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Abstract. The cohesion of insect swarms has been attributed to the fact that the resultant internal in-
teractions of the swarming insects produce, on the average, a centrally attractive force that acts on each
individual. Here it is shown how insect swarms can also be bound together by centrally forces that on the
average are repulsive (outwardly directed from the swarm centres). This is predicted to arise when veloc-
ity statistics are heterogeneous (position-dependent). Evidence for repulsive forces is found in laboratory
swarms of Chironomus riparius midges. In homogeneous swarms, the net inward acceleration balances the
tendency of diffusion (stochastic noise) to transport individuals away from the centre of the swarm. In
heterogenous swarms, turbophoresis —the tendency for individuals to migrate in the direction of decreas-
ing kinetic energy— is operating. The new finding adds to the growing realization that insect swarms are
analogous to self-gravitating systems. By acting in opposition to central attraction (gravity), the effects
of heterogeneous velocities (energies) are analogous to the effects of dark energy. The emergence of resul-
tant forces from collective behaviours would not be possible if individual flight patterns were themselves
unstable. It is shown how individuals reduce the potential for the loose of flight control by minimizing the

influence of jerks to which they are subjected.

Introduction

In contrast with bird flocks, fish schools and migratory
herds, sparse swarms of flying insects do not possess global
order but are, nonetheless, a form of collective animal be-
haviour [1,2]. The collective behaviour is evident in their
emergent macroscopic mechanical properties. Laboratory
swarms of Chironomus riparius midges, for example, have
macroscopic mechanical properties similar to solids, in-
cluding a finite Young’s modulus and yield strength [3].
The collective behaviour of these swarms is also evident
in their response to dynamic illumination perturbations.
The swarm-level response can be described by making an
analogy with classical thermodynamics, with the state of
the swarm moving along an isotherm in a thermodynamic
phase plane [4]. Applied oscillatory visual stimuli induce
a viscoelastic response as the perturbations are strongly
dampened, both viscously and inertially [5]. A distine-
tively different indicator of collective behavior lies in the
composition of unperturbed swarms. Unperturbed labo-
ratory swarms of Chironomus riparius midges consist of a
core “condensed” phase surrounded by a dilute “vapour”
phase [6]. Although these two phases have distinct macro-
scopic properties, individuals move freely between them,
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suggesting that they are collective, emergent states. The
collective behaviours of laboratory swarms of Chironomus
riparius midges are predicted by stochastic trajectory sim-
ulation models [5,7-11]. This and other modelling [12-14]
have also uncovered striking similarities between insect
swarms and self-gravitating systems such as globular clus-
ters, as foreseen by Okubo [1]. Okubo [1] noted that if the
internal forces between individuals were like Newtonian
gravitational attraction, then the resultant attraction on
an individual within a uniform spherical swarm would be
directly proportional to the distance from the swarm cen-
tre, as observed [1,2] and as predicted by the stochastic
models.

To date, stochastic trajectory simulation models have
been formulated for homogeneous swarms with position-
independent velocity statistics. Here models are formu-
lated for swarms with heterogeneous velocity statistics.
The effects of heterogeneous velocity statistics are shown
to be analogous to “dark energy” causing individuals, on
the average, to accelerate outwardly from the swarm cen-
tre. The outward accelerations need a supply of energy
which for “active particles” like insects can be got from
converting (unseen) internal energy into kinetic energy.
Model predictions are supported by the results of numer-
ical simulations and by analysis of pre-existing data for
laboratory swarms of Chironomus riparius midges [15].

Swarm stability is contingent on the stability of in-
dividual trajectories. Modelling and data analysis reveal
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that individuals minimize the influence of potentially
destabilizing jerks (changes in acceleration) to which they
are subjected. I show that jerks along with an analogue of
the Reynolds number appear in higher-order (generalized)
stochastic models.

Model formulation and predictions

Here following Okubo [1] T assume that the positions, z,
and velocities, u, of individual insects within a swarm can
be described by the stochastic differential equations

dr = udt,

du = a(u,z,t)dt + bdW (t), (1)

where dW (¢) is an incremental Wiener process with cor-
relation property dW(t)dW (¢ +7) = &(7)dt. Such 1-
dimensional, individual-based models are effectively first-
order autoregressive stochastic processes in which posi-
tions and velocities are modelled as a joint Markovian
process. At second order, positions, velocities and accel-
erations are modelled collectively as a Markovian process.
Physically, the hierarchy of stochastic models corresponds
to the inclusion of a velocity autocorrelation timescale,
T, at first order, and to the addition of an accelera-
tion autocorrelation timescale, t 4, at second order and so
on [16]. Continuum models of the kind pioneered by Topaz
and Bertozzi [17] and utilized, for example, by Topaz et
al. [18] are not appropriate because the Knudsen num-
ber Kn~O(1) [19]. In the laboratory, Chironomus ripar-
ius midges appear somewhat paradoxically to be tightly
bound to the swarm while at the same time weakly cou-
pled inside it [19].

Here the deterministic term, a(u,x,t), is determined
by the requirement that the statistical properties of the
simulated trajectories be consistent with the observations
of Kelley and Ouellette [2] who reported on the posi-
tion and velocity statistics of individual Chironomus ri-
parius midges within laboratory swarms. Mathematically
these consistency conditions require that the joint distri-
bution of velocity and position p(u,x,t) be a solution of
the Fokker-Planck equation

., o _ 9

b2 0%p
T i wC

R (2)

Here, in broad agreement with the observations [2], T as-
sume that positions and velocities are statistically station-
ary and Gaussian distributed,

1 x2 u?
p(u,r) = m exp <—20%) exp <—203> ) (3)

where o, is the root-mean-square position (i.e., the
root-mean-square swarm size), and o, is the position-
dependent root-mean-square speed. Equation (2) implies
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where for statistically stationary swarms having, % =0,
the quantity ¢ is determined by
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It follows from eqgs. (2), (3) and (4) that
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of generality and on dimensional

when, without loss
202
%
tails of the derivation of such models can be found in
Thomson [20]. The first term in eq. (5) is a “memory
term” which causes velocity fluctuations to relax to their
mean value. The second and third terms are a conditional
mean acceleration (restorative force). The fourth term is
the stochastic driving noise. This accounts for fluctuations
in the restorative force which arise because of the lim-
ited number of individuals in the swarm and because of
nonuniformity in their spatial distribution [1]. Utilizing
the continuous Fokker Planck equation, eq. (2), to deter-
mine the functional form of the discrete models, eq. (1), in
the above way contrasts with the continuum formulation
of fully-fledged discrete models of dense swarms [21].

When velocities are homogeneous (i.e., when dcﬁ =0),
the model, eq. (5), reduces to Okubo’s model [1]. In this
case, mean accelerations are directed towards the swarm
centre and increase linearly with distance from the swarm
centre, in accordance with observations made at the cores
of laboratory swarms [1,2]. This is consistent with insect
swarms behaving as self-gravitating systems [1].

More generally, the velocity-averaged mean accelera-
tion

where T is a model timescale. De-

grounds, b =

2
doi
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(Alx) = ——x +

a

(6)

xr
Concave mean-square-velocity profiles therefore counter-
2
. o 2dp
act the linear term, — S, (more generally o, 32 where p

is the aerial density profile) and if strong enough can over-
whelm it completely so that mean accelerations are every-
where direct away rather than towards the swarm centre.
Such swarms are therefore effectively bound together by
repulsive forces.

Comparisons with simulation and experimen-
tal data

Individual trajectories were simulated by numerically in-
tegrating the stochastic model, egs. (1) and (5). Statisti-
cally stationary predictions for mean accelerations, veloc-
ity variances and spatial distributions were obtained from
100000 simulated trajectories. The results of these numer-
ical simulations confirm that swarms remain localized and
coherent even though individuals are, on the average, ac-
celerating outwardly away from the swarm centre. This is
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Fig. 1. Insect swarms are predicted to remain localized and coherent even when every individual is, on the average, accelerating
outwardly from the swarm centre. Individual trajectories were simulated using the stochastic model, egs. (1) and (5) with
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= for |z| < 20, otherwise 02 =o2e*, 0o =1 and T = 1a.u. 100000 individuals were simulated for a time

t = 5a.u. whereupon their positions, velocities and accelerations were recorded (e). Initial positions were Gaussian distributed
with mean zero and variance o2. Initial velocities were Gaussian distributed with mean zero and variance o2 (z).

illustrated in fig. 1 for the case when o2 = a§e$2/ % for

|z| < 20, otherwise 02 = o2e* so that (A|zr) = Z—‘zz for
|z| < 20, otherwise (A|z) = 0. Cases where individuals
are everywhere, on the average, repulsive are non-physical
because such swarms possess infinite kinetic energy. Fur-
ther support for the model predictions comes from an anal-
ysis of the pre-existing data for 3-dimensional swarms of
Chironomus riparius midges [15]. Mean-square velocities
within the cores of these swarms are position indepen-
dent and, as predicted, mean accelerations increase lin-
early with distance from the swarm centers (fig. 2). In
the outskirts of the swarms the concave shape of mean-
square velocity profiles becomes apparent as does the ex-
pected associated weakening of the central attraction (due
to contributions to the net resultant forces from repulsive
forces).

Jerks and Reynolds numbers

Male midges swarm to provide a mating target for fe-
males, making stationarity desirable. Ni and Ouellette [3]
were the first to show that this biological function is re-
flected in an emergent physical macroscopic property of
the swarm; namely its tensile strength. van der Vaart
et al. [5] subsequently showed that midge swarms also
strongly dampen perturbations, both viscously and in-
ertially. These findings suggest that midge swarms use
their collective behaviour to stabilize themselves against
environmental perturbations. Perturbations are inevitable
in natural swarms that must contend with gusts of wind
and with other environmental disturbances. Collective be-
havours can, however, only be stablizing if individual’s
trajectories are themselves stable. To avoid losing control
of their body motion, it is not only necessary to limit the
maximum acceleration, i.e., the force, an individual can
be exposed to, but also the maximum jerk strength (rate

of change of acceleration, %), since individuals need time
to adjust to stress changes. Here I show that midges min-
imize the impact of jerks.

Jerks arise in second-order autoregressive models for
the joint evolution of an individual’s position, x, velocity,
v, and acceleration, A:

dA = a(A,u,z, t)dt + bdW (1),
du = Adt,
dz = udt. (7)

The formulation of such models mirrors closely that of
first-order models, eq. (1). The position, velocity and
accelerations of the simulated trajectories will be con-
sistent with the observed form of the joint distribution
of acceleration, velocity and position, P(A,u,z,t), when
P(A,u,z,t) is a solution of the Fokker-Planck equation

opP oP opP 0 b2 92 P
S AT = - L aP)+—
o " or T = oA D ty g ®
Equation (8) implies that
omP ¢
where for statistically stationary swarms having, %—IZ =0,
0p oP oP
9 _ W28 4% 1
oA~ "oz “ou (10)

The first term on the right-hand side of eq. (9) is a mem-
ory term which causes accelerations to relax to their mean
value, (A). The second term on the right-hand side %
of eq. (9) is the mean jerk strength (J). It follows from
eq. (10) that when accelerations, velocities are homoge-
neous (position independent) and Gaussian distributed,
the mean jerk strength

(J)=u (3<A> - "31) .

2
Ox o2

(11)
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Fig. 2. Hallmarks of model predictions in laboratory insect swarms. Concave velocity-variance profiles co-exist with suppressed
inward accelerations (indicative of contributions from outward accelerations). Data are taken from Sinhuber et al. [15] for
horizontal movements. Velocity variances and mean accelerations are ensemble averages over all 17 dusk time swarms in the
dataset. To reduce the effects of meandering centres and fluctuations in swarm size, position-dependent velocity variances and
mean accelerations were calculated for 10 s long runs of data. These quantities were then ensemble-averaged. Data for vertical
movements is not shown because laboratory swarms are distorted in that direction by the presence of the ground, and because
individuals tend to join the swarm by flying above it [1]. Also shown is the linear dependence of mean accelerations with distance
from the swarm centre that is expected for homogeneous swarms (dashed lines).

An equation for the mean acceleration —identical to
eq. (4)— is obtained from eq. (10) after integrating over
all accelerations. For swarms with Gaussian density pro-

files, (A) = —Z—z‘ax. In accordance with eq. (11), the mean

jerk strength is observed to increase linearly with velocity
when velocities lie within the Gaussian cores of the ve-
locity distributions (fig. 3(a)). Discrepancies between the
predicted and observed mean jerk strengths only become
significant at higher velocities, |u| > 20,,, which lie within
the exponential tails of the velocity distribution [2] and so
beyond the scope of the model. Moreover, as predicted, the
average observed jerk strength does not vary significantly
with position in the swarm (fig. 3(b)). Model predictions
for velocity-averaged jerk strengths |(J(u > 0))| are also
in good agreement with data for a variety of laboratory
swarms with mean sizes between 19 and 94 individuals
(fig. 3(c)). The simple, 1-dimensional model is seen to con-
sistency overpredict |(J(u > 0))] by a factor of about 3/2.

The above analysis is readily extended from 1 and 3 di-
mensions and to thereby account for velocity covariances.
In this case

(Ji) = —u; (W + 03%’) ; (12)

x

where the subscripts denote Cartesian coordinates and
where 7 is the inverse of the velocity covariance ma-
trix (u;u;). The mean jerks are therefore aligned with
the direction of travel, i.e., with the body axis, when
the velocity covariances vanish. This has resonance with
Reynolds et al. [22] who suggested that migratory insects
use turbulence-induced jerks as an indication of mean
wind direction when flying at altitude. The average mag-
nitude of the jerks is the smallest along the mean wind
line (or to the right of the mean wind line in Ekman spi-
ral atmosphere in the Northern Hemisphere). Vanishing
velocity covariances are not inevitable. The analysis of
the datasets of Sinhuber et al. [15] of laboratory swarms
of midges, for example, reveals that velocity covariances
are non-zero but 10 to 20 times smaller than the velocity
variances. And, as predicted, mean jerks are found to be
effectively aligned with velocity.

An analogue of the Reynolds number, which is deter-
mined by the ratio of T' and t4, Re* = (T/ta)?, appears
as a parameter at second order [16]. This provide a new
way to characterise swarm behaviours. Indeed, modelling
predicts a transition from under- and over-damped move-
ments with increasing Reynolds number (fig. S1 in the
Electronic Supplementary Material).
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Fig. 3. Comparisons of predicted and observed mean jerk strengths. An example comparison of the predicted and observed
dependence of the mean jerk strength on (a) velocity and (b) position. Experimental data are taken from the smallest swarm
(Ob17) in the data set of Sinhuber et al. [15]. In accordance with model expectations, eq. (11), the mean jerk strength increases

2 2 2 2
linearly with velocity according to J = —u(Z% + Z4) and the mean jerk strength |(J(u > 0))| = /20 (Z# 4+ Z4) is independent
of position. (¢) Comparison of predicted and observed velocity-averaged jerk strengths |[(J(u > 0))|. Experimental data are taken
from all 17 dusk-time swarms in the data set of Sinhuber et al. [15]. The dashed-line is a least squares regression (R = 0.93).

Directly comparable results are obtained for the y- and z- (vertical) directions.
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Fig. 4. (a) Acceleration variances depend on velocity. The lines are fits to 0% = ag + a,u® with p = 2, 4 and 6. Experimental
data are taken from all 17 dusk-time swarms in the data set of Sinhuber et al. [15]. (b) Comparison of observed and predicted
unconditional probability density functions (PDFs) of acceleration. Experimental data are taken from all 17 dusk-time swarms
in the data set of Sinhuber et al. [15] (black line) (one horizontal component of acceleration). In accordance with model
expectations the PDF has a heavy tailed compared with the Gaussian (dashed line). The data are very well represented by

a stretched exponential P(A) = Nexp(—W) where N is a normalization constant and where the constants o and

were determined by maximizing the associated log likelihood function (red line). (¢) Unconditional and conditional PDFs of
acceleration have similar shapes. The observed collapse of the conditional PDFs suggests that the stretched exponential tails

and the postulated power law of the conditional acceleration variances may be related.

More elaborate models

In principle the modelling could be extended to account
for distributions of acceleration having heavy tails [2]. It
should, however, be noted that the naive approach of sim-
ply specifying non-Gaussian accelerations produces non-
physical effects in stochastic modelling of tracer-particle
trajectories in turbulence [23]. More realistic stochastic
models of tracer-particle trajectories in turbulence are
formulated in terms of conditional distributions of ac-
celerations under the assumption that these are Gaus-

sian [24-26]. Tracer-particle accelerations have a con-
ditional dependency on both the rate of dissipation of
turbulent kinetic energy and velocity [16]. Likewise, the
mean accelerations of swarming insects are velocity de-
pendent [7], as are the acceleration variances, o2 (u,x)
(fig. 4(a)). The latter implies that large fluctuations
in acceleration tend to be associated with large veloci-
ties. The correlation between the square of the fluctu-
ations in accelerations and square of velocity is small

but not negligible (the correlation coefficient, paz,2 =
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(A%u?) —(A®) (u®)
(A1) —=(A2)2)1/2 ((ut) —(u?)2)1/2
eration are, therefore, just as likely to reinforce the ve-
locity as they are to oppose it. The data for 2 (u,z) are
seen to be equally well represented by 04 = ag + asu®
and by 04 = ag + agu® (fig. 4(a)). The velocity depen-
dency of the acceleration variances may be attributed to
insect trajectories occasionally rotating [10]. An insect will
complete a half a rotation (of radius r) and change its
velocity by an amount Au = 2u in a time 7 = 7r/|ul.
Consequently, acceleration variances ((£%)?) ~ u* when
u~ 1% and ~ u® when u ~ =1 If u ~ ! then an insect
will not rotate over itself: it will maintain the same ori-
entation while circulating behaving like a passive particle
in an irrotational produced by a vortex tube. It is inter-
esting to note that the acceleration variances of passive
tracer-particles in turbulence and those of simulated pas-
sive tracer-particles of direct numerical simulations also
have a u® dependence which has been attributed to rota-
tions (around vortex filaments) [27,28]. As with the case of
turbulence [28], the velocity-dependent accelerations vari-
ances may account for distributions of acceleration having
heavy tails [1] (fig. 4(b)) and for the collapse of the con-
ditional distributions P(A|u) (fig. 4(c)). Following Saw-
ford et al. [28], a heuristic understanding of this relation-
ship can be attained by assuming that conditional dis-
tributions of acceleration are Gaussian. For large accel-
erations, the unconditional distribution of accelerations,
P(A) = [%_P(Alu)p(u)du can be evaluated using the
saddle point approximation. If, as observed [1], velocity
distributions have long exponential tails, then the saddle

~ 0.1). Fluctuations in accel-

point approximation gives P(A) ~ exp( —aAﬁ) where «
is a constant. Laboratory results for the distribution accel-

eration are well represented by P = N exp(—W)
where N is a normalization constant and where @ and
are constants (fig. 4(c)). This ansatz has a Gaussian core
and a stretched exponential tail. The model exponent for
the tail, 2/(1+ p), matches the empirical value, 2/7, when
p = 6. It may be difficult to improve on this model. Note
also that these intrinsic fluid-like properties of swarming
midges in still air may, like other properties of swarming
midges, be modified if the air itself is set in motion or
if the swarm is perturbed in other ways by external per-
turbations [4,5]; mirroring expectations for swarming in
viscous fluids [29].

Discussion

Here I reported on the first theoretical analysis of hetero-
geneous insect swarms with position-dependent velocity
statistics. The analysis demonstrated the utility of a model
formulation which has proved to be highly effective when
applied to homogeneous swarms [5,7-11]. It revealed how
heterogeneous velocity statistics d;f contribute to mean

accelerations, (A|z), countering or even overwhelming cen-

2
trally attractive accelerations, —Z4x (eq. (5)). The for-

mer was evident in the results of numerical simulations
(fig. 1) which confirmed that individuals can be bounded

Eur. Phys. J. E (2020) 43: 39

to the swarm centre by a resultant force that, on the av-
erage, is repulsive; a seemingly paradoxical situation. Ev-
idence for repulsive forces was uncovered in an analysis of
pre-existing experimental data (fig. 2). The mechanism is
clear. In homogeneous swarms, the net inward acceleration
balances the tendency of diffusion (stochastic noise) to
transport individuals away from the centre of the swarm.
In heterogenous swarms, turbophoresis is operating. If, as
is observed (fig. 2), o2(z) is concave, then in statistically-
stable swarms this tendency of individuals to move in-
wards towards to centres of swarms must be countered
by net outward accelerations. Concave velocity-variance
profiles together with the assumption that velocities are
locally Gaussian also accounts for the observed presence of
velocity distributions with long-exponential tails [10]. This
juxtaposition also accounts for the observed occurrence
of speed-dependent forces, eq. (5) [7]. Concave velocity-
variance profiles are predicted by the mechanistic models
which attribute swarm cohesion to the sporadic and tem-
porary formulation of bound pairs of individuals flying in
synchrony [10], as observed by Puckett et al. [30]. They
may be also attributed to the influence of the ground-
based visual features known as swarm markers [19] or re-
sult from interactions between swarming insects and faster
insects outside of the swarms [19]: interactions that may
also account for the presence of stabilizing inwards effec-
tive pressure on the surface of the swarms [12].

Okubo [1] speculated that insect swarms are analo-
gous to self-gravitating systems and therefore individuals
are attracted to the centre of the swarm by an effective
net force that increases linearly with distance from the
swarm centre. There is now strong experimental support
for such a net linear restoring force operating within the
cores of laboratory swarms [2]. More recent studies have
uncovered more striking analogies with self-gravitating
systems: including the occurrence of polytropic distribu-
tions (which constitute the simplest, physically plausible
models for self-gravitating stellar systems), together with
biological correlates of Jean’s instabilities, black hole en-
tropies, Mach’s Principle, surface pressures, and dark mat-
ter (see refs. [10,12-14,31] and Electronic Supplementary
Material). By providing a revision to Okubo [1] I have un-
covered another biological correlate of self-gravitating sys-
tems: namely dark energy. In analogy with dark energy,
heterogenous velocity statistics were shown to act in oppo-
sition to the net inward force identified by Okubo [1]. This
opposition becomes significant in the outskirts of swarms.
The enrichening of the analogy with self-gravitating sys-
tems compliments ongoing attempts to establish a “ther-
modynamic” understanding of swarming [4,32]. A com-
plete understanding of the collective behaviour of insect
swarms may ultimately be found in both their emergent
macroscopic mechanical and thermodynamic properties,
and in their similitude with self-gravitating systems. The
emergence of these properties is contingent on individu-
als not losing control of their trajectories. It was shown
how individuals in the swarms reduce the potential for
the loose of flight control by minimizing the potentially
destabilizing influences of jerks; mirroring expectations for
migratory insects [22].
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Finally, it was shown that an analogue of the Reynolds
number appears as a parameter in second-order stochastic
models, opening a new unexplored avenue for characteriz-
ing collective behaviours [33].

The work at Rothamsted forms part of the Smart Crop
Protection (SCP) strategic programme (BBS/OS/CP/000001)
funded through the Biotechnology and Biological Sciences Re-
search Council’s Industrial Strategy Challenge Fund.
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