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Abstract 

Genetic improvement through breeding is one of the key approaches to increasing biomass supply. 

This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that 

have high output-input energy ratios: namely Panicum virgatum (switchgrass), species of the genera 

Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of 
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germplasm collections, the efforts to date to phenotype and genotype the diversity available for 

breeding, and on the scale of breeding work as indicated by number of attempted deliberate 

crosses. We also report on the development of faster and more precise breeding using molecular 

breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of 

biological knowledge and genetic resources. Linkage maps, transgenesis, and genome editing 

methods are now being used in commercially focused poplar breeding. These are in development in 

switchgrass, miscanthus and willow generating large genetic and phenotypic datasets requiring 

concomitant efforts in informatics to create summaries that can be accessed and used by practical 

breeders. Cultivars of switchgrass and miscanthus can be seed-based synthetic populations, semi-

hybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and 

regional level, the most advanced cultivars in each crop are at technology readiness levels which 

could be scaled to planting rates of thousands of hectares per year in about 5 years with existing 

commercial developers. Investment in further development of better cultivars is subject to current 

market failure and the long breeding cycles. We conclude that sustained public investment in 

breeding plays a key role in delivering future mass-scale deployment of PBCs.  

 

KEYWORDS: perennial biomass crop, Panicum virgatum, Miscanthus, M. sinensis, M. sacchariflorus, 

Salix spp., Populus spp., bioenergy, lignocellulose, feedstocks.  

 

Introduction 

Increasing sustainable biomass production is an important component of the transition from a 

fossil fuel-based economy to renewables. Taking the UK as an example, Lovett et al. (2014) 

suggested that 1.4 million ha of marginal agricultural land could be used for biomass production 

without compromising food production. Assuming a biomass dry matter (DM) yield of 10 Mg ha-1 
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and a calorific value of 18 GJ Mg-1 DM, 1.4 million ha would deliver around 28 TWh of electricity 

(with 40% biomass conversion efficiency) which would be ~8% of primary UK electricity generation 

(336 TWh in 2017 (DUKES, 2017)). To achieve this by 2050, planting rates of ~35,000 ha y-1 would be 

needed from 2022, in line with calculations by Evans (2017). The current annual planting rates in the 

UK are orders of magnitude short of these levels at only several hundred hectares per year. Similar 

scenarios have been generated for other countries (BMU, 2009; Scarlat et al., 2015). 

If perennial biomass crops (PBCs) are to make a real contribution to sustainable development 

they should be grown on agricultural land which is less suitable for food crops (Lewandowski, 2015). 

This economically ‘marginal’ land is typically characterised by abiotic stresses (drought, flooding, 

stoniness, steep slope, exposure to wind, and sub-optimal aspect), low nutrients, and /or 

contaminated soils (Tóth et al., 2016). In these challenging environments, PBCs need resilience traits. 

They also need high output:input ratios for energy (typically 20 to 50) to deliver large carbon savings. 

Land may also be marginal due to environmental vulnerability. Much of the value for society from 

the genetic improvement of these crops depends on positive effects arising from highly productive 

perennial systems. In addition to producing biomass as a carbon source to replace fossil carbon, 

these crops reduce nitrate leaching (Pugesgaard et al., 2015), making them good candidates to help 

fulfil Water Framework Directive (2000/60/EC) and can increase soil carbon storage during their 

production (McCalmont et al., 2017).  

The objective of this paper is to report on the preparedness for wide deployment by summarising 

the technical state-of-the-art in breeding of four important PBCs: namely switchgrass, miscanthus, 

willow and poplar. These four crops are the most promising and advanced PBCs for temperate 

regions and have therefore the focus here. Switchgrass and miscanthus are both rhizomatous 

grasses with C4 photosynthesis while willow and poplar are trees with C3 photosynthesis. Specifically, 

this paper 1) reviews available crop trait genetic diversity information; 2) assesses the progress of 

conventional breeding technologies for yield resilience and biomass quality; 3) reports on progress 
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with new molecular based breeding technologies to increase speed and precision of selection; and 4) 

discusses the requirements and next steps for breeding of PBCs, including commercial 

considerations in order to sustainably meet the biomass requirements of a growing worldwide 

bioeconomy. 

We summarise the crop specific attributes, the location of breeding programmes, the current 

availability of commercial cultivars and yield expectations in selected environments (Table 1), and 

the generalised breeding targets for all PBCs (Table 2). Economic information relating to the current 

market value of the biomass and the investment in breeding are presented for different countries / 

regions in Table 3. We also present a comparison of the pre-breeding and conventional breeding 

efforts step-by-step, starting with wild germplasm collection and evaluation before wide crossing of 

wild relatives (Table 4). Hybridisation is followed by at least 6 years of selection and evaluation 

before commercial upscaling can begin (Figure 1). Recurrent selection, often over decades, is used 

within parent populations as part of an ongoing long-term process to produce hybrid vigour 

(Brummer, 1999). In the following sections the state-of-the-art and new opportunities of breeding 

switchgrass, miscanthus, willow and poplar are described. The application of modern breeding 

technologies is compared for the four crops in Table 5. It is most advanced in poplar, and is therefore 

described in most detail. 

Switchgrass 

Switchgrass is indigenous to the North American prairies. It is grown from seed and harvested 

annually using technology similar to that used for pastures. Based on collections from thousands of 

wild prairie remnants, the genetic resources are roughly divided into lowland and upland ecotypes 

and there are distinct clades within each ecotype which occur along both latitudinal and longitudinal 

gradients (Zhang et al., 2011; Lu et al., 2013; Evans et al., 2018). Genotype-by-environment 

interactions (G  E) are strong and must be considered in breeding (Casler, 2012; Casler et al., 2012). 

Adaptation to environment is regulated principally by responses to day-length and temperature. 
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There are also strong genotype  environment interactions between the drier western regions and 

the wetter eastern regions (Casler et al., 2017). 

The growing regions of North America are divided into four adaptation zones for switchgrass, 

each roughly corresponding to two official hardiness zones. The lowland ecotypes are generally late 

flowering, high yielding and adapted to warmer climates, but have lower drought and cold resistance 

than upland ecotypes (Casler, 2012; Casler et al., 2012).  

In 2015, the United States Department of Agriculture (USDA) National Plant Germplasm System, 

GRIN (https://www.ars-grin.gov/npgs/), had 181 switchgrass accessions, of which only 96 were 

available for distribution due to limitations associated with seed multiplication (Casler et al., 2015). 

There are well over 2,000 additional uncatalogued accessions (Table 1) held by various universities 

but the USDA access to these is also constrained by the effort needed in seed multiplication. 

Switchgrass is a model herbaceous species for conducting scientific research on biomass (Sanderson 

et al., 2006), but little funding is available for the critical pre-breeding work that is necessary to link 

this biological research to commercial breeding. More than a million genotypes from ~2,000 

accessions (seed accessions contain many genotypes) have been phenotypically screened in spaced 

plant nurseries and ten thousand of the most useful have been genotyped with different 

technologies, depending on the technology available at the time when these were performed. From 

these characterised genotypes, parents are selected for exploratory pairwise crosses to produce 

synthetic populations within ecotypes. Switchgrass, like many grasses, is outcrossing due to a strong 

genetically controlled self-incompatibly (akin to the S-Z-locus system of other grasses; (Martinez-

Reyna & Vogel, 2002)). Thus, the normal breeding approaches used are F1 wide crosses and 

recurrent selection cycles within synthetic populations.  

The scale of these programmes varies from small-scale conventional breeding, based solely on 

phenotypic selection (e.g. REAP Canada, Montreal, Quebec), to large programmes incorporating 

modern molecular breeding methods (e.g., USDA-ARS, Madison, Wisconsin). Early agronomic 
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research and biomass production efforts were focused on the seed-based multiplication of 

promising wild accessions from natural prairies. Cultivars Alamo, Kanlow, and Cave-in-Rock were 

popular due to high yield and moderate-to-wide adaptation. Conventional breeding approaches 

focussed on biomass production traits and have led to the development of five cultivars particularly 

suited to biomass production: Cimarron, EG1101, EG1102, EG2101, and Liberty. The first four of 

these represent the lowland ecotype and were developed either in Oklahoma or Georgia. Liberty is a 

derivative of lowland  upland hybrids developed in Nebraska following selection for late flowering, 

the high yield of the lowland ecotype and cold tolerance of the upland ecotype (Vogel et al., 2014). 

These five cultivars were all approximately 25-30 years in the making, counting from the initiation of 

these breeding programmes. Many more biomass-type cultivars are expected within the next few 

years as these and other breeding programmes mature. The average rate of gain for biomass yield in 

long-term switchgrass breeding programmes has been 1-4% per year, depending on ecotype, 

population, and location of the breeding programme (Casler & Vogel, 2014; Casler et al., 2018). The 

hybrid derivative Liberty has a biomass yield 43% higher than the better of its two parents (Casler & 

Vogel, 2014; Vogel et al., 2014). The development of cold-tolerant and late-flowering lowland-

ecotype populations for the northern USA has increased biomass yields by 27% (Casler et al., 2018). 

Currently, more than twenty recurrent selection populations are being managed in the USA to 

select parents for improved yield, yield resilience and compositional quality of the biomass. For the 

agronomic development and upscaling, high seed multiplication rates need to be combined with 

lower seed dormancy to both reduce crop establishment costs and risks. Expresso is the first cultivar 

with significantly reduced seed dormancy which is the first step toward development of 

domesticated populations (Casler et al., 2015). Most phenotypic traits of interest to breeders require 

a minimum of 2 years to be fully expressed which results in a breeding cycle that is at least two 

years. More complicated breeding programmes, or traits that require more time to evaluate, can 

extend the breeding cycle to 4 to 8 years per generation, e.g., progeny testing for biomass yield or 
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field-based selection for cold tolerance. Breeding for a range of traits with such long cycles calls for 

the development of molecular methods to reduce time scales and improve breeding efficiency.  

Two association panels of switchgrass have been phenotypically and genotypically characterized 

to identify quantitative trait loci (QTLs) that control important biomass traits. The northern panel 

consists of 60 populations, approximately 65% from the upland ecotype. The southern panel consists 

of 48 populations, approximately 65% from the lowland ecotype. Numerous QTLs have been 

identified within the northern panel to date (Grabowski et al., 2017). Both panels are the subject of 

additional studies focused on biomass quality, flowering and phenology, and cold tolerance. 

Additionally, numerous linkage maps have been created by the pairwise crossing of individuals with 

divergent characteristics, often to generate four-way crosses that are analysed as pseudo-F2 crosses 

(Okada et al., 2010; Liu et al., 2012; Serba et al., 2013; Tornqvist et al., 2018). Individual markers and 

QTLs identified can be used to design marker-assisted selection (MAS) programmes to accelerate 

breeding and increase its efficiency. Genomic prediction and selection (GS) holds even more promise 

with the potential to double or triple the rate of gain for biomass yield and other highly complex 

quantitative traits of switchgrass (Ramstein et al., 2016; Casler & Ramstein, 2018). The genome of 

switchgrass has recently been made public through the Joint Genome Institute 

(https://phytozome.jgi.doe.gov/). 

Transgenic approaches have been heavily relied upon to generate unique genetic variants, 

principally for traits related to biomass quality (Merrick & Fei, 2015). Switchgrass is highly 

transformable using either Agrobacterium mediated transformation or biolistics bombardment, but 

regeneration of plants is the bottleneck to these systems. Traditionally, plants from the cultivar 

Alamo were the only re-generable genotypes, but recent efforts have begun to identify more 

genotypes from different populations that are capable of both transformation and subsequent 

regeneration (Li & Qu, 2011; King et al., 2014; Ogawa et al., 2014; Ogawa et al., 2016). Cell-wall 

recalcitrance and improved sugar release are the most common targets for modification (Fu et al., 
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2011; Biswal et al., 2018). Transgenic approaches have the potential to provide traits that cannot be 

bred using natural genetic variability. However, they will still require about 10-15 years and will cost 

$70-100 million for cultivar development and deployment (Harfouche et al., 2011). In addition, there 

is commercial uncertainty due to the significant costs and unpredictable timescales and outcomes of 

the regulatory approval process in the countries targeted for seed sales. As seen in maize, one 

advantage of transgenic approaches is that they can easily be incorporated into F1 hybrid cultivars 

(Casler, 2012; Casler et al., 2012), but this does not decrease the time required for cultivar 

development due to field evaluation and seed multiplication requirements. 

The potential impacts of unintentional gene flow and establishment of non-native transgene 

sequences in native prairie species via cross-pollination are also major issues for the environmental 

risk assessment. These limit further the commercialization of varieties made using these 

technologies. Although there is active research into switchgrass sterility mechanisms to curb 

unintended pollen-mediated gene transfer, it is likely that the first transgenic cultivars proposed for 

release in the USA will be met with considerable opposition due to the potential for pollen flow to 

remaining wild prairie sites which account for less than 1% of the original prairie land area and are 

highly protected by various governmental and non-governmental organizations (Casler et al., 2015). 

Evidence for landscape-level, pollen-mediated gene flow from genetically modified Agrostis seed 

multiplication fields (over a mountain range) to pollinate wild relatives (Watrud et al., 2004) 

confirms the challenge of using transgenic approaches. Looking ahead, genome editing technologies 

hold considerable promise for creating targeted changes in phenotype (Burris et al., 2016; Liu et al., 

2018) and at least in some jurisdictions it is likely that cultivars resulting from gene-editing will not 

need the same regulatory approval as GMOs (Jones, 2015a). However in July 2018 the European 

Court of Justice (ECJ) ruled that cultivars carrying mutations resulting from gene editing should be 

regulated in the same way as GMOs. The ECJ ruled that such cultivars be distinguished from those 

arising from untargeted mutation breeding which is exempted from regulation under Directive 

2001/18/EC. 
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Miscanthus  

Miscanthus is indigenous to eastern Asia and Oceania where it is traditionally used for forage, 

thatching and paper making (Xi, 2000; Xi & Jezowkski, 2004). In the 1960s, the high biomass 

potential of a Japanese genotype, introduced to Europe by Danish nurseryman Aksel Olsen in 1935, 

was first recognised in Denmark (Linde-Laursen, 1993). Later, this accession was characterised, 

described and named as ‘M.  giganteus’ (Greef & Deuter, 1993; Hodkinson & Renvoize, 2001), 

commonly abbreviated as Mxg. It is a naturally occurring interspecies triploid hybrid between 

tetraploid M. sacchariflorus (2n = 4x) and diploid M. sinensis (2n = 2x). Despite its favourable 

agronomic characteristics and ability to produce high yields in a wide range of environments in 

Europe (Kalinina et al., 2017), the risks of reliance on it as a single clone have been recognised. 

Miscanthus, like switchgrass, is outcrossing due to self-incompatibility (Jiang et al., 2017). Thus 

seeded hybrids are an option for commercial breeding. Miscanthus can also be vegetatively 

propagated by rhizome or invitro culture, which allows the development of clones. The breeding 

approaches are usually based on F1 crosses and recurrent selection cycles within the synthetic 

populations. There are several breeding programmes that target improvement of miscanthus traits 

including stress resilience, targeted regional adaptation, agronomic ‘scalability’ through cheaper 

propagation, faster establishment, lower moisture and ash contents and greater usable yield 

(Clifton-Brown et al., 2017). 

Germplasm collections specifically to support breeding for biomass started in the late 1980s and 

early 90s in Denmark, Germany and the UK (Clifton-Brown et al., 2015). These collections have 

continued with successive expeditions from European and US teams assembling diverse collections 

from a wide geographic range in eastern Asia, including from China, Japan, South Korea, Russia, and 

Taiwan (Stewart et al., 2009; Hodkinson et al., 2015). Three key miscanthus species for biomass 

production are M. sinensis, M. floridulus and M. sacchariflorus. M. sinensis is widely distributed 

throughout eastern Asia, with an adaptive range from the sub-tropics to southern Russia (Zhao et al., 
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2013). This species has small rhizomes and produces many tightly packed shoots forming a ‘tuft’. M. 

floridulus has a more southerly adaptive range with a rather similar morphology to M. sinensis, but 

grows taller with thicker stems and is evergreen and less cold tolerant than the other miscanthus 

species. M. sacchariflorus is the most northern-adapted species ranging to 50 °N in eastern Russia 

(Clark et al., 2016). Populations of diploid and tetraploid M. sacchariflorus are found in China (Xi, 

2000) and South Korea (Yook, 2016), and eastern Russia, but only tetraploids have been found in 

Japan (Clark et al., 2018). 

Germplasm has been assembled from multiple collections over the last century, though some 

early collections are poorly documented. This historical germplasm has been used to initiate 

breeding programmes largely based on phenotypic and genotypic characterisation. As many of the 

accessions from these collections are ‘origin unknown’, crucial environmental envelope data are not 

available. UK-led expeditions started in 2006 and continued until 2011 with European and Asian 

partners and have built up a comprehensive collection of 1,500 accessions from 500 sites across 

Eastern Asia, including China, Japan, South Korea and Taiwan. These collections were guided using 

spatial climatic data to identify variation in abiotic stress tolerance. Accessions from these recent 

collections were planted, following quarantine, in multi-location nursery trials at several locations in 

Europe to examine trait expression in different environments. Based on the resulting phenotypic and 

molecular marker data, several studies (1) characterised patterns of population genetic structure 

(Slavov et al., 2013; Slavov et al., 2014); (2) evaluated the statistical power of Genome-wide 

association study (GWAS) and identified preliminary marker-trait associations (Slavov et al., 2013; 

Slavov et al., 2014); and (3) assessed the potential of genomic prediction (Slavov et al., 2014; Davey 

et al., 2017; Slavov et al., 2018b). Genomic index selection in particular offers the possibility of 

exploring scenarios for different locations or industrial markets (Slavov et al., 2018a; Slavov et al., 

2018b).  
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Separately, US-led expeditions also collected about 1,500 accessions between 2010 and 2014 

(Clark et al., 2014; Clark et al., 2015; Clark et al., 2016; Clark et al., 2018). A comprehensive genetic 

analysis of the population structure has been produced by RADseq for M. sinensis (Clark et al., 2015; 

van der Weijde et al., 2017c) and M. sacchariflorus (Clark et al., 2018). Multi-location replicated field 

trials have also been conducted on these materials in North America and in Asia. GWAS has been 

conducted for both M. sinensis and a subset of M. sacchariflorus accessions (Clark et al., 2016). To 

date, about 75% of these recent US-led collections are in nursery trials outside the USA. Due to 

lengthy USA quarantine procedures, these are not yet available for breeding in the USA. However, 

molecular analyses have allowed us to identify and prioritize sets of genotypes that best encompass 

the genetic variation in each species. 

While most M. sinensis accessions flower in northern Europe, very few M. sacchariflorus accessions 

flower even in heated glasshouses. For this reason, the European programmes in the UK, 

Netherlands and France have performed mainly M. sinensis (intraspecies) hybridisations (Table 4). 

Selected progeny become the parents of later generations (recurrent selection, as in switchgrass). 

Seed sets of up to 400 seed per panicle occur in M. sinensis. In Aberystwyth and Illinois, significant 

efforts to induce synchronous flowering in M. sacchariflorus and M. sinensis have been made 

because interspecies hybrids have proven higher yield performance and wide adaptability (Kalinina 

et al., 2017). In interspecies pairwise crosses in glasshouses, breathable bags and/or large crossing 

tubes or chambers in which 2 or more whole plants fit are used for pollination control. Seed sets are 

lower in bags than in the open air because bags restrict pollen movement whilst increasing 

temperatures and reducing humidity(Clifton-Brown et al., 2018). About 30% of attempted crosses 

produced 10 to 60 seeds per bagged panicle. The seed (thousand seed mass ranges from 0.5 to 0.9 

g) are threshed from the inflorescences and sown into modular trays to produce plug plants, which 

are then planted in field nurseries to identify key parental combinations.  
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A breeding programme of this scale must serve the needs of different environments, accepting 

the common purpose is to optimise the interception of solar radiation. An ideal hybrid for a given 

environment combines adaptation to date of emergence with optimisation of traits such as height, 

number of stems per plant, flowering and senescence time to optimise solar interception to produce 

a high biomass yield with low moisture content at harvest (Robson et al., 2013a; Robson et al., 

2013b). By 2013/2014, conventional breeding in Europe had produced intra- and interspecific fertile 

seeded hybrids. When a cohort (typically about 5) of outstanding crosses have been identified, it is 

important to work on related upscaling matters in parallel. These are: 

 Assessment of the yield and critical traits in selected hybrids using a network of field 

trials. 

 Efficient cloning of the seed parents. While in vitro and macro cloning techniques are 

used some genotypes are amenable to neither technique.  

 High seed production from field crossing trials conducted in locations where 

flowering in both seed and pollen parents are likely to happen synchronously.  

 Scalable and adapted harvesting, threshing and seed processing methods for 

producing high seed quality.  

The results of these parallel activities need to be combined to identify the up-scaling pathway for 

each hybrid; if this cannot be achieved the hybrid will likely not be commercially viable. The UK-led 

programme with partners in Italy and Germany show that seed-based multiplication rates of 1:2,000 

are achievable for They provide potential routes several interspecific hybrids (Clifton-Brown et al., 

2017). The multiplication rate of M. sinensis is higher, probably 1:5,000-10,000. Conventional cloning 

from rhizome is limited to around 1:20, i.e. one ha of rhizome production could supply around 20 ha 

of new plantation. 

Multi-location field testing of wild and novel miscanthus hybrids selected by breeding 

programmes in the Netherlands and the UK was performed as part of the project Optimizing 
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Miscanthus Biomass Production (OPTIMISC, 2012-2016). These trials showed that commercial yields 

and biomass qualities (Kiesel et al., 2017; van der Weijde et al., 2017a; Van der Weijde et al., 2017d) 

could be produced in a wide range of climates and soil conditions from the temperate maritime 

climate of western Wales to the continental climate of eastern Russia and the Ukraine (Kalinina et 

al., 2017). Extensive environmental measurements of soil and climate, combined with growth 

monitoring is being used to understand abiotic stresses (Nunn et al., 2017; Van der Weijde et al., 

2017b) and develop genotype specific scenarios similar to those reported earlier in Hastings et al. 

(2009). Phenomics experiments on drought tolerance have been conducted on wild and improved 

germplasm (Malinowska et al., 2017; Van der Weijde et al., 2017b). Recently produced interspecific 

hybrids displaying exceptional yield under drought  (~30% greater than control Mxg) in field trials in 

Poland and Moldova are being further studied in detail in the phenomics and genomics facility at 

Aberystwyth to better understand gene-trait associations which can be fed back into breeding.  

Intraspecific seeded hybrids of M. sinensis produced in the Netherlands and interspecific M. 

sacchariflorus x M. sinensis hybrids produced by the UK-led breeding programme have entered yield 

testing in 2018 with the recently EU-funded project ‘GRowing Advanced industrial Crops on marginal 

lands for biorEfineries (GRACE)’ (https://www.grace-bbi.eu/). Substantial variation in biomass quality 

for saccharification efficiency (glucose release as % of dry matter), ash content, and melting point 

has already been generated in intraspecific M. sinensis hybrids (Van der Weijde et al., 2017d) across 

environments (van der Weijde et al., 2017a). GRACE aims to establish more than 20 hectares of new 

inter- and intraspecific seeded hybrids across 6 European countries. This project is building the 

know-how and agronomy needed to transition from small research plots to commercial scale field 

sites and linking biomass production directly to industrial applications. The biomass produced by 

hybrids in different locations will be supplied to innovative industrial end-users making a wide range 

of bio-based products, both for chemicals and energy. In the U.S., multi-location yield were initiated 

in 2018 to evaluate new triploid M.  giganteus genotypes developed at Illinois. Currently, infertile 

hybrids are favoured in the USA because this eliminates the risk of invasiveness from naturally 
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dispersed, viable seed. The precautionary principle is applied as fertile miscanthus has naturalised in 

several states (Quinn et al., 2010). In North European multi-location field trials in the EMI and 

OPTIMISC projects have shown there is minimal risk of invasiveness even in years when fertile 

flowering hybrids produce viable seed. Naturalised stands have not established here due perhaps to 

low dormancy, poor overwintering, and low seedling competitive strength. In addition to breeding 

for non-shattering or sterile seeded hybrids, Quinn et al. (2010) suggest management strategies 

which can further minimize environmental opportunities to manage the risk of invasiveness. 

Molecular breeding and biotechnology: In miscanthus, new plant breeding techniques (Table 5) have 

focussed on developing molecular markers for breeding in Europe, the USA, South Korea and Japan. 

There are several publications on QTL mapping populations for key traits such as flowering (Atienza 

et al., 2003a) and compositional traits (Atienza et al., 2003c). In the USA and UK, independent and 

interconnected bi-parental ‘mapping’ families have been studied (Gifford et al., 2015; Dong et al., 

2018) alongside panels of diverse germplasm accessions for GWAS (Slavov et al., 2014). Further 

developments calibrating GS with very large panels of parents and cross progeny are underway 

(Davey et al., 2017). The recently completed first miscanthus reference genome sequence is 

expected to improve the efficiency of MAS strategies, and especially GWAS 

(https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Msinensis_er). For example, without 

a reference genome sequence Clark et al. (2014) obtained 21,207 RAD-seq SNPs (single nucleotide 

polymorphisms) on a panel of 767 miscanthus genotypes (mostly M. sinensis), but subsequent 

reanalysis of the RAD-seq data using the new reference genome resulted in hundreds of thousands 

of SNPs being called. 

Robust and effective in vitro regeneration systems have been developed for Miscanthus sinensis, 

M.  giganteus and M. sacchariflorus (Wang et al., 2011; Zhang et al., 2012; Dalton, 2013; Guo et al., 

2013; Rambaud et al., 2013; Hwang et al., 2014a; Ślusarkiewicz-Jarzina et al., 2017). However, there 

is still significant genotype-specificity and these methods need ‘in-house’ optimisation and 
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development to be used routinely. They provide potential routes for rapid clonal propagation and 

also as a basis for genetic transformation. Stable transformation using both biolistics (Wang et al. 

2011) and Agrobacterium tumefaciens DNA-delivery methods (Hwang et al. 2014) have been 

achieved in M. sinensis. Development of miscanthus transformation and gene editing to generate 

diplogametes for producing seed-propagated triploid hybrids are performed as part of the French 

project MISEDIT (miscanthus gene editing for seed propagated triploids). There are no reports of 

genome editing in any miscanthus species but new breeding innovations, including genome editing, 

are particularly relevant in this slow-to-breed, non-food, bioenergy crop (Table 4).  

 

 

 

Willow 

Willow (Salix spp.) is a very diverse group of catkin-bearing trees and shrubs. Willow belongs to 

the family Salicaceae, which also includes the Populus genus. There are approximately 350 willow 

species (Argus, 2007), found mostly in temperate and arctic zones in the northern hemisphere. A 

few are adapted to subtropical and tropical zones. The centre of diversity is believed to be in Asia, 

with over 200 species in China. Around 120 species are found in the former Soviet Union, over 100 in 

North America and around 65 species in Europe, and one species is native to South America 

(Dickmann & Kuzovkina, 2008; Karp et al., 2011). Willows are dioecious, thus obligate outcrossers, 

and highly heterozygous. The haploid chromosome number is 19 (Hanley & Karp, 2014). Around 40% 

of species are polyploid (Suda & Argus, 1968), ranging from triploids to the atypical dodecaploid S. 

maxxaliana with 2n=190 (Zsuffa et al., 1984). 

Although almost exclusively native to the Northern Hemisphere, willow has been grown around 

the globe for many thousands of years to support a wide range of applications (Stott, 1992; 
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Kuzovkina & Quigley, 2005). However, it has been the focus of domestication for bioenergy purposes 

for only a relatively short period, since the 1970s in North America and Europe. For bioenergy, 

breeders have focused their efforts on the shrub willows (sub-genus Vetix) because of their rapid 

juvenile growth rates as a response to coppicing on a 2-4 year cycle that can be accomplished using 

farm machinery rather than forestry equipment (Smart & Cameron, 2012; Shield et al., 2015).  

Since shrub willow was not generally recognised as an agricultural crop until very recently, there 

has been little commitment to building and maintaining germplasm repositories of willow to support 

long-term breeding. One exception is the UK, where a large and well characterized Salix germplasm 

collection comprising over 1,500 accessions is held at Rothamsted Research (Stott, 1992; Trybush et 

al., 2008). Originally initiated for use in basketry in 1923, accessions have been added ever since. In 

the USA, a germplasm collection of >350 accessions is located at Cornell University to support the 

breeding programme there. The UK and Cornell collections have a relatively small number of 

accessions in common (around 20). Taken together, they represent much of the species diversity, 

but only a small fraction of the overall genetic diversity within the genus. There are three active 

willow breeding programmes in Europe: Rothamsted Research (UK), Salixenergi Europa AB (SEE) and 

a programme at the University of Warmia and Mazury in Olsztyn (Poland) (abbreviations used in 

Table 1). There is one active USA programme based at Cornell University. Cultivars are still being 

marketed by the European Willow Breeding Programme (EWBP) (UK), which was actively breeding 

biomass varieties from 1996-2002. Cultivars are protected by plant breeders’ rights (PBRs) in Europe 

and by plant patents in the USA. The sharing of genetic resources in the willow community is 

generally regulated by material transfer agreements (MTA) and tailored licensing agreements, 

although the import of cuttings into North America is prohibited except under special quarantine 

permit conditions.  

Efforts to augment breeding germplasm collection from nature are continuing, with phenotypic 

screening of wild germplasm performed in field experiments with 177 S. purpurea genotypes in the 
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USA (at sites in Geneva and Portland, NY and Morgantown, WV) that have been genotyped using 

genotyping-by-sequencing (GBS) (Elshire et al., 2011). In addition there are approximately 400 

accessions of S. viminalis in Europe (near Pustnäs, Uppsala, Sweden and Woburn, UK (Berlin et al., 

2014; Hallingbäck et al., 2016). The S. viminalis accessions were initially genotyped using 38 simple 

sequence repeats (SSR) markers to assess genetic diversity, and screened with ~1,600 SNPs in genes 

of potential interest for phenology and biomass traits. Genetics and genomics, combined with 

extensive phenotyping, have substantially improved the genetic basis of biomass related traits in 

willow and are now being developed in targeted breeding via MAS. This underpinning work has been 

conducted on large specifically developed bi-parental Salix mapping populations (Hanley & Karp, 

2014; Zhou et al., 2018), as well as GWAS panels (Hallingbäck et al., 2016).  

Once promising parental combinations are identified, crosses are usually performed using fresh 

pollen from material that has been subject to a phased removal from cold storage (-4°C) (Mosseler, 

1990; Lindegaard & Barker, 1997; Macalpine et al., 2008). Pollen storage is useful in certain 

interspecific combinations where flowering is not naturally synchronised. This can be overcome by 

using pollen collection and storage protocol which involves extracting pollen using toluene (Kopp et 

al., 2002). 

The main breeding approach to improve willow yields relies on species hybridization to capture 

hybrid vigour (Serapiglia et al., 2014; Fabio et al., 2017).  In the absence of genotypic models for 

heterosis, breeders have extensively tested general and specific combining ability of parents to 

produce superior progeny. The UK breeding programmes (EWBP 1996-2002 and Rothamsted 

Research from 2003 on) have performed more than 1,500 exploratory cross pollinations. The Cornell 

programme has successfully completed about 550 crosses since 1998. Investment into the 

characterisation of genetic diversity combined with progeny tests from exploratory crosses has been 

used to produce hundreds of targeted intraspecies crosses in the UK and US respectively (see Table 

1). To achieve long-term gains beyond F1 hybrids, four intraspecific recurrent selection populations 
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have been created in the UK (for S. dasyclados, S. viminalis and S. miyabeana) and Cornell is pursuing 

recurrent selection of S. purpurea. Interspecific hybridisations with genotypes selected from the 

recurrent selection cycles are well advanced in willow, with such crosses to date totalling 420 in the 

UK and over 100 in the USA. 

While species hybridisation is common in Salix, it is not universal.  Of the crosses attempted, 

about 50 % hybridise and produce seed (Macalpine et al., 2010). As the viability of seed from 

successful crosses is short (a matter of days at ambient temperatures), proper seed rearing and 

storage protocols are essential (Maroder et al., 2000). 

Progeny from crosses are treated in different ways among the breeding programmes at the 

seedling stage. In the USA, seedlings are planted into an irrigated field where plants are screened for 

two seasons before being progressed to further field trials. In the UK, seedlings are planted into 

trays of compost where they remain containerised in an irrigated nursery for the remainder of year 

one. In the UK, seedlings are subject to two rounds of selection in the nursery year.  The first round 

takes place in September to select against susceptibility to rust infection (Melampsora spp.). A 

second round of selection in winter assesses tip damage from frost and giant willow aphid 

infestation. In the USA where the rust pressure is lower, screening for Melampsora spp. cannot be 

performed at the nursery stage. Both programmes monitor Melampsora spp., pest susceptibility, 

yield and architecture over multiple years in field trials. Selected material is subject to two rounds of 

field trials followed by a final multi-location yield trial to identify varieties for commercialisation. 

Promising selections (i.e., potential cultivars) need to be clonally propagated.  A rapid, in vitro 

tissue-culture propagation method has been developed (Palomo-Ríos et al., 2015). This method can 

generate about 5,000 viable, transplantable clones from a single plant in just 24 weeks. An in vitro 

system can also accommodate early selection via molecular or biochemical markers to increase 

selection speed. Conventional breeding systems take 13 years via four rounds of selection from 
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crossing to selecting a variety (Figure 1), but this has the potential to be reduced to 7 years if micro-

propagation and MAS selection is adopted (Hanley & Karp, 2014; Palomo-Ríos et al., 2015). 

Willows are currently propagated commercially by planting winter-dormant stem cuttings in 

spring. Commercial planting systems for willow use mechanical planters that cut and insert stem 

sections from whips into a well prepared soil. One hectare of stock plants grown in specific 

multiplication beds planted at 40,000 plants per ha produces planting material for 80 hectares of 

commercial short rotation coppice willow annually (planted at 15,000 cuttings per hectare) 

(Whittaker et al., 2016). When commercial plantations are established, the industry standard is to 

plant intimate mixtures of ~5 diverse rust (Melampsora spp.) resistant varieties (McCracken & 

Dawson, 1997; van den Broek et al., 2001). 

The foundations for using new plant breeding techniques have been established with funding 

from both the public and private sectors. To establish QTL maps, 16 mapping populations from bi-

parental crosses are under study in the UK. Nine are under study in the USA. The average number of 

individuals in these families ranges from 150 to 947 (Hanley & Karp, 2014). GS is also being 

evaluated in S. viminalis, and preliminary results indicate that multiomic approaches combining 

genomic and metabolomic data have great potential (Slavov & Davey, 2017). For both QTL and GS 

approaches, the field phenotyping demands are large as several thousand individuals need to be 

phenotyped for a wide range of traits. These include: dates of bud burst and growth succession, 

stem height, stem density, wood density and disease resistance. The greater the number of 

individuals the more precise are the QTL marker maps and GS models. However, the logistical and 

financial challenges of phenotyping large numbers of individuals are considerable, because the 

willow crop is >5 m tall in the second year. There is tremendous potential to improve the throughput 

of phenotyping using unmanned aerial systems, which is being tested in the USDA National Institute 

of Food and Agriculture (NIFA) Willow SkyCAP project at Cornell.  Further, investment in these 
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approaches needs to be sustained over many years fully realise the potential of a marker assisted 

selection programme for willow. 

To date, despite considerable efforts in Europe and the USA to establish a routine transformation 

system, there has not been a breakthrough in willow, but attempts are ongoing. As some form of 

transformation is typically a pre-requisite for genome editing techniques, these have not yet been 

applied to willow.  

In Europe there are 53 short rotation coppice (SRC) biomass willow cultivars registered with the 

Community Plant Variety Office (CPVO) for PBRs, of which ~25 are available commercially in the UK. 

There are 8 patented cultivars commercially available in the USA. In Sweden there are 9 commercial 

cultivars registered in Europe and two others which are unregistered (http://salixenergi.se/planting-

material/). Furthermore, there are about 20 pre-commercial hybrids in final yield trials both the USA 

and UK. It has been estimated that it would take two years to produce the stock required to plant 50 

ha commercially from the plant stock in the final yield trials. Breeding programmes have already 

delivered rust resistant varieties and increases in yield to the market. The adoption of advanced 

breeding technologies will likely lead to a step change in improving traits of interest.  

Poplar 

Poplar, a fast growing tree from the northern hemisphere with a small genome size, has been 

adopted for commercial forestry and scientific purposes. The genus Populus consists of about 29 

species, classified in six different sections: Populus (formerly Leuce), Tacamahaca, Aigeiros, Abaso, 

Turanga and Leucoides (Eckenwalder, 1996). The Populus species of most interest for breeding and 

testing in the USA and Europe are P. nigra, P. deltoides, P. maximowiczii and P. trichocarpa (Stanton, 

2014). Populus clones for biomass production are being developed by intra- and interspecies 

hybridization (van der Schoot et al., 2000; Richardson et al., 2014; DeWoody et al., 2015). Recurrent 

selection approaches are used for gradual population improvement and to create elite clonal lines 
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for commercialization (Neale & Kremer, 2011; Berguson et al., 2017). Currently, poplar breeding in 

the USA occurs in industrial and academic programmes located in the Southeast, the Midwest, and 

the Pacific Northwest. These use six species and five inter-specific taxa (Stanton, 2014).  

The southeastern programme historically focused on recurrent selection of P. deltoides from 

accessions made in the lower Mississippi River alluvial plain (Robison et al., 2006). More recently the 

genetic base has been broadened to produce interspecific hybrids with resistance to the fungal 

infection Septoria musiva, which causes cankers.  

In the Midwest of the USA, population improvement efforts are focused on P. deltoides 

selections from native provenances and hybrid crosses with accessions introduced from 

Europe. Inter-specific, intercontinental (Europe and America) hybrid crosses between P. 

nigra and P. deltoides (P.  canadensis) are behind many of the leading commercial hybrids 

which are the most advanced breeding materials for many applications and regions. In 

Minnesota, previous breeding experience and efforts utilizing P. maximowiczii and P. 

trichocarpa have been discontinued due to Septoria susceptibility and a lack of cold 

hardiness (Berguson et al., 2017). Traits targeted for improvement include yield/growth rate, 

cold hardiness, adventitious rooting, resistance to Septoria and Melampsora leaf rust, and 

stem form. The Upper Midwest programme also carries out wide hybridizations within the 

section Populus. The P.  wettsteinii (P. tremula  P. tremuloides) taxon is bred for gains in 

growth rate, wood quality, and resistance to the fungus Entoleuca mammata which causes 

hypoxylon canker (David & Anderson, 2002 ).  

In the Pacific Northwest, GreenWood Resources Inc. leads poplar breeding that 

emphasizes inter-specific hybrid improvement of P.  generosa (P. deltoides  P. trichocarpa 

and reciprocal) and P. deltoides × P. maximowiczii taxa for coastal regions, and the P.  

canadensis taxon for the drier, continental regions. Intra-specific improvement of second-
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generation breeding populations of P. deltoides, P. nigra, P. maximowiczii and P. trichocarpa 

are also involved (Stanton et al., 2010). The present focus of GreenWood Resources’s 

hybridization is bioenergy feedstock improvement concentrating on coppice yield, wood 

specific gravity and rate of sugar release. 

Industrial interest in poplar in the USA has historically come from the pulp and paper 

sector, although veneer and dimensional lumber markets have been pursued at times. 

Currently, the biomass market for liquid transportation fuels is being emphasized, along 

with the use of traditional and improved poplar genotypes for ecosystem services such as 

phytoremediation (Tuskan & Walsh, 2001; Zalesny et al., 2016).  

In Europe there are breeding programmes in France, Germany, Italy and Sweden. These 

include: (i) Alasia Franco Vivai (AFV) programme in northern Italy; (ii) the French programme 

led by the poplar Scientific Interest Group (GIS Peuplier) and carried out collaboratively 

between the National Institute for Agricultural Research (INRA), the National Research Unit 

of Science and Technology for Environment and Agriculture (IRSTEA) and the Forest, 

Cellulose, Wood, Construction and Furniture Technology Institute (FCBA); (iii) the German 

programme at Northwest German Forest Research Station (NW-FVA) at Hannoversch 

Münden; and (iv) the Swedish programme at the Swedish University of Agricultural Sciences 

and SweTree Technologies AB (Table 1).  

AFV leads an Italian poplar breeding programme using extensive field-grown germplasm 

collections of P. alba, P. deltoides, P. nigra, and P. trichocarpa. While inter-specific 

hybridization uses several taxa, the focus is on P.  canadensis. The breeding program 

addresses disease resistance (Marssonina brunnea, Melampsora larici-populina, 

Discosporium populeum, and poplar mosaic virus), growth rate, and photoperiod 
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adaptation. AFV and GreenWood Resources collaborate in poplar improvement in Europe 

through the exchange of frozen pollen and seed for reciprocal breeding projects. Plantations 

in Poland and Romania are currently the focus of the collaboration. 

The ongoing French GIS Peuplier is developing a long term breeding programme based 

on intraspecific recurrent selection for the four parental species (P. deltoides, P. trichocarpa, 

P. nigra and P. maximowiczii) designed to better benefit from hybrid vigour demonstrated 

by the interspecific crosses P. canadensis , P. deltoides  P. trichocarpa, and P. trichocarpa  

P. maximowiczii. Current selection priorities are targeting adaptation to soil and climate 

conditions, resistance and tolerance to the most economically important diseases and pests, 

high volume production under SRC and traditional poplar cultivation regimes as well as 

wood quality of interest by different markets. Currently, genomic selection is under 

exploration to increase selection accuracy and selection intensity while maintaining genetic 

diversity over generations. 

The German NW-FVA programme is breeding inter-sectional Aigeiros – Tacamahaca hybrids with 

a focus on resistance to Pollaccia elegans, Xanthomonas populi, Dothichiza spp., Marssonina 

brunnea, and Melampsora spp. (Stanton, 2014). Various cross combinations of P. maximowiczii, P. 

trichocarpa, P. nigra, and P. deltoides have led to new cultivars suitable for deployment in varietal 

mixtures of five to ten genotypes of complementary stature, high productivity, and phenotypic 

stability (Weisgerber, 1993). The current priority is the selection of cultivars for high-yield, short 

rotation biomass production. Six hundred P. nigra genotypes are maintained in an ex situ 

conservation programme. An in situ P. nigra conservation effort involves an inventory of native 

stands which have been molecular fingerprinted for identity and diversity. 

The Swedish programme is concentrating on locally adapted genotypes used for short rotation 

forestry (SRF) because these meet the needs of the current pulping markets. Several field trials have 
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shown that commercialpoplar clones tested and deployed in Southern and Central Europe are not 

well adapted to photoperiods and low temperatures in Sweden and in the Baltics. Consequently, 

Swedish University of Agricultural Sciences and SweTree Technologies AB started breeding in 

Sweden in 1990’s to produce poplar clones better adapted to local climates and markets. 

Molecular breeding technologies: Poplar genetic improvement cannot be rapidly achieved through 

traditional methods alone because of the long breeding cycles, outcrossing breeding systems, and 

high heterozygosity. Integrating modern genetic, genomic, and phenomic techniques with 

conventional breeding has the potential to expedite poplar improvement.  

The genome of poplar has been sequenced (Tuskan et al., 2006). It has an estimated genome size 

of 485  10 Mbp divided into 19 chromosomes. This is smaller than other PBCs and makes poplar 

more amenable to genetic engineering (transgenesis), GS, and genome editing. Poplar has seen 

major investment in both the USA and Europe, being the model system for woody perennial plant 

genetics and genomics research.  

Targets for genetic modification: Traits targeted include wood properties (lignin content and 

composition), early/late flowering, male sterility to address biosafety regulation issues, enhanced 

yield traits, and herbicide tolerance. These extensive transgenic experiments have shown differences 

in recalcitrance to in vitro regeneration and genetic transformation in some of the most important 

commercial hybrid poplars (Alburquerque et al., 2016). Further, transgene expression stability is 

being studied. So far, China is the only country known to have commercially used transgenic, insect-

resistant poplar. A pre-commercial herbicide-tolerant poplar was trialed for 8 years in the USA (Li et 

al., 2008) but could not be released due to stringent environmental risk assessments required for 

regulatory approval. This increases translation costs and delays reducing investor confidence for 

commercial deployment (Harfouche et al., 2011). 
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The first field trials of transgenic poplar were performed in France in 1987 (Fillatti et al., 2017) 

and in Belgium in 1988 (Deblock, 1990). Although there has been a total of 28 research-scale GM 

poplar field trials approved in the European Union under Council Directive 90/220/EEC since October 

1991 (in Poland, Belgium, Finland, France, Germany, Spain, Sweden, and in the UK (Pilate et al., 

2016), only authorisations in Poland and Belgium are in place today. In the USA, regulatory 

notifications and permits for nearly 20,000 transgenic poplar trees derived from approximately 600 

different constructs have been issued since 1995 by the USDA’s Animal and Plant Health Inspection 

Service (APHIS) (Strauss et al., 2016).  

Genome-editing CRISPR technologies: Clustered regularly interspaced palindromic repeats (CRISPR) 

and the CRISPR-associated (CRISPR-Cas) nucleases are a groundbreaking genome-engineering tool 

that complements classical plant breeding and transgenic methods (Moreno-Mateos et al., 2017). 

Only two published studies in poplar have applied the CRISPR/Cas9 technology. One is in P. 

tomentosa, in which an endogenous phytoene desaturase gene (PtoPDS) was successfully disrupted 

site-specifically in the first generation of transgenic plants resulting in an albino and dwarf 

phenotype (Fan et al., 2015). The second was in P. tremula  alba, in which high CRISPR-Cas9 

mutational efficiency was achieved for three 4-coumarate:CoA ligase (4CL) genes, 4CL1, 4CL2 and 

4CL5, associated with lignin and flavonoid biosynthesis (Zhou et al., 2015). Due to its low cost, 

precision and rapidness, it is very probable that cultivars or clones produced using CRISPR 

technology will be ready for marketing in the near future (Yin et al., 2017). Recently, a CRISPR with a 

smaller associated endonuclease has been discovered from Prevotella and Francisella 1 (Cpf1) which 

may have advantages over Cas9. In addition, there are reports of DNA-free editing in plants, using 

both CRISPR Cpf1 and CRISPR Cas9 e.g. (Kim et al., 2017; Mahfouz, 2017; Zaidi et al., 2017).  

It remains unresolved whether plants modified by genome editing will be regulated as genetically 

modified organisms (GMOs) by the relevant authorities in different countries (Lozano-Juste & Cutler, 

2014). Regulations to cover these new breeding techniques are still evolving but those countries 

who have published specific guidance (including USA, Argentina and Chile) are indicating that plants 
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possessing simple genome edits will not be regulated as conventional transgenesis (Jones, 2015b). 

The first generation of genome-edited crops will likely be phenocopy gene knockouts that already 

exist to produce ‘nature identical’ traits, that is, traits that could also be derived by conventional 

breeding. Despite this, confidence in applying these new powerful breeding tools remains limited 

owing to the uncertain regulatory environment in many parts of the world (Gao, 2018) including the 

recent ECJ 2018 rulings mentioned earlier.  

Genomics-based breeding technologies: Poplar breeding programs are becoming well equipped with 

useful genomics tools and resources that are critical to explore genome-wide variability and make 

use of the variation for enhancing genetic gains. Deep transcriptome sequencing, re-sequencing of 

alternate genomes and GBS technology for genome-wide marker detection using next-generation 

sequencing (NGS) are yielding valuable genomics tools. GWAS with NGS-based markers facilitate 

marker identification for MAS, breeding by design and GS.  

GWAS approaches have provided a deeper understanding of genome function as well as allelic 

architectures of complex traits (Huang et al., 2010) and have been widely implemented in poplar for 

wood characteristics (Porth et al., 2013), stomatal patterning, carbon gain versus disease resistance 

(McKown et al., 2014), height and phenology (Evans et al., 2014), cell wall chemistry (Muchero et al., 

2015), growth and cell walls traits (Fahrenkrog et al., 2017), bark roughness (Bdeir et al., 2017), and 

height and diameter growth (Liu et al., 2018). Using high-throughput sequencing and genotyping 

platforms, an enormous amount of SNP markers have been used to characterize the linkage 

disequilibrium (LD) in poplar (e.g., Slavov et al. 2012, discussed below). 

The genetic architecture of photoperiodic traits in perennial trees is complex involving many loci. 

However, it shows high levels of conservation during evolution (Maurya & Bhalerao, 2017). These 

genomics tools can therefore be used to address adaptation issues and fine tune the movement of 

elite lines into new environments. For example, poor timing of spring bud burst and autumn bud set 

can result in frost damage resulting in yield losses (Ilstedt, 1996). These have been studied in P. 
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tremula genotypes along a latitudinal cline in Sweden (~56-66oN) and have revealed high nucleotide 

polymorphism in two nonsynonymous SNPs within and around the phytochrome B2 locus 

(Ingvarsson et al., 2006; Ingvarsson et al., 2008). Resequencing 94 of these P. tremula genotypes for 

GWAS showed that non-coding variation of a single genomic region containing the PtFT2 gene, 

described 65% of observed genetic variation in bud set along the latitudinal cline (Tan, 2018).  

Re-sequencing genomes is currently the most rapid and effective method detecting genetic 

differences between variants and for linking loci to complex and important agronomical and biomass 

traits, thus addressing breeding challenges associated with long-lived plants like poplars.  

To date, whole genome re-sequencing initiatives have been launched for several poplar species 

and genotypes. In Populus, LD studies based on genome re-sequencing suggested the feasibility of 

GWAS in undomesticated populations (Slavov et al., 2012). This plant population is being used to 

inform breeding for bioenergy development. For example, the detection of reliable 

phenotype/genotype associations and molecular signatures of selection requires a detailed 

knowledge about genome-wide patterns of allele frequency variation, LD and recombination, 

suggesting that GWAS and GS in undomesticated populations may be more feasible in Populus than 

previously assumed. Slavov et al. (2012) have re-sequenced 16 genomes of P. trichocarpa and 

genotyped 120 trees from 10 subpopulations using 29,213 SNPs (Geraldes et al., 2013). The largest-

ever SNP dataset of genetic variations in poplar has recently been released, providing useful 

information for breeding https://www.bioenergycenter.org/besc/gwas/index.cfm. Also, deep 

sequencing of transcriptomes using RNA-Seq has been used for identification of functional genes 

and molecular markers, i.e., polymorphism markers and SSRs. A multi-tissue and multiple 

experimental dataset for P. trichocarpa RNA-Seq is publicly available (https://jgi.doe.gov/doe-jgi-

plant-flagship-gene-atlas/). 

The availability of genomic information of DNA-containing cell organelles (nucleus, chloroplast 

and mitochondria) will also allow a holistic approach in poplar molecular breeding in the near future 
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(Kersten et al., 2016). Complete Populus genome sequences are available for nucleus (P. trichocarpa; 

section Tacamahaca) and chloroplasts (seven species, and two clones from P. tremula W52 and P. 

tremula  P. alba 717-1B4). A comparative approach revealed structural and functional information, 

broadening the knowledge base of Populus cpDNA and stimulating future diagnostic marker 

development. The availability of whole genome sequences of these cellular compartments of P. 

tremula holds promise for boosting marker-assisted poplar breeding. Other nuclear genome 

sequences from additional Populus species are now available (e.g., P. deltoides 

(https://phytozome.jgi.doe.gov/pz/) and will become available in the forthcoming years (e.g. P. 

tremula and P. tremuloides – PopGenIE (Sjodin et al., 2009)). Recently, the characterization of the 

poplar pan-genome by genome-wide identification of structural variation in three crossable poplar 

species: P. nigra, P. deltoides, and P. trichocarpa, revealed a deeper understanding of the role of 

inter- and intraspecific structural variants in poplar phenotype and may have important implications 

for breeding, particularly, interspecific hybrids (Pinosio et al., 2016). 

GS has been proposed as an alternative to MAS in crop improvement (Bernardo & Yu, 2007; 

Heffner et al., 2009). GS is particularly well suited for species with long generation times, for 

characteristics that display moderate to low heritability, for traits that are expensive to measure and 

for selection of traits expressed late in the life cycle, as is the case for most traits of commercial 

value in forestry (Harfouche et al., 2012). Current joint genome sequencing efforts to implement GS 

in poplar using genomic-estimated breeding values for bioenergy conversion traits from 49 P. 

trichocarpa families and 20 full-sib progeny are taking place at the Oak Ridge National Laboratory 

and GreenWood Resources (Brian Stanton, personal communication https://cbi.ornl.gov/). These 

data together with the re-sequenced GWAS population data will be the basis for developing GS 

algorithms. Genomic breeding tools have been developed for the intra-specific program targeting 

yield, resistance to Venturia shoot blight, Melampsora leaf rust, resistance to Cryptorhynchus 

lapathi, stem form, wood specific gravity, and wind firmness (Evans et al., 2014; Guerra et al., 2016). 

A newly developed “breeding with rare defective alleles” (BRDA) technology has been developed to 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

exploit natural variation of P. nigra and identify defective variants of genes predicted by prior 

transgenic research to impact lignin properties. Individual trees carrying naturally defective alleles 

can then be incorporated directly into breeding programs, thereby bypassing the need for 

transgenics (Vanholme et al., 2013). This novel breeding technology offers a reverse genetics 

complement to emerging GS for targeted improvement of quantitative traits (Tsai, 2013).  

Phenomics-assisted breeding technology: Phenomics involves the characterization of phenomes – 

the full set of phenotypes of given individual plants (Houle et al., 2010). Traditional phenotyping 

tools, which inefficiently measure a limited set of phenotypes, have become a bottleneck in plant 

breeding studies. High-throughput plant phenotyping facilitates to provide accurate screening of 

thousands of plant breeding lines, clones or populations over time (Fu, 2015) are critical for 

accelerating genomics-based breeding. Automated image collection and analysis, phenomics 

technologies allow accurate and non-destructive measurements of a diversity of phenotypic traits in 

large breeding populations (Goggin et al., 2015; Doonan et al., 2016; Ludovisi et al., 2017; Shakoor et 

al., 2017). One important consideration is the identification of relevant and quantifiable target traits 

that are early diagnostic indicators of biomass yield. Good progress has been made in elucidating 

these underpinning morpho-physiological traits that are amenable to remote sensing in Populus (Rae 

et al., 2004; Harfouche et al., 2014). More recently, Ludovisi et al., (2017) developed a novel 

methodology for field phenomics of drought stress in a P. nigra F2 partially inbred population using 

thermal infrared images recorded from an unmanned aerial vehicle-based platform.  

Energy is the current main market for poplar biomass but the market return provided is not 

sufficient to support production expansion even with added demand for environmental and land 

management ‘ecosystem services’ such as the treatment of effluent, phytoremediation, riparian 

buffer zones and agro-forestry plantings. Aviation fuel is a significant target market (Crawford et al., 

2016). To serve this market and to reduce current carbon costs of production (Budsberg et al., 2016), 

key improvement traits in addition to yield (e.g., coppice regeneration, pest /disease resistance, 
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water- and nutrient-use efficiencies) will be trace greenhouse gas (GHG) emissions (e.g., isoprene 

volatiles), site adaptability and biomass conversion efficiency. Efforts are underway to have national 

environmental protection agencies approval for poplar hybrids qualifying for renewable energy 

credits. 

Reflections on the commercialisation challenge 

The research and innovation activities reviewed in this paper aim to advance the genetic 

improvement of crop species that are viable candidate feedstocks for bioenergy applications should 

those markets eventually develop. These markets need to generate sufficient revenue and 

adequately distribute it to the actors along the value chain. The work on all four crops shares one 

thing in common: long-term efforts to integrate fundamental knowledge into breeding and crop 

development along a research and development (R&D) pipeline. The development of miscanthus led 

by Aberystwyth University exemplifies the concerted research effort that has integrated the R&D 

activities from eight projects over 14 years with background core research funding along an 

emerging innovation chain (Figure 2). This programme has produced a first range of conventionally 

bred seeded interspecies hybrids, which are now in upscaling trials (Table 3). The application of 

molecular approaches (Table 5) with further conventional breeding (Table 4) offers the prospect of a 

second range of improved seeded hybrids. This example shows that research-based support of the 

development of new crops or crop types requires a long-term commitment that goes beyond that 

normally available from project-based funding (Figure 1). Innovation in this sector requires 

continuous resourcing of conventional breeding operations and capability to minimise time and 

investment losses caused by funding discontinuities. 

This challenge is increased further by the well-known market failure in the breeding of many 

agricultural crop species. The UK Department for Environment, Food and Rural Affairs (Defra) 

examined the role of genetic improvement in relation to non-market outcomes, such as 

environmental protection, and concluded that public investment in breeding was required if 
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profound market failure is to be addressed (Defra, 2002). With the exception of widely-grown hybrid 

crops, such as maize, and some high-value horticultural crops, royalties arising from plant breeders 

rights or other returns to breeders fail to adequately compensate for the full cost for research-based 

plant breeding. The result, even for major crops such as wheat, is sub-optimal investment and sub-

optimal returns for society. This market failure is especially acute for perennial crops developed for 

improved sustainability, rather than consumer appeal (Tracy et al., 2016). Figure 3 illustrates the 

underlying challenge of capturing value for the breeding effort. The ‘valley of death’ that results 

from the low and delayed returns to investment applies generally to the research-to-product 

innovation pipeline (Beard et al., 2009) and certainly to most agricultural crop species. However, this 

schematic is particularly relevant to PBCs. Most of the value for society from the improved breeding 

of these crops comes from changes in how agricultural land is used, i.e., it depends on the increased 

production of these crops. The value for society includes many ecosystems benefits: the effects of a 

return to semi-natural perennial crop cover that protects soils, the increase of soil carbon storage, 

the protection of vulnerable land or the cultivation of polluted soils and the reductions in GHG 

emissions (Lewandowski, 2016). By its very nature, the production of biomass on agricultural land 

marginal for food production challenges farm-level profitability. The costs of planting material and 

one-time nature of crop establishment are major early stage costs, and therefore the opportunities 

for conventional royalty capture by breeders that are manifold for annual crops are limited for PBCs 

(Hastings et al., 2017). Public investment in developing PBCs for the non-food bio-based sector 

needs to provide more long-term support for this critical foundation to a sustainable bio-economy. 

Conclusions 

This paper provides an overview of research-based plant breeding in four leading PBCs. For all 

four PBC genera, significant progress has been made in genetic improvement through collaboration 

between research scientists and those operating on-going breeding programmes. Compared with 

the main food crops most PBC breeding programmes date back only a few decades (Table 1). This 
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breeding effort has thus co-evolved with molecular biology and the resulting -omics technologies 

that can support breeding. The development of all four PBCs has depended strongly on public 

investment in research and innovation. The nature and driver of the investment varied. In close 

association with public research organisations or universities, all these programmes started with 

germplasm collection and characterisation, which underpin the selection of parents for exploratory 

wide crosses for progeny testing (Figure 1, Table 4). 

 

Public support for switchgrass in North America was explicitly linked to plant breeding with 12 

breeding programmes supported in the USA and Canada. Switchgrass breeding efforts to date, using 

conventional breeding, have resulted in over 36 registered cultivars in the USA (Table 1), with the 

development of dedicated biomass-type cultivars coming within the past few years. While -omics 

technologies have been incorporated into several of these breeding programmes, they have not yet 

led to commercial deployment in either conventional or hybrid cultivars.  

Willow genetic improvement was led by the research community closely linked to plant breeding 

programmes. Willow and poplar have the longest record of public investment in genetic 

improvement that can be traced back to 1920s in the UK and USA respectively. Like switchgrass, 

breeding programmes for willow are connected to public research efforts. The UK, in partnership 

with the programme based at Cornell University, remains the European leader in willow 

improvement with a long term breeding effort closely linked to supporting biological research at 

Rothamsted. In willow, F1 hybrids have produced impressive yield gains over parental germplasm by 

capturing hybrid vigour. Over 30 willow clones are commercially available in the USA and Europe, 

and a further ~90 are under pre-commercial testing (Table 1). 

Compared with willow and poplar, miscanthus is a relative newcomer with all the current 

breeding programmes starting in the 2000’s. Clonal M.  giganteus propagated by rhizomes is 

expected to be replaced by more readily scalable seeded hybrids from intra- (M. sinensis) and inter- 
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(M. sacchariflorus  M. sinensis) species crosses with high seed multiplication rates (of >2,000). The 

first group of hybrid cultivars is expected to be market-ready around 2022. 

Of the four genera used as PBCs, Populus is the most advanced in terms of achievements in 

biological research as a result of its use as a model for basic research of trees. Much of this biological 

research is not directly connected to plant breeding. Nevertheless, reflecting the fact that poplar is 

widely grown as a single-stem tree in SRF, there are about 60 commercially available clones and an 

additional 80 clones in commercial pipelines (Table 1). Transgenic poplar hybrids have moved 

beyond proof-of-concept to commercial reality in China. 

Many PBC programmes have initiated long-term conventional recurrent selection breeding cycles 

for population improvement, which is a key process in increasing yield through hybrid vigour. As this 

approach requires many years, most programmes are experimenting with molecular breeding 

methods as these have the potential to accelerate precision breeding. For all four PBCs, investments 

in basic genetic and genomic resources, including the development of mapping populations for QTLs 

and whole genome sequences, are available to support long-term advances. More recently, 

association genetics with panels of diverse germplasm are being used as training populations for GS 

models (Table 5). These efforts are benefitting from publicly-available DNA sequences and whole 

genome assemblies in crop databases. Key to these accelerated breeding technologies are 

developments in novel phenomic technologies to bridge the genotype/phenotype gap. In poplar, 

novel remote sensing field phenotyping is now being deployed to assist breeders. These advances 

are being combined with in-vitro and in-planta modern molecular breeding techniques such as 

CRISPR (Table 5). CRISPR technology for genome editing has been proven in poplar. This technology 

is also being applied in switchgrass and miscanthus (Table 5), but the future of CRISPR in commercial 

breeding for the European market is uncertain in the light of recent ECJ 2018 rulings. 

There is integration of research and plant breeding itself in all four PBCs. Therefore, estimating 

the ongoing costs of maintaining these breeding programmes is difficult. Investment in research also 
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seeks wider benefits associated with technological advances in plant science rather than cultivar 

development per se. However, in all cases, the conventional breeding cycle shown in Figure 1 is the 

basic ‘engine’ with molecular technologies (-omics) serving to accelerate this engine. The history of 

the development shows that the existence of these breeding programmes is essential to gain 

benefits from the biological research. Despite this, it is this essential step that is at most risk from 

reductions in investment. A conventional breeding programme typically requires a breeder and 

several technicians who are supported over the long term (20-30 years, Figure 1) at costs of about 

0.5 to 1.0 million Euro per year (as of 2018). The analysis reported here shows that the time needed 

to perform one cycle of conventional breeding, bringing germplasm from the wild to a commercial 

hybrid ranged from 11 years in switchgrass to 26 years in poplar (Figure 1). In a mature crop grown 

on over 100,000 ha, with effective cultivar protection and a suitable business model, this level of 

revenue could come from royalties. Until such levels are reached, PBCs lie in the innovation valley of 

death (Figure 3) and need public support.  

Applying industrial ‘technology readiness levels’ (TRL) originally developed for aerospace (Héder, 

2017) to our plant breeding efforts we estimate many promising hybrids cultivars are at TRL levels of 

3-4. In Table 3 experts in each crop estimate that it would take 3 years from now to upscale planting 

material from leading cultivars in plot trials to 100 ha. 

Taking the UK example mentioned in the introduction, planting rates of ~35,000 ha per year from 

2022 onwards are needed to reach over 1 m ha by 2050. Ongoing work in the UK funded Miscanthus 

Upscaling Technology (MUST) project shows that ramping annual hybrid seed production from the 

current level of sufficient seed for 10 ha in 2018 to 35,000 ha would take about 5 years, assuming no 

setbacks. If current hybrids of any of the four PBCs in the upscaling pipeline fail on any step e.g. 

lower than expected multiplication rates or unforeseen agronomic barriers, then further selections 

from ongoing breeding are needed to replace earlier candidates.  
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In conclusion, the breeding foundations have been laid well for switchgrass, miscanthus, willow 

and poplar owing to public funding over the long time periods necessary. Improved cultivars or 

genotypes are available that could be scaled up over a few years if real, sustained market 

opportunities emerged in response to sustained favourable policies and industrial market pull. The 

potential contributions of growing and using these PBCs for socioeconomic and environmental 

benefits are clear but how farmers and others in commercial value chains are rewarded for mass 

scale deployment, as is necessary, is not obvious at present. Therefore mass scale deployment of 

these lignocellulose crops needs developments outside the breeding arenas to drive breeding 

activities more rapidly and extensively. 
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Figure captions 

Figure 1 Cumulative minimum years needed for the conventional breeding cycle through the steps 

from wild germplasm to the commercial hybrids in switchgrass, miscanthus, willow and poplar. 

Information links between the steps are indicated by dotted arrows, and highlight the importance of 

long-term informatics to maximise breeding gain. 

Figure 2 A schematic development pathway for miscanthus in the UK related to the investment in 

R&D projects at Aberystwyth (top coloured areas for projects in the three categories: basic research, 

breeding, and commercial upscaling) leading to a projected cropping area of 350,000 ha by 2030 

with clonal and successive ranges of improved seed based hybrids. Purple represents the 

Biotechnology and Biological Sciences Research Council (BBSRC) and brown the Department for 

Environment, Food and Rural Affairs (Defra) (UK National funding), blue bars represents EU funding, 

green private sector funding (Terravesta and CERES) and GIANT-LINK and Miscanthus Upscaling 

Technology (MUST) are public-private-initiatives (PPI). 

Figure 3 A schematic relating some of the steps in the innovation chain from relatively basic crop 

science research through to the deployment in commercial cropping systems and value chains. The 

shape of the funnel above the expanding development and deployment represents the availability of 

investment along the development chain from relatively basic research at the top to the upscaled 
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deployment at the bottom.  Plant breeding links the research effort with the development of 

cropping systems. The constriction represents the constrained funding for breeding that links 

conventional public research investment and the potential returns from commercial development.  

The handover points between publicly funded work to develop the germplasm resources (often 

known as pre-breeding), the breeding, and the subsequent crop development are shown on the left. 

The constriction point is aggravated by the lack academic rewards for this essential breeding activity. 

The outcome is such that this innovation system is constrained by the precarious resourcing of plant 

breeding. The authors’ assessment of development status of the four species is shown (poplar 

having two: one for short rotation coppice (SRC) poplar and one for the more traditional short 

rotation forestry (SRF)). The four new perennial biomass crops (PBCs) are now in the critical phase of 

depending of plant breeding progress without the income stream from a large crop production base.  
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