Plectosphaerella cucumerina 

grown in batch culture 

Under conditions where the optical density correlates to the biomass dry weight, it 

can be used to provide an instant indication of the amount of biomass present. 

This provides a simple test to determine whether the biomass is ready for harvest. 

The optical density was measured at the same time as the biomass dry weights. 

The optical density of triplicate samples of culture broth was measured at 520 nm 

with the spectrophotometer blanked against 2% malt extract (Figure 2.3a & b). 
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Figure 2.3 Biomass dry weight (e) and optical density (520 nrn) (A.) for 

a) Paecilomyces lilacinus and b) Plectosphaerella cucumerina. 
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2.5 	 QUANTITATIVE ASSESSl\1ENT OF peN EGGS FROM SOIL 

SAMPLES 

The soil samples were passed through a coarse sieve (4 mm in diameter pore size) 

to remove lumps and stones. The fraction of the soil that passed through the sieve 

was mixed and two 50 g samples were taken. One sample was put into a Trudgill 

fluidising column CTrudgill et aI., 1973) and floated for 45 s at a flow rate of 

7 I min· r, separating the cysts from the soil. The principle of operation of the 

Trudgill fluidising column is based upon the difference in density between the soil 

particles and the nematode cysts. A controlled upward flow of water contained in 

a column (7.5 em x 42 em) elutes the cysts from a soil sample. Cysts and other 

organic debris were collected on a sieve (250 Jlm pore size). The cysts were 

isolated from other debris by picking out with forceps under a dissecting 

microscope (x 120) and crushed using a glass rod to extract the eggs. The eggs 

were washed into a 100 ml measuring cylinder and mechanically disrupted using a 

vortex. The volume of water containing the eggs was noted and 1 ml of the egg 

solution was fed into a Fenwick multi-chamber counting slide (Doncaster et aI., 

1966). Healthy eggs and juveniles were counted. 

The second soil sample was used to determine the soil moisture content. The soil 

samples were air dried in cardboard trays and weighed once dry. The number of 

eggs per gram of dry soil was calculated as follows: 

No. of eggs x volume x known soil weight = Eggs g soirl 

known soil weight dry soil weight 
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2.6 STATISTICAL ANALYSIS 

Significant differences were assessed using Student's t-test (paired two tailed 

unless otherwise stated). One-way and two-way analysis of variance (ANOV A) 

were also used to assess significant differences using the statistical software 

package GENS TAT (Anon., 1987). Differences were classed as significant at the 

95% level of confidence. 
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3 	 CULTURING AND SELECTION OF NEMATOPHAGOUS 

FUNGAL ISOLATES 

3.1 INTRODUCTION 

Considerable variation in pathogenicity between different strains of a single 

species of nematophagous fungi has been demonstrated for V. chiamydosporium 

(Irving & Kerry, 1986), Fusarium sp. and Acremonium strictum (Nigh et aI, 

1980a) and P. lilacinus (Villanueva & Davide, 1984; Tigano-Milani et al., 1995). 

Kerry et al., (1986) found strains of V. chlamydosporium varied in their 

pathogenicity towards Heterodera avenae eggs, as well as in optimum growth 

temperature and production of chlamydospores on agar. The fungal strains 

compared in these examples originated from different geographical regions or 

from different nematodes within a field. ." 

To date, variation in pathogenicity between axenic cultures of nematophagous 

fungi isolated from a single nematode has not been studied. Monoconidial isolates 

of found the aphid-pathogenic fungus, Erynia neoaphidis, derived from a single 

aphid were to have different genotypes (Gray et aI., 1991). These isolates varied 

in their growth rates and in their ability to infect aphids. Therefore, a single 

conidium from an infected nematode could have a different genotype to another 

conidium from the same nematode. Careful strain and isolate selection is 
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important in the development of a fungal biological control agent, to ensure the 

efficacy and consistency of the agent is maintained. 

The isolation of fungal isolates from their natural host on to a growth medium can 

affect the pathogenicity of the fungus through attenuation of its virulence due to a 

change in phenotype. During subculturing, genotypes with the ability for 

saprophytic growth on agar will be selected and dominate the population. If 

attenuation is due to a loss of some of the genotypes that make up an isolate, re­

introducing the fungus to the natural host will not necessarily lead to that isolate 

recovering its original pathogenicity. If the loss in virulence is only due to a 

change in phenotypic expression, it is possible that the isolate can return to its 

original level of pathogencity. 

The pathogenicity of a nematophagous fungus should ideally be tested in pots or 

in the field. Pot tests allow for the effects of plant-nematode interactions and, to 

some degree, the influence of soil microorganisms to be investigated. 

Temperature and watering can easily be controlled in pot tests. Field tests 

demonstrate how the biological control agent will perform in a real situation, but 

there are many environmental factors which may influence the results. Pot and 

field tests can take a number of months before completion, so for logistical 

reasons, laboratory bioassays are often used. 
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3.2 	 SELECTION OF A SUITABLE MEDIUM FOR SPORULATION 

AND CONIDIATION OF NEMATOPHAGOUS FUNGI 

3.2.1 	 INTRODUCTION 

The nutritional requirements of the nematophagous fungi being studied are not 

fully characterised. Although they are saprophytic, the levels of different nutrients 

in the medium will affect the growth and development of the fungi. The numbers 

and infectivity of conidia produced were tested on five growth media. These 

media were in two categories: rich growth media (MPM and PDA); and low 

nutrient media traditionally used to encourage the production of conidia (CMA, 

straw agar and SNA). 

3.2.2 	 NUMBER OF SPORES PRODUCED BY NEMATOPHAGOUS FUNGI ON 

DIFFERENT GROWTH MEDIA 

3.2.2.1 Material and methods 

Plectosphaerella cucumerina, P. lilacinus and V. chlamydosporium were grown 

on CMA for two weeks. Conidia of P. cucumerina and P. lilacinus, and both the 

chlamydospores and conidia of V. chlamydosporium, were then scraped from 

colonies using a Borrodaile needle and suspended in 5 ml sterile distilled water. 

The five different growth media (PDA, MPM, CMA, SNA and straw agar (2.2)) 

were each inoculated with 0.2 ml of the conidial suspension and grown at 20ce. 
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Triplicate plates for each fungus on each growth medium were incubated at 20°C 

for 176, 216 and 264 h for P. cucumerina and P. lilacinus, and 168,214 and 296 h 

for V. chlamydosporium. Ten 3 mm diameter plugs were taken from each plate 

using a flame-sterilised core borer; five plugs from a transect of the plate and five 

plugs from a second perpendicular transect. The plugs were placed into 5 ml 

sterile distilled water and whirlmixed for 30 s (Campbell et al., 1996). The 

concentration of conidia in suspension was measured using a haemocytometer. 

The numbers of conidia mm-2 of colony was calculated as follow: 

Surface area of a single plug (radius 2.5 mm) =19.64 mm2 

Therefore 10 plugs =196.35 mm2 

Conidia mm·2 = 5 ml x no. of conidia mrl 

196.35 mm2 

3.2.2.2 Results 

More conidia were present after 264 h when P. cucumerina was grown on PDA 

and MPM than when grown on straw agar, SNA or CMA. Plectosphaerella 

cucumerina produced significantly (P<O.05, t-test) more conidia when grown on 

PDA then when grown on MPM (Figure 3.1). Fewer conidia were present on 

colonies of P. cucumerina on all media after 216 h growth than after 176 h 

growth, After 264 h, the nui:nber of conidia present on colonies of P. cucumerina 

increased compared to 216 h on PDA and CMA, but not on straw agar, SNA or 

MPM. The number of conidia mm'2 of colony produced by P. lilacinus when 
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grown on different media increased with time (Figure 3.2). After 264 h the 

number of conidia produced when grown on PDA was significantly higher than 

any of the other media. 

Verticillium chlamydosporium produced more spores mm-2 of colony after 269 h 

on PDA than on other media (Figure 3.3). The number of spores (conidia and 

chlamydospores) after 269 h was very similar for straw agar and MPM, 7.29 x 107 

and 8.1 x 107 conidia mm-2 of colony respectively. The number of spores mm-2 of 

agar of V. chlamydosporium increased with time when grown on MPM, but the 

number of spores decreased when measured at 214 h for PDA, straw and CMA. 

The number of spore mm-2 agar for CMA, straw agar and PDA increased when 

measured at 269 h compared to 214 h. 
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Figure 3.1 The effect of the growth medium on the numbers. of conidia 

produced by Plectosphaerella cucumerina grown on potato dextrose agar 

(PDA) (-.A--) low nutrient agar (SNA) (-11-), corn meal agar (CMA) (-+-), 

straw agar (--X--) and modified Pachlewska medium (MPM) ( ___). N =3. 
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Figure 3.2 The effect of the growth medium on the numbers of c~nidia 

produced by Paecilomyces lilacinus grown on potato dextrose agar (PDA) 

(-.t.-) low nutrient agar (SNA) <-:a-), corn meal agar (CMA) (-+-), straw 

agar (-X-) and modified Pachlewska medium (MPM) (-e-). N = 3. 
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Figure 3.3 The effect of the growth medium on the numbers of conidia and 

chlamydospores produced by Verticillium chlamydosporium grown on potato 

dextrose agar (PDA) (-A-) low nutrient agar (SNA) (-a-), corn meal agar 

(CMA) (-+-), straw agar (-X-) and modified Pachlewska medium (MPM) 

(_____). N =3. 
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3.2.3 EFFECTS OF DIFFERENT GROWTH MEDIA ON THE INFECTIVITY OF 

P. CUCUMERINA 

3.2.3.1 Introduction 

One area of concern was the possible attenuation of the pathogenicity of the fungi 

when grown on artificial media. This is of importance when growing a fungus for 

field application to control a target pest. Even if the attenuation is reversible, a 

fungus may be less effective then the field isolate immediately post application, 

therefore allowing a pest to continue to cause damage to the crop. An artificial 

medium may not contain all the nutritional constituents ..required by a fungus to 

maintain its pathogenicity towards a particular organism. A change in the 

constituents can alter the growth and development and hence pathogenicity of a 

fungus (Latge, 1975a; Latge, 1975b). To measure the change in pathogenicity, a 

direct correllation with infectivity has been assumed. 

3.2.3.2 Materials and methods 

To produce large numbers of female peN for the bioassay a two pot system was 

used. Four inch pots containing a layer of pea gravel and filled with Terra-Green® 

were placed on top of 5 inch pots filled with peat. Twenty dried cysts of G. pallida 

were placed 2 cm below the surface of the Terra-Green® (OIL.DRI UK Ltd., 

Cambridge, UK), together with a potato chit of cv. Desiree. Terra-Green, an inert 

montmorillonite mineral, was used as it absorbs water and allows maximum 

drainage. Osmacote slow release fertiliser (2 g rl) (15% nitrogen, 11 % phosphoric 
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acid, 13% potassium oxide, 2% magnesium oxide plus trace elements (Scotts, 

UK» was added to the surface of the upper pots, and the systems were watered 

daily. The female PCN were harvested after four to five weeks by washing the 

nematodes off the roots on to a 250 !-lm mesh sieve. 

Female nematodes were surface sterilised in 1% sodium hypochlorite solution for 

1 minute and then washed in distilled water. Three replicates of 10 females were 

plated on to W AA, for each isolate (unless otherwise stated). Nematodes were 

inoculated with 0.01 ml of fungal inoculum (1 x 105 conidia per ml sterile distilled 

water) or sterile distilled water only (as a control). Plates were incubated at in the 

dark 20°C for 7 days. The nematodes were then removed from the agar, surface 

sterilised (as above), plated onto moist filter paper to ensure the nematode was the 

only source of nutrients, and incubated as before. After 7 days the females were 

assessed for fungal infection. Abundant growth of hyphae from the cuticle of the 

nematode was taken as an indication of infection with the test fungus. 

To test the variation in pathogenicity of P. cucumerina isolates that had been 

grown on different media, plugs (5 mm diameter) of P. cucumerina were cut from 

colonies (used in section 3.2.2), using a flame-sterilised core borer. For each 

growth medium, ten plugs were placed into separate vials for each media 

containing 5 ml of sterile distilled water. The samples were whirlirnixed for 30 s 

to dislodge the conidia and the resulting suspension was diluted to 105 conidia 

mr! sterile distilled water. The female nematodes were each inoculated with 
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0.01 ml of the conidial suspension by dropping the suspension on to the 

nematode. 

To allow for incidental contamination from sources such as soil and airborne 

conidia, the level of fungal infection in the control group was monitored. The 

results of the inoculated nematodes were adjusted for background infection using 

the following formula: 

p(l) = pCB) + pCE) - p(B)p(E) 

peE) = p(l) - p(B) 

1- pCB) 

p(I) =probability of infection from any source. 

p(B) = probability of background contamination. 

p(E) =probability of experimental infection. 

The number of nematodes infected in the bioassay can be due to background 

infection, experimental infection or both background and experimental infection. 

An uninoculated control is assessed for background infection but when calculating 

the number of nematodes experimentally infected, some may be additionally 

contaminated by background infectiori. Therefore, to allow for femal~s infected 
1 

by both background and experiment, probabilities can be used to estimate total 

females experimentally infected. All results are adjusted for background infection 

unless otherwise stated. 
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3.2.3.3 Results 

Figures 3.4 and 3.5 shows female PCN infected with P. cucumerina, P. lilacinus 

and V. chlamydosporium, females infected with other fungi were treated as 

contaminates. Plectosphaerella cucumerina conidia appeared to be most effective 

when grown on PDA and on MPM infecting 93.5% and 84.1 % of female PCN in 

the bioassay respectively. These infections were not significantly different 

(P<O.05, t-test) from those for the same fungus grown on any of the other media 

tested (Table 3.1). 

Table 3.1 Infectiv~~y of Plectosphaerella cucumerina grown on potato dextrose 

agar (PDA), synthetischer nahrboden agar (SNA), corn meal agar (CMA), 

straw agar and modified Pachlewska medium (MPM) against peN 

(corrected for background infection). 

No. of female peN infected (out of 10) % female 


Medium Replicate peN infected 


1 2 3 


Control 2 0 0 6.7a 


PDA 9 10 9 93.5 


SNA 7 8 8 77.6 


CMA 9 8 6 77.6 


Straw 7 9 8 81.3 
 • ·f 

MPM 10 9 6 84.1 

a not corrected for effect of background infection. 
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3.2.4 DISCUSSION 

For the five media tested, all three fungi produced the greatest number of conidia 

on PDA (Figure 3.1, 3.2 and 3.3). This suggests that the nutritional requirements 

for spore production were best satisfied with this medium. Paecilomyces lilacinus 

increased its spore production over time when grown on all the media except 

CMA possibly indicating that a nutrient component essential for production of 

spores became exhausted after 214 h. This is a very different response to P. 

cucumerina and V. chlamydosporium (Figure 3.1 and 3.3), in which there was a 

decline in the number of spores present when grown on low nutrient agar for more 

than 178 h. Humphreys et al. (1990) found the entomogenous fungus 

Paecilomyces farinosus produced spores during the exponential and deceleration 

phase of growth, when grown in batch culture. This could explain why more 

spores were present at the first and third sample compared to the second time the 

fungi were sampled. Further work is needed to understand the relationship 

between the fungi and their nutrient requirements but the results indicated that the 

use of PDA was appropriate for the studies described in this thesis. 

The pathogenicity of P. cucumerina conidia did not differ significantly on the five 

media tested (P<O.05, t-test) (Table 3.1). Irving & Kerry (1986) also found the 

nutrient content of the agar did not affect the ability of V chlamydosporium to' 

infect Heterodera avenae eggs. 
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3.3 	 DOSE REQUIREMENT FOR INFECTING peN FEMALES IN A 

BIOASSAY 

3.3.1 INTRODUCTION 

Producing large numbers of conidia can be time consuming and expensive 

(Cherry et al., 1999). Therefore, field application of spores should be carried out 

at an optimum level where peN infection is maximised but wastage of the 

biological control agent is minimised. As a preliminary investigation, a simple 

bioassay to compare the infectivity of the three nematophagous fungi was 

conducted. 

3.3.2 MATERIALS AND METHODS 

3.3.2.1 Growing monoconidial isolates 

Monoconidial isolates were used for the majority of bioassays. Monoconidial 

isolates of P. cucumerina and P. lilacinus were obtained by scraping conidia from 

the original cultures using a sterile loop and whirlimixing for 30 seconds with 

1 ml sterile distilled water, then spread plating 0.1 m} of this suspension on to 

MPM. When colonies appeared twenty colonies were plated individually on to 

fresh MPM plates and grown for 12 d at 20°C. Ten fungal plugs (6 rnm in 

diameter) cut from each of these plates were put into 20 ml of sterile distilled 

water. The plugs in sterile distilled water were whirlimixed for 45 s, to dislodge 

the conidia from the agar, and the number of conidia was counted using a 
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haemocytometer. Conidial suspensions were centrifuged at 3000 rpm for 30 min 

to produce the high concentrations of conidia. The supernatant was discarded and 

0.01 ml of the remaining conidia was used to inoculate individual female 

nematodes. The conidial suspension was adjusted to 1 x 105 conidia mrI sterile 

distilled water. 

3.3.2.2 	 Separation of Verticillium chlamydosporium conidia from 

chlamydospores 

Ten plugs of agar (6 mm in diameter) were taken from the centre of a two week 

old V chlamydosporium culture grown on PDA and whirlimixed in 20 ml of 

sterile distilled water. Conidia were separated from the chlamydospores by 

centrifuging 10 ml of the spore suspension at 2000 rpm for 4 min to pellet the 

chlamydospores. The supernatant which contained the conidia, was removed, and 

three 0.1 ml samples were examined in a haemocytometer to make sure no 

chlamydospores were present. The suspensions were adjusted to 1 x 105 conidia 

ml-l sterile distilled water. 

3.3.2.3 	 Effect of inoculum dose 

Three repiicates of ten PCN females were inoculated with 0.01 ml of a suspension 

of conidia of V. chlamydosporium, P. cucumerina or P. lilacinus containing 

between 100 and 107 conidia mrl. This gave a dose of between 1 and 105 conidia 

per nematode. The bioassay was carried out as described in section 3.2.3.2. 
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3.3.3 RESULTS 

The greatest percentage of infected female PCN occurred when P. lilacinus was 

applied as a dose rate of 103 conidia per nematode. Plectosphaerella cucumerina 

benefited from a higher dose of conidia (104) but the proportion of females 

infected only increased by 7%, which was not significantly different to the lower 

dose rates for that species (P<0.05, t-test). For P. lilacinus and V. 

chlamydosporium, the proportion of females infected did not increase further 

when more than 103 conidia per nematode were applied. The batch of female PCN 

inoculated with P. cucumerina were the only group in which contamination was 

found, however the number of cysts infected in control treatment (due to 

background infection) was significantly lower than in any of the treated groups 

(P<0.05, t-test). 
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Table 3.2 Dose requirement of Plectosphaerella cucumerina, Paecilomyces 

lilacinus and Verticillium chlamydosporium conidia for infection of female 

PCN. ND = not determined. 

Dose % Infected peN 

(conidia per female PCN) P. cucumerina P. lilacinus V. chlamydosporium 

1 47.4 53.3 53.3 

1 x 101 36.8 90 53.3 

1 x 102 46.7 90 60 

1 X 103 63.7 100 56.7 

3.5 x 103 ND ND 54.8 

1 x 104 68.4 90 ND 

1 X 105 ND 90 ND 

3.5 X 105 ND 96.7 ND 

Control 36.7a Oa Oa 

anot corrected for background infection. 
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3.3.4 DISCUSSION 

Paecilomyces lilacinus gave the highest level of infection. Ten conidia clearly 

infected peN females better than a single conidium for this species; there was no 

further effect of increasing dose. Plectosphaerella cucumerina was most effective 

when 104 conidia were applied to a female. For V. chlamydosporium the dose rate 

did not correlate to the numbers of female peN infected. This suggests that the 

conidia of P. lilacinus had a higher chance of infecting the nematodes 

successfully, when compared to the isolates of P. cucumerina and V 

chlamydosporium. This could be due to a level of mortality and/or variation in 

pathogenicity between conidia. Further experiments are needed to determine the 

mechanisms determining infectivity of conidia against peN. It was decided for 

future bioassays to use the maximum number of spores practically possible to 

ensure infection, therefore a dose rate of 105 conidia per female peN for all fungi. 

As it was difficult to collect 105 conidia for V. chlamydosporium both conidia and 

chlamydospores were used to inoculate the female peN. 

47 



3.4 	 VARIATION IN PATHOGENICITY BETWEEN MONOCONIDIAL 

ISOLATES AND PATHOGENICITY OF ISOLATES WHEN 

PASSAGED THROUGH PCN 

3.4.1 INTRODUCTION 

When selecting a fungal isolate for use in biological control it is important to 

determine whether there is variation between isolates or whether one isolate is as 

effective as another. This will reduce possible variation within a product and 

enable optimisation of its efficacy. In this section the term isolate refers to a 

fungal culture that was derived from a single nematode. The aim of this 

experiment was to remove single conidia from isolates of P. cucumerina, P. 

lilacinus and V. chZamydosporium, and grow them on agar, the progeny conidia 

were then used in a bioassay to determine whether there is variation within the 

isolate. 

Pathogenicity of nematophagous fungi can be lost when grown continuously on 

artificial media. To prevent this from happening the fungi can be maintained on 

the natural host (as outlined in section 3.1). If attenuation does occur after growth 

on artificial medium, provided the change is purely phenotypic (not genotypic), 

pathogenicity can be restored by passage back through the host. 
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3.4.2 MATERIALS AND METHODS 

peN females were inoculated with twenty monoconidial isolates of V. 

chlamydosporium, P. cucumerina and P. lilacinus (section 3.2.3.2). Thirty 

females were inoculated per monoconidial isolate. Following assessment for 

numbers of infected females, any fungus growing out of the nematode's cuticle 

was plated on to MP AM using a sterile loop. These plates were incubated for a 

further 7 days at 200e to allow the fungi to grow. The conidia produced by the 

resultant fungal growth were used to inoculate a further set of 30 peN females per 

monoconidial isolate. This process was repeated once more leading to a final total 

of three passages of. the three fungi through peN females. 

3.4.3 RESULTS 

Variation in pathogenicity between monoconidial isolates was observed for each 

fungus (Figure 3.6 and 3.7), as was variation in infectivity of isolates after passage 

through female peN (Table 3.3, mean values are shown in Figure 3.8). The 

pathogenicity of a particular monoconidial isolate relative to other isolates was 

not always consistent. This was observed for P. lilacinus where the range between 

the highest and lowest percentage infection for the first passage was 20%, but for 

the second passage was 61 %. For example, P. lilacinus isolate 13 had the highest 

pathogenicity (80%) but when passaged to the second generation the 

pathogenicity decreased to 17%, one of the lowest recorded. For P. cucumerina, 
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Isolate 18 initially had the lowest pathogenicity (47%), but this increased to 73% 

when passaged through the nematodes. 

The pathogenicity of fungal field isolates was reduced by passaging through the 

nematodes for each of the species tested (Figure 3.8). Plectosphaerella 

cucumerina was least affected, with an observed reduction of 14% (although this 

was not significantly different) in pathogenicity by the second passage, with no 

further reduction in pathogenicity following the third passage. Pathogenicity of P. 

lilacinus was most affected by passage, decreasing from 86% of nematodes 

infected after the first passage to just 7% following the third passage (Figure 3.8). 

Decline in pathogenicity after passaging the fungi through the female peN was 

also evident in V. chlamydosporium with a statistically significant (P<O.05, t-test) 

decrease of 98.5% in pathogenicity. 
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Figure 3.6 Variation in pathogenicity between 20 monoconidial isolates 

obtained from a single field isolate of each a) Plectosphaerella cucumerina 

and b) Paecilomyces lilacinus. Error bars show the standard errors of the 

means. N==30. 

a) 

100 

(l,I ~80 

8 
~ I -
~ 60 
"OZ 
~U 40 
~~ 
c.... -20 
~ 

0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Isolate number 

b) 

100 

T 
80 TT 
60 

40 

20 

o 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Isolate number 

51 



Figure 3.7 Variation in pathogenicity between 20 mono conidial isolates 

obtained from a single field isolate of Verticillium chlamydosporium. Error 

bars show the standard errors of the means. N=30. 
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Figure 3.8 Infectivity of Plectosphaerella cucumerina, Paecilomyces lilacinus 

and Verticillium chlamydosporium against female PCN after passaging once 

(a), twice (~), and three times (0) through female PCN. Error bars show 

the standard errors of the means. N = 20. 
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P. cucumerina P. lilacinus V. chlamvdosvorium 
z.nd yd 1st z.nd yd 1st z.nd ydst1~2Iill~ D21 1

1 86.7 70.0 96.7 6.7 0.0 73.3 

2 90.0 63.3 80.0 20.0 3.3 63.3 23.3 

3 80.0 50.0 93.3 93.3 20.0 10.0 50.0 40.0 

4 83.3 50.0 76.7 13.3 6.6 56.7 

5 80.0 61.7 93.3 23.3 13.3 60.0 

6 80.0 53.3 86.7 13.3 13.3 41.5 

7 80.0 62.6 76.7 26.7 14.1 66.7 16.7 

8 76.7 70.0 96.7 27.4 26.6 61.8 20.0 

9 46.7 69.2 73.3 93.3 23.3 0.0 53.3 20.0 

10 70.0 53.3 56.7 76.7 20.0 3.3 70.0 20.7 3.3 

11 63.3 70.0 60.0 80.0 34.8 6.6 66.7 10.7 6.7 

12 70.0 83.3 60.0 93.3 26.7 3.3 63.3 20.0 

13 100.0 63.3 83.3 46.7 3.3 46.7 

14 70.0 73.3 76.7 36.7 0.0 46.7 13.3 

15 76.7 63.3 70.0 92.9 20.0 16.6 80.0 17.0 

16 60.0 70.0 45.7 83.3 43.3 10.0 60.0 46.7 

17 60.0 73.3 80.0 56.7 0.0 80.0 23.3 6.7 

18 46.7 73.3 86.7 43.7 3.3 63.3 23.3 

19 53.3 66.7 90.0 68.1 0.0 71.7 40.0 

20 ' 76.7 86.7 62.2 13.3 60.0 33.3 
VI 
w 

Table 3.3 Percentage of peN females infected with either P. cucumerina, P. lilacinus or V. chlamydosporium 

after the fungus has been passaged through peN females. No data indicates contamination has occurred. 
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3.4.4 DISCUSSION 

The variation in pathogenicity observed for each species of nematophagous fungi 

could suggest that the monoconidial isolates were derived from a heterogeneous 

source, possibly due to the nematode being infected by more the one conidium to 

start with. An advantage of using a biological control agent that consists of a 

number of genotypes is that the pest is less likely to become resistant to the agent 

compared to a single isolate biological control agent. Genotypic variation within a 

population of a biological control agent can help to prevent resistance build up in 

the target organism, as long as all the individual isolates within the population ~e 

pathogenic. If not all the phenotypes are pathogenic, control may be patchy. 

Some attenuation was probable as the fungi were not continuously passaged 

through nematodes but subcultured on to agar in between passages. However, the 

level of attenuation was much higher than expected and the addition of antibiotics 

in the agar was considered as an additional factor to explain the degree of 

attenuation observed in these experiments. This was investigated further (section 

3.5). 
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3.5 EFFECT OF ANTIBIOTICS ON PATHOGENICITY 

3.5.1 INTRODUCTION 

Antibiotics are routinely used for isolation of fungi from field soils (Dackman, 

1990; Mitchell et al., 1987). Antibiotics prevent bacteria from growing by 

inhibiting a number of processes such as cell wall synthesis, protein synthesis, 

nucleic acid synthesis and intermediary metabolism. Many fungi produce 

antibiotics and will not necessarily have the sites targeted by different antibiotics, 

such as cell wall structures. However, the presence of sublethal concentrations of 

antibiotics can alter the physiology or exert selective pressure on fungi, which 

may lead to attenuation. 

Attenuation of pathogenicity of the fungi against peN was observed following 

passage of monoconidial isolates of nematophagous fungi were passaged through 

peN females (Figure 3.8 and Table 3.3). It was hypothesized that this was due to 

the presence of antibiotics in the medium used when the fungi were cultured on 

agar. To test this hypothesis, V. chlamydosporium taken from a field isolate that 

had previously been plated on to agar, was grown on medium which contained 

antibiotics, and on medium deficient of antibiotics. 

The attenuation may have taken place when the fungi were first isolated from the 

field and plated on to agar. To test this, P. lilacinus conidia that were isolated 

from a peN cyst were compared to P. lilacinus conidia that had been grown on 

agar with and without the addition of antibiotics. 
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3.5.2 EFFECTS OF ANTIBIOTICS ON V. CHIAMYDOSPORIUM 

3.5.2.1 Materials and methods 

Ten out of the twenty monoconidial isolates of V. chlamydosporium previously 

used in section 3.4.2 were grown on PDA. Plugs (6 mm diameter) were cut from 

plate cultures and inoculated on to MPM and MPAM. The fungus was grown for 

12 d at 20°C. Ten plugs were cut from each agar plate and vortexed in 20 ml 

sterile distilled water. The conidia recovered from the suspension were used to 

inoculate nematodes as described in section 3.2.3.2. 

3.5.2.2 Results 

Six out of ten isolates of V. chlamydosporium had a lower pathogenicity when 

grown on MPAM than when grown on MPM. However, the differences were no 

greater than 16% (Figure 3.9). When isolates 10, 15 and 18 were grown on 

antibiotic agar, they were more infective than when grown on MPM, with 

differences of up to 23% for isolate 18. However, these differences were not 

statistically significant (P<O.05, t-test). 
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Figure 3.9 Infectivity of V. chlamydsporium against peN females grown on 

MPM (0) and MPAM (~). Error bars show the standard errors of the 

means. N = 20. 

100 

90 

80 

~ 70-~ 
5 60~ 
Z 
U 50~. 
't:S 
~ .... 
C"l 40 
~ c.... 
~ 30 

20 

10 

0 

2 7 10 11 12 14 15 16 17 18 


Isolate number 


57 



3.5.3 EFFECTS OF ANTIBIOTICS ON P. LILAC/NUS 

3.5.3.1 Materials and methods 

Conidia of P. lilacinus were removed from the outside of an infected cyst 

collected from a Jersey soil using a sterile loop and streaked on to MPM and 

MPAM. The fungus was grown for 11 d at 20°C. Conidia were then recovered as 

in section 3.2.3.2., resulting in three suspensions of conidia derived from the three 

sources; MPM, MPAM and Jersey cyst, for the latter, a PCN cyst infected with P. 

lilacinus was put into 20 ml sterile distilled water and vortexed for 30 s. Each 

conidial suspension was used to inoculate twenty replicates of ten peN females 

on agar. 

3.5.3.2 Results 

For P. lilacinus there was no statistical difference in infectivity between the 

isolate taken directly from a nematode in the field (58%) compared with the 

isolate grown on MPAM for 11 d (59%) (Table 3.4). Infectivity of conidia of P. 

lilacinus grown on MPM (69.7%) was higher than those grown on MPAM or 

derived directly from the field isolate (P<0.05, ANOVA). 
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Table 3.4 Infectivity of an original field isolate of P. lilacinus compared to the 

same isolate grown on MPM and MPAM. 

Original isolate Original isolate grown on 

From cyst MPM MPAM 

% infected female peN 58 69.7 59 

Standard deviation 3.9 4.9 4.1 

3.5.4 DISCUSSION 

Antibiotics do not appear to have an effect on the infectivity of nematophagous 

fungi when compared to the field isolate. However, when P. lilacinus was grown 

on MPM the percentage of infected females increased by lO% compared to the 

field isolate and isolate grown on MPAM. This could be due to a combination of 

factors such as the MPM supplying a more optimum source of nutrients for the 

fungus than that taken directly from a peN female. Also, the female from which 

the field source isolate fungus was recovered may have been parasitised for some 

time and the available nutrients for the fungus depleted thereby affecting the 

ability of the conidia to infect. The difference between the fungus grown on the 

MPM and that grown on MPAM may have been due to a low level effect of the 

antibiotic used in the protocol. 
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3.6 GENERAL DISCUSSION 

For each of the three fungi tested in this experiment, PDA was found to be the 

medium on which the fungi produced most spores, followed by MPM. Further 

experiments were therefore conducted on either MPM or PDA. After 220 h the 

number of conidia present on the surface of colonies of each of the fungi did not 

increase on any of the media tested. This was most likely due to a depletion in 

available nutrients. There was a small decrease in the number of conidia counted 

at the second sample time. This may have been due to the conidia being dislodged 

from the agar when the plates were moved, or to degeneration of conidia 

following nutrient exhaustion. 

The minimum number of conidia needed to ensure optimum infection of female 

PCN was found to be 102, 103 and 104 per female for V. chlamydosponum, P. 

lilacinus and P. cucumenna, respectively. This is unlikely to be achieved in an 

agronomic situation as it would be difficult to produce enough inoculum for these 

high dose rates. However, the purpose of the bioassays was to look for any 

variation between the monoconidial isolates and therefore the dose rate of 105 

conidia per female was used as standard. 

There was apparent variation between the monoconidial isolates in their ability to 

infect the female PCN (Figure 3.6 and 3.7). Differences of up to 54% in 

infectivity were seen from isolates obtained from the same culture. Tigano-Milani 

et al., (1995) found genetic variation in isolates of Paecilomyces fumosoroseus 
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isolated from whitefly in Florida. Using molecular markers the populations of P. 

fumosoroseus were found to be genetically diverse. Tigano-Milani postulated that 

certain genotypes are more effective at different stages of epizootics and have a 

synergistic effect in combination. Many isolates would therefore need to be 

present for effective biological control, and a single isolate of one species of a 

nematophagous fungus may not be effective as a field inoculum. 

As well as variation in pathogenicity between monoconidial isolates, there was 

high variability between replicates. This suggests the bioassay needs to be 

modified. Although the nematodes used were harvested after the same length of 

time, the growth rate and size of the PCN could have varied depending on the 

time of year due to variation in day length and temperature. Smaller (less mature) 

nematodes are more susceptible to infection by nematophagous fungi as the 

cuticle is more permeable than in larger nematodes. Cysts containing mature eggs 

tend not to become parasitised (Nigh et ai., 1980b). Where this was the case, 

comparisons within an experimental group may be valid but comparisons between 

experimental groups remain less reliable. A standard technique for the production 

of nematodes, that incorporates a controlled light and temperature regime, needs 

to be developed. A similar bioassay, to the one described in this thesis, was used 

by Chen et al., (1996) to test the pathogenicity of a number of nematophagous 

fungi against the soybean cyst nematode Heterodera glycines. Chen used plugs of 

agar inoculated with nematophagous fungi to infect the female nematodes on agar 

plates, and counted the number of eggs infected with the test fungus, and the 

percentage reduction in hatch. This method gives a better indication of the extent 
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to which the fungus has reduced the nematode populations and the numbers of 

infected females. 

The attenuation seen in all the fungi passaged through the three generations of 

nematodes was unexpected. Usually when a pathogen is reintroduced to its natural 

host having been cultured on a surrogate medium, a return of its pathogenicity is 

expected, as the fungus should either revert to its wild type or remain at its current 

level of attenuation. The fungi were grown on MP AM agar between nematode 

hosts to reduce the contamination by bacteria. It was suspected the addition of 

antibiotics in the agar may have caused the attenuation, however experiments 

3.5.2.1 and 3.5.3.1 illustrated this was not the case. Mechanisms of attenuation are 

not clear and further work is needed in this area. 
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4 THE EFFECT OF AGROCHEMICALS AND OTHER SOIL 

FUNGI ON NEMATOPHAGOUS FUNGI 

4.1 INTRODUCTION 

Rhizoctonia solani KUhn is a major pathogen of potatoes. The fungus attacks the 

stems and stolons of growing potato plants (stem canker) and forms sclerotia on 

the tubers (black scurf), resulting in yield loss and also r~duced market value due 

to blemishes on the. tubers. Fungicides used to control R. solani, such as Rizolex 

(AgrEvo), Monceren (Bayer) and Gambit (Novartis), are applied to seed tubers 

prior to planting as a preventative measure and could have an ,adverse effect on 

fungi applied as control agents for peN. Therefore, the effects of these fungicides 

on growth of the nematophagous fungi were investigated. The effects of foliar 

applied fungicides were not tested, as it is unlikely that these would affect the 

growth of the fungi in the rhizosphere (Larsen et al., 1996). 

Several species of fungi have been shown to be antagonistic towards R. solani. 

These include Gliocladium roseum, G. virens, G. nigrovirens, Trichoderma 
. ­

hamatum, T. harzianum and Verticillium biguttatum (Beagle-~istanin? & 

Papavizas, 1985). Turhan (1990) demonstrated that ten species of fungi, including 

V. chlamydosporium, were able to hyperparasitise R. solani, and P. lilacinus has 
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been reported to be antagonistic towards R. solani on Poinsettia (Cartwright & 

Benson, 1995). 

For integrated pest management (IPM) to be effective, it is important to 

understand how a control agent for one pathogen interacts with non-target 

pathogens and other biological control agents. For example, individual 

applications of the nematicides oxamyl, ethoprofos and aldicarb in the field were 

found to increase the numbers of stems and stolons of potatoes infected with R. 

solani (Scholte, 1987), whereas Hide & Read (1991) found that the incidence of 

black scurf on tubers decreased after annual application of oxamyl for four years. 

4.2 	 THE EFFECT OF AGROCHEMICALS ON NE:MATOPHAGOUS 

FUNGI 

4.2.1 INTRODUCTION 

The active ingredients of fungicides currently used in Jersey are tolclofos-methyl 

(Rizolex; 10% a.i. w/w; AgrEvo), fenpic10nil (Gambit; 10% aj. w/w; Novartis) 

and pencycuron (Monceren Flowable; 250 a.i. gil; Bayer). These are applied 

separately to the tuber before planting. To determine whether application of the 

biological control agent to the tuber in the presence of the fungicides is feasible, 

the nematophagous fungi were grown on agar which contained these fungicides. 

The nematophagous fungi were also grown on agar containing the nematicide 

Vydate (active ingredient oxamyl lOG; 10% a.i. w/w; DuPont) to establish 

whether biological and chemical control agents could be used in combination. 
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4.2.2 MATERIALS AND METHODS 

The three tuber-applied fungicides and the granular nematicide were tolclofos­

methyl (Rizolex, AgrEvo); pencycuron (Monceren flow able, Bayer); fenpiclonil 

(Gambit, Novartis); and oxamyl (Vydate lOG, DuPont). PDA was prepared 

(section 2.2) and cooled to 4SoC before addition of the agrochemicals at the 

following rates: 0.22 ml rl Rizolex, 0.54 g r 1 Monceren, 0.11 ml }"1 Gambit and 

3.6 mg rl Vydate. The concentrations of agrochemicals added were equivalent to 

the rates of application recommended by the manufacturer, which are 0.25, 0.6 

and 0.125 I tonne- l for Rizolex, Monceren and Gambit, applied as tuber dressings 

respectively, and 3.6 ppm for oxamyl applied to the soil. Sterilisation of the 

agrochemicals was unnecessary as they are inherently microbiocidal in 

concentrated form. Rizolex did not dissolve immediately in agar, so the flask was 

placed on a magnetic stirrer until the powder dissolved. 

Plates of PDA to which each of the four agrochemicals had been added, and 

unamended PDA plates (controls), were inoculated centrally with 6 mm diameter 

plugs cut using a flame-sterilised cork borer from colonies of V. 

chlamydosporium, P. cucumerina or P. lilacinus that had been grown on PDA. 

The inoculated plates were then incubated at 20°e. Colony radius was measured 

as the mean of two perpendicular radii at approximately 48 h i?tervals uIl:til the 

colony reached 30 mm in diameter, with a minimum of 8 recordings. Colony 

radial growth rate (Kr ; Pirt, 1967) was calculated by linear regression of colony 

radius on time. 
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4.2.3 RESULTS 

Monceren, Gambit and Rizolex all significantly (P<0.05, t-test) reduced radial 

growth of V. chlamydosporium compared to the control, by 17.8%, 18.9% and 

22.3% respectively (Figure 4.1). Radial growth of P. lilacinus was significantly 

reduced by the addition of Gambit (45.8%) and Rizolex (45.5%). Vydate, 

however, significantly increased the radial growth rate of P. lilacinus by 3% 

compared to the control. The addition of Gambit and Rizolex significantly 

reduced the radial growth rate of P. cucumerina, by 46.9% and 36.3% 

respectively. 

For the first 650 h the growth rate of V. chlamydosporium on Vydate amended 

medium was the same as that on the control medium but then colony radial 

growth slowed (Figure 4.2). As the relationship between radius and time was not 

linear, it was not appropriate to calculate Kr . However, the increase in radius of 

colonies of V. chlamydosporium on Vydate amended medium between 650 hand 

780 h was 16% less than on control plates. 

The morphology of the nematophagous fungi was also affected by the presence of 

the fungicides in the agar (Figures 4.3 and 4.4). Sectors (formed by growth 

originating from mutated conidia) occurred on the majority of plates. To 

detennine if the change in morphology was permanent, plugs were taken from a 

P. cucumerina isolate grown on PDA which had Rizolex incorporated into it 

(Figure 4.4b). The plugs were grown on new PDA plates with no fungicide 
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present. It was found that the fungi did not revert to the original form, indicating 

the morphology was permanently changed. 
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Figure 4.1 Colony radial growth rate (Kr) of nematophagous fungi V. 

chlamydosporium, P. lilacinus and P. cucumerina on PDA containing 

agrochemicals. Control (II), Monceren (0.54 g r1) (1IlD), Gambit (0.11 rnl rl) 

(§l), Rizolex (0.22 ml rl) (f!Zl) and Vydate (3.6 mg rl) (D). Error bars show 

the standard errors of the means. N=10. ND = not determined as the 

relationship between time and radius was not linear. 
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35 

Figure 4.2 Colony radius of V. chlamydosporium (0) grown at 20°C on 

Vydate amended medium compared to that on unamended PDA (e). 
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4.3 INTERACTIONS BETWEEN NEMATOPHAGOUS FUNGI, PLANT 


PATHOGENIC FUNGI AND SOIL SAPROPHYTIC FUNGI IN 

VITRO 

4.3.1 INTRODUCTION 

The interactions of the nematophagous fungi studied with other species of fungi 

are of relevance to their possible application as biological control agents for two 

reasons. Firstly, they may be applied in combination, and therefore need to be 

compatible with one another. Secondly, the effectiveness of a facultative parasite 

of peN as a control agent, such as the fungi studied here, will depend partly upon 

its persistence in the soil microbial community, which in turn will depend on its 

ability to compete with other soil fungi. 

The interaction between the nematophagous fungi and four soil saprophytic fungi 

was investigated. Common soil saprophytic fungi such as Fusarium oxysporum, 

Penicillium bilaii, Chaetomium giobosum and Trichoderma harzianum could all 

potentially reduce the ability of the nematophagous fungi to infect the nematodes 

through competition and antagonism. Penicillium bilaii is commonly found in 

agricultural soils and has been produced commercially as a seed coating for wheat 

and other crops to increase phosphorus uptake (Goos et ai., 1994). Chaetomium 

globosum, also a soil saprophyte, is able to decompose straw (Halley et ai., 1996). 

Trichoderma harzianum is one of a number of Trichoderma species that have 

been found to be suitable for use as biological control agents of fungal pathogens. 

Isolates of T. harzianum have been used against R. solani (Thornton & Gilligan, 

72 



1999), and against Phytophthora capsid on pepper plants (Ahmed et ai., 1999). 

Strains of Fusarium oxysporum are classified as pathogenic or non-pathogenic to 

plants. Fusarium oxysporum has been isolated from a number of plant parasitic 

nematodes including Heterodera schachtii, Meloidogyne hapla and both 

Globodera spp. (Yu & Coosemans, 1998; Crump, 1989). 

Reduced growth rates of the nematophagous fungi caused by the fungicides 

(section 4.2.2), led to the investigation into the interactions between the 

nematophagous fungi and R. solani. If the nematophagous fungi are able to reduce 

or inhibit the growth of R. solani, then fungicides could be applied at a reduced 

rate which would favour the survival of the nematophagous fungi in the field. 

Studying interactions between fungi in vitro on agar plates is a simple method. 

Ahmed et al. (1999) used this method to evaluate Trichoderma harzianum for the 

control of Phytophthora capsici in pepper plants, and Siwek et al. (1997) used the 

same method to observe mycoparastism of Pythium ultimum by binucleate 

Rhizoctonia isolates. Interactions within microfungal communities have also been 

observed using this protocol (Stahl & Christensen, 1992). 
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4.3.2 MATERIALS AND METHODS 

4.3.2.1 A standard method for studying interactions between fungi in vivo 

A modification of the method of Fokkema (1973), described by Robinson et ai. 

(1993a), was used for studying the interactions between fungi (Figure 4.5). Plugs 

(8 mm diameter) taken from the edge of the colony of the opposing species, were 

cut using a flame-sterilised core borer from plate cultures growing on PDA and 

placed 20 mm apart (measured from the edges of the plugs) on a fresh PDA plate. 

Eight plates were inoculated for each pairing; four replicates were incubated at 

wOe and four at 20oe. Two measurements of colony radius were made from the 

centre of each colony, one directly away from the challenging colony (R1), and the 

other towards the challenging colony (Rz) (Figure 4.5). A minimum of 8 

measurements of Rl and R2 were made at regular intervals until the two colonies 

met, usually after about 10 d at wOe and 3 d at 20°e. The degree of inhibition of 

colony radial growth was calculated using the equation: 

% inhibition =100 x (Rl - R2)1R1 

Positive results indicate that radial growth of the colony is inhibited in the 

presence of the challenging colony; negative results indicate that radial growth is 

increased (Table 4.1). 
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The three nematophagous fungi, P. cucumerina, P. lilacinus and V. 

chlamydosporium, were paired against themselves and against each other, 

interactions were recorded as above (section 4.2.3.1). 

In a separate experiment, the nematophagous fungi were grown paired against 

four saprophytic fungi. From visual observations, it was evident that the 

saprophytic fungi had a faster growth rate than the nematophagous fungi. 

Therefore, in order to allow the nematophagous fungi to grow a measurable 

distance before being overgrown by the saprophytic fungi, the nematophagous 

fungi were inoculated onto the agar plates and incubated for one week before 

inoculation of the saprophytic fungi, F. oxysporum, P. bilaii, C. globosum and T. 

harzianum. Interactions with saprophytic fungi were only observed at 20De. 

Rhizoctonia solani was paired against itself and the three nematophagous fungi. 

4.3.2.2 	 Hyphal interactions between nematophagous fungi and Rhizoctonia 

solani 

Sterilised microscope slides were coated thinly with water agar. Fungal plugs 

(4 mm discs) were cut from cultures of R. solani and placed at one end of the slide 

opposite either V. chlamydosporium, P. cucumerina or P. lilacinus. Slides· were 

placed in 90 mm diameter plastic Petri dishes sealed with Parafilm to prevent 

drying out and incubated at 20De until the two colonies met. Hyphal interactions 
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were observed using light lTIlcroscopy and Nomarski light interference 

microscopy at x 400 magnification under a Olympus BH2 microscope. 

Visual observations of pairwise interactions of nematophagous fungi were made 

at 7 d and against R. solani at 13 d, to obtain more information about the nature of 

the interactions which took place once the two opposing colonies had met. 

4.3.3 RESULTS 

4.3.3.1 Interaction between nematophagous fungi 

Colony radial growth of P. lilacinus was significantly inhibited by both P. 

cucumerina (by 15.5%) and V. chlamydosporium (by 31.4%) at 20°C, but was not 

inhibited by either species at lOoC. Indeed, colony radial growth of P. lilacinus 

was increased by 18% in the presence of V. chlamydosporium, although this 

increase was not statistically significant (p<0.05, t-test) (Table 4.1). Colony radial 

growth of P. cucumerina was reduced in the presence of both P. lilacinus and V. 

chlamydosporium at both lOoC and 20°C, by between 16 and 45%; these effects 

were all statistically significant (P<O.05, t-test), except for that of P. lilacinus at 

lOoC (Table 4.1). In addition to spreading more slowly, colonies of P. cucumerina 

produced copious aerial hyphae when paired against V. chlamydosporium. Radial 
. . ... ' 

growth of V. chlamydosporium at 20°C was inhibited in the presence of P. 

lilacinus, by 28.8% (although this difference was not significant), but was 

unaffected by P. cucumerina. Radial growth of V. chlamydosporium at lOoC was 

negligible. 
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'Responders' 

R. solani P. cucumerina V. chlamydosporium P. lilacinus 

'Challengers' lOoe 200 e lOoe 200 e lOoe 20°C lODe 200 e 

R. solani O±11.1 19.8±5.5* 12.5±12.5 -14.6±16.8 NG o±o 41.7±4.8* -1.7±13.4 

P. cucumerina 20.8±12.6 2.l±8.6 -1O.4±4.3* 4.6±4 NG -S±6.7 -S.S±24 lS.S±1.3* 

V. chlamydosporium 20.8±12.6 Sl.l±l.S* 20.7±8.5* 44.9±4.7* NG S.3±2.3* -lS.3±8.2 31.4±1.4* 

P. lilacinus 39.4±2.2* 60.9±1.6* 25.2±12.1 16.2±1.9* NG 28.S±9.7 -2.77±6.5 1O.6±3.2* 

Table 4.1 Inhibition of colony radial growth of R. solani and three species of nematophagous fungi when paired against 

themselves and each other. Percentage inhibition was calculated as (R1-R2)1R1*100. Results are given ± standard errors 

of the means. N=4. * indicates percentage inhibition significantly different from zero (P<O.OS t-test). N = negligible 
-.) 

growth. 00 
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Colony radial growth of all the species studied except P. cucumerina was 

significantly inhibited (P<0.05, t-test) when paired against themselves at 20°C. 

The only statistically significant effect on radial growth when the four species 

were paired against themselves at wOe was a 10% increase for P. cucumerina. 

It was evident from visual observation of a change in colony morphology 

compared to the control (Figure 4.6a) that, after only 24 h incubation, radial 

growth of R. soIani was inhibited in the presence of P. lilacinus and V. 

chIamydosporium (Figure 4.6d & c). At this time the edges of the colonies of P. 

lilacinus and V. chIamydosporium were still 13 mm and 11 mm away from the R. 

solani colony resp~ctively (Figure 4.6). Inhibition between the nematophagous 

fungi was evident after 120 h for P. cucumerina paired against V. 

chIamydosporium, and P. lilacinus paired against V. chIamydosporium. When the 

colonies were paired against themselves, inhibition occurred after 200 h. 

Radial growth of R. solani at 20°C was significantly inhibited in the presence of 

P. lilacinus and V. chlamydosporium, by 61% and 51 % respectively, but was not 

inhibited by P. cucumerina (Figure 4.6). At 10°C, only P. lilacinus significantly 

reduced colony radial growth of R. solani, by 39%; however, at this temperature 

R. soIani significantly inhibited radial growth of P. lilacinus in return, by 42%. 

The presence of R. soiani did not significantly affect the Kr of P. cucumerina at 

wOe, nor that of any of the three species of nematophagous fungi at 20°C (Table 

4.1.). However, R. soIani did eventually overgrow and replace challenging 

colonies of P. cucumerina at 20°C. 
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Colony radial growth of P. cucumerina, P. lilacinus and V. chlamydosporium was 

significantly inhibited in the presense of each of the species of saprophytic fungi 

tested, except for the pairings of P. lilacinus against T. harzianum and V. 

chlamydosporium against P. bilaii (Table 4.2). Growth of F. oxysporum, C. 

globosum and P. bilaii was significantly inhibited in the presence of each of the 

three nematophagous fungi, but growth of T. harizanum was only significantly 

inhibited by V. chlamydosporium. Verticillium chlamydosporium was most 

effective in inhibiting growth of the saprophytic fungi, and was also least 

susceptible to being inhibited by them. 

4.3.3.2 Hyphal interactions 

When R. solani was grown in the presence of P. lilacinus on an agar coated 

microscope slide, the mycelium of R. solani appeared to be damaged. Abnormal 

swelling was observed in the penultimate compartment (Figure 4.7). This was 

only observed in the minority of hyphae. 

Coiling of hyphae of V. chlamydosporium around R. solani hyphae was observed 

when these fungi were grown together on agar coated slides (Figure 4.8). 

Approximately, a quarter of R. solani hyphae were hyperparasitised by V. 

chlamydosporium in the form of coiling. 

No change to the morphology of hyphae of P. cucumerina or R. solani was 

observed when these species were paired against one another. 

81 



'Responders' 

'Challengers ' P. cucumerina V. chlamydosporium P. lilacinus F. oxysporum C. glohosum P. hilaii T. harzianum 

F. oxysporum 13.S±1.8* S.9±1.9* 1O.8±2.7* ND ND ND ND 

C. globosum 16.6±2.1* 9.6±1.7* 19.6±2.7* ND ND ND ND 

P.bilaii 20.9±1.2* 4.7±3 18.3±2* ND ND ND ND 

T. harizanum 9.4±1.3* 11.5±2.9* 2.9±7.1 ND ND ND ND 

P. cucumerina ND ND ND 24.9±2* 24A±2.1 * 29±4.8* -O.1±7.8 

V. chlamydosporium ND ND ND 39.9±1.6* 31.9±2.7* 57±2A* 27.1±3.1* 

P. lilacinus ND ND ND 21.7±3* 24.S±2* 34.S±O.7* 8.8±lOA 

Table 4.2 Inhibition of colony radial growth of the saprophytic fungi F. oxysporum, P.bilaii, C. globosum and T. harzianum 

and three species of nematophagous fungi when paired against each other. Percentage inhibition was calculated as 
N (Rl.R2)1R1*100. Results are given ± standard errors of the means. N=4. * indicates percentage inhibition significantly different 

from zero (P<O.OS t-test). ND =not determined. 
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4.4 	 BIOASSAY OF THE EFFECTIVENESS OF P. LILACINUS FOR THE 

CONTROL OF RHIZOCTONIA DISEASE 

4.4.1 INTRODUCTION 

Paecilomyces lilacinus showed the greatest potential as an antagonist towards R. 

solani in vitro compared to P. cucumerina and V. chlamydosporium. Its efficacy 

in vivo was therefore tested in a pot trial. Paecilomyces lilacinus was tested 

against R. solani as biomass and formulated in to alginate pellets (Chapter 5), to 

determine if the fungus was as effective when formulated. 

4.4.2 MATERIALS AND METHODS 

4.4.2.1 Production of P. lilacinus biomass 

Approximately 40 plugs (5 mm diameter) cut from colonies of P. lilacinus 

growing on PDA were added to four universal bottles each containing 20 ml of 

MEB. The bottles were whirlimixed for 45 s to dislodge the conidia from the agar. 

The resulting 80 ml of biomass suspension, containing approximately 1 x 108 

conidia mrl, was decanted from the plugs and used to inoculate 15 1 of MEB in a 

20 I modified polypropylene Carboy (Nalgene@, UK) described in section2.4.1. 

This fennenter was maintained at ambient temperature (18-22°C) and agitated and .. 
aerated by sparging with filter-sterilised air at 9 1 min-I. The culture was harvested 

after 7 d, when the culture was in late exponential phase (Figure 2.3). 
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4.4.2.2 Production of alginate pellets 

Excess spent growth medium was removed from P. lilacinus liquid culture, 

section 4.4.2.1., by straining on a sterile 1 mm mesh sieve. This reduced the 

culture volume from 15 I to 10 1. Alginate pellets were produced (as in 5.2.2.3) 

except that 160 g r1sodium alginate and 400 g rl milled barley were used. The 

pellets were stored for one month at room temperature until needed. 

4.4.2.3 Production of Rhizoctonia solani inoculum 

Rhizoctonia solani inoculum was produced in the same way as P. lilacinus 

biomass in a 20 1fermenter. Biomass was harvested after 12 d, when visually the 

biomass was at its densest, and strained as above. The fungus was mixed with 

compost (similar to John Innes No.3, as used at IACR-Rothamsted) (1 part 

fungus: 10 parts compost) and stored at 10°C until needed. 

4.4.2.4 Bioassay 

Potato tubers (cv. Desiree disease free minitubers) were planted 5 em from the 

bottom of 13 em diameter pots (llitre) filled with compost. Five treatments were 

used: no inoculum (disease free control); inoculation with R. solani only (diseased 

control); addition of 30 g uninoculated alginate pellets to uninoculated compost; 

addition of 30 g alginate pellets containing P. lilacinus together with R. solani 

inoculated compost; and the addition of 15 g P. lilacinus biomass together with 
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R. solani inoculated compost. Pots were soaked by standing in 10 cm depth of 

water for 2 h before being placed in the dark under polythene at lOoC. Once the 

potato shoots had appeared the polythene was removed, and a 30 cm long section 

of polyethylene pipe, 10 em in diameter, was placed on top of the compost and 

filled with compost to the top to simulate earthing up of the potato plants. Plants 

were grown for 3 months and then assessed for disease. 

4.4.2.5 Disease assessment 

Stem canker disease was assessed using the method described by Lootsma & 

Scholte (1997). Their disease index (DI=O to 100) was calculated to determine the 

severity of Rhizoctonia disease in each treatment group. 

4.4.3 RESULTS 

The incidence of stem canker in potato plants grown in soil inoculated with R. 

solani was reduced from a disease index of 48.5 to 28.8 when P. lilacinus biomass 

was added to the soil (Table 4.3). Treatment with P. lilacinus incorporated into 

alginate pellets significantly (P<0.05, t-test) reduced the incidence of stem canker, 

to a disease index of 16.8, compared with the R. solani disease control. The 

control treatment, with no inoculum of either R. solani or P. lilacinus, resulted in 

a disease index of 28.2 (Table 4.3) and the plants developed reddish-brown to 

brown lesions characteristic of stem canker, indicating that the compost had been 
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contaminated with R. solani. Adding uninoculated alginate pellets to the control 

soil reduced the stem canker disease index from 28.2 to 12. 

Table 4.3 Efficacy of various formulations of P. lilacinus for the control of 

potato stem canker caused by R. solani. * = significantly different to R. solani 

inoculated compost (P<0.05, t-test), N =10. 

Treatment Disease index (0-100) 

Disease free control (no inoculum) 28.2 

Control alginate pellets in uninoculated compost 12 

R. solani inoculated compost (disease control) 48.5 

R. solani inoculated compost with P. lilacinus biomass 28.8 

R. solani inoculated compost with P. lilacinus alginate pellets 16.8* 
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4.5 DISCUSSION 


Sensitivity to commonly used chemical pesticides is likely to be undesirable in a 

biological control agent intended for use in IPM. On the basis of Kr, P. lilacinus 

and P. cucumerina did not appear to be sensitive to the fungicide Monceren, a 

protective fungicide, or the nematicide V ydate , but were sensitive to the 

fungicides Rizolex, which inhibits phospholipid biosynthesis, and Gambit, a long­

lasting fungicide. Although Kr is not a direct measure of specific growth rate as it 

is also inversely proportional to branching frequency, it is unlikely that the Kr of a 

fungus sensitive to a pesticide would be unaffected by t.he incorporation of that 

pesticide in its growth medium. Thus, Monceren would be the fungicide of choice 

for use in IPM incorporating either of these fungi, which could be applied in 

combination with a chemical nematicide. The colony radial growth rate of P. 

lilacinus was increased by 3% when grown on Vydate amended media, possibly 

due to the Vydate acting as a paramorphogen, changing the spatial distribution of 

the organism's biomass but not its rate of production (Trinci, 1984). The 

nematicide, aldicarb, has also been found to increase the colony radii of V. 

chlamydosporium and another nematophagous fungus, Cylindrocarpon 

destructans (Crump & Kerry, 1986). Crump & Kerry (1986), detected that ox amyl 

had a fungicidal effect on C. destructans at all tested concentrations of the 

nematicide (1, 10 and 100 ppm) and for V. chlamydosporium at 100 ppm. Radial 

growth of V. chlamydosporium was inhibited by all the pesticides tested here 

(Figure 4.1). It could be argued that this makes V. chlamydosporium unsuitable 

for use as a biological control agent for PCN in the field. However, Wilding 
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(1982), found that fungicides known to be toxic to entomophthoraceous fungi in 

laboratory studies had little effect on fungal infection of aphid populations in the 

field, and none of the pesticides tested entirely prevented growth of V. 

chlamydosporium, so use of this fungus in an !PM programme may still be 

feasible. 

Radial growth of R. solani was inhibited in vitro by P. lilacinus at both lOoC and 

20°C. Twenty-four hours after inoculation of agar plates with P. lilacinus and R. 

solani plugs, it was evident from the speed with which an effect could be 

observed, and the large gap still remaining between the colonies, that some 

substance had diffused through the agar from the P. lilacinus colony to inhibit the 

growth of R. solani. Paecilomyces lilacinus produces an antibiotic, P-186, that has 

a wide anti-microbial activity (Siddiqui & Mahmood, 1994). This antibiotic, or a 

related substance, may have inhibited growth of R. solani. Although, as stated 

above, inhibition of colony radial growth may be due to increased branching 

frequency rather than reduced biomass generation, this could still result in control 

in the field situation. For example, Wakae and Matsuura (1975), found rice sheath 

blight could be controlled by the fungicide Validamycin A. This antifungal agent 

prevents the pathogen spreading to the upper parts of the plant, where it reduces 

crop yield. However, at lOoC R. solani in tum inhibited the growth of P. lilacinus. 

Chand & Logan (1981)found the incidence of disease on potato sprouts caused 

by R. solani was highest when the plants were grown at 13°C. 

Paecilomyces lilacinus grows more slowly at this temperature than at 20°C, 

therefore at the higher temperature P. lilacinus is either able to colonise the plate 
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faster than at wOe or the metabolites used to inhibit R. solani are produced at a 

faster rate. In contrast, the inhibition of radial growth that occurred when species 

were paired against themselves was only observed when the colonies were in 

close proximity «2 mm). This was consistent with competition for nutrients (Pirt, 

1967). 

Although it did not grow at wOe, V. chlamydosporium apparently released a 

compound that inhibited the growth of both R. solani and P. cucumerina despite 

the fact that radial growth of V. chlamydosporium ceased at this temperature. 

Verticillium chlamydosporium produces several antifungal compounds one of 

which is monorden (syn. radicicol). Monorden has been found to cause 

morphological abnormalities when fungi are grown in its presence (Leinhos & 

Buchenauer, 1992). 

The four soil saprophytic fungi tested all suppressed the growth of the 

nematophagous fungi to varying degrees, except for T. harzianum against 

P. lilacinus and P. bilaii against V. chlamydosporium. This may be a survival 

strategy, in which the slow-growing fungi inhibit the growth of faster growing 

fungi in order to compete for nutrients. Trichoderma harzianum, C. globosom and 

F. oxysporum all had faster growth rates than the nematophagous fungi, therefore 

the nematophagous fungi were unable to colonise the agar. To determine whether 

the nematophagous fungi are able to inhibit the growth of the saprophytic fungi, 

the nematophagous fungi were allowed to grow on the agar before the saprophytes 

were added. This allowed the nematophagous fungi to release antifungal 
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compounds into the agar before the saprophytic fungi had colonised the plate 

(Table 4.2). Penicillium bilaii had a different competitive strategy to the other 

saprophytic fungi. Penicillium bilaii grew more slowly then the other saprophytic 

fungi but produced compounds which inhibited the growth of all the 

nematophagous fungi. In the rhizosphere the nematophagous fungi have adapted 

to parasitise nematodes, therefore they may not be in complete competition with 

saprophytic fungi. However, isolates of F. oxysporum have been found to colonise 

PCN (Yu & Coosemans, 1998; Crump, 1989). 

Paecilomyces lilacinus grew at both WOC and 20°C, and its radial growth was 

inhibited in half of the pairings made, listed in Table 4.1. It inhibited the radial 

growth of all fungi tested, possibly through production of an antibiotic substance, 

and it can therefore be considered an efficient competitor and likely to persist in 

soil (Pierson & Pierson, 1996). Of the fungi tested, V. chlamydosporium was least 

susceptible to inhibition by other species and showed some evidence of 

production of antimicrobial substances which would facilitate competition with 

other soil fungi. However, it did not grow at WOC, which would be a disadvantage 

for a control agent for early season use in mainland UK but might imply a role as 

a late season control agent. For example, in the Channel Island of Jersey, potatoes 

are grown early on in the year while soil temperatures are around WOC, but 

harvesting of the main crop continues until July when the average soil temperat~e 

is 15°C and can rise to 21°C during the day (Figure 6.9). At harvest the PCN 

females are still developing on the roots which are left in the ground. This would 

be an opportune time to apply V. chlamydosporium. 
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Plectosphaerella cucumerina was the poorest competitor of the nematophagous 

fungi tested, being inhibited by both V. chlamydosporium and P. lilacinus at both 

lOoe and 20°e. As there was a degree of inhibition between the three 

nematophagous fungi, application of a combination of fungal species for control 

of PCN may be less successful than either application of a single species, or 

successive applications of individual species - for example, P. lilacinus for early 

season control followed by V. chlamydosporium for late season control. 

In vitro tests on agar are a useful tool to demonstrate interactions between fungi. 

Whipps (1987) tested a range of media to show the effects on growth and 

interactions between pathogens and antagonistic fungi. It was found that the 

choice of medium had a significant effect on the growth rates, production of and 

the response to volatile and non volatile antibiotic compounds. Fungi grown on a 

low nutrient agar, for example tap water agar or soil extract agar, may 

demonstrate more realistic interactions then when grown on a high nutrient agar, 

where the high concentrations of available nutrients greatly exceed those present 

in most soils. A single in vitro screening may not conclusively establish the nature 

of all interactions likely to take place in the soil, but will give some indication of 

any mycotoxins produced. Different fungal strains may also influence the 

interactions, for example Chand & Logan (1981) found that variations in 

pathogenicity of R. solani were linked to cultural morphological characteristics. 

Hyphal interactions between the nematophagous fungi and R. solani demonstrated 

that P. lilacinus produces a compound that causes hyphae of R. solani to lyse and 
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form swellings along the compartment before the septa (Figure 4.7). Verticillium 

chlamydosporium also showed antagonistic behaviour to R. solani by coiling 

around the host (Figure 4.8). Coiling can precede penetration of the antagonist 

penetrating directly into the host causing slow death of the host hyphae in some 

fungi. Turhan (1990) also observed parasitic development of V. chlamydosporium 

on the host R. solani. 

The experiments outlined in this chapter have shown that P. lilacinus and V. 

chlamydosporium are suitable for use as a biological control agent due to their 

ability to compete with other fungi and grow in the presence of agrochemicals. 

Plectosphaerella cucumerina, however, may not be as suitable due to its poor 

saprophytic abilities. 
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5 FORMULATIONS OF NEMATOPHAGOUS FUNGI 

5.1 INTRODUCTION 

Formulation of microbial biological control agents is needed to maintain viability 

and infectivity during storage of the organisms concerned, to aid distribution of 

the agent and therefore to maximise the contact with the target pest. Also, the 

formulation should protect the agent from adverse physic.£ll conditions and extend 

the period of time for which it is effective. Formulations and delivery systems for 

biological control agents have always been problematic. Lack of commercially 

acceptable application techniques has limited the introduction of fungal biological 

control agents into commercial agriculture (Schuster & Sikora, 1992a). For a 

biological control agent to be suitable for commercialisation it must be able to be 

produced on a large scale, remain viable for long periods of time, be easily stored 

and transportable; and must be able to survive and infect the target organism in its 

augmented form. Therefore, the success of a fungal biological control agent is 

dependent on the fonnulation. 

There are a number of different fornmlations and application methods for 

nematophagous fungi, including adding the fungi to liquid as a soil drench 

(Perveen & Ghaffar, 1998) and dipping the potato tubers in a liquid application. 

Surfactants used for tuber dressings may reduce spore attachment and spore 
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viability, and liquid formulations can cause conidia to germinate prematurely 

(Van Driesche & Bellows, 1996). 

Nematophagous fungi have also been incorporated into organic matter such as 

leaf extracts (Siddiqui & Mahmood, 1994), animal manures (Abu-Laban & Saleh, 

1992), water lilies, grains of wheat, rice and oats. For more commercial purposes, 

where large quantities of the agents are required, the fungi have been formulated 

in vermiculite and clay such as pyrax® (pyrophyllite, hydrous aluminum silicate) 

(R. T. Vanderbuilt Co., Norwalk, CT, USA) (Fravel, 1985). 

Alginate has been widely used as a carrier for microbes used in biological control. 

Production methods for alginate pellets have been investigated including aspects 

such as nutrient modifications of the pellet content (Schuster & Sikora, 1992b), 

the effect of sterilisation and pH (Daigle & Cotty, 1997) and the effect pellet size 

has on distribution of the fungi (Shah et al., 1999). Alginate pellets can be 

uniformly distributed throughout the soil, increasing the chances of contact 

between nematode and fungus. Nutrient sources such as milled barley can be 

added to alginate granules to increase the sporulation and period of time the pellet 

can support the fungus. Connick et al. (1990) found that alginate pellets could 

support fungal growth and sporulation for up to 6 weeks after application to the 
~ 
i 

soil. 

The aim of the work outlined in this thesis was to develop a product that could 

ultimately be used in the field and, therefore, it was necessary to find a 
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fonnulation for the nematophagous fungi that would satisfy field application 

requirements. Much of the previous work in this area has concentrated on 

laboratory preparations to enable research to be conducted on the efficacy and 

relationships between the target organism and the biological control agent (Lewis 

& Papavizas, 1985; Daigle & Cotty, 1997; Fravel et al., 1985)). 

5.2 	 EXPERIMENT COMPARING DIFFERENT FORMULATIONS OF 

NEMATOPHAGOUSFUNGI 

5.2.1 INTRODUCTION 

Three formulation methods were tested to detennine which was the most effective 

for application of the nematophagous fungi P. cucumerina and P. lilacinus for 

control of PCN. These were: incorporating the fungi into alginate pellets; adding 

Terra-Green® which had been inoculated with fungus underneath the tubers; and 

coating the tubers with a spore suspension. Alginate pellets and Terra-Green® 

were selected as they have been shown to be effective fonnulations in which to 

apply fungi (Shah et aI., 2000; Crump 1998, pers. com.). In Jersey, the tubers are 

handled individually and dipping them is a practical alternative to field 

application, which may have an additional benefit by preventing other pathogens 

I 
, 

from attacking the tubers. 

Verticillium chlamydosporium was not put into a fonnulation as chlamydospores 

can be applied in water as a soil drench (Kerry et aI., 1993). 
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5.2.2 MATERIALS AND METHODS 

5.2.2.1 Production of fungal conidia for application around the tuber 

To enable pure samples of fungal conidia free from any growth medium, fungal 

colonies were grown on cellophane. Circles of cellophane (80 mm in diameter) 

were deplasticised by boiling in water, then sandwiched between sheets of filter 

paper in a glass Petri dish so they could easily be separated. The sheets of 

cellophane were autoclaved at 121°C for 20 min and, once cooled, placed 

individually on to the surface of MPM agar using sterile forceps. Plugs (5 mm in 

diameter) of either P. lilacinus or P. cucumerina, taken from the edge of a 

growing colony, were inoculated on to four cellophane-covered plates per species, 

and incubated at 20°C. After 15 d growth, the cellophane was removed from the 

agar and the biomass was scraped off the cellophane using a Borrodaile needle 

into 1 I of water. The concentration of conidia, measured in a haemocytometer, 

was 4.5 x 109 rl for P. cucumerina and 2.5 x 1010 rl for P. lilacinus. The tubers 

I 
! were dipped into the spore suspension for two minutes before being planted. 

I , ~ 

5.2.2.2 Production of inoculated Terra·Green® 

A mixture of 800 g of Terra-Green® and 500 ml of 2% malt extract solution 

(section 2.2) was autoclaved in a bag at 121°C for 20 min and cooled. Seven plugs 

(5 mm in diameter) of either P. lilacinus or P. cucumerina taken from the edge of 

a colony were added to the Terra-Green® and incubated at 20°C for 13 d. During 
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the incubation period, the bags containing the Terra-Green® were shaken daily. 

The control did not have any fungus added. Post incubation of the inoculum, 10 g 

of the inoculated Terra-Green ® was applied under each tuber at planting. 

5.2.2.3 Production of alginate pellets 

Conidia from P. lilacinus and P. cucumerina, grown on MPM, were scraped using 

a Borrodaile needle into separate vials of 1 ml MPM liquid culture and 

whirlimixed for 45 s. The spore suspension was added to two conical flasks each 

containing 250 ml MPM liquid media and shaken at lOQ rpm, 20 mm throw for 

7 d at ambient temperature. The liquid culture was homogenised in a sterilised 

blender before it was added to the alginate pellets. 

Sodium alginate (20 g) was dissolved in 500 ml water at 40°C on a hot plate. 

Milled barley (50 g, passed through a 4 nun aperture sieve) was mixed with 

250 ml of water, homogenised in a sterilised blender, autoc1aved at 121°C for 

20 min and cooled. The liquid culture, milled barley and alginate were 

homogenised in a Waring blender (model 38BIA5, Waring, New Hartford, 

Connecticut, USA) at 20,000 rpm until smooth. The alginate mixture was then 

processed through a device to produce the pellets (Figure 5.1). A hopper 

containing the mixture was connected by silicone tubing to a polyurethane 

cylindrical chamber (4 cm diameter x 3 cm depth). A peristaltic pump was used to 

force the mixture into the chamber. Four, 1 ml polyurethane pipette tips were 

mounted in a cork sealing the base of the chamber. The mixture was forced 
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through the pipette tips, producing drops which were deposited into a beaker 

containing 0.25M calcium chloride (Fravel et al., 1985). The drops formed gel 

like pellets on contact with the calcium chloride solution (Rodriguez-Kabana et 

al., 1994) (Figure 5.2). The pellets were left in the solution for 20 min then 

recovered on a sieve, washed in water and allowed to dry on tissue paper in the 

laminar flow cabinet for 24 h. The control alginate pellets contained no fungus. 

Pellets were added to the soil at 1 % (w/w). 

5.2.2.4 	 Glasshouse experiment to test the efficacy of the different 

formulation methods 

Hemispherical potato chits cv. Desiree were planted in Kettering loam in 10 em 

pots (500 ml) following either addition of alginate pellets or Terra-Green®, or 

coating of the tuber with conidia of P. lilacinus or P. cucumerina prepared as 

above. Controls consisted of: alginate pellets with no fungus; Terra-Green® with 

no fungus; and untreated tubers respectively. Fifty peN cysts (G. rostochiensis) 

were added around the chit, and Osmacote fertiliser (2 g rl soil) was sprinkled on 

the surface of the soil. Treatments were allocated into randomised blocks in the 

glasshouse and each treatment was replicated seven times. 

, 
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5.2.2.5 Egg counts 

After growth, maturation and natural senescence of the potato plants had occurred, 

(approximately 3 months) the PCN cysts were harvested and the concentration of 

PCN eggs calculated, using the method described in section 2.5. 
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5.2.3 RESULTS 


When no fungus or carrier was added to the soil (tuber coated control), the 

concentration of viable peN eggs after harvesting was 1300 eggs g soil-1 

(Figure 5.3). Tuber applications of P. lilacinus or P. cucumerina conidia resulted 

in final concentrations of peN eggs of 880 and 884 eggs g soir\ respectively. The 

control Terra-Green® treatment and control alginate pellets gave final 

concentrations of 601 and 290 eggs g soir1, respectively. Treatment with Terra-

Green® inoculated with P. lilacinus and P. cucumerina resulted in final peN egg 

concentrations of 457 and 587 eggs g soil- l respectively. Alginate pellets 

inoculated with P. lilacinus reduced the final peN egg counts to 266 eggs g soirl. 

This was the most effective of the treatments tested, significantly reducing the 

final peN egg numbers (P<0.05, ANOVA) compared to the tuber coated control 

by 79.5%. Plectosphaerella cucumerina incorporated into alginate pellets gave 

less nematode egg control (604 eggs g soirl) than alginate pellets alone 

(290 eggs g soirl). 
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Figure 5.3 Comparison of biological control formulations, incorporating the 

nematophagous fungi P. cucumerina (III) and P. lilacinus (~), for the control 

of PCN eggs. The formulations were: fungus incorporated into alginate 

pellets mixed into the soil; Terra-Green ® inoculated with nematophagous 

fungi placed under the tuber; and a tuber dip containing biomass suspended. 

The controls (0) for each formulation were as the treated groups with the 

fungi omitted. Error bars show the standard errors of the means. 
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5.3 FURTHER DEVELOPMENT OF ALGINATE PELLETS 

5.3.1 INTRODUCTION 

As alginate pellets proved to be the most effective of the methods tested for 

reducing peN egg counts, it was decided to use this method for further 

experiments. The alginate pellets had a number of advantages over the other 

treatments; they were easy to apply, did not have to be used immediately and were 

not as bulky as the Terra-Green® formulation. Further tests were carried out to 

improve the formulation of the alginate pellets, determine the effect the physical 

form of the pellets has on plant growth and to test the effects of storage on the 

viability of the fungi within the pellets. Paecilomyces Iilacinus was used for the 

majority of these tests, as it was found to be the most effective fungus for control 

of peN in the previous experiment (5.2). The effect on plant growth was 

investigated as Schuster & Sikora (1992b) reported reduced root weight of 

potatoes when grown in the presence of alginate. 

5.3.2 MATERIAL AND METHODS 

5.3.2.1 Different formulations 

Different proportions of alginate and milled barley were added to the pellets to 

investigate whether this made them more effective. Table 5.1 shows the different 

formulations tried. Formulation 1 was the original formulation used in the 

previous experiment (section 5.2.2.3). The alginate and milled barley need to be 
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mixed with water to form a paste before they can be homogenised. The aim was to 

increase the amount of fungal biomass within the pellets and to reduce the amount 

of liquid incorporated into the alginate and milled barley. Water was replaced 

with growth medium, as the latter contains nutrients to support the survival and 

growth of the fungus. The amount of milled barley in the pellets was also 

increased for the same reason. The formulations were tested for retention of 

viability and appropriateness of consistency for pellet production. 

Table 5.1 Different formulation mixtures for alginate pellets. The table shows 

the quantities of alginate and milled barley per litre fungi grown in liquid 

culture. Formulation 1 is the standard method used in experiment 5.2.2.3. 

Formulation Alginate Volume added 	 I Milled barley Volume added 

I(g rl) (ml) (g rl) (ml) 

1 40 1000 200 500 

2 80 333 200 333 

3 160 125 400 125 

4 160 100 400 100 

5 40 500 800 125 

5.3.2.2 Survival of nematophagous fungi in alginate pellets 

Air-dried pellet preparations of P. cucumerina and P. lilacinus were prepared as 

above (section 5.3.2.1) and stored in an air tight container at room temperature. At 
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intervals, ten pellets of each preparation type were placed onto PDA and 

incubated at 20°C. After 5 d the pellets were visually assessed for growth of the 

test fungi. This procedure was carried out daily for the first month, weekly for the 

. 
second month and monthly for a further sixteen months. 

5.3.2.3 	 Effect of alginate pellet pre-treatment on plant and nematode 

development 

Alginate pellets containing P. lilacinus were produced as described in section 

5.2.2.3. The alginate pellets were divided into three treatment groups; standard 

pellets, crushed pellets (ground in a coffee grinder) and pellets soaked in 50 ml of 

distilled water for 1 h. Approximately, 15 ml of the water was absorbed by the 

soaked pellets. Pots, 12 cm in diameter, were filled with Kettering loam. Potato 

tubers, cv. Desiree, were placed 5 cm from the bottom with 50 cysts of 

G. rostochiensis. The pellets (15 g dw) were placed on top of the tuber and the 

pots then topped up with loam. Nine replicates were used for each of the three 

treatments and were placed in randomised blocks in the glasshouse. Plants were 

watered daily. 

The emergence of the first shoot for every plant was recorded. Once natural 

senescence had occurred the G. rostochiensis cysts were collected. The soil was 

dried for 7 days, and cysts were extracted for egg counts (section 2.5). 
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5.3.3 RESULTS 

5.3.3.1 	 Performance of different formulation mixtures 

It was decided that fOITImlation 4 (Table 5.1) was the most suitable for large scale 

pellet production as the amount of liquid was reduced to the minimum and the 

pellets were therefore easier to dry. Another consideration was the consistency of 

the formulation for flow through the machine and formation of pellets in the 

CaCho Formulation 5 did not flow through the machine easily as the consistency 

was too dense. 

5.3.3.2 	 Survival of nematophagous fungi in alginate pellets 

The fungi -formulated within the alginate pellets were found to survive 

encapsulation for at least 18 months for both species of fungi. 

5.3.3.3 	 Effect of alginate pellet pre-treatment on plant and nematode 

development 

Shoots of potato plants that had been treated'with crushed alginate pellets started 

to emerge nine days after planting and all the plants had emerged after fifteen 

days. Shoot emergence also occurred nine days after planting for the plants treated 

with soaked alginate pellets and, by day sixteen, all the plants had emerged. Plants 
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treated with standard alginate pellets did not start to emerge until day eleven with 

all plants emerging by day eighteen (Figure 5.4). 

Final egg counts in pots treated with crushed alginate pellets were lower then in 

pots treated with either soaked or standard pellets (Figure 5.5). This difference 

however was not significant (p<0.05, t-test). 
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Figure 5.4 Effect of the pre-treatment of alginate pellets on plant emergence. 


Alginate pellets were either untreated (0), crushed (~) or soaked (B). N =9. 
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Figure 5.5 The effect of pre-treatment of alginate pellets on fmal numbers of 

G. rostochiensis eggs. Error bars show the standard errors of the means. 

N =9. (Raw data shown in Appendix 2.1). 
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5.4 DISCUSSION 

Fungal biological control agents may be added to a base or carrier to help bulk up 

the agent, increase longevity during storage and supply the fungus with a nutrient 

source. The application of either P. lilacinus or P. cucumerina without a carrier 

gave control of peN. However, the carriers Terra-Green® and sodium alginate 

alone also reduced the PCN egg numbers (Figure 5.3). Plectosphaerella 

cucumerina reduced PCN egg numbers when applied as a tuber coating, but when 

formulated with Terra-Green® or alginate did not appear to increase the degree of 

control of PCN achieved by the uninoculated f01lllulations. In contrast, 

incorporating the P.lilacinus into either, alginate pellets or Terra-Green®, reduced 

the mean nematode egg numbers when compared to the level of control of the 

carrier substance alone and the P. lilacinus tuber coating. The lack of significant 

differences between many of the treatments may have been a consequence of high 

within-sample variation. 

Although, the alginate pellets alone gave comparable control to pellets 

incorporating the fungi, it is likely that this effect will be short-lived and that the 

inoculated pellets will break down leaving just the fungi as a soil inoculum. 

Further studies (Chapter 6) have shown this to be the case. Having a short term 

control will reduce PCN nematode numbers but, as mentioned in Chapter 1, the 

early, single cohort type hatch pattern of G. rostochiensis means that over time the 

use of alginate could lead to a predominance of G. paUida over G. rostochiensis. 
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The fact that alginate pellets alone reduced PCN egg numbers may have been due 

to either the alginate or the milled barley component of the pellets. Alginate is 

derived from the seaweed Laminaria hyperborea. Seaweed extract used as a soil 

drench has been shown to reduce the number of Meloidogyne javanica and M. 

incognita eggs (Whapham et al., 1994; Wu et ai., 1997). Therefore, the alginate 

pellets may share a common component with seaweed which is either nematicidal 

or a plant growth stimulant. However, Schuster & Sikora (1992b) hypothesised 

that alginate pellets reduced root growth due to extensive fungal and bacterial 

growth around the alginate, which altered the COz/02 ratio in the rhizosphere. 

This lead to suppression of root emergence and extension, reducing invasion of 

the roots by PCN. Another theory to explain the apparent control of PCN eggs 

when treated with uninoculated alginate pellets, is that when the dried pellets 

rehydrated, the moisture content was reduced in the soil, preventing the 

rehydration of the PCN cysts. Tests showed plants grown in the presence of dried 

alginate pellets took longer to produce their first shoot, compared to soaked or 

crushed pellets, but the final number of PCN eggs recovered between the different 

treatment groups was not significantly different. Therefore, it was decided the 

standard alginate pellets would be used in further experiments as preparation time 

was also less. 

The addition of a nutrient resource within a biological control fonnulation can 

give an increase in crop yield which could be attributed to apparent nematode 

control, although peN numbers may have increased. Rodriguez-Kabana & 

Morgan-Jones (1988) found the addition of an uninoculated substrate, such as oats 
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or rice, gave the same yield responses as the inoculated group. The plants are, to 

some extent, able to locate enough nutrients to increase yield as well as support a 

level of parasitisation by PCN. If there were no or reduced numbers of nematodes 

in comparison to a positive control, the yield response would be even greater. The 

apparent control of PCN by uninoculated Terra-Green® may be due to the fact that 

the substrate is coated with malt extract broth, which is providing the plant with 

nutrients. 

Comparing the different methods of applying fungi showed that surface 

application by dipping of the tuber was not as effective as the application of 

formulated fungi under the tuber in reducing the number of peN eggs. This may 

have been due to tuber dipping not leading to such a high concentration of conidia 

in the soil where the roots would develop in comparison to the other formulations, 

thereby decreasing exposure of the nematodes to the fungi. It is also possible that 

irrigation may have washed any conidia or biomass off the tuber and below the 

growing roots and away from the PCN. In future, suspending the fungi in a paste 

may be more successful in achieving adherence of conidia to the tuber. 

There are a number of advantages to using alginate pellets rather than the other 

formulation methods tested: ease of production; better control of PCN egg 

numbers; retention of viability during storage over at least one and a half years at 

room temperature; and the fact that alginate pellets can be used in existing 

machinery designed for the distribution of granular nematicides. Nematophagous 

fungi applied in the form of alginate pellets will be distributed within the 
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rhizosphere and will not come into contact with tuber applied fungicides. Fungi 

applied using this method are therefore, less likely to be adversely affected by 

tuber applied fungicides than a tuber dressing. 

There is continuing research into formulations for fungal control agents and with 

many different sources of nutrients and stabilising agents, species specific 

fonnulations are possible (Lewis & Larkin, 1998; Quimby et al., 1999). The 

results clearly show that of the combination of formulations and agents considered 

here, P. lilacinus amended alginate pellets gave the best control of peN in pot 

tests. 

Hebbar et al. (1998) listed four criteria for a biological control agent of weeds to 

be effective, these are: low losses in viability during the formulation process; 

satisfactory shelf life at room temperature; abundant secondary (chlamydo)spore 

production; and rhizosphere colonisation. This list can also be applied to 

biological control agents of plant parasitic nematodes. Paecilomyces lilacinus and 

P. cucumerina fulfil all of these criteria when incorporated into alginate pellets. 
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6 	 THE EFFICACY OF FORMULATED NEMATOPHAGOUS 

FUNGI TESTED IN A PLUNGE AND FIELD TRIAL 

6.1 INTRODUCTION 

To determine the efficacy of a biological control agent it needs to be tested in the 

environment in which it will finally be used. Therefore, the nematophagous fungi 

being studied should be tested in the field or in conditions as close to the field 

situation as possible. Environmental factors such as soil type, pH, indigenous 

rnicroflora, water content and temperature will all have an effect on the ability of 

the biological control agents perfonnance (Gray, 1985). 

The ideal situation for the biological control of plant parasitic nematodes is to 

establish a soil that is permanently suppressive for the target species. However 

this may not be commercially acceptable. Soils suppressive to cereal cyst 

nematodes, due to the presence of nematophagous fungi, were developed 

incidentally through the monocropping of some cereals during the second world 

war (Kerry et al., 1982). Other soils have also been identified as suppressive to 

plant parasitic nematodes and this has been attributed to the presence of relatively 

high numbers of nematophagous fungi and other antagonists (Kerry & Crump, 

1998). For example, Jaffee and Zehr (1982) attributed the decline of Criconemella 

xenoplax on peach trees to natural control by the fungus Hirsutella rhossiliensis. 
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It was only possible to conduct one field trial in Jersey during this research. As a 

supplement to this a plunge trial was designed in which pots containing soil from 

a potato field in Jersey were used to test the efficacy of formulated 

nematophagous fungi at IACR-Rothamsted. Jersey soil was used because, as well 

as containing indigenous PCN populations, it also contains other microflora which 

may affect the efficacy of the nematophagous fungi. Although a plunge trial can 

not fully simulate, for example, the climatic conditions in the field, it has some 

advantages over a field trial in Jersey, in that plant growth can be monitored daily, 

watering can be regulated and the amended soils can be used for a second season. 

For example, Van den Boogert et al. (1994) used microcosms to manipulate the 

soil environment by adding layers of sterilised soil which contained either 

nematodes or nematophagous fungi. 
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6.2 	 PLUNGE TRIAL TO DETERMINE THE EFFECTIVENESS OF 

COMBINED USE OF P. CUCUMERINA AND P. LILAC/NUS AS 

CONTROL AGENTS OF peN OVER TWO SEASONS 

6.2.1 INTRODUCTION 

An experiment was designed to determine both the effectiveness of P. cucumerina 

and P. lilacinus as control agents for PCN over a single season, and the 

cumulative effect on PCN populations and potato yield of the addition of fungus 

to the soil over a number of seasons. Uninoculated alginate pellets were added to 

see whether the addition of the alginate alone had an effect on plant growth. A 

combination of the two fungi was also tested to detennine whether there was any 

synergistic effect. 

6.2.2 EXPERIMENTAL DESIGN 

Two Htres of peat was put into the base of each of forty, 25 cm diameter, plastic 

pots (5 litre). These were then filled with soil naturally infected with PCN 

obtained from a category III field in Jersey, and mixed with Terra-Green® (3:1). 

The pots were submerged in an outdoor sand plunge (Figure 6.1). Chitted Jersey 

Royal seed tubers were planted 20-25 cm deep, just above the peat layer, and 28 g 

of alginate pellets (produced as described in 5.2.2.3) were placed around the tuber. 

Five treatment regimes were used: control (no additions); addition of uninoculated 

alginate pellets; addition of 28 g (dw) P. cucumerina formulated within alginate 
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pellets; addition of 28 g (dw) P. lilacinus fonnulated within alginate pellets; and 

addition of 14 g (dw) of pellets for each fonnulation. Treatments were allocated in 

random blocks using random numbers, with eight replicates per group. The trial 

was set up in May 1998, plants were grown for 80 days and watere<f: when 

necessary. Prodigy tubers were weighed at harvest in August, after which the 

experiment was repeated using the same soils. 

6.2.3 NEMATODE COUNTS 

Five soil cores, 15 cm deep and 3 cm in diameter, were taken per pot in the 

pattern of one central core and four peripheral cores spaced evenly around the pot, 

before planting and at harvest. The nematodes were extracted from 50 g of soil 

using the Trudgill fluidising column described in section 2.5. 

6.2.4 ASSESSMENT OF peN MUL TIPLICA TION 

Changes in nematode population density can be described using the ratio PflPi; 

where Pi is the initial population density and Pf is the final population density. 

Therefore a PflPi that is greater than unity indicates an increase in the population 

density. 
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6.2.5 RESULTS 

6.2.5.1 The effects of alginate formulation on peN multiplication 

For the first season alginate pellets were tested in the plunge, it was found that the 

control treatment with no additional treatment had a PflPi of 4.3, this was slightly 

lower then the uninoculated alginate pellets treatment which gave a PfIPi of 4.8. 

Plectosphaerella cucumerina gave the best control of peN with a PfIPi of 2.2, 

which was significantly different (P<O.05, t-test) to both the control group and the 

control alginate pellet group. Treatment with P. lilacinus resulted in a PfIPi of 3.0, 

which was significantly different to the control alginate pellet group. The effect of 

a combined treatment of P. cucumerina and P. lilacinus (PfIPi = 3.4) was not 

significantly different to any other treatment (Figure 6.2). 

The plants set up in August 1998 did not grow due to old seed tubers being used 

and lack of fertiliser. Therefore the results have not been analysed. 

6.2.6 THE EFFECTS OF ALGINATE FORMULATION ON POTATO YIELDS 

The control treatment resulted in the highest mean tuber weight per plant (193 g) 

compared to the other groups (Figure 6.3). This was significantly different 

(P<O.05, t-test) to plants treated with P. cucumerina (129 g) and significantly 

different to plant treated with P. lilacinus (152 g). Plants treated with uninoculated 

alginate pellets gave the second highest mean yield of potatoes (170 g) which was 
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significantly different to plants treated with P. cucumerina. The combined P. 

cucumerina and P. lilacinus treatment resulted in a mean tuber yield per plant of 

163 g, which was not significantly different to any of the other treatments. 
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Figure 6.2 Ratios between final and initial egg counts (PflPi) for PCN after 

one season's growth of potatoes in untreated Jersey soil, and in Jersey soil 

treated with alginate only, alginated P. cucumerina, alginated P. lilacinus, or 

both P. cucumerina and P. lilacinus. Error bars show the standard error of 

the mean. N = 8. 

Control Uninoculated P. cucumerina P. lilacinus P. cucumerina 
pellets pellets pellets & P. lilacinus 

pellets 
Treatment 

Figure 6.3 Potato yields from plants grown in untreated Jersey soil, and 

Jersey soil 	 treated with uninoculated alginate pellets, alginated P. 

cucumerina, alginated P. lilacinus, or both P. cucumerina and P. lilacinus. 

Error bars show the standard error of the mean. N= 8. 
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6.3 	 PLUNGE TRIAL INVESTIGATING THE LONGEVITY OF 

NEMA TOPHAGOUS FUNGI IN SOIL 

6.3.1 INTRODUCTION 

This experiment was set up to determine whether the nematophagous fungi could 

survive from the previous year to give nematode control for a second year, or 

whether the soil needed a second application of fungus. 

6.3.2 :MATERlALS AND METHODS 

Soil from the previous year's plunge trial (6.2.2), treated with either P. 

cucumerina or P. lilacinus for two growing cycles or left untreated (control), was 
" 

put into pots of 20 em in diameter. Five pots previously treated with P. 

cucumerina were given a second dose of 30 g P. cucumerina alginate pellets 

(5.2.2.3), and five pots of the same soil were left untreated. Soil to which P. 

lilacinus had previously been applied was treated in the same way. Five further 

pots were filled with soil from the previous year's control treatment and were left 

untreated. Chitted Jersey Royal seed tubers were planted 5 cm from the bottom of 

each of the pots. Alginate pellets (30 g) inoculated with either P. cucumerina or P. 

lilacinus were added. Pots were sunk into the plunge and watered when necessary. 

Tuber yields were recorded after 80 days growth. Nematode counts were made as 

described in section 6.2.1.3. Roots were harvested, washed and weighed for use in 

Chapter 7. This trial was planted in June 1999. 
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6.3.2.1 Ftesults 

The results of this trial did not follow any obvious pattern (Figures 6.4 and 6.5). 

The PflPi value for the control treatment decreased from 4.3 to 1.3 after potatoes 

were grown for a second season. A second addition of P. lilacinus inoculated 

alginate pellets decreased the PflPi value from 3.0 in the first season to 0.9 in the 

second season, however, the PflPi value for soil treated with P. lilacinus in the 

first season but left untreated in the second season decreased to 0.8. With the 

addition of a second application of P. cucumerina inoculated alginate pellets the 

PflPi value increased from 2.2 for the first season to 3.9 in the second season. Soil 

treated with P. cucumerina in the first season but not the second season also had 

an increased PflPi value (PflPi = 3.7). 
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Figure 6.4 PflPi values for PCN grown for a second season in untreated 

Jersey field soil, or in Jersey soil treated previously with P. cucumerina (pc) 

or P.lilacinus (PI) alginate pellets, with (+ dose) and without (- dose) a second 

application of P. cucumerina and P. lilacinus alginate pellets. Error bars 

show the standard errors of the means. N = s. 
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Figure 6.5 Yields of potatoes grown for a second season in untreated Jersey 

field soil, or in Jersey soil treated previously with P. cucumerina (pc) or P. 

lilacinus (PI) alginate pellets, with (+ dose) and without (- dose) a second 

application of P. cucumerina and P. lilacinus alginate pellets. Error bars 

show the standard errors of the means. N =s. 
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6.4 	 PLUNGE TRIAL TO DETERMINE THE EFFECTS OF THE RATE 

OF APPLICATION OF ALGINATE PELLETS FOR CONTROL OF 

peN 

6.4.1 INTRODUCTION 

When applying the formulated fungus it is important to add the correct amount of 

the biological control agent, so it is economically viable but is also effective. The 

cost of producing and applying the agent must be below that of the expected value 

of yield increase. High dose rates (Van Driesche & Bellows, 1996), may be 

impractical as well as uneconomic. However, uneconomic dose rates do not 

necessarily mean high dose rates, as this is directly dependent on cost of 

production. 

6.4.2 MATERIALS AND METHODS 

Pots were set up as in 6.2.2, but with fresh soil taken from the field that the field 

trial was conducted in (6.5). Alginate pellets containing either P. cucumerina or P. 

lilacinus were applied under the chitted Jersey Royal seed tubers at the following 

rates; 15 g, 30 g or 100 g per tuber. Potatoes grown in the absence of pellets were 

treated as the control. At harvest the pots were harvested and sampled in the same 

way as in section 6.3.2. 
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6.4.3 RESULTS 

Both species of fungi fonnulated in alginate pellets reduced multiplication of peN 

compared to the control, at all application rates tested the effects of the treatments 

were statistically significant (P<0.05, t-test) except for that of P. cucumerina 

applied at a rate of 30 g tube{l (Figure 6.6). The most effective treatments were 

the addition of P. cucumerina and P. lilacinus applied at a rate of 100 g tuber-I, 

resulting in PflPi's of 0.5 and 0.9 respectively. Larger doses of alginate pellets 

gave better nematode control, and there was evidence of a dose response effect. 

There was no obvious relationship between dose of the biological control 

treatment and tuber yield. Plants treated with 100 g of P. cucumerina gave the 

lowest tuber yields (126.5 g), compared to the other dose rates (Figure 6.7). The 

highest yields for both groups were observed when 30 g of pellets containing 

either of the fungi were added. There were no significant differences (P<0.05, 

t-test) between treatment groups. 
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Figure 6.6 Effect of the addition of different amounts of alginate pellets 

containing P. lilacinus (PI) or P. cucumerina (Pc) on the multiplication of 

PCN in a plunge trial. Error bars show the standard error of the mean. 
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Figure 6.7 Effect of the addition of different amounts of alginate pellets 

containing P. lilacinus (PI) or P. cucumerina (pc) on the yields of Jersey 

Royal potatoes in a plunge trial. Error bars show the standard error of the 

mean.N=5 
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6.5 FIELD TRIAL 

6.5.1 INTRODUCTION 

The field trial was carried out in April 1999 in field no. J 146, Le Canibut, St 

John, Jersey. The field was selected as it was a Category ill field and the number 

of nematodes was expected to increase in the control plots as the initial samples 

showed peN to be present at concentrations of up to 44 eggs g-l soil (Lane & 

Trudgill, 1999). 

6.5.2 METHODS 

6.5.2.1 Preparation of alginate pellet inoculum 

Alginate pellets were prepared using the method described above (5.3.3.1). Pellets 

were formulated with either P. cucumerina or P. lilacinus grown in the bubbler 

(2.4). The control was not treated with alginate pellets. 

6.5.2.2 Field trial 

Although the field was treated with Vydate by the farmer, a central strip was left 

untreated, and within this a single ridge was left unplanted for our trial. The ridge 

was divided into plots, each of which consisted of three chitted seed tubers 

planted in the ridge. The plots were 90 cm apart along the row to ensure that the 
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treatments did not interfere with one another. Soil samples, 10 cores taken down 

the centre of the ridge were taken per plot, 15 cm deep and 2 cm in diameter, were 

taken to allow determination of the initial egg counts. Potatoes were planted at the 

bottom of the ridge. The biological control agent, 30 g per tuber of either P. 

cucumerina or P. lilacinus incorporated into alginate pellets, was added and 

forked gently into the soil prior to placing the tuber on top. Each treatment was 

replicated thirteen times. Soil around the tuber was built up to re-form the ridge, 

approximately 20 cm high. Location of treatments along the ridge was 

randomised. A Tiny Talk™ temperature probe was placed at the bottom of the 

ridge (20 cm deep) to monitor the soil temperature throughout the growing 

season. 

After 3 months growth the plants were harvested (Figure 6.8). Tubers were 

weighed and soil samples were taken (as for the initial egg counts in this trial). 

Egg counts of PCN were determined using the method described in section 2.5. 

6.5.3 RESULTS 

6.5.3.1 Soil temperature 

The mean soil temperature over the growing season was 12.5°C. The lowest 

temperature recorded was SoC in April and the highest temperature was 21.6°C at 

the end of May. The mean temperatures for each month were 9.5°C, 1O.6°C, 

14.9°C and 14.5°C for March to June respectively (Figure 6.9). 
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Figure 6.8 Harvesting tubers at the end of the field trial in Jersey. The ridge 

was separated with a guard row either side from the rest of the field that had 

been treated with nematicides. Plots consisted of three potato plants. 
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6.5.3.2 Effect of the addition of alginate pellets containing P. lilacinus or 

P. cucumerina on the multiplication of peN in soil in the field 

The initial egg counts varied considerably along the ridge, but did not follow any 

clear pattern (Figure 6.10), Counts ranged from 0.6 to 43.6 eggs g soil'!. The 

mean initial egg counts were 10.8, 20.4 and 8.7 eggs g soir l , respectively, for 

plots treated with P. lilacinus, P. cucumerina and the control. 

Treatment with P. lilacinus or P. cucumerina limited the multiplication of peN in 

soil around the potato tuber (PflPi = 8.8 and 7.4, respectively) compared to that in 

control plots (PflPi =21.7) (Figure 6.11). The effect of the fungal treatments was 

significant (P<0.05, t-test; data normalised by 10glO transformation). 

The tuber yield for the untreated plots was significantly higher (P<O.05, t-test) 

(1.93 kg) than for the P. lilacinus treated plots (1.53 kg) and the P. cucumerina 

treated plots (1.59 kg) (Figure 6.12). 
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Figure 6.9 Soil temperature during the growing season in Jersey. Recordings 

were taken every 2 h from the base of a ridge in the centre of the field. 
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Figure 6.10 Initial peN egg counts along the ridge used for the field trial. 

Plots were subsequently treated with Paecilomyces lilacinus (~), control (D), 

and P. cucumerina (_). 
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Figure 6.11 Effect of the addition of alginate pellets containing P. lilacinus or 

P. cucumerina on the mUltiplication of peN in soil in the field. Error bars 

show the standard error of the mean. N =13. 
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Figure 6.12 Effect of the addition of alginate pellets containing P. lilacinus or 

P. cucumerina on the yield of Jersey Royal potatoes in the field. Error bars 

show the standard error of the mean. N = 13. 
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6.6 ~-HARVESrAPPllCATIONOFVEKI1ClLllUMClHAMYDOSPORlUM 

6.6.1 INTRODUCTION 

A survey of the incidence of infection of PCN females by nematophagous fungi 

was carried out in Jersey in May and July 1997 (Appendix 2.2). It was found that 

V. chlamydosporium was present in the soil in May, but had not infected the 

female peN. However, females collected in July were found to be infected with 

V. chlamydosporium. Verticillium chlamydosporium therefore appears to attack 

PCN females later on in the season, when the soil temperatures are higher. It was 

found (section 4.3.2) that V. chlamydosporium grew at 20°C but not at WOC; the 

soil temperature in Jersey did not rise to 20°C until May (Figure 6.9). Verticillium 

chlamydosporium is a parasite of tropical nematodes, therefore it has a high 

optimum growth temperature (Irving & Kerry, 1986). Whilst harvesting the field 

trial it was observed that many of the roots left in the soil after harvest were 

infested with PCN females. Therefore, V. chlamydosporium was tested as a post­

harvest treatment because the warmer post-harvest temperatures favour the growth 

of this fungus, and the nematode is still present in the soil on dying plant material. 

6.6.2 METHODS 

6.6.2.1 Production of chlamydospores 

Milled barley (50 ml) was washed on a 53 !-lm mesh sieve and mixed with 50 ml 

of coarse sand (Bourne et ai., 1994). The mixture was divided between two 
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250 ml conical flasks and autoclaved" for 30 min. The flasks were cooled before 

ten plugs of V. chlamydosporium (3-4 mm in diameter), taken from the colony 

edge, were added. The flasks were incubated at 20°C for four weeks and shaken 

daily for the first few days until the medium was completely colonised. The 

contents of the flasks were then washed through a 250 ~m mesh sieve, into a 

53 Jlm sieve and collected in a tray. Liquid passing through the sieve was then 

passed through a 1 0 ~m mesh. The milled barley and sand mixture was washed 

until the liquid ran clear. Chlamydospores caught on the 10 ~m mesh sieve were 

weighed, mixed (1: 10) with sand (40-100 mesh, Fisher Scientific UK Ltd., 

Leicesterhire, UK) and refrigerated at 4°C until needed. _ 

6.6.2.2 	 Post-harvest application of Verticillium chlamydosporium to soil 

previously used in the plunge trial 

Eight replicate soil samples (50 g) taken from the control plots, P. cucumerina 

and P. lilacinus treated pots from the plunge trial (section 6.2.2) were placed in 

plastic beakers and covered with parafilm. A further eight replicate samples from 

each plunge treatments were inoculated with approximately 5000 chlamydospores 

of V. chlamydosporium. The chlamydospores were mixed throughout the soil. 

Cysts were extracted from the soils (section 2.5) after one months incubation at 

20°C. Egg counts were also conducted on eight replicate soil samples before the 

soils were incubated. 
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6.6.2.3 	 Post-harvest application of Verticillium chlamydosporium to soil 

previously used in the field trial 

Thirteen replicate soil samples (50 g) from each treatment; control, P. cucumerina 

and P. lilacinus treated plots of the field trial (6.5) were placed in plastic beakers. 

A further thirteen replicates from each treatment were inoculated with 

approximately 5000 chlamydospores of V. chlamydosporium mixed into the soil. 

Egg counts were also conducted on thirteen further replicate soil samples before 

the soils were incubated. 

6.6.3 RESULTS 

The addition of V. chlamydosporium chlamydospores to soil samples taken at the 

end of the plunge trial significantly reduced the number of viable PCN eggs for 

each of the treatment groups compared to soil samples that were not inoculated 

with V. chlamydosporium chlamydospores (P<0.05, ANOV A). Simply incubating 

the soil did not significantly reduce the number of PCN eggs compared to the 

initial counts for the P. lilacinus and P. cucumerina treated soils, but did for the 

control soil (Figure 6.13). 

When soil sampled at the end of the field trial was treated with chlamydospores, 

no significant difference (p<0.05, ANOV A) between the egg counts in inoculated 

and uninoculated soils was shown following incubation (Figure 6.14). Egg counts 

after incubation, both with and without the addition of chlamydospores, were 
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significantly lower than those in the field sample before incubation, indicating that 

incubation alone had an effect on the numbers of eggs of Globodera spp. 
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Figure 6.13 Effect of post-harvest application of V. chlamydosporium on peN 

egg counts in soil taken from the plunge trial. Egg counts are shown before 

incubation (-), and after incubation with (~) and without (D) the addition 

of V. chlamydosporium chlamydospores. Error bars show the standard errors 

of the means. N :; 8. 
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Figure 6.14 Effect of post-harvest application of V. chlamydosporium on 

number of PCN eggs in soil taken from the field trial. Egg counts are shown 

before incubation (_), and after incubation with (fiI) and without (D) the 

addition of V. chlamydosporium cWamydospores. Error bars show the 

standard errors of the means. N = 13. 
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6.7 DISCUSSION 

The addition of a single species of fungus appeared to give better control of PCN 

in the plunge pots then the two species, P. cucumerina and P. lilacinus, in 

combination. This may have been due to the two species being antagonistic 

towards one another as seen in Chapter 4, and consequently inhibiting one 

another's ability to infect nematodes. Stirling & Smith (1998) found that a 

combined addition of the nematode trapping fungi Arthrobotrys dactyloides and 

V chZamydosporium formulated into granules gave greater control of 

Meloidogyne sp. than the two fungal species applied separately. Stirling, however, 

added a double dose of pellets instead of adding half the amount of the normal 

inoculation dose for both species; thus, the effect may have been due simply to an 

increased amount of biomass, rather than any synergism between the two fungi. 

A trial ~o ~etennine whether the fungus remained in the soil and was effective. in 

controlling PCN for more than one growing season was not very successful due to 

two crops being grown consecutively in the first year. Failure to add fertilisers and 

the use of old seed tubers, due to unavailability of fresh seed tubers at that time of 

year, resulted in only half the plants growing. Unfavourable climatic conditions 

later in the season also meant that running two plunge trials in one year was not 

feasible. At present it is not known if an application of a nematophagous fungus 

will sustain itself in the field or will need to be re-applied with each crop (Crump, 

1998). A self-sustaining biological control agent may not be commercially 

acceptable. A conventional commercial product, for example chemical 
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nematicides, would give maximum reduction of the PflPi but have a limited 

persistence in the soil not extending beyond a single season. 

To extrapolate from the plunge trials with 30 g of alginate pellets per pot to field 

application the dose per pot should be multiplied by a factor of 148118, the 

number of seed tubers planted per hectare in Jersey (potatoes planted 15 cm apart 

in rows 45 cm apart). This would give an application rate of 4.4 tonne ha-1• 

However, this figure only applies if alginate is applied round the tuber of plants, 

as is commonly practiced with the application of Vydate. Unfortunately, the work 

has shown that alginate can have an inhibitory effect on tuber yield when the 

pellets are placed close to the tubers (Figures 6.3, 6.5, 6.7 and 6.12)_ This could be 

due to increased microbial activity around the root. If the alginate pellets were to 

be applied into soil pre-planting, to the top 20 cm (possible plough depth) of soil, 

the total soil treatment per hectare would be 10,000 m2 x 0.2 m =2000 m3, or 

equals 2,000,000 Htres of soil. In the plunge trial 30 g of pellets were added to 

each pot containing 4 litres of soil: 

2,000,000 = (500,000 x 30 g) =15,000,000 g of pellets 

4 which equals 15 tonnes of alginate pellets per 

hectare. 

By increasing the rate of inoculum, the probability of the nematode coming into 

contact with the fungi is increased. A balance needs to be reached in which the 

nematode is inoculated with a suitable dose that will reduce the pest population 

but is also economical to produce and apply. Successful control of nematodes has 
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been achieved using P. lilacinus at the rate of 1-20 tonnes ha -I, but this is too great 

for wide spread commercial use (Van Driesche & Bellows, 1996). Lower rates of 

application (0.4 tonnes ha-1) of P. lilacinus in augmented form infected fewer 

Meloidogyne incognita eggs in the field (Cabanillas et aI., 1989). Spore 

concentration is also important for the bactelial pathogen Pasteuria penetrans. 

Stirling (1990) found that a dose of 104 spores g soil-1 infected less then 40% of 

M. javanica females, but 105 spores g soirl infected 100% of females. As P. 

penetrans is an obligate parasite, it has not yet been successfully cultured for 

commercial use. Smaller numbers of spores can be used with a nematode tolerant 

crop with no effect to the yield, and the presence of nematodes will allow the 

number of P. penetrans spores to increase, so that a susceptible crop can be grown 

the following season. However, P. penetrans endospores are only actived when in 

contact with certain nematodes, the fungi used in this thesis are saprophytic and 

will grow in the absence of the nematode host. One possible method for reducing 

the amount of fungal inoculum needed is to formulate the fungus on a nutrient 

base and add it to the soil before planting. This may allow saprophytic fungi to 

multiply in the soil before the pest is present. Further tests are required to see if 

this is a viable option. 

Addition of nematophagous fungi formulated in alginate pellets reduced 

multiplication of PCN in the field by a factor of 3 compared to control plots. The 

tuber yields, however, were lower for the treated groups than the control group. 

Reduced tuber yields were also observed in the plunge trial which would indicate 

the alginate pellets are having an adverse effect on plant growth. It was found in 

the field trial that at the time of harvest there were no nematodes on the roots in 
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the area in which the alginate pellets had been applied, but towards the outer edge 

of the ridge the roots were infected with nematodes. This may suggest that the 

fungi were neither colonising nor spreading along the roots, but just attacking the 

nematodes in the immediate vicinity of the applied pellets. Control of PCN may 

therefore be more successful if the pellets were broadcast throughout the field 

rather then being applied only under the tuber. 

When potato plants were harvested, after 80 days for the plunge or three months 

for the field trial, the female PCN were still developing on the roots in both field 

and plunge soil. The different life stages were investigated further in Chapter 7. 

After harvest the number of eggs per gram of soil may continue to rise as any 

females left on the roots will continue to develop to the cyst stage, each 

potentially containing hundreds of eggs. Therefore, the egg counts described in 

this chapter may be lower than if the cysts were allowed to develop on the roots or 

if the plants were allowed to develop further. 

Addition of V. chlamydosporium chlamydospores to the soil after harvest resulted 

in a reduction in the number of PCN eggs in the soil taken from the plunge trial. 

Incubation alone did not reduce the numbers of PCN eggs (Figure 6.13). 

However, when this experiment was repeated using field trial soil, the numbers of 

PCN eggs decreased during incubation irrespective of whether they had been 

treated with V. chlamydosporium or not (Figure 6.14). Devine et al. (1999) found 

that, with G. rostochiensis, the number of viable eggs decreased by up to 15% 

after four weeks at 20°C due to spontaneous hatch and in-egg mortality. The 
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differences observed between the plunge trial soil and field trial soil may be due 

to varying proportions of G. pallida and G. rostochiensis in the populations. 

Globodera rostochiensis is more likely to hatch spontaneously then G. pallida. 
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7 DETERMINATION OF THE COMPOSITION OF JERSEY 

PCN POPULATIONS USING BIOCHEMICAL 

TECHNIQUES 

7.1 INTRODUCTION 

It has previously been assumed that the PCN population in Jersey consisted 

almost entirely of Globodera pallida. This assumption was possibly based on soil 

samples taken before biochemical techniques for PCN population identification 

were widely used (Meadows 1999, pers. corn.) and reinforced with the knowledge 

that the UK populations were becoming dominated by G. pallida (Halford et al., 

1995). 

It is important to know which species of peN is in the field so that suitable 

control measures can be used. The restriction of the use of granular nematicides, 

such as Vydate (the current UK market leader) on Jersey may mean that species 

selection has not been so great as on the UK mainland (as described in 1.3.3). In 

addition, the early lifting of the potato crop in Jersey favours multiplication of G. 

rostochiensis, rather than G. pallida, as the former hatches earlier and in a single 

cohort. Most eggs of G. rostochiensis have hatched by the sixth week after 

planting, with the bulk having hatched by week four but G. pallida may still be 

hatching after week ten with the peak of hatching not reached until week six. If 
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the crop is lifted after twelve weeks, proportionally more G. rostochiensis are 

likely to have completed their life cycle than G. paUida. 

Cysts recovered by the author from a Jersey soil sample were assessed by 

personnel at IACR-Rothamsted using isoelectric focusing (IEF) to determine PCN 

species. The results of the IEF showed that not only was there a mixed population 

of PCN, but that the Jersey PCN sample produced an extra band on the gel which 

did not match up with the G. pallida or G. rostochiensis controls (Figure 7.1). It 

was also suspected there was a mixed population of PCN in Jersey when the 

plunge and field trial were harvested, as both white (G. paUida) and yellow (G. 

rostochiensis) nematodes were found on the roots (Lane & Trudgill, 1999). 

To ascertain the species population make-up of PCN from Jersey soils, 

biochemical techniques were used, as these are reliable and require less operator 

skill and experience than standard taxanomic techniques. The two techniques 

chosen were indirect ELISA (enzyme-linked immunosorbent assay) and RAPD­

PCR (random amplified polymorphic DNA - polymerase chain reaction). The 

ELISA technique was chosen in preference to IEF because two antibodies had 

been developed at IACR-Rothamsted that only recognise viable eggs of the two 

PCN species (Curtis et ai., 1998) and sample throughput was potentially greater 
... 

using ELISA. Theoretically, quantification was possible with ELISA and only 

possible with IEF for a skilled operator. 
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Extra 
band 

G. rostochiensis Jersey G. paUMa 

Figure 7.1 IEF gel showing G. pallida and G. rostochiensis controls with 

nematodes from Jersey. The Jersey nematode has the same band as both G. 

pallMa and G. rostochiensis, but also has an extra band. 
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RAPD-PCR was used as it was an available method able to detennine the species 

of those immature nematodes recovered from the roots after the potatoes were 

lifted_ A hot staining method, which can denature the proteins that are recognised 

in the IEF technique but, not denature the DNA, was used to locate the 

nematodes. 

The nucleotide primer E19 is consistently used at IACR-Rothamsted for 

identification of PCN species (Burrows et al., 1996). The primers K4 and K16 are 

two others which have been used to separate species of the genus Pratylenchus 

(Barker, 1999) but have also been shown to give clear banding patterns for G. 

pallida (Barker 1999, pers. com.). 

These techniques were combined in an attempt to detennine the ratio of G. pallida 

to G. rostochiensis in soil from Jersey at planting and at harvest. The effects of 

early lifting, as detennined by the life stages of the two species found in the roots, 

and the addition of P. lilacinus and P. cucumerina on the population composition 

were investigated. 

To determine whether one species of Globodera was more susceptible to fungal 

infection than another, the compositions of the nematode populations in the fungal 

treated groups from the plunge trial were compared to those of the control 

populations. 
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7.2 MATERIALS AND METHODS 

7.2.1 STAINING NEMATODES 

Roots from potato plants infested with nematodes, that had either been inoculated 

with 100 g P. lilacinus amended alginate pellets or left untreated, were stained to 

determine whether there was a difference in the number of different life-stages of 

peN between treatment groups. 

Root samples were taken from all the plants used in the plunge trial (6.4). The 

whole root from each plant was weighed and a subsample (1 g), randomly 

selected, was taken. The subsamples were cut into 1 em sections and put into 

20 ml universal bottles in preparation for hot acid staining (Bridge et al., 1982). 

An adaption of the standard protocol (Bridge et al., 1982) was used (Halford 

1999, pers. com.). Hot acid fuschin stain (glycerol, 300 ml; H20, 300 ml; lactic 

acid, 300 ml and acid fuschin, 0.45 g) was poured over the root samples and left 

for 2-3 min. The stain was poured off the roots and the roots were washed in tap 

water. Approximately 10 ml of destain (glycerol, 500 ml; H20, 500 ml; and lactic 

acid, 10 ml) was added to each sample. The roots were then macerated using a 

'Verso' laboratory mixer emulsifier (Silvers on Machine Ltd., Bucks, UK) at full 

speed for 15 s and the resulting samples kept in destain until needed. 

To count the different life stages, the root samples in de stain were each made up 

to 40 ml with water. A 10 ml aliquot was put into a Doncaster counting dish 

(Doncaster, 1963) and assessed under a light microscope (x250). All nematodes in 
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the 10 ml sample were counted and the life stages split into four categories; 

juveniles, males, small females and large females (Figure 7.2). 

c) 

a(ii» d) 

Figure 7.2 Different life stages of peN. The nematodes were split into four 

categories, a) juveniles (females (0 and males (ii), b) small females, c) large 

females and d) males. 
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7.2.2 ENZYME-LINKED IMMUNOSORBENT ASSAY 


7.2.2.1 	 General description of the indirect enzyme-linked immunosorbent 

assay 

The indirect enzyme-linked immunosorbent assay is based on the antigen, in this 

case the proteins from the crushed nematodes, adhering to the walls of a 

polystyrene, 96 well ELISA plate, the walls of which will have been specially 

treated to aid the binding of the proteins. An antibody is added that has been 

developed to bind specifically to the targeted antigen and may have been raised in 

a mammal such as a rat or mouse in response to that anti..,gen. The assay becomes 

an indirect ELISA when a second antibody is added that specifically recognises 

the mammal antibodies. After being recovered from the host mammal, the second 

antibody, unlike the first, has an enzyme conjugated to it (horse radish peroxidase, 

HRP, in the protocol used for this work). A substrate (hydrogen peroxide) plus a 

chromogenic donor (tetra methyl benzidine, TMB) are then added which the 

enzyme cleaves resulting in a colour change in the solution. It should be possible 

to correlate the colour intensity with the amount of antigen present in the sample 

through comparison with standards such as known amounts of the target antigen 

(Figure 7.3). 

7.2.2.2 	 Antibodies used in these studies 

Two antibodies that had previously been raised at IACR-Rothamsted, in rats 

against the two species of peN as described by Robinson et al. (1993b) were 
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Goat antibody with HRP~_____ 
conjugate, recognising rat 
antibody 

Nematode antigen 

used. Although the antibodies recognise their intended species, it was found that 

there was a degree of cross-sensitivity (Curtis et al., (1998); Barker et al., (1998)) 

particularly with the antibody developed for G. paUida. Antibodies from the two 

monoclonal lines were precipitated with ammonium sulphate and a number of 

aliquots from the processed material were assessed for reactivity. Two aliquots 

were chosen for this study, R3 (G. rostochiensis) and P14 (G. paZZida). 

Well wall 

Figure 7.3 Example of an antigen/antibody complex in an indirect ELISA. 

Cleaved substrate 

producing colour 

.."..,,,-J---- Peroxidase 
cleaving substrate 

Nematode recognising rat 
antibody (P14 or R3) 
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7.2.2.3 Protocol for indirect ELISA 

Cysts were extracted from the soil samples using a Trudgill fluidising column-Cas 

in section 2.5), discarding any that had obvious abnormalities such as obvious 

parasitism by fungi. Individual cysts were put into micro homogeniser tubes 

(Biomedix, Pinner, u.K.) with 20 ).ll phosphate buffer solution (PBS: 1.068 g rl 

NazHzP04, 0.39 g rl NaHZP04, 8.5 g rl NaCl). The cysts were then ground using 

an electric drill at speeds below 200 rpm. Proteins can quickly become denatured 

by increased temperature and care was taken at this stage due to heat generated by 

the friction of the homogenising process. The homogenate were centrifuged at 

11,000 rpm for 30 s, to concentrate the homogenate at the base of the tube, then 

put on ice. A further 200 1-11 of PBS was added to each sample of homogenate and 

mixed using a pipette. 

The nematode antigen (100 1-11) was added to the wells of the first row of an 

ELISA plate. Two wells per individual nematode (Figure 7.4). Fifty microlitres of 

PBS were added to the five rows of wells below the top row. A serial dilution of 

the antigen was carried out by removing 50 ).ll from the top row and mixing it with 

the PBS in the second row. This was repeated until the sixth row, from which 

50 ).ll was discarded after mixing leaving a final volume of 50 111 in the well. The 

plates were kept in the fridge over night for the antigen to bind. 

The ELISA plates were developed using an adaptation of a protocol developed at 

IACR-Rothamsted (Curtis et at., 1998). The wells were washed out 3 times with 
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PBST (PBS with 3 ml rl Tween 80). R3 (G. rostochiensis recognising antibody) 

was diluted 1 in 3000 with PBSTM (PBST with 5% w/v MarveFM milk powder). 

P14 (G. paUida recognising antibody) was diluted 1 in 400 with PBSTM. The 

plates were shaken for 2 h on a plate shaker at 75 rpm. The wells were washed out 

with PBST 3 times and 50~1 of goat antibody (Sigma, A9037) diluted in PBSTM 

(1:5000) was added. The plates were shaken for 40 min before being washed 3 

times with PBST. To each well, 80 ).11 of substrate (1 ml sodium acetate, 9 ml 

distilled H20, 100 ~l DMSO and marker, 5 ).11 H20 2) was added. The reaction was 

stopped after 15 min by the addition of 30 ).11 sulphuric acid. The plates were read 

at two wave lengths (450 nm and 620 nm) using a Labsyslem Multiscan. 

Nematode 1 2 3 4 5 6 

Antibody R3 P14 R3 P14 R3 P14 R3 P14 R3 P14 R3 P14 
v, , "\ "\ V "\ V ,

V "'" 
./ ./ ./ ./ ./ ./ ./

V"", ,V , , "\ "\'"" " "'" " ./ ./ L 
V , V,V,V, ,"",V ,V "",V "",V , 

L .L ./ ./ 
V , , V,""', "\ "'""'" "'" "'" 

./ ./ .L
V"", V"", V,V"", ,V "",V ,V V ,V " 

./ ./ ..L,V"", V, ,V ,V "",V" '" 
./ ./, ,

R3 
L" , " ./" L L L 

P14 V,1",V,V, 'IV 'IV," V,"'" 
./ / .L 1'>.. L ..L L 

Serial dilution Serial dilution 

Control G. pallida Control G. rostochiensis 

Figure 7.4 Layout of ELISA plate used to determine the number of G. pallida 

and G. rostochiensis from Jersey field soil. 
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7.2.3 RAPD·PCR 

7.2.3.1 Outline of RAPD-PCR 

The random amplification of polymorphic DNA (RAPD) using polymerase chain 

reaction (PCR) techniques is a very sensitive method for designating and 

recognising genetic markers. The sensitivity is due to the short length of the 

primers (10 nucleotides) which have a greater chance of finding a corresponding 

match along the length of a piece of DNA than a primer containing more 

nucleotides. The advantage of the sensitivity is that, in theory, only a single piece 

of DNA is required for the PCR to be successful. The main disadvantage is its 

sensitivity in that any nontargeted DNA that is inadvertently included in a reaction 

is likely to be magnified with the targeted DNA and hence disrupt the intended 

results. 

In principle, the DNA is denatured by heat from double to single strands. The 

temperature is then reduced and the primer anneals to a single complimentary 

strand and with the help of an enzyme (Taq DNA polymerase) and an excess of 

single nucleotides, a new complimentary strand is formed. The cycle is repeated 

and there is an exponential increase in the strands of DNA primed by the 

introduced oligonucleotides. Thi~. results in quantities of same length DNA that 

can be visualised on a gel. 
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7.2.3.2 DNA extraction 

Following a protocol used at IACR-Rothamsted (Halford 1999, pers. com.), 

different life stages of stained PCN (section 7.2.1) were washed in distilled water 

and placed into micro homogenisers with 10 /-11 of 1 x concentration PCR buffer 

(Promega, M1901) and homogenised using a drill at speeds below 200 rpm. 

Where possible, all samples were kept on ice. The homogenates were centrifuged 

at 11,000 rpm for 3 min. The samples were put into sterilised 0.5 ml Eppendorf 

tubes that already contained 80 /-11 6% Chelex-lOO resin (BioRad, 143-2832) and 

10 III 1 x PCR buffer. The tubes were incubated in a water bath at 56°C for 30 min 

and vortexed regularly. Tubes were then incubated at 99°C for 8 min in a PCR 

machine (OmniGene, Hybrid), vortexed and centrifuged for 2-3 min at 13000 

rpm. The supernatant was stored at -20°C until needed. 

7.2.3.3 Polymerase chain reaction 

Three, ten nucleotide primers (10 mer oligonucleotides) were used, E19 

(ACGGCGTATG), K4 (CCGCCCAAAC) andK16 (GAGCGTCGAA). 

A stock solution of pc.R reagent was made that contained per 2 /-11 of DNA 

product: 36.35 III sterile distilled water, 5 III 10 x concentration of reaction buffer 

(Taq DNA polymerase storage buffer, Promega), 3 III (25 roM solution) MgCh, 

3 III primer (50 ng /-1r1 solution either EI9, K16 or K4), 0.25 /-11 dNTP. The DNA 

product, stock solution and 4 III of Taq polymerase (promega, M2868) were 
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added to Eppendorf tubes, then the solution was overlayed with a drop of light 

white mineral oil (Sigma, 8042-47-5), Tubes were put into the peR machine 

which was programmed to heat the samples as shown in Table 7.1. An outline of 

the samples processed is shown in Tables 7.2 and 7.3. 

Table 7.1 Program of cycles for RAPD-PCR. 

Stage Step Temp(OC) I Time 
1 1 92/2 min 
Number of cycles = 1 2 55/1 min 

3 72/1 min 
2 1 92/1 min 
Number of cycles =38 2 35/1 min 

3 72/1 min 
3 1 92/1 min 
Number of cycles =1 2 35/1 min 

3 55/1 min 

Table 7.2 Outline of samples processed with the RAPD-PCR techniques using 

the primers K16 and K4. Plants were previously treated with 100 g of P. 

lilacinus amended alginate pellets (100 g Pl). 

PCR reaction Treatment Lanes PCNsampied Primer 
1 100 g PI 1-2 Juvenile K16 

3-4 Small female (a) 
5-6 Large female 
7-8 Male 
9-10 Small female (b) 
11-12 Positive control (G. pallida) 
l3-14 Positive control (G. rostochiensis) 
15-16 Negative control 

2 100 g PI 1-2 Juvenile K4 
3-4 Small female (a) 
5-6 Large female 
7-8 Male 
9-10 Small female (b) 
11-12 Positive control (G. pallida) 
13-14 Positive control (G. rostochiensis) 
15-16 Negative control 
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Table 7.3 Outline of samples processed with the RAPD-PCR techniques using 

the primer E19. Plants were previously treated with 15 g of P. lilacinus 

amended alginate pellets (15 g PI), 100 g of P. lilacinus amended alginate 

pellets (100 g PI) or left untreated (control). 

PCR reaction Treatment 
3 15 g PI 

4 Control 

5 100g PI 

6 lOOg PI 

7 15 gPI 

Lanes 
1-2 
3-4 
5-6 
7-8 
9-10 
11-12 
13-14 
1-2 
3-4 
5-6 
7-8 
9-10 
11-12 
13-14 
15-16 
17-18 
19-20 
21-22 
23-24 
25-26 
27-28 
1-2 
3-4 
5-6 
7-8 
9-10 
11-12 
13-14 
15-16 
17-18 
19-20 
1-2 
3-4 
5-6 
7-8 
9-10 
11-12 
13-14 
15-16 
17-18 
19-20 
21-22 
23-24 
25-26 
1-2 
3-4 
5-6 
7-8 

PCN sampled Primer 
Large female (a) E19 
Large female (b) 
Large female (c) 
Large female (d) 
Juvenile 
Positive control (G. pallida) 
Negative control 
Male (a) E19 
Male (b) 
Male (c) 
Large female (a) 
Large female (b) 
Large female (c) 
Large female Cd) 
Large female (e) -
Large female (f) 
Large female (g) 
Large female (h) 
Positive control (G. pallida) 
Positive control (female Ib) 
Negative control 
Large female (a) E19 
Large female (b) 
Large female (c) 
Large female (h) 
Large female (f) 
Male (a) 
Male (b) 
Male (c) 
Positive control (G. pallida) 
Negative control 
Large female (a) E19 
Large female (b) 
Large female (c) 
Small female (a) 
Small female (b) 
Small female (c) 
Juvenile (a) 
Juvenile (b) 
Juvenile (c) 
Male 
Positive control (G. paUida) 
Positive control (G. rostochiensis) 
Negative control 
Positive peN control E19 
Large female (ld) 
Juvenile 
Negative control 
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7.2.3.4 Agarose gel electrophoresis . 

To visualise the PCR products, a 0.5% TBE agarose gel was made by dissolving 

1 g of agarose gel in 0.5 x Tris-borate (TBE) (Tris base, 13 g; boric acid, 5.S g and 

0.5 M EDTA (pH 8.0), 4 ml). The UV-sensitive dye ethidium bromide (4 !11 per 

100 ml of TBE) was added to the cooled agarose solution before it was poured 

into the chamber to set. 

The wells of the gel were loaded with a mixture of 6 III of the unknown DNA 

peR products, 2 III Blue/Orange 6 x loading dye (Promega) and 4 III sterile 

distilled water. Other controls were also run on the gel and these consisted of 4111 

100 bp DNA ladder (Gibco BRL), a negative control containing no DNA and a 

positive control which contained known PCN DNA. The gel was run for 45 min at 

90 volts. The bands on the gel were visualised using UV light. 

7.3 RESULTS 

7.3.1 LIFE STAGES OF peN IN ROOTS 

Staining of nematodes in the root samples revealed more juveniles, males and 

small females in the P. lilacinus treated group then in the control group (Figure 

7.5). There were, more large females in the control group then in the P. lilacinus 

treated group, however these differences were not statistically significant (P<0.05, 

t-test). 
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Figure 7.5 Proportion of PCN at different life stages in stained roots taken 

from the plunge experiment. PCN populations from untreated controls (_) 

were compared to those on plants treated with 100g of P. lilacinus (0) 

amended alginate pellets. Error bars show standard deviations. N = 5. 
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7.3.2 ELISA 

It was difficult to detennine whether applying the nematophagous fungi had an 

effect on the distribution of PCN species in the plunge trial (Table 7.4). For most 

samples there were more unknowns than positive identifications, which would 

indicate that the antibody is cross reacting. No G. pallida were identified in the 

samples from pots treated with P. lilacinus for two successive seasons. 

7.3.3 RESULTS FROM RAPD-peR 

Work at IACR-Rothamsted had shown it was possible to derive peR products 

from nematodes that had been stained using the hot acid fuchsin method as 

outlined in the methods (Halford 1999, pers. com.). However, the work was very 

preliminary and the results variable. 

The reactions processed using the E19 primer, as outlined in Table 7.3 in the 

methods section (7.2.3), gave poor results, in part due to contamination, but there 

were indications this was due to there being insufficient, undamaged DNA. After 

each set of reactions, fresh nematodes were recovered and although the whole 

process was repeated from the beginning and new chemicals were used each time, 

the results continued to be unclear. 

The primers K16 and K4 gave much clearer banding patterns (Figure 7.6) but 

there continued to be a problem with suspected contamination as can be seen in 
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the lanes containing negative controls. Unfortunately, the banding patterns for the 

positive controls are very indistinct and do not represent typical patterns for these 

species for these primers (Barker 2000, pers. com.). The banding patterns of the 

different life stages from the K16 peR reactions, are very similar and may 

represent the same species but it is not possible to discern which species due to 

the poor controls. 
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Sample details Proportion of nematodes identified 

; Treatment Dose No. of seasons Sampled G. rostochiensis G.pallMa Unknown 

Control None 1 planting 2 5 5 

Control" None 1 harvest 4 11 9 

P. cucumerina 30 g planting 1 1 10 

P. cucumerina 30 g 1 harvest 5 3 4 

P. lilacinus 30 g 1 planting 1 10 

P. lilacinus 30 g 1 harvest 1 4 7 

P. lilacinus 100 g 1 planting 1 6 5 

P. lilacinus 100 g 1 harvest 4 5 3 

Control None 2 planting 5 1 6 

Control None 2 harvest 6 2 4 

P. lilacinus 30g 2 planting 2 0 10 

P. lilacinus 30 g 2 harvest 2 0 10 

P. cucumerina• 30 g 2 planting 1 0 5 

P. cucumerina 30 g 2 harvest 3 1 8 

Table 7.4 Determination of the proportion of G. rostochiensis and G. pallMa in selected pots from the plunge trial, using 

indirect ELISA. Twelve cysts (except *,6 cysts **, 24 cysts) were extracted from soils taken at planting and at harvest. 

Unknowns either with OD >100 or very similar readings for P14 and R3. 
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7.4 DISCUSSION 

The higher proportion of juveniles, males and small females determined by 

staining in the P. lilacinus treated group compared to the control group may have 

been due to the alginate or fungus containing a compound that caused the 

juveniles to hatch. Seaweed, a component of alginate pellets, has been reported to 

reduce the fecundity of plant parasitic nematodes (Whapham et ai., 1994; Wu et 

aI., 1997). However, seaweed extract has been observed to increase the number of 

hatched PCN juveniles (Sheridan, 2000, pers. com.). 

The greater number of large females in the control group compared to the P. 

lilacinus treated group may be due to the fungus parasitising the females and 

preventing development from small to large. 

The results from the indirect ELISA (Table 7.4) show that there is a mixed 

population of PCN in at least one field in Jersey. Out of the 174 cysts tested 38 

were identified as G. rostochiensis, 40 as G. pallida and 96 were not identifiable. 

Therefore, it appears the proportions of G. pallida to G. rostochiensis were 

similar. The large number of unknowns (optical density >100. Table 7.4) may be 

due to the fungal infection of the nematodes, qS Curtis et al. (1998) found PCN 

cysts exposed to nematophagous fungi did not react to the antibodies. This was 

because the eggs were no longer alive and, therefore, did not possess intact, 

recognisable sites on the antigen. These antibodies could therefore potentially be 

used to determine the amount of fungal infection in a population of PCN eggs 

168 



with suitable positive and negative controls. The indetenninate results from the 

ELISA readings, could also be attributed to the antibodies cross reacting with both 

species of Globodera. For some of the cysts there was enough antigen to give a 

optical density reading greater than 100, but both antibodies, R3 and P14, 

recognised the antigen almost equally. 

Due to the high numbers of unknowns from the ELISA results, it was difficult to 

detennine whether the population composition of PCN was shifting from one 

species to another following treatment with the nematophagous fungi. A larger 

number of cysts would need to be tested to determine whether there is a real 

change in the population. 

Overall, the RAPD-PCR results were inconclusive due to contamination as 

indicated by the negative controls (Figure 7.6). However, the bands evident in the 

positive control for the K16 primer set of reactions are faint and indicate the level 

of contamination was low in this case. With the K16 primer, the banding pattern 

of the unknown samples closely match those of G. pallid a (Halford 2000, pers. 

com.). This implies that the positive controls have either degenerated or become 

contaminated hence the cloudy and indeterminate banding. 

With the PCR reactions using the K4 primer, the replication and ban:ding is poor. 

In addition to contamination, this may be due to low levels of original DNA. With 

very low levels of DNA, PCR reactions can produce spurious banding patterns 

due to the primers trying to replicate with themselves. 
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The nematodes used for the PCR were stained in the roots using acid fuchsin stain 

to enable location and recovery before being used for the peR reaction. This is 

the first time it has been reported that DNA from stained nematodes can be used 

for PCR. The poor results may be due to the staining technique disrupting the 

strands of DNA by breaking the single strands into small sections. This may either 

be due to the heat or acid breaking the DNA's hydrogen bonds. 

Tests were carried out to determine the minimum exposure time needed for the 

nematodes within the root to become stained. It was found that after one minute, 

the nematodes were stained sufficiently to allow for identification. Unfortunately, 

there was not enough time to complete the studies and ascertain if the DNA 

recovered from the samples treated with the adjusted protocol, improved the 

results. Different temperatures and stains also need to be investigated to determine 

whether useful DNA can be extracted for successful peR reactions. Longer 

oligonucleotides may help to reduce the low level DNA contamination as they are 

more specific to the target DNA (Fullando et al., 1999). Finally, the peR program 

could be adjusted to perhaps increase annealing time, for example. 
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8 GENERAL DISCUSSION 

8.1 	 FACTORS GOVERNING THE DEVELOPMENT OF PCN 

POPULATIONS IN JERSEY 

8.1.1 ECONOMIC AND COMMERCIAL REQUIREMENTS 

In Jersey, potatoes are monocropped which can potentially lead to very high 

levels of peN building up in the soil. Rotation cannot be used as a method of 

control in Jersey, as it is on the mainland, because the high value of the land is 

such that farmers cannot afford to grow crops such as cereals that have low cash 

returns. Therefore, chemical control is currently the main means of controlling 

peN. However, there is considerable political pressure to reduce chemical inputs 

and move towards a more organic approach to farming, with the intention for the 

island of Jersey to eventually grow only organic produce. 

8.1.2 EFFECTS OF NEMA TICIDES, NATURAL CONTROL AND TIMING OF HARVEST 

A number of factors should be taken into 
." 

account 
" 

when considering the 

population dynamics of peN in Jersey. These are: the two species of Globodera 

now known to be present in Jersey; the early lifting dates for Jersey Royal 

r , 
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potatoes; the possible presence of natural control in some fields; and the 

application of nematicides. 

At present, the use of nematicides is only permitted in fields with over 7 eggs g-l 

soil, and this accounts for approximately 30% of all fields in which potatoes are 

grown. Therefore, approximately 70% of potato fields are not treated with 

nematicides, although these are still cropped annually. The PCN populations in 

some of these fields are not increasing, which indicates there is some form of 

natural control. A survey of nematophagous fungi in Jersey found that the three 

most commonly occurring species, Paecilomyces lilacinus, Plectosphaerella 

cucumerina and V~rticillium chlamydosporium, were not present in all of the 

fields sampled (Appendix 2.2). The presence of these fungi in some of the fields 

not treated with nematicides could be one explanation as to why numbers of PCN 

do not increase after each crop of potatoes. 

The ELISA results and the observations of cyst colour made by the author, clearly 

indicate the presence of both species of Globodera in Jersey. In the fields where 

nematophagous fungi are absent and nematicides are not used, the effect of early 

lifting of the crop is likely to alter the ratio of species towards G. rostochiensis. 

Although both G. rostochiensis and G. paUida were found on and in the roots of 

the potatoes lifted, a greater number of the G. rostochiensis found may be the 

offspring of nematodes hatched in the same season. This maybe due to G. 

rostochiensis hatching earlier and in a shorter period in response to the growing 

crop than G. paUida. 
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However, due to the slower response of G. paUida and longer period of hatch, the 

effects of granular nematicides on the population of this species are less marked. 

The half life of the active ingredients of the two market leaders (Temik and 

Vydate) is approximately three weeks, which is longer then the peak hatching 

period for G. rostochiensis but two to three weeks shorter than the time taken for 

peak hatch of G. pallida. Therefore, the application of nematicides can skew the 

ratio of the two species of PCN towards G. pallida. 

The early lifting dates in Jersey may have a significant effect on PCN populations 

where the crop is lifted up to two months ahead of its natural senescence. In both 

the plunge and field trial it was found that developing females were still present 

on the roots at harvest. This is compared to the majority of crops in the UK, which 

may be grown for up to five months at which point the plants are beginning to 

sene see naturally. Because of the early lifting, the crop can, to some extent, act as 

a trap crop, but due to its duration will mainly trap G: pallida, as most of the G. 

rostochiensis population will have completed its life cycle. 

These different factors have a conflicting effect on a mixed population and 

predicting the outcome of a particular management decision is not a simple task. 
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8.2 	 APPLICATION OF NEMATOPHAGOUS FUNGI FOR CONTROL 

OF PCN IN JERSEY 

8.2.1 FORMULATION 

Studies have shown that alginate pellets are a useful method for entrapping fungal 

spores to prevent them from germinating until rehydrated, or to encapsulate fungal 

biomass which will produce spores later when added to the soil. A balance of 

nutrients is needed within the alginate pellets. The fungi must be able to survive 

within the inoculum until the female nematodes are present on the roots, but the 

nutrient source must not be so high that fungi remain in ~he saprophytic phase of 

their life cycle and fail to parasitise the nematodes. A high level nutrient provider, 

such as milled barley, may increase the level of competition from other micro­

organisms (Stirling & Smith, 1998). Therefore, if a fungus that can fonn resting 

structures, such as V. chlamydosporium, is added, high nutrient formulation may 

be a disadvantage. Further research is needed to develop the optimum level of 

nutrients within the alginate pellets. 

An alternative to alginate pellets is a soil drench of conidia, one advantage of 

which is that the conidia can be applied in a nutrient poor medium. This may 

increase the pathogenicity towards peN of that application because the fungus has 

not been-encouraged into its saprophytic phase. The malt coated Terra-Green®, 

could be used to culture the fungus until conidia are produced, at which point, the 

conidia can be harvested. A second advantage of a drench is that it can be applied 
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to a growing crop. Further tests would be needed to determine whether this is a 

viable option. 

8.2.2 ANTAGONISM AND AGROCHEMICALS 

Fungal antagonism within the soil needs to be considered when selecting a fungal 

species for biological control. This work found that a combination of 

nematophagous fungi may not be as effective as a single species, as the different 

species may have some inhibitory effect on the growth of each other. If more than 

one species of fungus is required in a single field application, compatibility tests 

should be undertaken. 

Our studies indicate that an IPM strategy could be implemented in Jersey in which 

the nematophagous fungi P. lilacinus and V. chlamydosporium, are used with 

tuber applied fungicides. The ability of the fungi to function in the presence of 

certain fungicides is a valuable asset, particularly when convincing a fanning 

community to use a non-established method of disease control. Also of benefit, an 

additional field operation is not necessary for the application of the biocontrol 

agent. 

Paecilomyces lilacinus was also shown to reduce the incidence of R. solani 

without the aid of a fungicide. This fungus is potentially very useful as a dual pest 

control agent for use in organic farming or within an IPM strategy. 
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8.2.3 FuNGAL SPECIES 

Fungal species isolated for use in a biological control may be more effective if 

they are isolated from the same geographical region in which the target pest is 

found as they may be adapted to infect the target pest. The biological control 

agent will also be able to survive the local climate and soil conditions. The mode 

of parasitism of the nematophagous fungi can vary depending on the region from 

which they have been isolated. For example the distribution of nematode trapping 

fungi is determined by the pH of the soil more than any other factor, such as soil 

moisture, nematode density, predators or organic matter (Gray, 1985). Therefore, 

local isolation and production of biological agents is one way of ensuring 

optimum control of the pest by the control agent. The isolates used in the studies 

described in this thesis were all taken from Jersey. 

The phenotypic variation found between the monoconidial isolates, in addition to 

potentionally helping prevent resistance build up in the target pest, may indicate a 

level of flexibility in adapting to other factors such as a variation in soil 

environments across and between fields. The variation between monoconidial 

isolates is also important when considering the potential genotypic variation of the 

peN populations the fungus may be used against. If a combination of polyc1onal 

isolates is used, then genotypic as well as phenotypic variation would be apparent 

in an application of a fungus, further improving the long term efficacy of the 

fungus. 

176 



There have been some reports that P. lilacinus may be pathogenic to man (Castro 

et aI., 1990). However, this fungus appears to be an opportunistic parasite and 

tends to infect only immuno-compromised patients. Paecilomyces lilacinus has 

been commercialised in Australia for controlling plant parasitic nematodes as 

PaeciFM, also called Bioact™, and Nemachek, and toxicity tests for this product 

have found it is non toxic but caution is needed when using these products. 

Paecilomyces lilacinus can produce very large numbers of conidia which can fonn 

airborne dust that is easily inhaled and may cause an allergic reaction (Gumowski 

et ai., 1991). To prevent this from happening, the fungus can be augmented to 

encapsulate the conidia. 

I 

At present the mode of action for fungal infection of the nematode is not known. 

The fungus is known to infect the female stage of the life cycle; this was 

confinned when comparing P. lilacinus treated plants to untreated plants (Figure 

7.5). It would appear that alginate pellets containing P. lilacinus increased hatch 

compared to the controls, but then attacked the young female peN when 

developing on the root, to prevent the development of mature females. Further 

work is needed to detennine whether the fungi are invading the nematodes via the 

mouth, having colonised the plant endophytically, or are penetrating the nematode 

through its cuticle, possibly through ectophytic colonisation of the potato roots. 

By studying stained roots under a light microscope, the author observed all three 

I
" 

fungi colonising the roots as ectophytes (data not shown). Techniques such as 

transmission electron microscopy or confocal microscopy may be able to
I 
4 detennine more conclusively whether the fungi are endophytes. I 

i 
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I 

I 
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These studies did not show any difference in the susceptibility of the two species 

of peN to control by nematophagous fungi studied. The long term effect of these 

biological control agents would be to reduce the population overall but not to 

change the ratio between the species. However, the results are inconclusive and 

further work needs to be done to confirm this. 

8.2.4 RECOMMENDATION FOR CHANGES IN CROP MANAGEMENT PRACTICES 

The results given in the thesis indicate that these fungi could be used for 

commercial control of peN in Jersey, possibly replacing"br augmenting chemical 

nematicides and some fungicides. A suitable regime for the control of peN in 

Jersey, using the augmented nematophagous fungi developed in this thesis, would 

be to broadcast the alginate pellets throughout the soil, to ensure even distribution 

and prevent the possible phytotoxic effect of the alginate pellets. This would be 

followed by a soil drench of V. chlamydosporium to prevent females developing 

on the root, applied post-harvest, when soil temperatures are above the growth 

threshold for that fungus. 

The application of a biological control agent has to be justified economically in 

I terms of increased tuber yield over a period of years. The fixed cost for the control 
I 

of nematodes using either biological control or chemical nematicides is the cost of 

I 
I 

the tractor and man hours for application of the product. The variable cost is that 

of the product applied. The economic threshold will be reached when the 

i application of the biological control agent is paid for by increased return of yield. 

~ 

1

I 
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With the use of nematophagous fungi the cost could decrease over the years as the 

fungi become established in the soil. However, more data is needed on the long 

term effectiveness of the fungi in field soil over several years. 

The disadvantage of using fungal biocontrol in comparison to nematicides is that 

nematicides will reduce nematode populations during the growing season so yield 

will not be lowered, but treatment with fungi may not show yield increase until 

the second season. To minimise yield losses, the nematophagous fungi could be 

applied to fields with low PCN egg counts to prevent a build up of PCN the 

following year. If a field has a high nematode infestation, granular nematicides 

could be applied in combination with the fungi. If the population was 

predominantly G. pallida, the nematicide would have an effect on the initial 

hatching juveniles but break down after a few weeks, whereas the fungi will 

remain saprophytic in the soil until the females are present and then attack them. 

By adding the fungus with the nematicide, the fungus has a chance to work in the 

first year and may remain present in the soil until the next year. 

8.3 RECOMENDATIONS FOR FUTURE WORK 

A recurrent problem throughout this thesis and common within the field of 

biological control (and nematology) is the variation in final egg or nematode 

counts within treatment groups. For many of the results described within this 

thesis, there are large differences between experimental treatments that have not 
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been statistically significant. Some of the work should be repeated but with a 

greater number of replicates. 

As mentioned in chapter seven (section 7.4) alginate pellets have been found to 

cause premature hatch in PCN. If further studies could demonstrate that this 

occurs with no crop present, the pellets could be applied sometime before 

cropping thereby inducing hatch when there is no host plant present. However, 

there are a number of factors to be considered, such as soil temperature and 

season. Regardless of obvious environmental factors such as temperature 

fluctuation and soil water content, PCN appear to preferentially hatch in the 

spring rather than at any other time of year. 

Field scale studies are needed to validate the efficacy of the three fungi against 

peN when used in a commercial situation in conjunction with other pesticides. 

These studies would need to be extended over several seasons to assess long term 

changes in peN and fungal populations. 

Studies to look at the efficacy of the fungi against different populations of each 

species of peN both in Jersey and in other parts of the world such as South 

America, the area in which peN originated, needs to be conducted. This is 

because there are a large number of recognised pathotypes and isolates of peN 

(Bendezu, 1997), which may be affected differently by different isolates of fungi 

and the right isolate for the targetted peN population would need to be found. 
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The ability to predict the response of a PCN population within a particular field 

would be very useful as a management tool but, as described earlier, the factors to 

be considered have a complex effect. Further studies to look at any selective 

effects of a biological control on a mixed PCN population would also be needed. 

In summary, the work outlined in this thesis has demonstrated that there is 

potential for a commercially viable biological control agent that can be easily 

incorporated into current farming practices. 
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Abstract - IOBC Working Group; International Organisation for Biological 

Control, Wageningen, The Netherlands. December, 1996. 

The fungi that have been studied for use as biological control agents of nematodes 

are subject to much variation in growth rates, morphological appearance, spore 

production, and pathogenicity towards nematodes. Not only do these variations 

exist between geographically different isolates of the same fungal species, but also 

between different single spore isolates taken from the same culture. Additionally, 

these fungi can change with time, depending on the conditions in which they are 

kept. This partly explains some of the problems and inconsistencies the we have 

experienced in working with such fungi. However, by understanding more about 

these variations, and exposing the fungi to certain selective pressures, it may be 

possible to improve our strains, and make them more stable. 
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POTENTIAL FOR BIOLOGICAL CONTROL OF POTATO CYST NEMATODES IN 

JERSEY 

Helen Jacobs1,2, David H. Crump! & Simon N. Gray2 

IDept. of Entomology & Nematology, IACR-Rothamsted, Harpenden, Herts., 

AL5 2JQ. 2Dept. of Biology & Health Science, University of Luton, Park Sq., 

Luton, Beds., LUI 3JU 

Abstract - Nematology, Association of Applied Biologists, London, UK, 

December, 1997. 

Jersey Royal potatoes are an important industry for Jersey with an export value of 

nearly £28 million in 1996. Fields are intensively cropped, occasionally twice per 

annum, so there is no opportunity for crop rotation -to control potato cyst 

nematodes (PCN). Control of these pests in Jersey has traditionally relied on the 

use of nematicides, but with increased awareness of the deleterious effects of 

nematicides there is a desire to find alternative control measures. Due to the high 

value but small scale nature of the industry, the intensity of the cropping and the 

climate, the use of a fungal biological control agent, integrated with other control 

measures, looks promising. 

Three nematophagous fungi have been studied as potential biocontrol agents, 

Acremonium sp., Paecilomyces lilacinus and Venicillium chlamydosporium. The 

survival of these fungi when applied to the field will depend upon interactions of 

the nematophagous fungi with agrochemicals and with other soil fungi. In vitro 

tests have shown that fungicides used to control Black scurf and Stem canker 

caused by Rhizoctonia solani reduce the growth rate and alter the morphology of 

the nematophagous fungi studied. It is known that the incidence of R. solani on 
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plants is reduced as a consequence of competition with other fungi (Chand & 

Logan, 1984. Trans. Brit. Mycol. Soc. 83, 107-112). The nematophagous fungi 

were therefore tested against R. solani, to determine whether they could inhibit the 

growth of this plant pathogen, removing the need to apply fungicides. 

Paecilomyces lilacinus was an antagonist towards R. solani and could possibly be 

used as a biocontrol agent for both PCN and R. solani. Verticillium 

chlamydosporium inhibited R. solani and Acremonium sp. at 200e but not at wOe, 

showing that competition between the fungi is affected by temperature. 

Acremonium sp. was found to be a poor competitor when grown in the presence of 

the other fungi; this will have to be taken into account if this species is developed 

further as a biological control agent for peN. 
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BIOLOGICAL CONTROL OF POTATO CYST NEMATODES IN JERSEY 

Helen Jacobsl ,2, David H. Crump! & Simon N. Gray2 

IDept. of Entomology & Nematology, IACR-Rothamsted, Harpenden, Herts., 

AL5 2JQ. 2Dept. of Biology & Health Science, University of Luton, Park Sq., 

Luton, Beds., LUI 3JU 

Abstract - lOBe Working Group, International Organisation for Biological 

Control, Bonn, Germany, February, 1998. 

The survival of the nematophagous fungi Acremonium sp., Paecilomyces lilacinus 

and Verticillium chlamydosporium, when applied to the field will depend upon 

interactions with agrochemicals and the interactions with abiotic and biotic soil 

factors. In vitro tests have shown that fungicides used to control Black scurf and 

Stem canker caused by Rhizoctonia solani reduce the growth rate and alter the 

morphology of the nematophagous fungi studied. It is known that the incidence of 

R. solani on plants is reduced as a consequence of competition with other fungi 

(Chand & Logan, 1984. Trans. Brit. Mycol. Soc. 83, 107-112). The 

nematophagous fungi were therefore tested against R. solani, to detennine 

whether they could inhibit the growth of this plant pathogen, removing the need to 

apply fungicides. Paecilomyces lilacinus was an antagonist towards R. solani and 

could possibly be used as a biocontrol agent for both potato cyst nematodes 

(PCN) and R. solani. Verticillium chlamydosporium inhibited R. solani and 

Acremonium sp. at 20°C but not at lOoC, showing that competition between the 

fungi is affected by temperature. Acremonium sp. was found to be a poor 

competitor when grown in the presence of the other fungi and may affect its 

potential as a biological control agent for PCN. 
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ANTAGONISM BETWEEN AGROCHEMICALS, PLANT PATHOGENIC FUNGI AND 


NEMATOPHAGOUS FUNGI. 


H. Jacobs1,2, S. N. Gray2 & n. H. CrumpI, 

Inept. of Entomology & Nematology, IACR-Rothamsted, Harpenden, Herts., 

AL5 2JQ. 2Dept. of Biology & Health Science, University of Luton, Park Sq., 

Luton, Beds., LUi 3JU. 

Abstract - The future of fungi in the control of weeds, pests and diseases, 

British Mycological Society, Southampton, UK. April, 1998. 

The nematophagous fungi Acremonium sp., Paecilomyces lilacinus and 

Verticillium chlamydosporium are potential biological control agents for the 

potato cyst nematode (Globodera sp.). The survival of these fungi when applied to 

the field will depend upon interactions of the nematophagous fungi with 

agrochernicals and other soil fungi. In vitro tests have shown that fungicides used 

to control Black scurf and Stem canker caused by Rhizoctonia solani reduce the 

growth rate and alter the morphology of the nematophagous fungi studied. It is 

known that the incidence of R. solani on plants is reduced as a consequence of 

competition with other fungi (Chand & Logan, 1984. Trans. Brit. Mycol. Soc. 83, 

107-112). Competition between the nematophagous fungi and R. solani was 

investigated by growing the four species in pairs on plates. P. lilacinus was 

antagonistic towards R. solani and could possibly be used as a biological control 

agent for both PCN and R. solani, thus reducing the need for fungicide application 

and increasing the likelihood that a fungal biologi~.al control agent l"ould persist 

in the soil. V. chlamydosporium inhibited R. solani and Acremonium sp. at 20°C 

but not at lOoC, showing that competition between soil fungi is affected by 

temperature. Acremonium sp. was found to be a poor competitor when grown in 
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the presence of the other fungi, which may compromise its potential as a 

biological control agent for peN. 
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DEVELOPMENT OF AN IMMUNOASSAY FOR THE IDENTIFICATION AND 

QUANTIFICATION OF GLOBODERA PALLIDA AND G. ROSTOCHIENSIS USING 

THE 34 KD ANTIGEN 

A.D. P. Barker\ K. G. Davies!, M. EIsel, H. Jacobs1,2, J. N. Perry!, 

M. J. Russelll & K. Evans1 

lIACR-Rothamsted, Harpenden, Hertfordshire, ALS 2JQ. 2Dept. of Biology 

& Health Science, University of Luton, Park Sq., Luton, Beds., LUI 3JU. 

Abstract - Nematology, Association of Applied Biologists, London, UK, 


December, 1998. 


Two monoclonal antibodies which can differentiate G. pallida from G. 

rostochiensis by recognising the two diagnostic proteins_ with pIs of 5.7 and 5.9 

respectively, both of which have a molecular weight of 34kD, are being used to 

develop a quantitative assay. The monoclonal antibody which recognised G. 

pallida showed much greater variation in replicate tests with different batches of 

G. pallida cysts than did the monoclonal antibody which recognised G. 

rostochiensis. Results obtained using single cysts were far more variable than 

when 5 or more cysts were processed simultaneously but the variation observed 

between single cysts did not correlate to cyst size. Tests that used BSA, milk 

powder or extracts of other nematodes species to block non-specific binding sites 

did not reduce the variation. Factors such as soaking time and storage 

temperature following extraction also affected the variability of the assay. 

Small amounts of cross-reactivity by the monoclonal antibodies makes the 

identification and accurate quantification of mixed potato cyst nematode samples 

difficult. A method is being developed which quantifies each of the nematode 
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species by probing extracts of mixed samples by each of the two monoclonal 

antibodies. A set of standard mixtures of antigen of the two species of potato 

cyst nematodes was made and the concentration of antigen for each nematode 

species plotted against optical density for each monoclonal antibody. From these 

plots of standard mixtures, planes of equivalence can be constructed. At a given 

optical density, two lines can be constructed along two planes fonned by a set of 

standard mixtures of the two potato cyst nematode species. The lines can be 

described by equations which, when solved simultaneously, will give x and y co­

ordinates that can be compared to the standards. From this it is possible to 

identify and quantify each of the nematodes present in the sample. 
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APPENDIX 2 SUPPLEl\1ENTARY DATA 

APPENDIX 2.1 EFFECT OF PRE-TREATMENT OF ALGINATE 
PELLETS 

Table A2.1 The effect of pre-treatment of alginate pellets on numbers of G. 

rostochiensis eggs (section 5.3.2.3). 

Eggs g'! soil Pellet pre-treatment 

Replicate Pellets Crushed Soaked 

1 318 102.1 248.9 

2 193.7 45.7 342.7 

3 149.5 33.1 343.8 

4 148 67.1 476 

5 155.1 63.9 125.4 

6 334.8 84.7 279.6 

7 140.7 461.2 275.2 

8 332. 10.6 141.7 

9 232.4 492.8 83.8 

Anova: Single Factor 

SUMMARY 

Groups Count Sum Average Variance 

Pellets 9 2004.494 222.7215 7098.566 

Crushed 9 1361.156 151.2395 34893.14 

Soaked 9 2317.334 257.4816 15546.92 

ANOVA 

Source of Variation ss df MS F P-value F crit 

Between Groups 52815.94 2 26407.97 1.376882 0.271591 3.402832 
Within Groups 460309.1 24 19179.54 
Total 513125 26 
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APPENDIX 2.2 NEMATODE SURVEY 


Figure A2.1 Nematophagous fungi recovered from nematodes and soil* in 

fields in Jersey. 

V. chlamydosporium 
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