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Abstract

This study was designed to evaluate the effects of three prebiotics (β‐glucan,
galacto‐oligosaccharide [GOS], mannan‐oligosaccharide [MOS]) and two probiotics

(Saccharomyces cerevisiae, Lactobacillus acidophilus) on the microbiome of snakehead

during growth of fingerlings. In addition, the experiment evaluated the capacity of

Channa striata fingerlings to retain the benefits derived from these supplements

after withdrawal. Throughout the study, it was observed that supplementation with

dietary prebiotics and probiotics led to significant (p < 0.05) change in gut bacterial

profile and improvement in gut morphology. Terminal restriction fragment length

polymorphism (T‐RFLP) was used for the comparative analysis of gut communities

and all 46 of the T‐RFLP detected phylotypes were present in the Lactobacillus sup-

plemented fish, while significantly fewer were detected in controls and other experi-

mental supplement regimes. Histological studies and electron microscopy revealed

that both the prebiotic and probiotic treated fish had significantly longer and wider

villi and deeper crypts compared to the controls. The microvilli length, as evaluated

with electron microscopy, was also longer in all treated fish compared to controls.

Furthermore, this study is the first to report the absence of differences in sustaining

the efficacies attained after intake of β‐glucan, GOS, MOS and live yeast upon post‐
feeding with an unsupplemented feed, over a prolonged period.
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1 | INTRODUCTION

Analysing the intestinal bacterial profile is one of the important fac-

tors in fish nutrition studies (Daniel et al., 2014; Lara‐Flores,
Olvera‐Novoa, Guzmán‐Méndez, & López‐Madrid, 2003; Moen,

Saeed, Mohammad, & Faranaz, 2011). The gastrointestinal (GI) tract

of fish is known as the ecological nich (Austin & Austin, 1987;

Cahill, 1990; Denev, Staykov, Moutafchieva, & Beev, 2009; Holben

et al., 2002; Kim, Brunt, & Austin, 2007; Llewellyn, Boutin,

Hoseinifar, & Derome, 2015; Ringø et al., 2000; Ringø, Sperstad,

Myklebust, Mayhew, & Olsen, 2006; Ringø, Strøm, & Tabachek.,

1995) for a group of diverse selected beneficial bacteria derived

from the surrounding aquatic environment, including water sedi-

ment and feed. The abundance of beneficial bacteria in the fish

intestine is expected to influence fish growth and health (Cahill,

1990; Hoseinifar Khalili, & Sun, 2016; Hoseinifar, Ahmadi, et al.,

2016; MacFarlane, McLaughlin, & G. Bullock., 1986). Moreover, a
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diverse microbial community has been correlated with a well‐func-
tioning GI system (Nayak, 2010).

The Asian snakehead (Channa striata, Bloch, 1793) is one of the

most economically important freshwater fish in Asia‐Pacific region

(Hossain, Latifa, & Rahman, 2008; Jamsari, Tan, & Siti‐Azizah, 2011;
Wee, 1982). It contains higher protein (16.2 g in 100 g muscle) com-

pare to other freshwater fish such as gold fish or Carassius auratus

and eel or Anguilla anguilla (Annasari, Aris, & W., Yohanes, K., 2012)

and has a high market value due to the high quality of flesh with

low fat, less intramuscular spines and medicinal qualities (Haniffa &

Marimuthu, 2004). Extracts of its fins and scales are a good source

of albumin for the people who have a deficiency of albumin (Haniffa

& Marimuthu, 2004). Therefore, the aquaculture production trend

has increased 61.90% from 2000 to 2012 (FAO, 2014) through

semi‐intensive, intensive culture and cage aquaculture practices. Fre-

quently, when stocked at high density of snakehead fingerlings, the

resulting accumulation of organic matter leads to deterioration of

water quality and increases in diseases (Sinh & Pomeroy, 2010).

Biologically, the fish grows slowly but growth can be accelerated

using high‐quality feed supplements (Hossain et al., 2008; Wee,

1982). Antibiotics can no longer be used to manage infection and

fish health, to indirectly promote growth because of international

food security regulations imposed by the Food and Agriculture Orga-

nization in 2006 (FAO, 2007). The FAO authority permits alterna-

tives such as dietary prebiotics, probiotics, symbiotics, phytobiotics

and other natural dietary supplements (Denev, 2008). Dietary prebi-

otics and probiotics can improve the growth performance, feed uti-

lization, body indices (Hoseinifar, Safari, & Dadar, 2017; Munir,

Hashim, Abdul Manaf, & Nor, 2016; Talpur, Munir, Marry, & Hashim,

2014) nutrient protein digestibility, the expression of immune regula-

tory genes (Hoseinifar, Ahmadi, et al., 2016; Munir, Roshada, Yam,

Terence, & Azizah, 2016) and health status (Talpur et al., 2014) of

snakehead. In fact, dietary prebiotics and probiotics provide direct

beneficial effects on growth by improving intestinal microbial bal-

ance (Al‐Dohail, Hashim, & Aliyu, 2009; Dhanaraj et al., 2010) and

by modifying the structure and function of the GI tract in the fish

(Akter, Sutriana, Talpur, & Hashim, 2015; Amalia, Roshada, Nahid, &

Siti‐Azizah, 2018; Carly et al., 2010; Jian et al., 2012; Ringø, Mykle-

bust, Mayhew, & Olsen, 2007). This study analysed the effect of

dietary prebiotics and probiotics on gut bacterial richness and diver-

sity of snakehead using terminal restriction fragment length polymor-

phism (T‐RFLP) method. The T‐RFLP is a technique for profiling

microbial communities based on the position of a restriction site

closest to a labelled end of an amplified gene (Christensen, Reynolds,

Shukla, & Reed, 2004; Coolen, Post, Davis, & Forney, 2005; Davis

et al., 2010; Nieminen et al., 2011).

2 | MATERIALS AND METHODS

2.1 | Experimental fish and husbandry conditions

The study was conducted in Universiti Sains Malaysia (USM)

Aquaculture Research Complex. A total of 4,800 C. striata

fingerlings (av. wt. 22.40 ± 0.06 g) were selected from 10,000

master stocked snakehead fries and distributed equally (400 fish/

tank) in 12 outdoor rectangular cement tanks (2 m × 1 m × 0.5 m).

The fish were maintained in optimum condition with a natural

photoperiod where the mean water temperature, pH and dissolved

oxygen were 27.54 ± 0.30°C, 7.1 ± 0.08 and 6.1 ± 0.18 mg/L

respectively.

2.2 | Experimental diets and feeding trial

Six experimental diets including the control contained 40% protein

and 12% lipid (Table 1). Fish were fed the experimental diets in two

phases. Phase 1 involved feeding six cohorts of fish experimental

diets for 16 weeks while in Phase 2, all experimented fish were fed

the non‐supplemented control diet for 8 weeks. This was done to

evaluate the efficacy of prebiotics and probiotic intake in Phase 1

and the reversibility of the supplementation. In both phases, fish

were fed to satiation three times daily (i.e., early morning at 6.30

a.m., noon at 1 p.m. and late afternoon at 7 p.m.).

2.3 | Viability of Lactobacillus acidophilus in the LBA
diet

The viability of L. acidophilus in LBA diet was performed three

times, that is immediately after LBA diet preparation, two times (8

and 16 weeks) during storing at −20°C temperature followed by

the method described by Al‐Dohail (2010); Wang, Yu, and Chou

(2004) and Ishibashi, Tatematsu, Shimamura, Tomita, and Okonogi

(1985).

2.4 | Gut bacterial profile

The gut bacterial profile in C. striata was conducted using T‐RFLP,
which was designed according to the method Cancilla, Powell, Hillier,

and Davidson (1992), refined by Brunk's laboratory (Avaniss‐Aghajani
et al., 1996; Avaniss‐Aghajani, Jones, Chapman, & Brunk, 1994)

described by Bruce (1997), Liu, Marsh, Cheng, and Forney (1997),

Clement, Kehl, Bord, and Kitts (1998) and Marsh (2005). Twelve fish

were randomly collected from each replicate tank making three

groups of equal number of fish and were stocked in three black plas-

tic tanks for 24 hr without feeding. After 24 hr, the fish were sacri-

ficed individually using ice block. The fish were dissected, removing

undesired gut tissues such as liver, spleen and stomach. The intes-

tine was carefully separated from the stomach by first tying it off at

the junction of the stomach and intestine, cutting at the end of

stomach before the tied area, thereby isolating materials in the intes-

tine from contamination with stomach content. The exterior of the

intestines was washed several times with sterile PBS buffer (pH 7.4)

and blotted to remove the buffer. The intestines were cut into small

pieces and mixed together. One replicate consisted of intestines of

three fish. Cold environment was strictly maintained during this pro-

cesses using ice blocks to protect the bacterial DNA from degrada-

tion.
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2.5 | Genomic DNA extraction and PCR
amplification

The genomic DNA was extracted using PowerSoil® DNA isolation kit

(Catalog No: 12888‐S; MO BIO Laboratories Inc., CA, USA) accord-

ing to the recommended vendor's protocol. The PCR amplification

was performed using a conventional PCR machine (Model: ABI VER-

ITI, Manufactured by Applied Biosystem, USA). The universal bacte-

rial primers 63F (5'‐CAG GCC TAA CAC ATG CAA GTC‐3') (5' FAM‐
labelled) and 1389R (5'‐ACG GGC GGT GTG TAC AAG‐3') (unla-

belled) (Aburto et al., 2009; Masanori, James, Kim, & Marsh, 2013;

Quaak & Kuiper, 2011) were used to perform the 16S rDNA amplifi-

cation. The PCR reaction was carried out using i‐TaqTM plus DNA

polymerase (Cat No. 25152; iNtRON Biotechnology, Inc. Manufac-

ture) in a 50 µl reaction volume containing 1.5 µl DNTPs (2.5 mMol),

5 µl 10× Buffer, 1 µl (1 µg) universal primers each, 0.5 µl (2.5 U)

iTaq plus, 1 µl diluted DNA extracted template and 40 µl ddH2O

under the following cycle conditions: an initial denaturing step at

94°C for 3 min, 30 cycles of denaturing step at 94°C for 30 s,

annealing at 55°C for 30 s and extension at 72°C for 1.5 min. The

final extension was performed at 72°C for 5 min. The PCR mixture

was prepared under freezing temperature using ice block chamber.

After PCR, the amplification size was verified by gel electrophoresis

using 1 kb ladder.

2.6 | Purification of PCR products and digestion

The PCR products were purified using MEGAquick‐spin™ Total Frag-

ment DNA Purification Kit (iNtRON Biotechnology Manufacture)

according to the Manufacturer's guideline. The purified PCR prod-

ucts were digested with Hhal (Product code R0139S; New England

Biolabs) followed by the Manufacturer's guideline. The products

were checked using gel electrophoresis.

2.7 | T‐RFLP fragment sequencing

After gel electrophoresis, 15 µl of digested DNA samples each was

sent to Macrogen Inc., South Korea for T‐RFLP sequencing. The ser-

vice provider separated the DNA fragment (size standard 500LIZ)

using ABI 3730XL Genetic Analyzer automated sequencer (Applied

Biosystem). Each feeding treatment had four biological replicates and

each biological replicate had two technical replicates. The data were

from samples taken at the end of 8 and 16 weeks in Phase 1 and at

the end of Phase 2.

2.8 | Comparative analysis of gut bacterial
community profile

The sequence data obtained from the service provider were

retrieved using PEAKSCAN 3.1 software with the 500LIZ size stan-

dards. Therefore, the terminal restriction fragments (T‐RFs) were

binned with a 0.5 bp interval and the T‐RFs from 50 to 500 bp were

included in the analysis. T‐Align software was used for the align-

ments of the fragment size.

2.9 | Morphological measurement of intestine

The villus length, width and crypt depth were determined using nor-

mal histological procedure following the method of Davenport in

1969, whereas the transmission electron microscopy (TEM) was used

to determine the microvillus length following the method described

by Lewis and Knight (1977).

2.10 | Statistical analysis

The bacterial richness in the gut of C. striata fingerlings for inclusion

of dietary prebiotics and probiotics was estimated by counting the

TABLE 1 Feed ingredients of the six experimental diet (g/kg, dry matter)

Ingredients Control β‐Glucana 0.2% GOSb 1% MOSc 0.5% Live yeastd 1% L. acidophiluse 0.01%

Danish Fish Mealf 534 534 534 534 534 534

Korean Corn Starch 340 340 340 340 340 340

Fish oil 5 5 5 5 5 5

Soybean oil 60 60 60 60 60 60

Cellulose 11 9 1 6 1 10.9

CMC 10 10 10 10 10 10

Vitamins mixg 20 20 20 20 20 20

Minerals mixh 20 20 20 20 20 20

Supplement 0 2 10 5 10 0.1

Note. CMC = carboxymethyl cellulose.. aβ‐Glucan = Macrogard®.. bGOS = Galactooligosaccharides of Vivinal® GOS syrup, Friesland Campina Domo, the

Netherland.. cMOS = Mannan‐oligosaccharides of Alltech®, Actigen 1, USA.. dLive Yeast = Saccharomyces cerevisiae of Alltech®, YEA‐SACC 1026, USA..
eL. acidophilus = Lactobacillus acidophilus powder (Sigma® LBA).. fDanish Fish Meal/kg = Crude Protein 746.6 and Crude Lipid 101.6.. gVitamin Mix/kg =

Rovimix 6288, Roche Vitamins Ltd. Switzerland; VitA 50 million i.u., VitD 310 million i.u., VitE 130 g, VitB1 10 g, VitB2 25 g, VitB6 16 g, VitB12 100 mg,

Biotin 500 mg, Pantothenic acid 56 g, Folic Acid 8 g, Niacin 200 g, Anticake 20 g, Antioxidant 200 mg, VitK3 10 g and VitC 35 g.. hMineral Mix/kg = Cal-

cium phosphate (monobasic) 397.65 g, calcium lactate 327 g, ferrous sulphate 25 g, magnesium sulphate 137 g, potassium chloride 50 g, sodium chlo-

ride 60 g, potassium iodide 150 mg, copper sulphate 780 mg, manganese oxide 800 mg, cobalt carbonate 100 mg, zinc oxide 1.5 g and sodium selenite

20 g.
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T‐RFs number in each T‐RFLP profile. The diversity of the bacterial

communities took into account both species richness and species

evenness. The species evenness indicates how close in population

size of each bacterial species is in a community, or in this case, indi-

vidual feeding trial and it was done using the Shannon index (H′,
Shannon, 1948). This involved three steps. (a) cluster analysis (illus-

trated through dendrogram) and data ordination using non‐metric

multi‐dimensional scaling (nMDS) to visualize the result showing the

difference between bacterial communities in the fish gut correspond-

ing to different feeding treatments environment in the studied per-

iod; (b) test of significance difference using two‐way ANOISM and

two‐way PERMANOVA; (c) finally, correlation between the bacterial

community composition and the gut morphology correspond to the

six feeding treatments over time.

To remove background noise from each T‐RFLP profile for sub-

sequent statistical analysis, the T‐RFs that were below 0.5% (i.e.,

0.005) were removed by setting a logical formula (Blaud, Diouf, Her-

rmann, & Lerch, 2015). The normalized data were then square root

transformed and a Bray–Curtis matrix was used for analysing similar-

ities between samples and displaying the result using dendrogram

(Culman, Gauch, Blackwood, & Thies, 2008; Ramette, 2007) and

nMDS plots. The significant difference between clusters of the den-

drogram was tested using similarity profile (SIMPROF) analysis (999

permutations). The significant differences between feeding treat-

ments with the time period were tested using two‐way analysis of

similarities (ANOSIM; 9,999 permutations). The significance levels,

that is p value, and R value, that is the strength of the factors on

samples were determined. R values close to 1 indicated high separa-

tion between groups (e.g., between two feeding treatments or

between two time period), while R values close to 0 indicated no

separation between groups (Clarke & Gorley, 2001). Two‐way per-

mutational multivariate analysis of variance (PERMANOVA) was also

used to test for difference in T‐RFLP profiles between feeding treat-

ments and time. All these analysis were carried out using PRIMER

V6 statistical software (PRIMER‐E Ltd., Plymouth, UK).

The gut morphological particulars (i.e., villus length, villus width,

crypt depth and microvillus length) of C. striata were analysed using

ANOVA to detect significant changes (p < 0.05) corresponding to six

supplemented diets over time. Finally, the correlation between bacterial

community composition (T‐RFs or phylotypes) and the gut morphologi-

cal particulars were analysed using Pearson correlation in SPSS.

3 | RESULTS

3.1 | Gut bacterial profile

3.1.1 | Bacterial community richness and evenness

Supplementation with dietary prebiotics and probiotics enhanced the

richness and evenness of the bacterial communities in the fish gut

compared to the fish fed with the control (Figure 1). The restricted

enzyme digestion generated different T‐RFs (size standard 500LIZ)

which representing distinct bacterial phylotypes found from the six

feeding treatments. A total 49 different phylotypes were found (Fig-

ure 1). The T‐RFs richness and evenness were significantly and sys-

tematically lower in the fish guts fed with the control (richness‐
31 ± 4, evenness = 3.41 ± 0.13, 8 weeks) than with any supple-

mented diet. The fish gut which was fed with the L. acidophilus

showed the highest T‐RFs richness and evenness (richness = 45±2;

evenness = 3.80 ± 0.04, 8 weeks) in comparison to the fish fed with

β‐glucan, galacto‐oligosaccharide (GOS) and mannan‐oligosaccharide
(MOS), regardless the feeding period, but was only slightly higher

than fish fed with live yeast at 16 weeks. No significant differences

in T‐RFs richness and evenness were found at 8 weeks between β‐
glucan, GOS, MOS and live yeast (average richness = 41±2, even-

ness = 3.70 ± 0.03) but at 16 weeks, live yeast was significantly

(p < 0.05) higher than those three prebiotics. At the end of post‐
feeding treatments (i.e., 24 weeks), gut microbiomes fed with GOS

were lower diversity compared to all the supplemented diets, and

not significantly different from the control in richness and evenness.

3.1.2 | Gut bacterial community composition

The mean richness (i.e., the number of detected phylotypes) data of

different bacterial community composition is presented in Figure 2.

Fish fed with L. acidophilus supplemented diets carried the greatest

number of distinct terminal fragments (49). A total of 11 T‐RFs (i.e.,

131.2, 137.34, 146.48, 157.79, 171, 199.69, 250.14, 327.03, 433.22,

455.39, 489.22 bp) were absent in the control treated fish guts; and

all of only four phylotypes (171, 199.69, 250.14 and 327.03 bp)

were absent in other feeding treatments (β‐glucan, GOS, MOS, live

yeast) compared to the fish gut treated with the L. acidophilus probi-

otic.

The cluster data analysis (Figure 3) revealed that the bacterial

community compositions generated by T‐RFLP were strongly

affected by the inclusion of supplemented diets over the time per-

iod. According to the analysis, the bacterial community from the fish

fed with the control diet shown the lowest similarity to the other

treatments (~66%–75% similarity). The control fish at 8 weeks

tended to group separately from the other weeks. The fish fed with

L. acidophilus probiotic significantly (p < 0.05) clustered separately

from the other supplemented diets (three prebiotics and probiotic‐
live yeast), regardless the week of treatment, and showed ~83% of

similarity with these treatments. The remaining prebiotics treatments

(i.e., β‐glucan, GOS, MOS) and probiotic (i.e., live yeast) grouped

together with high percentage of similarity (~90%) and showed

inconsistent differences between the weeks of treatments. The

nMDS plot (Figure 4) also showed similar community differences

with the cluster analysis, where based on bacterial community com-

position, there were three groups: the control, LBA treated and all

other treatments.

3.1.3 | ANOISM and PERMANOVA analysis

Two‐way analysis of similarity (ANOISM) and PERMANOVA were

used for determining the significant difference between the diets
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and periods. Two‐way ANOSIM test revealed that diets had a strong

effect on the bacterial community composition (R ≤ 1). The data

demonstrated that the highest significance in comparison to the con-

trol feed was observed in the fish gut treated with LBA feed supple-

ments, followed β‐glucan, GOS, MOS and live yeast (Table 2).

Between the two prebiotics (i.e., β‐glucan to GOS; GOS to MOS and

MOS to β‐glucan), there was no pronounced difference (Table 2).

Similar values were seen between beta‐glucan and yeast; GOS and

live yeast; and MOS and live yeast. A strong difference was

observed between live yeast and LBA (R = 0.87). In this study, time

period did not have a strong effect on the bacterial community

structure (R ≤ 0.2); 8 and 24 weeks showed the highest R values

(R = 0.2), and 8 versus 16 and 16 versus 24 showed similar R values,

0.12 and 0.14 respectively.

Similar results were also found in PERMANOVA analysis. How-

ever, it also revealed the significance analysis result in three ways,

that is between the diets, periods and the interaction of diets and

periods. Table 3 represents the PERMANOVA analysis result of bac-

terial community composition affected by the comparison between

diets, periods and their interactions. The result obtained from the

PERMANOVA demonstrated that the highest significant difference

between the control and supplemented diets was observed in the

fish gut treated with LBA feed supplements, followed GOS, beta‐glu-
can and live yeast. In comparisons with ANOISM, fish fed LBA con-

tained the highest significant value for bacterial communities

composition. Among the three prebiotics, there was not a strong

effect. Although no strong effect was found between the three pre-

biotics and live yeast (probiotic), there was a significant difference

between two probiotics amended fish (Table 3). The comparison

among the rearing periods (week 8, 16 in the Phase 1 and the Phase

2 or post‐feeding treatments period) and the interaction between

the comparison of diets and rearing period did not show strong sig-

nificant difference on the bacterial communities composition.

3.2 | Relation between bacterial communities
structure and gut morphology

The study has revealed that inclusion of dietary prebiotics and probi-

otics profoundly influenced the gut microbiome. The villus length,

villus width and crypt depth of the fish gut measured using light

microscopic analysis were significantly increased (p < 0.05) in sup-

plemented feeding treatments compared to control. Highest varia-

tion was observed in the fish fed with LBA (Table 4). There was no

significant difference (p < 0.05) among three prebiotics (β‐glucan,
GOS and MOS) feeding treatments but in several instances live yeast

feeding treatments was very near to these three prebiotics. The

microvillus lengths studied under TEM were found similar to villus

length. The pearson revealed the correlations between the mean

value of gut morphology and mean value bacterial communities rich-

ness in different feeding treatments over rearing periods. A positive

correlation (Table 5) between the gut morphology and bacterial com-

munities structure were found. There was very little significant

F IGURE 1 Variation in the number of
T‐RFs and the Shannon index from the
bacterial community structure generated
by T‐RFLP from fish gut feed with six
different diets over a 8, 16 (Phase 1) and
24 weeks (Phase 2) period. Mean
values ± standard errors (n = 3) are shown.
Superscripts represent significant
(p < 0.05) differences among the
treatments tested
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change in gut morphology between Phase 1 (at the end of

16 weeks) and Phase 2.

4 | DISCUSSION

In this study, the application of dietary prebiotics and probiotics over

a prolonged period significantly changed the bacterial community

composition. The cluster and nMDS analysis showed clear separation

between all supplemented feed treatments and the control, which

was further confirmed by SIMPROF, two‐way ANOISM and two‐
way PERMANOVA analysis. Hence the supplemented feeding treat-

ments likely affected the composition of bacterial communities either

via direct or indirect effects of dietary probiotics or the dietary pre-

biotics respectively. This result agrees with the previous studies that

8 8 8 8 16 24 24 16 16 24 16 24 24 8 16 24 24 24 8 8 16 8 8 24 16 16 8 8 16 8 8 16 24 8 8 8 16 24 24 8 24 16 16 16 24 24 16 24 24 8 24 16 16 16 8 8 16 24 16 24 24 8 24 16 8 8 16 8 24 24 1 6 16
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F IGURE 3 Dendrogram of the bacterial community composition from fish's gut that were feed with six different diets over a 8 and
16 weeks in Phase 1 and 24 weeks (following 8 weeks in Phase 2 or at the end of post feeding period). The numbers 8, 16, 24 indicate the
period in week the fish are being feed. The dendrogram was produced using the group average linking method based on square root
transformed data and Bray‐Curtis similarity matrix. Red lines indicate clusters that are not significantly different (p < 0.05) using SIMPROF
analysis (999 permutations) [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Mean abundance of T‐RFs (size standard 500LIZ; size range 50–500 base pair) represents as phylotypes by six feeding
treatments including control. The β‐glucan, GOS, MOS, Live Yeast and LBA represent feed with beta‐glucan, galactooligosaccharides, mannan‐
oligosaccharides, Saccharomyces cerevisiae, Lactobacillus acodophilus feed supplements, respectively [Colour figure can be viewed at wileyonline
library.com]
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evaluated the bacterial community composition of channel catfish,

Pangasius hypophthalmus (Nahid, 2015) and small killifish, Fundulus

heteroclitus (Givens, 2012).

The performance trend of six experimental diets on bacterial

community composition was LBA > live yeast > β‐glucan ≥ MOS ≥

GOS > control at the end of week 8 and 16 in Phase 1. The reasons

for increased performance with the experimental diets include the

direct manipulation of intestinal microbial communities, suppression

of pathogens, immunomodulation, stimulation of epithelial cell prolif-

eration, differentiation, fortification of the intestinal barrier (Amalia

et al., 2018; Hoseinifar, Mirvaghefi, Amoozegar, Merrifield, & Ringø,

2015; Hoseinifar, Sharifian, Vesaghi, Khalili, & Esteban, 2014;

Thomas & Versalovic, 2010; Yarahmadi, Kolangi Miandare, &

Hoseinifar, 2016) as well as meeting dietary requirements. The speci-

fic combination of positive effects at the molecular level may differ

with the nature of each supplement. Nevertheless, the mode of

action in each case led to increased performance with the greatest

seen with LBA. This statement is supported by Nahid (2015) who

conducted studies on the effect of prebiotic, MOS and probiotics,

L. acidophilus at different doses on striped cat fish, Pangasianodon

hypopthalmus. Earlier studies by Noh, Han, Won, and Choi (1994)

and Bogut, Milaković, Bukvić, Brkić, and Zimmer (1998) on common

carp fingerlings showed similar results. The study also evaluated the

viability of L. acidophilus in LBA diet during frozen (−20°C) storage

(Table 6). This study also indicated that there were no significant

differences among the three prebiotics on bacterial community com-

position in the intestine over the time period. This is likely due to

the unique stimulating and immunomodulatory characteristic of the

three prebiotics tested that facilitated the growth of beneficial bac-

teria in the GI tract. Furthermore, these two attributes make the pre-

biotics a gut microflora management tool of fish (Gibson, 2008).

Prebiotics are non‐digestible dietary fibre comprising of non‐starch
polysaccharides such as cellulose and many other plant components

such as pectins, dextrins, lignins, β‐glucans (Philippe & Sylvie, 2010).

Numerous reports in the literature have observed that diets contain-

ing prebiotics have a stimulation effect of species belonging to the

genera Bacteroides, Bifidobacterium, Ruminococcus, Eubacterium and

Lactobacillus (Nino, 2013; Snart, Bibiloni, & Grayson, 2006). Prebi-

otics can avert the attachment and colonization of harmful bacteria

in the digestive tract (Gültepe, Salnur, Hossu, & Hisar, 2011;
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F IGURE 4 nMDS ordination of
bacterial community composition from
fish's gut that were feed with six different
diets over a 8, 16 in Phase 1 and
24 weeks (following 8 weeks in Phase 2 or
at the end of post feeding period). The
numbers 8, 16, 24 indicate the period in
week the fish are being feed. The nMDS
was constructed from the data generated
by T‐RFLP that were square root
transformed data and Bray‐Curtis similarity
matrix [Colour figure can be viewed at wile
yonlinelibrary.com]

TABLE 2 Two‐way analysis of similarities of the bacterial
community structure generated by T‐RFLP, testing differences
between different fish diet and feeding period

Factors Comparison R value p Value

Diets Control versus β glucan 0.96 0.0002

Control versus GOS 0.94 0.0002

Control versus MOS 0.93 0.0002

Control versus Live yeast 0.93 0.0002

Control versus LBA 1.00 0.0002

β glucan versus GOS 0.23 0.025

β glucan versus MOS 0.19 0.129

β glucan versus live yeast 0.19 0.007

β glucan versus LBA 0.95 0.0002

GOS versus MOS 0.1 0.222

GOS versus Live yeast 0.28 0.0002

GOS versus LBA 0.97 0.0002

MOS versus Live yeast 0.17 0.0002

MOS versus LBA 0.93 0.0002

Live yeast versus LBA 0.87 0.0002

Period Week 8 versus Week 16 0.12 0.006

Week 8 versus Week 24 0.20 0.001

Week 16 versus Week 24 0.14 0.008

Note. Weeks 8 and 16 in the Phase 1 and Week 24 was in Phase 2 or

at the end of post‐feeding treatments period of the study.. GOS = galac-

tooligosaccharides; LBA = Lactobacillus acidophilus; live yeast = Saccha-

romyces cerevisiae; MOS = mannan‐oligosaccharides.
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Rodriguez‐Estrada, Satoh, Haga, Fushimi, & Sweetman, 2013) and

create an opportunity for attachment of the beneficial bacteria in

the GI tract of fish which consequently promotes the selective colo-

nization of beneficial bacteria such as lactic acid bacteria, bifidobac-

teria (Wu et al., 2014) and exclude that of harmful bacteria. Similar

conclusions were drawn by Menne, Guggenbuhl, and Roberfroid

(2000); Buddington, Williams, Chen, and Witherly (1996); Gibson,

Beatty, Wang, and Cummings (1995); and Mitsuoka, Hidaka, and

Eida (1987).

In contrast, dietary probiotics (live bacteria or yeast) may have

the ability to adhere to intestinal cells and mucus directly immedi-

ately after consumption, resulting in rapid colonization of the GI

tract (FAO, 2007; Gibson & Wang, 1994; Kruger & Mann, 2003;

Mäyrä‐Mäkien & Bigret, 1993). This study indicated that the

probiotics made the greatest difference in performance compared to

the prebiotics. This is likely if the probiotic bacteria successfully col-

onized the intestine and then integrated into the host microbiome to

exert a long‐term effect (Waché et al., 2006). On the other hand,

the effects of prebiotics are more indirect and dependent on a posi-

tive response of populations already present in the gut (Bouhnik

et al., 1997; Gibson et al., 1995; Kleesen, Sykura, Zunft, & Blaut,

1997). In this study, both performance and bacterial diversity were

better with the probiotics treatment compared to the control and

that of prebiotics. A total of 46 different T‐RFLP phylotypes were

obtained in this study. The LBA amended fish intestine carried all 46

phylotypes and four phylotypes were absent from the other four

supplemented diets (three prebiotics—β glucan, GOS and MOS; and

one probiotic‐live yeast). Eleven phylotypes were absent from the

TABLE 3 PERMANOVA analysis (F value and p value) of bacterial composition in fish gut with control (Permutation N = 9,999). Three
times, that is week 8, week 16 and the post‐feeding or week 24 were togetherly analysed by PERMANOVA

Comparison diets

Diets (D) Period or time (T)
Interaction between D and
T

F value p value F value p value F value p value

Control versus β glucan 38.35 0.0001 2.71 0.04 1.51 0.18

Control versus GOS 41.34 0.0001 3.63 0.009 2.37 0.05

Control versus MOS 39.24 0.0001 2.46 0.05 2.29 0.06

Control versus Live yeast 32.39 0.0001 2.24 0.06 1.92 0.07

Control versus LBA 63.76 0.0001 2.83 0.05 1.66 0.16

β glucan versus GOS 1.79 0.04 2.12 0.002 1.27 0.19

β glucan versus MOS 1.87 0.03 1.22 0.206 0.84 0.71

β glucan versus live yeast 2.80 0.0003 0.97 0.52 1.00 0.46

β glucan versus LBA 25.34 0.0001 1.12 0.35 1.13 0.30

GOS versus MOS 0.65 0.80 2.44 0.0009 1.50 0.08

GOS versus Live yeast 2.82 0.0002 2.00 0.0009 1.39 0.08

GOS versus LBA 28.63 0.0001 1.64 0.116 2.14 0.06

MOS versus Live yeast 2.56 0.0002 1.22 0.16 0.97 0.53

MOS versus LBA 26.86 0.0001 0.81 0.514 1.70 0.12

Live yeast versus LBA 21.93 0.0001 1.29 0.24 1.05 0.35

Note. GOS = galactooligosaccharides; LBA = Lactobacillus acidophilus; live yeast = Saccharomyces cerevisiae; MOS = mannan‐oligosaccharides.

TABLE 4 Gut morphology (mean ± SD) changed for inclusion of dietary prebiotics and probiotics

Gut particulars Phase Control β‐glucan GOS MOS Live yeast LBA

Villus length in m P 1* 344.23 ± 2.4a 548.86 ± 2.3b 542.37 ± 10.8b 540.09 ± 6.1b 652.27 ± 2.0c 709.74 ± 8.0d

P 2† 415.92 ± 6.1a 635.58 ± 1.1c 619.76 ± 8.7b 523.14 ± 8.8b 725.66 ± 2.8d 908.30 ± 9.6e

Villus width in m P 1* 72.54 ± 1.5a 114.66 ± 7.6b 110.73 ± 5.4b 108.25 ± 3b 123.81 ± 2.1c 144.97 ± 8.2d

P 2† 87.62 ± 0.9a 132.76 ± 8.5cd 113.58 ± 4.6c 124.90 ± 3.6c 137.21 ± 7.1d 146.73 ± 9.1e

Crypt depth in m P 1* 45.71 ± 3.3a 60.75 ± 0.2b 60.06 ± 1.9b 59.94 ± 1.4b 61.90 ± 2.0b 74.07 ± 2.7c

P 2† 55.31 ± 5.0a 69.92 ± 2.6bc 68.63 ± 4.4b 68.65 ± 2.6b 74.94 ± 2.4c 74.98 ± 3.4c

Microvillus length in m P 1* 0.96 ± 0.034a 1.40 ± 0.010b 1.39 ± 0.012b 1.40 ± 0.012b 1.42 ± 0.024b 1.49 ± 0.026c

P 2† 1.16 ± 0.07a 1.62 ± 0.02bc 1.58 ± 0.3b 1.59 ± 0.02b 1.67 ± 0.03cd 1.71 ± 0.03d

Note. Superscripts represent significant (p < 0.05) differences among the treatments tested.. GOS = galactooligosaccharides; LBA = Lactobacillus aci-

dophilus; live yeast = Saccharomyces cerevisiae; MOS = mannan‐oligosaccharides. *P 1 = Phase 1 where fish were fed with dietary prebiotics and probi-

otics.. †P 2 = Phase 2 where treated fish were fed with non‐supplemented feed.
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unsupplemented diet or control. As the control diet did not contain

any supplementation, the study assumed that control fish intestine

carried indigenous bacteria. The absence of phylotypes in control

treated intestine proves that the supplemented diets had an ability

to manipulate the indigenous bacteria living in the intestine.

Changes of the intestine bacterial community composition and

enhanced growth (Munir, Hashim, et al., 2016; Munir, Roshada,

et al., 2016) may be linked the morphology of intestine. Colonization

mechanism of the epithelial tissues allows the harmful bacteria to

colonize, is considered an essential step in the infection of fish

(Spring, Wenk, Dawson, & Newman, 2000). The application of diet-

ary prebiotics and probiotics can effectively reduce the colonization

of these pathogenic bacteria (Kim, Seo, Kim, & Paik, 2011; Ng, Hart,

Kamm, Stagg, & Knight, 2009). This study suggests that with a con-

trol diet there were stresses on the epithelial tissue that resulted in

reduced villi and microvilli size. The addition of pre‐ or probiotics

alleviated these stressors and produced significantly more robust villi

and microvilli. The precise mechanism for this is unknown but it is

consistent with reducing access of pathogens to intestinal epithe-

lium. The enhanced intestinal morphology increased the absorptive

surface area leading to better growth performance in fish (Hoseinifar

et al., 2015, 2014 ; Munir, Hashim, et al., 2016; Munir, Roshada,

et al., 2016; Yarahmadi et al., 2016). The results were very similar to

T‐RFLP data analysis where the performance of LBA supplemented

diets produced the greatest difference in epithelial morphology.

At the end of Phase 2 of the present study, the performance

trend of bacterial community composition changed slightly, but the

result derived from the supplemented diets was still higher than the

control treated intestine. It is now well documented that the taxo-

nomic composition of vertebrate gut microflora is affected positively

by the host dietary intake (Muegge et al., 2011; Wu et al., 2011).

Consistently, the present investigation also demonstrated a concur-

rent increase in intestine bacterial richness and evenness corre-

sponding to the dietary prebiotics and probiotics at the end of

Phase 1. Consistently, the present investigation also demonstrated a

concurrent increase in intestine bacterial richness and evenness cor-

responding to the dietary prebiotics and probiotics at the end of

Phase 1. During this period, the fish were fed regularly with the for-

mulated diets. The effects of dietary prebiotics and probiotics on

community diversity and evenness were maintained during the post‐
feeding trial period where the treated fish were fed with the control

diet only. The details of this extended effect of pre‐ and probiotics

require additional studies.
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