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Abstract – In contrast with laboratory insect swarms, wild insect swarms display significant
coordinated behaviour. Here it is hypothesised that the presence of a fluctuating environment
drives the formation of transient, local order (synchronized subgroups), and that this local order
pushes the swarm as a whole into a new state that is robust to environmental perturbations.
The hypothesis finds support in a theoretical analysis and in an analysis of pre-existing telemetry
data for swarming mosquitoes. I suggest that local order is sufficient to make swarms fault-
tolerant and that the swarm state and structure may be tuneable with environmental noise as a
control parameter. The new theory opens a window onto thermodynamic descriptions of swarm
behaviours and extends a long-standing analogy with self-gravitating systems.
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In contrast with bird flocks, fish schools and animal
herds, insect swarms maintain cohesion but do not pos-
sess global order [1–11]. This has prompted the search
for more nuanced ways to characterize collective motions
in animal aggregates that go beyond the identification of
global ordering or patterning [5–8]. These studies vividly
demonstrate that the aggregates’ properties cannot be de-
termined by passive observations of their quiescent state
alone; instead the aggregate must be perturbed [12]. In
contrast with laboratory insect swarms [1–8], wild insect
swarms [9–11] contend with temperature gradients, air
flows, and other dynamic perturbations. Understanding
how and why laboratory and wild swarms differ may there-
fore lead to a better understanding of collective motion
and to how collectives possess enhanced properties rela-
tive to individual animals.

Insects within laboratory swarms appear somewhat
paradoxically to be tightly bound to the swarm whilst
at the same time weakly coupled inside it [2]. This
is quite different from wild swarms which display very
strong correlations associated with the intermittent pres-
ence of synchronized subgroups [9–11]. Here I account

(a)E-mail: andy.reynolds@rothamsted.ac.uk

for the difference in observed correlations between the
two data sets. I show how the presence of transient syn-
chronized subgroups can push the swarm as a whole into
a new state that is robust to environmental perturba-
tions. The new theory predicts that the aerial density
profiles of wild swarms can be accurately characterized
by q-Gaussians. Support for this distinctive prediction
is found in an analysis of pre-existing telemetry data for
swarming mosquitoes [11]. The occurrence of q-Gaussians
is shown to sharpen much-exploited similarities between
insect swarms and self-gravitating systems [1,13–16].

In wild swarms, subgroups of synchronized individuals
form momentarily [11]. These subgroups predominantly
consist of pairs of individuals flying in parallel. For illus-
trative purposes I begin by considering wild swarms that
consist exclusively of individuals and coordinated pairs. In
the long-time limit, the dynamics of such swarms can be
described ‘thermodynamically’ and so without direct ref-
erence to specific individuals by a pair of coupled reaction-
diffusion equations
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where N1 and N2 are the spatio-temporal distributions
of individuals and coordinated pairs [17]. The first two
terms on the right-hand sides of eq. (1), the fusion-fission
terms, describe the continuous formation and break-up of
pairs. The third terms account for the attraction to the
swarm centre. (The results that follow apply irrespective
of whether or not pairs are attracted to the swarm centre.)
Taken together the first, third and fourth terms are the
Eulerian, long-time equivalent of the Lagrangian models
of Obuko [1] and Reynolds et al. [13,14] which encapsu-
late many of the microscopic and emergent macroscopic
properties of laboratory swarms. Here in accordance
with observations [11] it is assumed that: 1) N1 � N2;
2) D2 � D1 (i.e., co-moving pairs have higher motility);
3) reaction dynamics are fast so that αN2

1 − 2βN2 ≈ 0,
which is consistent with the membership of synchronized
pairs changing rapidly over time. Under these assump-
tions, eq. (1) reduces to the non-linear diffusion equation
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The stationary solution of eq. (2) is a q-Gaussian with
q = 0,
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Laboratory swarms, on the other hand, have Gaussian
density profiles with long tails [2]. These are predicted by
the model, eq. (1) when fission-fusion processes are absent.
Given enough time an insect in a laboratory swarm can
explore the whole of its potential well, whereas an insect
in a wild swarm never can. Confinement in wild swarms
arises because eq. (2) corresponds to a density-dependent
random walk model

dx = −kxdt +
√

2DN(x)dξ, (4)

where dξ is a white-noise process with mean zero and vari-
ance dt [18]. The intensity of the driving noise depends
on the probability distribution, N(x), and vanishes at the
edges of the swarm. As a consequence, wild swarms are
predicted to be more tightly bound together than are lab-
oratory swarms where individual movements at long times
are described by

dx = −kxdt +
√

2Ddξ, (5)

[1,14]. In other words, in wild swarms the attraction to
the swarm centres is countered by sub-diffusion whereas
in laboratory swarms the attraction is countered more
strongly by diffusion. It is noteworthy that if N(x) is
interpreted as being the instantaneous rather than the
equilibrium distribution then distant fluctuations in the
density of a wild swarm are predicted to be felt locally.

This may explain the findings of Attanasi et al. [9,10]
who reported that wild swarms tune their control param-
eters to the swarm size. This was interpreted by Attanasi
et al. [9,10] under the guise of criticality. Here it is simply
a mathematical consequence of fusion-fission dynamics.

More generally sub-groups of size n correspond to
q-Gaussians with q = 2−n [17]. A population of different-
sized subgroups can be expected to correspond to a series
of q-Gaussians with q = 0,−1,−2, . . . , so that the overall
density profile becomes
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where Q = 1
1−q , σ = σx and where here f(n) is taken

directly from observations [11]. This prediction pro-
vides good representations of the density profiles of wild
swarms [11] (figs. 1–3). This shows how seemingly dis-
parate observations (distribution of subgroup sizes and
overall density profiles) can be tidied together consistently
by the new theory. The model distributions were fitted to
the telemetry data [11] by matching the variances of the
model distributions to the observations (for a Gaussian
distribution this is the log maximum-likelihood estimate)
and the best model distribution was identified using the
Akaike information criterion. An Akaike weight (reported
in figs. 1–3) is the weight of evidence in favour of the
q-Gaussians providing the better fit to the data. They
can vary from 0 (no support) to 1 (complete support).

Okubo [1] was the first to propose that insect swarms
are analogous to self-gravitating systems. This analogy
stems from the fact that individual insects are bound to
the swarm centre by a force that increases linearly with
distance from the swarm centre [1,2]. This is encapsulated
in eq. (1) and is consistent with insects interacting via an
inverse-square law. An inverse-square law is expected if, as
is widely believed, insects are interacting acoustically with
one another [14]. In this regard, q-Gaussians, also known
as polytropic distributions, are interesting because they
constitute the simplest, physically plausible models for
self-gravitating stellar systems [19]. They arise in a very
natural way from the theoretical study of self-gravitating
systems. The parameter q is related to the polytropic
index, n, that links pressure and density, P ∝ ρ1+ 1

n ,
by 1

1−q = n − 1
2 . This is consistent with observations

of laboratory swarms which have Gaussian density pro-
files (corresponding to q → 1) [1,2] and have isothermal
cores (P ∝ ρ) [8] (corresponding to n → ∞). A poly-
trope with index n = ∞ corresponds to an isothermal
self-gravitating sphere of gas, whose structure is identi-
cal to the structure of a collisionless system of stars like
a globular cluster. Laboratory swarms are therefore pre-
dicted to be analogous to globular clusters, as claimed
by Gorbonos et al. [15]. Wild swarms are different as

38001-p2



Fluctuating environments drive insect swarms into a robust new state

Fig. 1: (Colour online) Analysis of a male-only swarm with 22 individuals. Distribution, P , of distances of each individual from
the swarm centre. Telemetry data (•). q-Gaussian ansatz (green line). Shown for comparison is the best fit Gaussian (red-line).
The Akaike weights for the q-Gaussians are 1.00, 1.00 and 1.00.

Fig. 2: (Colour online) Analysis of a male-only swarm with 22 individuals. Distribution, P , of distances of each individual
from the swarm centre. Telemetry data (•). Best fit q-Gaussian (green line). Shown for comparison is the best fit Gaussian
(red-line). The Akaike weights for the q-Gaussians, are 1.00, 1.00 and 0.00.

Fig. 3: (Colour online) Analysis of a male-only swarm with 7 individuals. Distribution, P , of distances of each individual from
the swarm centre. Telemetry data (•). Best fit q-Gaussian (green line). Shown for comparison is the best fit Gaussian (red-line).
The Akaike weights for the q-Gaussians are 1.00, 1.00 and 0.00.

q-Gaussians with q = 0 (i.e., n = 3/2) are predicted to
make the dominant contribution to the overall aerial den-
sity profile. A polytrope with index n = 3/2 is a good
model for fully convective star cores (like those of red gi-
ants), brown dwarfs, giant gaseous planets (like Jupiter),
or even for rocky planets [20].

The foregoing analyses suggest that the presence of a
fluctuating environment drives the formation of transient,
local order (synchronized subgroups), and that this local

order pushes the swarm as a whole into a new state that
is robust to environmental perturbations. It may there-
fore reconcile seemingly conflicting observations of insect
swarms [1–8] made in the laboratory and in the wild [9–11]
because it suggests that different kinds of group morpholo-
gies and swarm dynamics are simply different phases of the
same phenomenon. It may also sharpen a long-standing
analogy with self-gravitating systems [1], an analogy that
is gaining renewed attention [13–16].
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