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engage adequately with the decision processes of the end-user

Keywords: of information, and that the engagement of spatial statisticians
Uncertainty is essential to achieve this. We examine generalized measures of
Decision theory uncertainty, and those focussed on particular decision models.
Spatial information We conclude that the latter are likely to be the most fruitful,
Value of information particularly if they emerge from a formal decision analysis.

We outline the principles of value of information theory, and
suggest that this represents an ideal framework in which to
develop measures of uncertainty which can support both the
rational collection of data and the interpretation of the resulting
information.
© 2022 The Authors. Published by Elsevier B.V. This is an open
access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

That spatial information, derived from data by statistical methods, is uncertain, and that this
uncertainty should be accounted for when the information is used, is a piety much repeated in
the scientific literature. Spatial statisticians have risen to the challenge, and most studies on spatial
prediction would be regarded as incomplete without some attempt to quantify the uncertainty.
However, it remains an open question whether the producer of spatial information and the user
of that information communicate effectively about uncertainty, and whether the latter is enabled
by the former to make decisions from uncertain information which are appropriately robust. Our
concerns come from two sources. First, we have formed the strong impression that papers on
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statistical methods to produce spatial information rarely analyse the end-users’ decision process
with the same depth and sophistication which they bring to bear on developing the statistical
model.

Second, our own experience has illustrated the difficulty of effective communication. One of us
(RML) was involved some years ago in a project to support the development of a soil monitoring
scheme for the United Kingdom (Black et al., 2008). This entailed interaction with diverse groups
who would be users of the information: government departments, regulatory authorities and civil
society organizations. One task was to agree how much uncertainty in spatial predictions and
regional estimates of soil properties was tolerable for the users. We framed the question in terms of
the acceptable width of prediction or confidence intervals, for variables such as soil organic carbon,
metals such as zinc and plant nutrients such as available potassium. With this information, and
estimates of various statistics for these properties, the plan was then to identify sample intensities,
under different designs, which would support predictions and estimates with sufficient precision.
Most textbooks on sampling envisage such a process to identify an adequate sample size, and it
would be taken as read that if survey effort can be linked to such a measure of uncertainty then
the question of how to decide on the sample size has been solved. However, representatives of
the stakeholder groups did not feel able to specify the required precision in these terms. Some
lacked familiarity with the underlying concepts, but even the more statistically-informed were not
willing to weigh the costs of alternative survey proposals against their quality as measured by the
expected width of the prediction intervals for soil properties. It occurred to RML that this reluctance
was entirely reasonable.

Since then our interactions with, inter alia, the agricultural sector (Milne et al., 2015), nutri-
tionists and food systems specialists (Chagumaira et al., 2021; Gashu et al,, 2021), agronomists
(Marchant et al., 2012), marine conservationists (Lark, 2014) and forensic scientists (Lark and
Rawlins, 2008) have convinced us that the problem of effective communication about uncertain
information is not simply achieved by better statistical education of stakeholders, but requires
rethinking the task. This probably requires that statisticians do more to analyse the process by
which information is used. In this paper we look at some approaches to the communication of
uncertain information which have been used in the past, and attempt to analyse their strengths
and weaknesses. We distinguish ‘generalized’ uncertainty measures from those focused on decisions
made with the information. The former, in short, can be generated with reference only to data and
the statistical model used for prediction. The latter require some analysis of the specific decision to
be made, and how the information support it. It is probably already clear that we favour the latter
general approach, but we think it useful to examine both in some detail to understand better why
generalized measures have so often been the default.

This paper, invited to mark the anniversary of the Journal, is more of a cross between an opinion
piece and a review than the usual research output which Spatial Statistics publishes. However, we
offer it because we think that the questions which it raises should challenge readers of the journal
with some substantive research questions and also to think about the gaps which may exist between
the tools and methods which spatial statisticians develop and the requirements of their users, actual
or notional. Many of our examples are taken from developments in soil science, from classical soil
survey to recent advances in ‘digital soil mapping’ (McBratney et al., 2013). This partly reflects our
background, but also the wide-ranging influence of the Oxford Soil Science laboratory, under the
leadership of Philip Beckett, and its work on the analysis of soil information systems, their structure,
costs and utilities.

2. Generalized uncertainty measures
2.1. Thematic maps: Accuracy, purity and information

A classical soil map represents soil variation in terms of mapped boundaries between parcels of
land which are distinguished with respect to topography, vegetation, land use and other features
which the surveyor can recognize in the field. These features are part of the surveyor’s mental model
of the soils and their formation in the mapped region, how soil-forming factors (such as topography)
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are expressed in the landscape, and how soil properties influence features such as vegetation. This
model is calibrated by observations of the soil in pits or auger borings. A simple soil map unit is
dominated by a single soil profile class from a classification, for which it is usually named. When
the map-user makes a decision about a location of interest the map unit delineated there provides
a prediction of the soil class which is expected. If one examines the memoir which accompanies a
soil map it is usual to find that the soil class provides an index to a wealth of information on land
capability, for example the periods of the year when farm machinery can be used without damage
to soil, whether soil pH is expected to be limiting, the thickness of rootable soil over underlying
rock and so on. In addition, analytical data on soil samples can be used to estimate class means,
which may serve as predicted values for locations where the delineated soil map unit corresponds
to the class.

Because the soil varies at multiple scales, no simple set of boundaries can delineate uniform
packages of soil, and it is accepted that one can visit a site where the delineated map unit, a, is
named for dominant class A only to discover that the soil at that site corresponds to class B. Let
the probability that the soil class at a location selected at random from within map unit a, after the
map has been made, is found to correspond to soil class A be denoted by p(A|a). This quantity is
known as the purity of the soil map unit. If map unit i, covers proportion r; of the mapped area,
then the mean purity of the soil map is defined as

p =Y mpll), Viem, (1)

where M denotes the set of all map units on the map. The mean purity is a measure of the
uncertainty of predictions of the soil class made from the map. The mean purity, or the purities of
the separate map units, can be estimated from a suitable independent set of validation observations,
under which circumstances a confidence interval for the estimates can be obtained. A common
target for soil map unit purity is around 0.85 (Young, 1976), but it is not uncommon to find that
the actual purity is closer to 0.5, or even less (Beckett and Webster, 1971; Ragg and Henderson,
1980).

Map unit purity has been used as a measure of uncertainty in methodological studies of soil
survey. For example, Beckett and Burrough (1971) examined variations in mean purity between soil
maps produced in contrasting regions, at different cartographic scales, and by the procedures of ‘free
survey’ and grid survey. Valentine et al. (1971) report the mean purity, and purities of individual
map units, achieved in soil mapping by interpretation of airphotographs made with contrasting
films (differing in their spectral sensitivity). Brus et al. (2011) discuss the sampling requirements
for estimation of map-unit purity, giving examples from digital soil mapping. Western (1978) points
out that the purity of a soil map is a measure of uncertainty which can be generally understood by
the users of the map as well as the soil surveyor. Furthermore, an experienced soil surveyor will
have a reasonable idea of what purity is achievable in different parts of the landscape, and how
marginal improvements in purity are likely to decline with increasing survey effort. For this reason,
average map purity or purity of individual map units may be reported in a soil survey memoir as a
guide to the user about the uncertainties attached to predictions (e.g. Allison and Hartnup, 1981).
These may be particularly useful if the composition of the different map units is also described
(i.e. not only the proportion of inclusions, but the principle classes which comprise them).

The purity of soil map units is recognized as a practical measure of uncertainty to be used in
the appraisal of soil surveys (Landon, 1984; Forbes et al., 1982), in the prescription of standards
by survey organizations (Soil Science Division Staff, 2017) and in dialogue between the surveyor
and map user (Western, 1978) for quality control and contract specification. As such it may be one
statistical measure of the quality of spatial data with the most practical exposure.

Thematic maps of land surface classes extend beyond soil maps. The use of remote sensor data to
delineate such classes is now long-established. Specialists in remote sensing have, in some respects,
reinvented the ideas of map unit purity for appraising the uncertainty in thematic maps by the use
of the so-called ‘confusion matrix’ to represent the outcome of a validation exercise (Congalton and
Mead, 1983; Stehman, 1999). A confusion matrix represents a set of validation points (it is required,
although not often stated, that these be selected at random and independently conditional on an
appropriate design). The rows and columns of the matrix correspond to the land cover classes of
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interest, as observed on the ground and the map units. If for simplicity we assume that there are
as many map units as there are classes, then the matrix is square, and if the classes and map-units
appear in corresponding order, then observations in cells on the main diagonal of the confusion
matrix correspond to validation points where the observed class on the ground corresponds to the
map-unit delineated there. For an independent random set of validation points the mean map-unit
purity is therefore estimated by the ratio of the trace of the confusion matrix to the sum of its
elements (Congalton and Mead, 1983).

If the classes are listed in the rows of the confusion matrix and the map units in the columns,
then the ith element on the main diagonal of the matrix divided by the corresponding column total
estimates p(I|i), which we can recognize as the purity of map unit i. Story and Congalton (1986)
call this the ‘producer accuracy’ of the map unit, which can be averaged over all units applying
the relative areas of the map-units as weights. The ith element on the main diagonal of the matrix
divided by the corresponding row total estimates p(i|I), which Story and Congalton (1986) call the
‘user accuracy’.

We take issue with this terminology. On the face of it is laudable to attempt to distinguish
between measures of uncertainty of particular interest to the users of information, which Story
and Congalton (1986) appear to do. However, it is by no means clear that p(I|i) should interest the
user of a map more than p(i|l). Western (1978) and Beckett and Burrough (1971) note that a soil
map might be used to predict soil conditions at one or more locations to support land use planning
there, but might also be used to inventorize locations where a specified land use is possible. In the
former case the purity of the map units, or particular ones, will be of interest to the user. How
likely is it that the prediction at the location of interest is correct? In the latter case, however,
the user of information might be concerned with both marginal probabilities from the confusion
matrix. The so-called ‘producer accuracy’, p(i|l), will be of interest to such a user: if a location is
suitable for a particular land use, then how likely is it that it will be represented as such on the
map? Lark (1995) developed some hypothetical examples, and showed how different users, with
contrasting priorities in respect of their tolerance of errors of commission or impurities in map-units
corresponding to classes of interest, and errors of commission, failure to represent an instance of
a class of interest, might favour different maps produced by discriminant analysis on multispectral
data, with prior probabilities for the different classes adjusted to reflect these preferences. Lark
(1995) proposed that the terms ‘map-unit purity’ and ‘class representation’ be used in place of ‘user
accuracy’ and ‘producer accuracy’ for p(I|i) and p(i|l) respectively. Mgller et al. (2019) follow this in
their assessment of a map of soil drainage classes predicted across a region from multiple spatial
covariate processed by machine learning.

One problem with an assessment of uncertainty in thematic spatial information focussed entirely
on single measures such as purity or representation is that they fail to account for how the
composition of a map unit might be interpreted by a capable user when the map is supported
by a sophisticated memoir. The conventional soil survey is, perhaps, the locus classicus for such a
spatial information product. Bie and Beckett (1971) describe the different forms that the legend
to a soil map might take. The most straightforward case is the legend of simple map units, where
each map-unit is named for its dominant ‘eponymous’ class. At any location in the mapped area
the predicted soil class is the eponymous class of the map-unit delineated there. Because the map
unit does not have purity of 1, the class is predicted with uncertainty. However, the purity might
underestimate the utility of the map, because an effective memoir should convey sufficient of the
surveyor’s mental model of the soil-covered landscape that the user can make a better prediction.
First, the dominant inclusions of secondary classes might be named in the memoir, so that the risk
entailed in treating a site as if it were the eponymous class when an inclusion occurs there can
be assessed. This risk might be small if, for the practical purpose of interest the inclusions and
the eponymous class are similar. Second, the memoir might enable the user to identify when rare
inclusions might be more likely at a site than the eponymous class of the delineated map unit —
perhaps on the basis of physiography (if the site is at a local topographic minimum, for example),
or vegetation.

Bie and Beckett (1971) make the point that many maps of soil based on classes comprise a
mixture of simple map units and complex ones, the latter consisting of different classes which occur
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in a complex spatial pattern which cannot be resolved at the cartographic scale of the map. As with
simple map units, it might well be possible to make a better spatial prediction at a location within a
complex map unit than to state that it is most likely to correspond to one of the eponymous classes,
or an inclusion. This is because, while not cartographically resolved, the co-dominant classes might
occur in a regular spatial pattern associated with physiography, it was for this practical reason that
Milne (1936) first developed the concept of the catena for mapping the spatial pattern of soils in East
Africa. If the memoir presents such a conceptual model adequately, perhaps with the assistance of
block diagrams and description of other features through which the catena is expressed (vegetation,
outcropping cuirasses, the frost line etc.) then the user of the map might well be able to make a
refined local spatial prediction. Bie and Beckett (1971) proposed that map legends could be scored
on the basis of how well the soil conditions can be predicted in sites in each legend unit, presenting
these values in a type of histogram which shows the relative area of the mapped region in each unit,
and the probability with which the correct soil class can be predicted at a site in the unit, depending
on all the information available. This approach was adopted by Dalal-Clayton and Robinson (1992)
in an appraisal of a reconnaissance soil survey of Zambia. They computed legend scores on the basis
of the composition of the units (which were complex), and contrasted these with estimates of map
unit purity. The difference between these, consistent with other reported studies, indicates how
the complexity of the soil pattern, and the challenges of mapping that pattern, make linked but
conceptually distinct contributions to the uncertainty of a thematic map.

The limitations of purity alone as a measure of prediction uncertainty have been noted else-
where. Consider a situation in which a particular vegetation type occurs over 85% of a region by
area, with the remaining area occupied by two other types (10% and 5% respectively). If one were
to predict the vegetation class at a site purely as a random guess, with the probability of predicting
class i equal to its relative area, i.e. to 7r; as defined for Eq. (1), then the probability of making a
correct prediction for the m items in the set of classes ¢ would be ) 7112, Vi e M. In our example
the probability is 0.74. Let us imagine that a digital technology for mapping vegetation produces
an output which agrees with 80% of a set of independent validation observations. On the face of
it this is a good performance, but appears less so when compared with the probability of guessing
on the basis of knowledge of the overall frequencies of the class alone. Cohen (1960) proposed an
alternative statistic to purity which measures the extent to which a map exceeds this guesswork
null model in predictive accuracy. This is certainly a useful statistic for comparative studies of maps
produced by different methods, but is perhaps of limited use to the data user who wants to know
primarily how reliable the predictions are from some particular output (Stehman, 1999).

An alternative approach is to think about a thematic map as providing information about the
likely land cover classes at an unobserved site, and reducing the uncertainty which we had about
that outcome before being informed of the map prediction. This might be quantified by Shannon'’s
information. We extend the notation used so far so that 7; denotes the proportion of our region
where landcover class I occurs, equivalently the probability that a randomly selected location in
the region will be found to correspond to class I. Consider the case where, starting from a position
of ignorance about the spatial distribution of a set of classes, but knowing the prior probability of
finding each class, ;; I € C, we are told without error that class J occurs at location x. We might
quantify our ‘surprise’ at this information from s;, on the grounds that the more probable a random
outcome the less surprising it is. A natural scale on which to make this measurement of information
is the negative logarithm of probability, so that our degree of surprise is therefore zero for a certain
event (probability of 1), undefined for an impossible event (probability of 0), and positive for some
event with probability p € (0, 1). If the base of the logarithm is 2 then the information is measured
in bits. The average information provided by an error-free observation of the class at x can therefore
be computed by

Iy = — Z mlogzm. (2)
IeC,m#0

Now let us assume that we do not have a perfect prediction, rather we have a delineated map
unit, the jth in M, and we know its composition (i.e. in terms of the notation above we know
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p(Ilj), VI € C. The mean information provided by an observation of the true class at a site in map
unit j is given by

Ty = — Y. pll)log,pl). (3)
IeC,p(Ilj)#0
The mean information provided over all the map units can be calculated as
Zom = Z i Zo j- (4)
jemMm

If the map is perfect then it is clear that Z, r, is equal to zero, the actual observation of the class
at a site where the delineated map unit is known conveys no additional information; the map has
already conveyed it. If, on the other hand, the map units are simply random partitions of space in
which, for any class I and map units i and j, p(I|i) = p(I|j) = =, thenZ, , = Z,, the information
conveyed by a truthful observation is the same whether or not we have the map; the map conveys
no information. If the map units are more internally uniform than the land classes of the region
as a whole, while not each corresponding entirely to a single class, then Z;;, < Z. That is to say,
the information conveyed by the perfect observation at a site is less when we know the delineated
map unit than when we do not. The difference can be attributed to the information conveyed by
the map:

Imap =1 _Zo,m- (5)

We undertook a simulation to compare information and purity measures of map quality.
Consider a confusion matrix normalized so that the column totals sum to 1 to give a map unit
composition matrix, M. Each column contains the proportions of the corresponding map unit in each
land cover class, such that M[g, h] contains the probability that a site in map unit h corresponds to
class g. If the vector ¢, contains the overall proportions of the land cover classes over the mapped
region, and ¢, contains the proportions of the map units, then

$. = Moy, (6)

In our simulation we generated a random map unit composition matrix, M, for simple map units,
specifying a miming purity of 0.5 and ensuring that the column totals sum to 1. For a fixed vector
of class proportions, ¢., the relative proportions of the different map units can be obtained from
Eq. (6) by

¢ = M 9. (7)

This is a check on the consistency of M and ¢, as it is not guaranteed that all elements of M~ !¢ are
non-negative. In our procedure we generated multiple realizations of M subject to the rules above,
for three classes and their corresponding simple map units, following the hypothetical evaluation
of a soil map presented by Giasson et al. (2000). Those M for which some elements of M~ !¢,
were negative were rejected. The simulated matrix, the fixed class composition vector ¢. and the
corresponding map unit proportion vector obtained as in Eq. (7) were then used to compute, for
each realization, the information conveyed by the map, Zy,,p and the mean map unit purity. In Fig. 1
the information conveyed by each notional map represented by a matrix M consistent with the fixed
¢. was plotted against the mean purity. The two quantities are clearly related, the maps with largest
purity convey most information. However, for any given purity other the range of information values
can be quite wide, and vice versa.

Consider a case where, with m classes delineated in simple map units the, purity is uniform over
all map units and equal to p. Our map will convey the least information if the proportion 1 — p of
all map units is equally divided between the m — 1 classes present as inclusions. It can be shown
that the information conveyed by the map in these circumstances is

(1-5)

Io—ﬁlogzﬁ+(1—ﬁ)10g2 m—1" (8)
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Fig. 1. Plot of mean purity and information conveyed by the map for simulated normalized confusion matrices. The lower
and upper lines correspond, respectively, to the lower bound on information content given purity (Eq. (8)), and an upper
bound on information content given a purity uniform over all map units (Eq. (9)).

This expression, evaluated as a function of p, is plotted in Fig. 1 where it forms a lower bound for
the plotted points. We do not specify an upper bound for the plot. However, if a uniform purity is
assumed, then the minimum disorder within the map unit occurs if proportion 1 — p is occupied
by a single inclusion. In this case the information conveyed by the map is

Io—ﬁ10g2ﬁ+(1—l~7)10g2 (1—13)- 9)
This is shown as the upper line on the plot. While most of the simulated cases fall between the two
bounds, some are above the upper bound. These will be cases where the purity of individual map
units vary considerably.

This approach to quantifying the information content of map units, explicitly considering their
composition and internal ‘disorder’ relative to that of the landscape as a whole, seems to us to be
an advance over the more common measures of uncertainty in thematic spatial information. While
one might argue that the consideration of map unit composition and information theory has not
helped us in our conversation with the general user of spatial information, we suggest that it has
served to underline that the value of a spatial map is not entirely characterized by the binary success
or failure of a spatial prediction, but rather by the extent to which our uncertainty is reduced by
knowing the map unit. As seen, this requires attention to the composition of the map unit. We think
that this has been overlooked, and should be given closer attention in the era of digital mapping of
land cover.

At least in the field of soil science the increasing use of digital methods to predict soil conditions
from multiple covariates has tended to focus on continuous properties rather than the prediction
of soil classes. One reason for this could be that soil classes are seen primarily as a mechanism
for the prediction of continuous variables (via the class mean, as discussed below). However, this
overlooks the complex interpretative information which a classification of soil, or other aspects of
land cover, can convey. Beckett and Bie (1978), after examining the application of soil surveys by
diverse users in Australia, concluded that the experienced surveyor holds much more information
about soil in their head by the end of a survey than is directly extractable from the map and memaoir.
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It is unfortunate that spatial statisticians have focussed almost exclusively on the development
of methodology to predict continuous properties, assuming that the sum total of a set of such
predictions would be more informative than a class-based map. A broader approach which included
the use of elicitation methodology to formalize and make available the field scientist’s experience
alongside single property mapping might have been more productive, particularly while active
and experienced field surveyors were more numerous. We share the concerns of Murphy (2014)
that such information has been overlooked. Perhaps one reason has been insufficient attention to
the requirements of the users of spatial information, and how it is required to support decision
processes.

2.2. Prediction error variance

A first step beyond the evaluation of soil maps in terms of the prediction of discrete classes was
to consider the map as a basis for prediction of continuous soil properties on the basis of class or
map unit means (Webster and Beckett, 1968). On the basis of a suitable sample, one may partition
the variance of a soil property into within- and between-class or map-unit components, au% and
obz respectively. The intra-class correlation is the proportion of the total variance accounted for by
between-class differences, effectively a correlation among sites within the same class:

- (10)
ST
If there is evidence for a difference among the classes or map units with respect to a variable of
interest, then the class or map-unit mean may be used as a prediction of the variable at unsampled
sites. If the mean for class I is estimated by X; on the basis of n; observations, and the variance
within the class is 0,2, then the prediction error variance, i.e. the expected squared error of the
class mean as a prediction of the variable at a location within the class is given by

1
o = of (1+E>' (11)

The first term on the right-hand side of the above expression is simply the variability about the
class mean, and the second term is the error variance for the sample mean, used as the predictor
(Webster and Lark, 2013; Leenhardt et al., 1994).

This prediction error variance may be computed in other settings. For example, if we have
calibrated a simple linear regression to predict vegetation cover from a remotely sensed index,
then the prediction error variance can be computed from the statistics of the fit for any location
at which the regression is applied. The mean square error of prediction is a quantitative measure
of uncertainty and, subject to assumptions about the error distribution, can be used to compute
prediction intervals.

The prediction error variance of the predictions made by ordinary kriging, widely used for
spatial prediction of variables from limited samples, is known as the kriging variance. Subject to
the assumptions of intrinsic stationarity (Webster and Oliver, 2007), the kriging variance is the
quantity minimized for any prediction by the selection of weights to form a linear combination
of observations around a site where a prediction is required. In this sense a kriging prediction
is optimal, but the kriging variance is also a quantification of the uncertainty. It is common
to see maps of the kriging variance alongside the predictions themselves, indicating both the
magnitude of the uncertainty, and also how it varies in space depending on the distribution of
sample points (e.g. Holmes et al., 2007; Hatvani et al., 2021). Beyond ordinary kriging, the empirical
best linear unbiased predictor, from a linear mixed model which can incorporate spatial trends, or
relationships to exhaustive covariates in the spatial prediction, also generates a prediction error
variance alongside the predictions.

In the ordinary kriging case the kriging variance depends only on the distribution of sampling
points around the location of interest and the variogram model which characterizes the spatial
dependence of the random variable. For this reason, if an estimate of the variogram is available, it
is possible to compute the grid spacing required to achieve a target prediction error variance, for
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Fig. 2. Empirical probability density function for grid spacing that achieves the target kriging variance (0.18) and
corresponding PDF for the logarithm of the sample density which achieves the same. From Lark et al. (2017) under
CC-BY Licence https://creativecommons.org/licenses/by/3.0/.

example at the centre of a cell of the sampling grid where the uncertainty will generally be largest.
This was proposed by McBratney et al. (1981), and has been applied, for example, in precision
agriculture (Kerry et al.,, 2010) and soil sampling to support management of nitrogen fertilizer
(Ruffo et al., 2005). When the variogram is obtained from a reconnaissance survey the error in its
estimated parameters can be accounted for when planning the more detailed spatial survey through
Bayesian modelling which allows a posterior distribution of the grid spacing required to achieve a
target minimum precision (Lark et al., 2017). Fig. 2 shows (a) the empirical PDF for samples from
the posterior distribution of sampling densities that achieve a target maximum kriging variance
(0.18) for predictions of uranium concentration in topsoil of a part of the Copperbelt province in
Zambia with legacy effects from copper mining (Lark et al., 2017). Fig. 2(b) shows the corresponding
distribution of log sampling densities.

In many respects the kriging variance, or its relations in the wider set of prediction error
variances, is an ideal measure of the uncertainty of spatial information. It can be mapped so as to
visualize the uncertainty in the kriging map of the target variable. It is the variance of the prediction
distribution of the variable at an unsampled site so, subject to distributional assumptions, it can be
used to compute prediction intervals. Because we can express a maximum or mean prediction error
variance over a region as a function of sample density, which is an important determinant of survey
costs, the survey sponsor can be helped to identify an acceptable trade off between the cost of a
survey and the precision of its product.

However, all this is based on the assumption that a prediction error variance can be effectively
communicated to the users and sponsors of spatial information. This is by no means certain.
Chagumaira et al. (2021) conducted an evaluation of alternative methods to express the uncertainty
in spatial information about the concentration of micronutrients in staple grains grown in Malawi
and the Amhara Region of Ethiopia. This was done with two panels, one in Malawi and one in
Ethiopia, and each comprising specialists in nutrition and public health, agronomy and soil science.
The panels were provided maps of micronutrient concentration along with alternative methods
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to express the uncertainty. These included the kriging variance, prediction intervals, and different
methods to represent the probability that the concentration fell below a nutritionally-relevant
threshold. The panel were then asked a series of questions about the different presentations, and
asked whether the methods helped them to understand the uncertainty, and finally to rank the
methods. While a majority of respondents agreed that every method helped them to understand
the uncertainty, the proportion who agreed was smallest in the case of the kriging variance (just
over 60%) than for all the others (all over 80% and most over 85%). Furthermore, the overall ranking
of methods across the panel appeared significantly different from random, with kriging variance
ranked lowest.

2.3. Uncertainty ‘indices’

The kriging variance is a generalized measure of the uncertainty of spatial information in the
sense that it refers only to the variability of the target variable and the intensity with which it has
been sampled, irrespective of the particular use to which the information is put. It can be given
a specific meaning through a statistical model (e.g. a prediction interval). However, for the user
unaccustomed to interpreting statistical measures of variation, it may be difficult to interpret the
kriging variance with respect to a question such as whether an intervention should be approved
or not at a location, or whether the variance is sufficiently large to warrant further investment in
sampling to reduce it. Other general measures of uncertainty are used, often for specific types of
spatial information where a formal statistical model is not used, and so a prediction variance is not
produced.

For example, geologists increasingly present information inferred from boreholes, exposures
and geophysical data in the form of three-dimensional models known as framework models (Lark
et al,, 2013). In some cases these are produced by implicit modelling methods, which entail
statistical modelling. However, with limited available data, explicit modelling may be more feasible.
This involves initial expert interpretation of the available data, perhaps by the production of
interlocking cross-sections where point observations, at the locations of boreholes along a transect,
are interpolated visually, guided by knowledge of geological processes, to produce a continuous line
(perhaps with discontinuities at inferred faults) representing the height of a particular geological
contact along the transect. Multiple such cross-sections may then be used to infer surfaces, perhaps
with the help of an algorithm for interpolation. The final outputs of such a process comprise spatial
information (the inferred elevation of a contact between geological units at locations of interest),
and might be used for a range of applications such as planning engineering work or modelling
the behaviour of aquifers. The uncertainty about the true position of a particular contact might
have serious implications for the success or failure of a project, and we discuss this below for
the case of the Channel Tunnel between France and England where geostatistical modelling was
used to support decision making. In the case of explicit modelling, however, the uncertainties
introduced by, for example, expert interpretation of the shape of a contact along a section, based on
limited boreholes, cannot be quantified directly as part of the modelling procedure, neither can the
propagation of errors of interpretation and other sources of uncertainty (such as location uncertainty
for boreholes, and uncertainty about the true elevation of the ground level relative to borehole
records) through the final step of interpolation to structures in 3-D. Empirical studies have examined
the interpretative errors (Lark et al., 2014a,b) and the overall error in the final model surface (Lark
et al.,, 2013), but this is a post-hoc validation which cannot be generally integrated into modelling
workflows to provide the information-user with a direct measure of uncertainty.

For this reason some general indices of uncertainty have been developed, which aim to represent
spatially the effects of known sources of uncertainty. Lelliott et al. (2009) proposed an uncertainty
index synthesized from factors expected to contribute to the uncertainty of a framework model.
The sources of uncertainty include the local geological complexity and the distance from a location
under consideration to neighbouring boreholes which were interpreted as part of the modelling
process. Their index was consistent with experts’ expectations in a number of case studies. Although
it did not directly quantify uncertainty, it did show where the user might have greatest confidence
in the model and where it might be less reliable.
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In other studies where uncertainty is quantifiable from a statistical model it may be visualized
for the general reader with some uncertainty index. In the field of geological modelling Zhang
et al. (2021) did this for models based on the interpretation of borehole observations. In another
application area Osgood-Zimmerman et al. (2018), used a Bayesian geostatistical model to quantify
measures of child growth failure across Africa. Their analysis provided samples from posterior
distributions of interest, and they used these to produce prediction intervals based on quantiles
of the posterior distribution. They presented these as measures of ‘relative uncertainty’, related to
the width of this prediction interval and visualized them in a colour plot.

2.4. The drawbacks of generalized measures

A mapped uncertainty index, such as that of Lelliott et al. (2009), may show where in a region
spatial information can be treated with most confidence and where with least. Other indices,
such as the width of the prediction interval, or, indeed, the kriging variance, may be used in
general and visualizable measures of uncertainty (e.g. Osgood-Zimmerman et al., 2018) which
reflect an underlying statistical model. However, we are sceptical that the problem of effectively
communicating uncertainty is thereby solved.

This scepticism comes, in part, from anecdotal experience, but also from some established
principles about decision making under uncertainty. We start with two anecdotes, offered to
provoke thought, not as hard evidence. The first is from a meeting which RML attended in the
Netherlands with an agency responsible for providing spatial information. In the discussion a
scientist from the agency said that many of their customers confessed that measures of spatial
uncertainty were regarded as de rigueur on any spatial information products purchased, used or
presented to the public by their organizations. However, they were not aware of any cases of the
customers actually using uncertainty measures in a decision-making process.

The second anecdote is from a meeting which RML and CC attended in Ethiopia with a stake-
holder group interested in micronutrients and human health in Africa. The meeting was a formal
consultation for co-production of a project, now underway, to construct a unified information sys-
tem on micronutrient supply. One question for discussion was how uncertainty in this information
should be presented. A piece of feedback was that statements about uncertainty should be treated
with care because they typically do not help with decision-making, but can paralyse the process
because it is far from clear how the uncertainty should be accounted for. Uncertainty might not
matter if the plausible range of values are all consistent with one decision, for example.

We think that these anecdotes are informative, and are consistent with what is known by
psychologists. Cognitive scientists have found a tendency to what they call regressive interpretation
of information where uncertainty is indicated. Budescu et al. (2014) examined the ‘verbal phrases’
which the Intergovernmental Panel on Climate Change use and require to indicate the level of
certainty in factual statements. For example, an outcome with a probability in the interval [1, 2]
is said to be as likely as not, while an outcome with probability larger than 0.9 is said to be Very
likely. Budescu et al. (2014) found that interpretations of outcomes described as very likely were
actually more consistent with their probability being close to 0.5. In short, drawing attention to
uncertainty in information may result in the interpreter’s being over-cautious in its interpretation,
underestimating its genuine information content.

Of course the uncertainty in spatial information should not be concealed because of these
difficulties. However, we do suggest that the producers of information should take note of research
which suggests that psychological strategies to make decisions with uncertain information account
not only for the logistical costs and benefits, but also the cognitive load of interpreting new
information (Petitet et al., 2021). Generalized measures of uncertainty which do not further the
decision-making process may actually inhibit it, squandering ‘cognitive bandwidth’ of the inter-
preter, and the reputation of the provider. A further finding of Chagumaira et al. (2021) may be
pertinent here. It was found that presentations of uncertainty in information couched in terms of
a specific decision process, in this case, the probability that the concentration of a micronutrient
in grain is less than a nutritionally-significant threshold, were consistently regarded as clearer
and easier to interpret than were general measures of uncertainty such as kriging variance or
the prediction intervals. We therefore turn our attention to such ‘decision-focused’ measures of
uncertainty for the remainder of this paper.
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3. Decision-focused uncertainty measures
3.1. Probability relative to a threshold

A common decision model for interpretation of spatial information entails comparing values
with thresholds. For example, fertilizer requirement in agriculture may be based on index values
of a soil analysis, while decisions on the use of land might depend on threshold concentrations
of potentially harmful elements or other pollutants. Wood et al. (1990) give an example from soil
management. A soil sufficiently saline that the conductivity in winter months exceeds 4 mS cm™!
is unsuitable for wheat production as germination and growth of seedlings will be impaired. When
making regional decisions about land use, information on salinity is therefore useful. Wood et al.
(1990) obtained data from Bet Shean in Israel. The point measurements of salinity had a mean
value of 4.8 mS cm~!. They used the disjunctive kriging method due to Matheron (1976) to obtain
point predictions of conductivity across the surveyed region, but the method also estimates the
probability that the value at a location exceeds some threshold to be estimated. This is the quantile
of the prediction distribution which corresponds to the threshold, also known as the conditional
probability. Estimates of this probability, relative to thresholds related to decisions, have also been
made by indicator kriging (Journal, 1983) in which the variable is divided into an indicator, I € {0, 1}
at the threshold value of interest. For example, Liu et al. (2004) used the method to evaluate the
probability that arsenic concentrations exceeded drinking water regulatory thresholds at locations
across an aquifer in Taiwan. Conditional geostatistical simulation, in which multiple realizations of
the geostatistical model, matching values at the sample locations, are drawn, may also be used for
the same purpose (Goovaerts, 1997), although it is most useful when the joint probability at more
than one location is required. Geostatistical methods can also be used when the decision depends
on the joint values of more than one variable. For example, Lark et al. (2014a) used cokriging to
estimate the joint conditional probability at sites across the north of Ireland that the value of cobalt
and manganese concentration in the soil fell within a range where intervention to avoid cobalt
deficiency among grazing sheep is warranted. This map is shown in Fig. 3. The same approach can
be taken to presenting outputs from models which provide samples from the posterior distribution
of a quantity of interest on the basis of a Bayesian model. Steinbuch et al. (2018) give an example
of the prediction of the probability of finding ripened clay at locations in part of the Netherlands
where marine clays are partially still subject to waterlogging which presents this process. The status
of these clays has direct implications for land use decisions, and so the probabilities were presented
as a map.

Geostatistical modelling was used for decision support during construction of the Channel Tunnel
between France and the south of England (Blanchin and Chilés, 1993). The tunnel engineers aimed to
keep the construction within the Chalk Marl, avoiding underlying Gault Clay and overlying altered
and fractured Grey Chalk. The output of a geostatistical analysis of borehole observations of the
depth to the top of the Gault Clay allowed engineers to quantify, for proposed tunnel routes, the
risk of tunnelling into the Gault and to adjust their plans to reduce this risk to acceptable levels. This
approach to the uncertainty in spatial information is not generic, but draws on the particular model
and the particular decision which it is to be used for. Lark et al. (2014b) gave a similar hypothetical
example. A modelling study was undertaken to quantify the uncertainties in expert interpretation
of geological boreholes along a cross section, with respect to the depth below the surface of a
contact between particular units. Fig. 4 shows a generic presentation of this uncertainty, as the
95% prediction interval for the height of the base of the London Clay relative to a datum. They then
went on to consider the challenge of planning a tunnel along this section. Here engineers would
want to keep the tunnel within the London Clay, and avoid the underlying Lambeth Group. If it
is specified that the tunnel should intrude into the Lambeth Group over no more than 1% of its
length, then we may examine the probability that this is achieved if the tunnel is planned to stay
some specified height, k m, above the modelled base of the London Clay. The probability evaluated
from multiple conditional simulations of the error in the model is shown in Fig. 5 as a function of k.
Again, the underlying statistical model can provide the generic uncertainty measure (Fig. 4) and the
specific measure of uncertainty computed for a bespoke engineering challenge and quality measure
(Fig. 5). We suggest that the latter will be of greater use to the interpreter of the information.
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Fig. 3. Probability at sites across the north of Ireland that soil analysis would indicate that an application of Co fertilizer
at a rate of 3 kg ha™' is required. Coordinates are in metres relative to the origin of the Irish National Grid. From Lark
et al. (2014a) with a change of colour scale under CC-BY Licence https://creativecommons.org/licenses/by/3.0/.
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Fig. 4. A geologist’s interpretation of the base of the London Clay with 95% prediction intervals. From Lark et al. (2014b)
under CC-BY Licence https://creativecommons.org/licenses/by/3.0/.
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Fig. 5. How close to the modelled base of the London Clay could you build a tunnel (over the last 4 km of the cross-section)
and have a specified probability (ordinate) that the tunnel strays into the underlying Lambeth Group for no more than
1% of its length? From Lark et al. (2014b) under CC-BY Licence https://creativecommons.org/licenses/by/3.0/.

We have shown examples in which, given a specific decision, and threshold-based decision
model, measures of uncertainty attached to outcomes of the decision can be expressed as a
probability that the objective of the decision model is achieved. While this is more targeted to
the requirements of the user than a general uncertainty measure, it might be reasonably asked
whether the communication of this uncertainty has been satisfactorily achieved. The two examples
in the last paragraph are in settings where engineers are using spatial information to make
decisions. One might expect engineers, through their professional background, to be competent in
handling probabilistic accounts of uncertainty, although a recent study (Kaplar et al., 2021) found
that misconceptions about probability are surprisingly frequent among engineering students. It
is certainly the case that misconceptions about probability are widespread (Galesic and Garcia-
Retamero, 2010; Spiegelhalter et al., 2011). For this reason the Intergovernmental Panel on Climate
Change (Mastrandrea et al., 2010) requires that report authors use a standard verbal scale to attach
probabilistic information to uncertain outcomes. If the probability of an outcome is P, and P, > 0.66
then the outcome is described as ‘Likely’. This may be intensified to ‘Very likely’ if P, > 0.9 and to
‘Virtually certain’ if P, > 0.99.1f 0.33 < P, < 0.66 then the outcome is described as ‘About as likely
as not’. If P, < 0.33 then the outcome is described as ‘Unlikely’. This may be intensified to ‘Very
unlikely’ if P, < 0.1 and to ‘Exceptionally unlikely’ if P, < 0.01. Lark et al. (2014a,b) used this scale
to present the probabilistic information about soil cobalt and manganese content, and decisions on
pasture soil management (presented as simple probabilities in Fig. 3 of this paper).

The IPCC verbal scale has been investigated by psychologists, and criticized as a result. Harris
and Corner (2011) showed that the interpretation of a verbal uncertainty for some outcome was
prone to ‘severity bias’, that is to say, the severity of a possible outcome from a decision is not
separated in the interpretation of information from the uncertainty that the outcome would result.
We have already noted the work of Budescu et al. (2014) on regressive interpretation; they showed
that this effect was smaller when numeric information was combined with the verbal ‘calibrated
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phrase’. Lark et al. (2014a,b) used this in their presentation. However, the question of how best to
use and communicate probability-based uncertainty measures remains open. Jenkins et al. (2018)
found that mixed-formats (verbal and numerical) were prone to the ‘extremity’ effect as were purely
verbal ways of expressing probability. By ‘extremity’ effect is meant the tendency to over-interpret a
statement that an outcome is ‘unlikely’ by placing it either entirely outwith the range of a histogram
of outcomes, or at least in very extreme tails. This was mitigated to some extent by a mixed format
for communication in which the numeric part of the information is emphasized, e.g. by placing it
before the verbal expression. Jenkins et al. (2019) also found that emphasizing the numeric value
of probabilities in communication made the credibility of an information source more robust to
events where an outcome, said to be ‘unlikely’ (but not impossible), actually happens. We also note
that Chagumaira et al. (2021) found no evidence that the stakeholders they engaged with preferred
formats in which probabilistic information was communicated verbally, or with pictograms, to
direct presentation of the numbers. It is clear that more work needs to be done before the question
can be settled.

One issue addressed by Chagumaira et al. (2022), was how stakeholders would use probabilistic
information to make a decision. They asked stakeholders to select a critical probability (that
micronutrient supply falls below a significant threshold) above which they would recommend
an intervention. It was found that this threshold was prone to a ‘framing’ effect (Tversky and
Kahneman, 1981), such that if the question is put ‘negatively’ (the probability that the micronutrient
supply is less than the threshold is p) that interpreters would be more cautious and likely to
recommend intervention than if presented with the equivalent information in a ‘positive’ framing
(the probability that the micronutrient supply exceeds the threshold is 1 — p). It was found that a
negative framing also resulted in more consistent interpretation over different professional groups.
The critical value of p, under a negative framing, was about 0.3, indicating a tendency to a
conservative interpretation. One way to interpret p; is in terms of the losses that a user perceives
under errors of commission, L., (intervene where not necessary) or omission, L., (fail to intervene
where it is necessary). It is straightforward to show that, if these two losses are assumed to be
equal that setting p = 0.5 minimizes the expected loss. If the loss under an error of omission
exceeds that under an error of commission (e.g. because the public health costs of a failure to
address nutrient deficiency outweigh the opportunity costs of an unnecessary campaign), then the
expected loss is minimized by recommending an intervention if the probability that the nutrient
supply is inadequate exceeds some p; < 0.5, in fact, a result in decision theory is that

L

Lo+ L
In short, decision theory links the interpretation of probabilistic information about a threshold to,
at least tacit, measures of loss under different outcomes from the decision. This invocation of the
notion of a loss or cost, which it is assumed is minimized in rational decision making, as described
in standard texts on decision theory such as those of Berger (1980) and Peterson (2017), takes us
to the final section of this paper.

Dt (12)

3.2. Expected loss and value of information

We have already referred to the Soil Survey of England and Wales’'s Sheet SE39 (Soils of
Northallerton) made by Allison and Hartnup (1981). The largest single map unit on this sheet is
a compound unit, the Clifton-Dunkswick map unit, comprised 40% and 35% respectively of the two
eponymous soil series, and with small inclusions of five other soil series. If we assume that the 25%
of the area in this map unit, belonging to minor soil series is equally distributed among them, then
the expected information content of a random observation of the soil series somewhere in the map
unit, in the sense of Eq. (2), is 1.92 bits. If, through considerable effort, this compound map unit were
replaced by two simple map units, each of purity 0.8, and with the remaining area of the map unit
occupied by 6 soil series, of equal area, then the expected information content of an observation
is reduced to 1.24 bits. This tells us something about the uncertainties of predicting soil series.
However, if we inspect the analytical data for the dominant series in the map unit, presented by
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Allison and Hartnup (1981), and also by Jarvis et al. (1984), we see that the mechanical properties of
the topsoil are very similar, so that the period of time in a typical year when the soil can be worked
by machinery differs little between them. Similarly, both have the same (moderate) organic content
in the topsoil. However, there is a difference in pH, such that the Dunkeswick series (topsoil pH
6.3) would be recommended for liming for optimal performance of clover-based pasture systems,
whereas the Clifton series (topsoil pH 6.9) would not — see Lark et al. (2016) for a discussion
of the threshold. The point that this example makes is that, whilst there is genuine information
obtained by producing the hypothetical simple map units for the Clifton and Dunkswick series (0.68
bits, indeed), this information is immaterial to a map user concerned with estimating soil carbon
stocks or evaluating impacts on land trafficability under climate change. However, the additional
information is valuable to a map user who wants to calculate lime requirement to improve pasture
over a region. This example illustrates the difference between information conceived as an abstract
reduction of uncertainty, and information conceived as a way of reducing the costs arising from
uncertainty. Howard (1966), building on the statistical decision theory of Raiffa and Schlaiffer (1961)
introduced the idea of the value of information as an explicit alternative to Shannon’s information
theory. He stated that, under Shannon’s approach, or others based on the probabilistic structure of
the communicated variable, ‘if losing all your assets in the stock market and having whale steak
for supper have the same probability then the information associated with the occurrence of either
event is the same’. For this reason, he said, ‘[a]ttempts to apply Shannon’s information theory to
problems beyond communications, have, in the large, come to grief.’

Bie and Ulph (1972) evaluated the potential economic benefit from the information provided by
soil survey on the basis of the expected pay-off, both positive and negative, to different agricultural
practices on the constituent soils of a region, and the benefit to be obtained if the area under the
different soils can be distinguished. This allowed them to identify an optimal purity for map units,
on the assumption that the marginal costs of making a map of the optimal purity equal the marginal
benefits from basing decisions on it. By putting the costs of information in the same terms as the
benefits from its use, Bie and Ulph (1972) were able, in effect, to push the question of how one
interprets some measure of information uncertainty into the background, and replace it with a more
tractable model of information as an input to an activity which, much like fertilizer, labour or fuel,
which contributes to the net return to activities which it supports.

Assessments of the economic value of spatial information have been made in the context of
geostatistical surveys of the soil. Viscarra Rossel et al. (2001) considered the case of site-specific
lime application to a wheat crop, and showed that the rational decision in the case of their study
site was to apply lime uniformly to a field rather than attempting to obtain the information needed
to apply lime at a variable rate. We use the basic model of wheat responses to pH to illustrated the
concept of value of information in statistical decision analysis.

In Fig. 6(a) we show the function which Viscarra Rossel et al. (2001) used to relate soil pH to
yield of the wheat crop. The maximum yield is small in global terms, but not for the extensive
dryland systems of Australia. It is a quadratic function, and so is symmetrical, with a loss of yield at
excessive pH (attributable, among other factors to the ‘locking up’ of micronutrients such as iron),
and yield losses at more acidic pH due to effects on microbial activity, nitrogen cycling and root
development. We assume that the goal of soil management is to achieve the optimum pH (7.4), and
that the actions taken to correct excess acidity are done on the basis of soil pH information at field
scale. We assume that the management variable is continuous (e.g. applying some specified rate of
lime). We therefore assume that if, for example, pH is over-estimated, lime will be underestimated
accordingly, and so the pH achieved will be somewhere below the optimum. Similarly, if pH is
underestimated, lime will be over-applied, and the pH of the soil will be correspondingly too high.
We recognize that this simplifies real management practice.

We use the response function in Fig. 6(a) to obtain a loss-function, Fig. 6(b) expressing the cost
of an error in the estimation of soil pH on the assumption that an error results in adjustment of
soil pH to a non-optimal value, resulting in a loss of potential yield, and assuming that a tonne of
wheat is worth A$370 (Australian dollars, based on information from the https://www.indexmun
di.com/commodities/ website for September 2021). This is an oversimplification, because, among
other considerations it does not account for how liming the soil will have benefits, or disbenefits,
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for several cropping seasons after application. However, for illustrative purposes we work with this
simple loss function. Let us assume that, in the absence of information about the pH of the soil in
a field where we are managing a crop of wheat, we use a regional mean value. If the soil pH is
overestimated by 0.5 pH unit by the regional mean then the loss is about A$ 23 ha~'. This means
that perfect information about the pH of our particular field would be worth A$ 23 ha~!, it would
save the manager that loss. Because this ignores error in the information it is sometimes called the
‘value of perfect information’ or ‘value of clairvoyance’ (VoC), and we use the latter term here. If we
specify the error by ¢, and the loss function by L(¢), then, if the mean pH values of soil in a region
has a normal distribution with standard deviation oy, then the expected loss over the region, and
so the expected VoC, can be computed as
o0
E[VoC] = E[L|og] = / L(e)fn (¢]0, or) de. (13)
—00

Now, rather than clairvoyance, let us assume that the soil pH in a field of our region is determined by
a sample. If the sample is unbiased, with standard error ¢’, then we can compute the expected loss
when the estimate is used to manage soil pH, and this will be obtainable from Eq. (13) as E [Lla’].
Whereas clairvoyance reduces the expected loss from E [L|og] to zero, so the value of clairvoyance is
equated with the expected loss, with sampling the expected loss is reduced from E [L|og] to E [L|o’].
This is illustrated in Fig. 6(c) which shows E[L|o ], as a function of the standard deviation, o, and
the expected value of the imperfect information, or E [Vol|0/] as the difference between E [VoC]
and E [L|o’].

In Fig. 6(d) we compute the expected value of imperfect information as a function of the sample
size used to obtain that information. We assume that the standard deviation of the field mean pH,
or is 1 pH unit, and the within-field standard deviation of soil pH, ow, is also 1 . These values
are compatible with coefficients of variation and variograms for soil pH presented by Beckett and
Webster (1971) and by Patterson et al. (2018). If we assume simple random sampling with n, then
the standard error of the sample mean is

’ ow
O = —.

NG
The solid line in Fig. 6(b) shows the value of imperfect information increasing as the sample size
increases, and so the information becomes more precise, but also more costly. The dashed line in
the plot shows the change in the value of expected information for successive unit increases in
sample size, with diminishing returns apparent. The best sample size to be used would be the one
where the increment in the value of the imperfect information just equals the marginal unit cost of
the soil information. In this case, for example, if we assume that the marginal cost of an additional
soil pH sample from a field is A$3, then the best sample size for a field is 6 samples. If the marginal
cost is reduced to A$0.5, then a sample size of about 14 would be preferred. Note, again, that these
examples are given for illustrative purposes, and do not constitute specific advice (see Fig. 6).

The paragraphs above introduce the elementary ideas of the theory of value of information,
as developed since the work of Howard (1966). The key ideas are the loss function, the value of
clairvoyance (or perfect information) in some particular case, the expected value of clairvoyance,
and the expected value of imperfect information. The study of value of information can generally be
developed in one of two directions. The first is a detailed decision analysis, following the principles
of decision theory (e.g. Peterson, 2017) in which decisions or acts have different outcomes in
uncertain states — e.g. a decision/act whether or not to spray a field crop against a fungal disease has
outcomes (costs incurred, or saved, yield lost, or saved) according to the state (a pathogen is present
or not). Our example above is a very simplified illustration, but more complete analyses related
to sampling decisions on contaminated land have been produced, notably by Ramsey et al. (2002),
Boon et al. (2011). Here the decision is how intensively to sample a site proposed for development.
The outcome of the sampling action will be a choice either to proceed to development of the site,
or first to remediate it. Depending on the underlying state of the site, there may be substantial
unnecessary costs associated with remediation where this is not required, or high costs from
remediation post-development, with possible associated fines and legal liabilities. A loss function
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Fig. 6. (a) The effect of soil pH on wheat yields in Australia, following Viscarra Rossel et al. (2001). (b) The corresponding
loss function if attempts are made to adjust field mean soil pH to the optimum on the basis of an estimated soil pH with
specified error. (c) Expected loss as a function of standard error of the estimate of soil pH and showing the expected
Value of Clairvoyance (VoC) if the standard deviation of field mean pH is 1 unit and for a specified standard error of
the estimate of the mean soil pH of a field (¢”). (d) Expected value of information (solid line) for the field mean soil
pH determined by simple random sampling as a function of sample size assuming a within-field standard deviation of
soil pH of 1 unit. The dotted line shows the VoC. The dashed line shows the increment in expected Vol for successive
additional samples.

can be produced from this analysis, and then the expected loss, on the basis of samples of different
size (and cost) can be computed as in our illustration.

We suggest that there is a need for more worked examples of detailed decision analysis to allow
the interpretation of uncertain information by assessing its value, and by extension the possible
additional value of further information in particular settings. However, it might not always be
possible to form a sufficiently complete loss function. Consider, for example, the case of a public
research organization proposing to map the soil carbon stocks of a region. This information will
be invaluable in decisions on carbon accounting, and policies to promote carbon sequestration
(see Lark and Knights, 2015). However, it is difficult fully to analyse the decision because the
losses due to errors in the information may be hard to quantify, reflecting intangibles such as
political capital, confidence of the general public, and knock-on effects on the credibility of other
interventions. For this reason, Lark and Knights (2015) proposed the implicit loss function as a tool
for exploring sampling decisions. The implicit loss function is a concept used to analyse decisions
that have been made. For example, Pierdzioch et al. (2016) developed implicit loss functions to
quantify how members of the Federal Open Market Committee (FOMC) of the US Federal Reserve
appeared to weight different outcomes of decisions on interest rates (unemployment, balance of
payments, inflation etc.). Lark and Knights (2015) proposed a framework based on piece-wise linear
loss functions, with asymmetry reflecting an elicited preference for policy outcomes emphasizing
environmental goods overagainst those which emphasize business or other goods which must
be traded off against soil quality. With this established, a cost model for survey and a proposed
sampling budget the implicit loss function, the loss function which makes the sampling budget
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rational, can be computed and exhibited. It is proposed that this could be used to discuss whether
the costs associated with erroneous information seem plausible, or perhaps imply that a larger or
smaller budget should be considered. In particular it was suggested that implicit loss functions could
be compared between competing projects in order to decide on a partition of resources between
them.

So the assessment of value of information through statistical decision analysis can be a frontal
attack on a problem about how to assess the uncertainty in environmental information. Given
that statisticians can commonly relate measures of information quality (e.g. kriging variance) to
measures of the effort required to obtain that information (e.g. sample grid spacing), we can find
specific answers to questions about how much information it is rational to collect in a particular
case. It can be turned on its head in the implicit loss function to try to illuminate decisions about
environmental information when the full decision analysis appears to be intractable.

A third approach, which may be generally illuminating, is the formal study of value of infor-
mation to identify general conclusions which may be instructive, and may highlight where close
attention to decision analysis in practice might be focussed. For example, three general conclusions
of value of information theory are that the value of clairvoyance is an upper bound for the value of
imperfect information; that the value of information is zero if decisions are never changed on the
basis of information, and that the expected value of information is non-negative (Clemen, 1996).
However, it has been pointed out that these results assume that the sponsor of information and
the decision-maker are either the same agency, or that the latter, in effect, bases their decisions
on the same model (e.g. set of threshold concentrations acceptable for a pollutant) which the
sponsor assumes when making decisions on information collection. This has been called, formally,
the case of value of information with Control (VoI-C), i.e. control of subsequent decisions. In practice,
however, the collection of information may be sponsored by one agency, (which makes decisions on
information collection), and subsequent decisions are made by another. From the perspective of the
sponsor any assessment must consider what von Winterfeldt et al. (2012) call value of information
without control (VOI-NC). Peck and Richels (1987) distinguished these cases, considering a situation
where a scientific agency evaluates evidence for damage to the environment by acid deposition,
whilst a second agency, the regulator, make decisions on how to limit activities which cause the
deposition. These two agencies may value environmental goods and costs to industry identically, but
hold different prior probabilities with respect to the question of whether deposition causes damage.
In these circumstances the VoI-NC for the science agency can be negative, a positive value of VoI-NC
is most likely if the quality of the research is large (i.e. if the probability of providing evidence for
damage in the case that such damage is occurring is large, in frequentist terms if the power to detect
the effect is large). von Winterfeldt et al. (2012) went on to show that, in environmental studies,
the VoI-NC can be analysed as the sum of a component due to possible reduction of environmental
harm and a component due to policy costs. Both components are positive when research quality (as
measured above) is large and possible environmental impacts are small, but can be negative in other
conditions. Even when the science agency’s prior probability that there is an environmental impact
is zero or one, VoI-NC can be positive (despite the research costs), because high-quality research
still influences the decision maker. In short, the VoI-NC or VoI-C frameworks can provide a basis
for understanding how uncertain information is used, and so its value.

4. Conclusion: Next steps

We started with the observation that a statistical model may permit a sophisticated and robust
quantification of the uncertainty in spatial information. However, if we stop with this quantification
then it is unlikely that users of information, and the wider stakeholder groups which they serve,
will benefit from it. The statistical model is only the start.

Furthermore, the challenge is about more than communication. While there are very real
questions about how the user of a map might be helped by legends, colour schemes, pictograms and
other tools to grasp, for example, probabilistic measures of uncertainty, these generally take their
meaning only in the setting of a particular decision system, with particular decisions to be made,
dependent on particular unknown states, and with outcomes which may vary from one context to
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another. The generalized measure of uncertainty is unlikely to help the user with this, and indeed
may, at best, be purely decorative and at worst an obstacle to the effective use of spatial information.

In fact, there is no substitute for the hard work, for all involved, of a proper analysis of the
decision system which users of spatial information employ, whether explicitly or tacitly. On the
basis of the work reviewed above, the key steps are as follows

1. To identify who is sponsoring the collection of information, who is making decisions with it,
and who the other stakeholders are.

2. To assess whether these parties can be treated as a single representative stakeholder, with
common prior beliefs about the states, and shared interests in the outcomes (be these
regulatory costs, social costs, environmental costs), or whether different stakeholders must be
recognized. In this latter case the sponsor, who will make decisions about the effort put into
collection of information, has a VoI-NC, but the decision maker may value the information
differently.

3. To characterize the states, decisions and outcomes which constitute the decision problem. It
is likely that many decisions depend on states of multiple variables, and a careful analysis of
how these should be considered in combination is needed.

4. To identify the decision-making process, the relevant stakeholders, what risks are carried and
by whom.

5. To characterize the decision-making process by one or more loss functions for errors in
information, or, if this is not possible, to identify simpler proxies to characterize acceptable
information quality.

6. To base on the information collected above, and on any existing data, a robust sampling and
mapping strategy which should provide information of acceptable quality for the decision-
making process.

7. To evaluate the quality of the information post-hoc, and to assess how far the requirements
of different stakeholders have been met.

We suggest that the success of this process rests in large part on the engagement of statisticians
throughout; much as the statistical profession might prefer to draw sharp demarcation boundaries,
such that its responsibilities end with the successful and rigorous completion of a statistical model
and computation of its predictions and their uncertainties. We also accept that such a complete
and closed decision system might often not occur, for example when data are collected to establish
national or regional capability and without a complete view as to who might be beneficiaries of
the information further down the line. That said, we agree with von Winterfeldt (2014) that the
best efforts to characterize a decision system will not be wasted, even if they do not succeed in
delivering a full decision analysis, insofar as they allow stakeholders and scientists to sharpen their
understanding of their objectives and assumptions. Some seventy years ago Yates (1952) recognized
the urgent need to develop best practices to determine rational levels of investment in the collection
of information, it is high time that this was fully addressed in respect of spatial information.
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