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a  b  s  t  r  a  c  t

An  existing  simulation  model  of  wheat  growth  and  development,  Sirius,  was  evaluated  through  a system-
atic  model  reduction  procedure.  The  model  was  automatically  manipulated  under  software  control  to
replace  variables  within  the  model  structure  with  constants,  individually  and  in combination.  Predictions
of  the  resultant  models  were  compared  to  growth  analysis  observations  of  total  biomass,  grain  yield,  and
canopy  leaf  area  derived  from  9  trials  conducted  in  the  UK  and  New  Zealand  under  optimal,  nitrogen
limiting  and  drought  conditions.  Model  performance  in  predicting  these  observations  was  compared  in
order  to evaluate  whether  individual  model  variables  contributed  positively  to  the overall  prediction.
Of  the  1  1 1 model  variables  considered  16  were  identified  as  potentially  redundant.  Areas  of the  model
where  there  was evidence  of  redundancy  were:  (a) translocation  of biomass  carbon  to grain;  (b) nitrogen
physiology;  (c)  adjustment  of air temperature  for various  modelled  processes;  (d)  allowance  for  diurnal
variation  in  temperature;  (e) vernalisation  (f) soil  nitrogen  mineralisation  (g) soil surface  evaporation.
It  is not suggested  that  these  are not  important  processes  in real crops,  rather,  that  their  representation
in  the  model  cannot  be justified  in  the  context  of  the analysis.  The  approach  described  is  analogous  to
a  detailed  model  inter-comparison  although  it would  be better  described  as a model  intra-comparison
as  it  is  based  on  the  comparison  of  many  simplified  forms  of the  same  model.  The  approach  provides
automation  to increase  the  efficiency  of  the  evaluation  and  a systematic  means  of increasing  the rigour
of  the  evaluation.

©  2014  The  Authors.  Published  by  Elsevier  B.V.  

1. Introduction

Simulation models that predict the yield of agricultural crops
from weather, soil and management data have provided a focus
for crop physiological research over the last three decades and
have contributed to current understanding of crop-environment
interactions. Many such models have been developed for a wide
range of crops, for example, STICS (Brisson et al., 2003), APSIM
(Keating et al., 2003), and DSSAT (Jones et al., 2003). The growth
and development of agricultural crops in the field is the result
of non-linear and inter-related processes, and as a result crop
models are necessarily complex. Even when a model approximates
individual processes by relatively simple relationships, there are a

           

∗ Corresponding  author at: School of Biosciences, University of Nottingham, Sut-
ton Bonington, LE12 5RD, UK. Tel.: +44 115 8516.

E-mail address: neil.crout@nottingham.ac.uk (N.M.J. Crout).

large number of inter-acting processes that have to be considered.
Therefore the complexity of crop models typically arises from the
inter-relationships between modelled mechanisms rather than
the sophistication of individual process representation. The level
of detail, the number of processes considered, and the means
whereby they interact are all choices to be made in the design of
the model leading to a very diverse range of crop model designs
and, as a result, a need for effective methods of model evaluation.
The purpose of a model is vital in defining the approach taken
to its design and evaluation (Jakeman et al., 2006). For Jamieson
et al. (1998b) the explicit aim of a crop model was  improved
understanding of the crop’s response to its environment. They
described a crop model as a ‘. . .collection of testable hypotheses. . .’
and viewed model inter-comparison as a method of testing the
hypotheses embedded in the models through an examination of
their ability to predict detailed within season measurements of
the crops growth and development. For example Jamieson et al.
(1998b) presented a comparison of the performance of 5 wheat
models with respect to crop and environmental data from within
the growing season. Their conclusions were directed towards
the mechanistic basis of the different models. For example the
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assumptions about the role of root distribution on water uptake
and the influence of water stress on canopy expansion were
highlighted as important differences in the models considered.

Many researchers (Crout et al., 2009; Cox et al., 2006; Anderson,
2005; Kimmins et al., 2008; Bernhardt, 2008; Smith et al., 2010)
have emphasised the need for a systematic evaluation of model
structure. Crout et al. (2009) proposed a conceptually simple
method for undertaking an evaluation of model structure by reduc-
ing a model through the replacement of variable quantities with
constants. By iteratively replacing different variables in combina-
tion with one another a set of alternative model formulations were
created. The ability of the reduced models to predict observations
was then compared with the original model in order to test the
importance of the replaced variables in the model. To date pub-
lished work with this approach has considered relatively simple
models (e.g. Tarsitano et al., 2011). In this work we extend the
approach to the more challenging case of a full crop simulation
model with the aim of explicitly testing the hypotheses of the
model. The usefulness of the analysis is dependent on the reliability
and comprehensiveness of the observational data used. Inevitably
the data available are partial, and therefore any model analysis is
limited to some extent. Nevertheless we argue that this approach
provides greater support for the model design than simply com-
paring the predictions of the full model with observations.

2. Methods

2.1. Sirius model

A typical example of a process-based wheat model is Sir-
ius. This model calculates biomass production from intercepted
photosynthetically active radiation and grain growth from sim-
ple partitioning rules (Jamieson et al., 1998b) utilising nitrogen
response and phenological development sub-models described by
Jamieson and Semenov (2000). Sirius is an actively developing
model currently being applied at a number of levels, from basic
research to on-farm decision support (e.g. Semenov and Shewry,
2011; Semenov et al., 2009).

2.2. Observational data and model calibration

The reduction approach requires a quantitative comparison
between model predictions and observations. In principle this
can be based on any relevant data series available. Our purpose
was to mechanistically evaluate the performance of the model
in reproducing the pattern of growth and development within a
growing season as well as between sites and seasons (i.e. testing
the description of a growing crop not just the final yield). We
therefore selected data from trials where detailed growth analysis
had been conducted including cases where the major abiotic
stresses of nitrogen and water limitation were present.

Data from 9 trials have been used for the analysis (Table 1): (i)
a spring wheat study at Lincoln New Zealand with four levels of
water supply (ii) winter wheat trials at three sites in the UK with
high nitrogen application rates and (iii) a further UK winter wheat
trial with two  levels of nitrogen application.

Typically crop models are calibrated for use with particular culti-
vars and require site specific inputs for weather and soil conditions.
Sirius had been previously applied to the New Zealand field data by
Jamieson and Semenov (2000) and their cultivar and site param-
eters were employed for this work. The UK field trials used the
cultivar Mercia, for which Sirius had been calibrated previously
using field experiments in the UK (Wolf et al., 1996; Ewert et al.,
2002; Lawless et al., 2005). Soil and weather characteristics used
were as reported by Gillett et al. (1999).

2.3. Overview of reduction procedure

The approach was  to compare the predictive performance (skill)
of a large number of alternative model formulations. These were
based on the original full model but with specific variables replaced
by constant values. In this context model variables were defined
as internal quantities calculated using an assumed relationship
expressed in terms of the model’s parameters, input variables and
other model variables. This definition of model variables was par-
tially subjective because intermediate steps in a model calculation
could be defined as individual model variables, or combined into
a larger relationship as a single model variable. Such choices often
depend upon the requirements of specific computer implementa-
tion. However, we  regarded each model variable as having a specific
mechanistic role in the model and defined a variable as a specific
model component whose value was  allowed to change during the
run of the model (Cox et al., 2006). We  therefore tested the effect of
fixing a model variable to a constant on the model’s skill. If the
variable was important for model prediction one would expect
replacing it with a constant to have a detrimental effect on the
comparison between observations and predictions.

As the assessment of model skill was based on a compari-
son of observations and model predictions (described below), the
approach was  explicitly reliant on observational data. The utility of
the analysis was  therefore directly dependent on the quality and
scope of the data used.

The key steps in the analysis were:

1. Implementation. The analysis was  undertaken using a soft-
ware environment which manages the variable replace-
ment on the fly under programmatic control (OpenModel;
www.nottingham.ac.uk/environmental-modelling.htm). There-
fore the first step was  to implement the model within this
environment and check its behaviour to ensure it is the same
as the original source model. This was  accomplished through
comparisons to the original hard coded Sirius model.

Table 1
Summary of the experimental trials used for the analysis.

Trial Sites Cultivar Treatments Year Measurements made (figures in
parenthesis are the number of
observational data available)

NZ water stress (Jamieson
and Semenov, 2000;
Jamieson et al., 1998a)

Lincoln Batten spring
wheat

4 levels of rain
shelter

1991–2 Time series of total biomass (48),
grain biomass (35), LAI (59)

UK  intensive management
(Gillett et al., 1999)

Sutton Bonington,
Boxworth,
Gleadthorpe

Mercia No treatments,
maximum inputs

1992–3 Time series of total biomass (72),
grain biomass, LAI (41), leaf
number (74) and anthesis date (3)

UK  nitrogen stress
(Gillett et al., 1999)

Sutton Bonington Mercia Applied nitrogen
levels of 0 and
90 kg ha−1

1992–3 Time series of total biomass (25),
grain biomass (12), LAI (12)

http://www.nottingham.ac.uk/environmental-modelling.htm
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2. Evaluation of model structure to enable the identification of can-
didate variables for reduction analysis. Not all the variables in the
model merited investigation. For example, many variables in the
model code were for diagnostic or output purposes and not part
of the models functional structure. Use of the reduction software
facilitated a syntactical analysis of the model structure to iden-
tify variables which had a technical or operational function in
the model code. The remaining 1 1 1 variables, representing the
modelled processes, were considered in the screening analysis.

3. Screening analysis. The computational requirements of the
reduction procedure increase with the number of variables con-
sidered. Therefore a screening analysis was conducted to assist
in refining the list of candidate variables. This involved replacing
variables individually (one at a time) rather than in combination.

4. Multi-factorial reduction analysis. In this stage the candidate
model variables were replaced in combination in order to
explore the set of possible model replacements as fully as possi-
ble.

2.4. Estimation of model performance

Weighted residual sums of squares, RSS, were calculated for
each model permutation considered. The weights used were the
estimated standard errors of the observations. These were taken as
10, 10 and 20% of the observed value for the biomass, grain weight
and LAI values respectively. These fractional standard error values
were selected on the basis of experience with crop analysis data
sets. Overall model performance was summarised by calculating
coefficients of determination (also known as Nash–Sutcliffe model
efficiency (Nash and Sutcliffe, 1970)), NS,

NS = 1 −
∑(

(Oj−Mj)
sj

)2

∑(
(Oj−Ō)

sj

)2
(1)

where Oj and Mj were the jth observation and model prediction
respectively, sj is the estimated standard error of the jth observa-
tion, and Ō was  the mean of the observations. NS is analogous to r2

in regression analysis, the method of calculation is identical, how-
ever, the Mi values are for the model considered, not necessarily
the best fitting model. Therefore, unlike r2, NS can be negative.

In previous work (Crout et al., 2009; Tarsitano et al., 2011) we
used estimates of the likelihood integrated over the models param-
eter space (Kass and Rafferty, 1995) as measures of the prediction
skill of each reduced model combination. However, in the case
of Sirius, model parameters and replacement constants were not
fitted for each reduced model combination. Therefore the use of
integrated model likelihood was not appropriate and we  employed
an informal approach relating belief in the model to the weighted
residual sums of the squares. This is similar to the use of informal
likelihoods as discussed by Beven (2009). A pseudo-likelihood (Q)
was calculated for each reduced model combination using an infor-
mal  relationship between the residual sums of the squares of the
reduced and full models

Qi = A exp
(− ln(0.5) (RSSfull − RSSi)

˛

)
(2)

where A is a normalisation constant such that
∑

Qi = 1 over the
models considered; RSSfull and RSSi are the weighted residual sums
of squares for the full model and ith reduced model respectively
and  ̨ is a constant whose value controls how changes in RSS affect
belief in the model (as measured by Qi). For example, if RSSi exceeds
RSSfull by ˛, Qi will be half the value of Qfull.

The use of the informal Qi values as pseudo-likelihoods required
cautious interpretation. However our aim was to assess the mecha-
nistic basis of the model, not obtain absolute probability values. The

effect of changing the value of  ̨ on the interpretation was  inves-
tigated by calculating the Qis with  ̨ set at 2.5, 5.0 and 10% of the
value of RSSfull.

2.5. Screening analysis

In the screening analysis each variable was  replaced individ-
ually. The value of the replacement constant was estimated by
minimising the model residual sum of squares, subject to the con-
straint that the value must be within the range the variable takes
in the run of the full (unreduced) model. These replacement values
were used throughout the subsequent analysis.

Variables whose replacement had little or no detrimental effect
on model performance were considered for inclusion in the multi-
factorial analysis. Where a number of the potential variables related
to the same process, switch variables were introduced to the code
which enabled the effect of replacing the result of whole process
by a constant to be considered. For example, the adjustment of soil
maximum temperature from observed maximum air temperature
was modelled using a relationship involving two model variables
(ENAV and TADJ) calculated elsewhere in the model. Rather than
replace these individually it was  more convenient to modify the
model code and introduce a switch variable to reduce the mod-
elled value of soil maximum temperature to the maximum air
temperature, thereby testing the role of ENAV and TADJ simul-
taneously. Switch variables of this type were introduced for soil
minimum temperature, soil maximum temperature and adjust-
ment of canopy temperature from air temperature. In each case
replacing the switch variable with zero reduced the tempera-
ture variable to the appropriate air temperature. Further switch
variables were introduced to reduce the diurnal variation in tem-
perature used for many temperature dependent processes in the
model to a daily mean temperature and to switch off the vernali-
sation sub-model.

2.6. Multi-factorial analysis

There are 2N−1 different possible combinations of replacements
for N candidate variables. Searching this replacement space is not
possible exhaustively for even moderate values of N. Therefore a
stochastic search based on the Metropolis–Hasting principle was
used (e.g. Van Oijen et al., 2005; Hastings, 1970). The state of each
candidate variable was  either normal or replaced. The procedure
moved through the search space by changing these states. For each
iteration a step was  made to a new model by changing a given
number of the variable states (either from normal to replaced or
vice versa). The number of states to change is adjusted operationally
to achieve a random walk through the search space rather than just
a random sample. In the case of Sirius, we found that allowing just
one state to change per iteration gave the most efficient search.
The results of the analysis were very similar when up to two or
three state changes per iteration were allowed but the procedure
required a larger number of iterations to converge.

At each step the model predictions were compared to the
observed values to calculate the pseudo-likelihood (Q; Eq. (2)). The
step was accepted if

Qtrial

Qcurrent
> r (3)

where and where Qcurrent and Qtrial were the pseudo-likelihoods
of the currently accepted and trial reduced model combinations
respectively and r was a random value between 0 and 1.

This Metropolis–Hastings random walk through the replace-
ment space has the ability to accept moves which reduce the model
likelihood allowing the walk to escape local minima in the search
space. The probability of accepting a bad move is the ratio on the left
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Fig. 1. Biomass and grain weight model predictions compared to observations. In all cases grain weight values are in the bottom right of the graph. The full model is the
dashed line, reduced model is the solid line.

hand side of Eq. (3) and for each iteration this was compared to the
random draw r. The effect is that moves with a small detrimental
impact on the model fit will be accepted quite often, whereas moves
which seriously worsen the fit are unlikely to be accepted. Although
the walk through the search space may  return to a previously eval-
uated model this does not adversely affect the search efficiency in
our case as the previously calculated pseudo-likelihood value was
used avoiding the need to re-evaluate the model.

The pseudo-likelihoods were normalised to unity over the mod-
els considered. A replacement probability was calculated for each
individual variable by summing the normalised pseudo-likelihoods
for the models where the given variable was replaced. The results
presented were based on 10,000 unique model evaluations. The
replacement probabilities were reported at suitable intervals to
ensure they had stabilised after this number of iterations (by simple
inspection). The replacement constants used were those obtained
for each of the candidate variables in the screening analysis.

3. Results and discussion

3.1. Full model

Predicted and observed total biomass, grain weight and leaf
area were compared for the full model (Figs. 1 and 2 respectively)
and summarised as Nash–Sutcliffe statistics (Table 2). The trends
in biomass and grain weight were well reproduced, although leaf
area less satisfactory. The overall timing of the canopy was well
described in the model simulations although the canopy size was
often over-predicted. In practice over prediction of leaf area tends
to be disconnected from the prediction of biomass and grain as light

interception does not increase linearly with canopy size. For exam-
ple, over-prediction of leaf area index from four to five increases
fractional interception by only 5% and therefore has little effect on
predicted crop production. Under-prediction of leaf area would be
expected to have detrimental effects on biomass and grain yield
prediction.

3.2. Screening analysis

The behaviour of the reduced models in the screening analysis
was summarised using the ratio of RSS for the reduced model to
that of the full model. The distribution of these values for the 1 1 1
variables considered is shown in Fig. 3. The individual replacement
of 29 of the considered variables by a constant increased the ratio of
RSS for the reduced model to that of the full model to greater than
>1.1. Of the remaining 82 replacements 60 resulted in a smaller RSS
than the original full model; the remaining 22 had a small detrimen-
tal effect (<10% increase). These 82 variables were considered as
potential candidates in the factorial analysis. The reduction of RSS

Table 2
Nash–Sutcliffe (Nash and Sutcliffe, 1970) values for the full and minimum reduced
models for the prediction of total biomass, grain weight and leaf area over all the
observations considered. In this case Nash–Sutcliffe represents the proportion of
the  weighted variation accounted for by the model, in order to be consistent with
the measures used to summarise model performance in the replacement analysis.

Full model Minimum model

Total biomass 0.971 0.972
Grain weight 0.845 0.868
Leaf area −0.05 0.11
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Fig. 2. Model predicted canopy leaf area index (leaf area per unit ground area) compared to observations. The full model is the dashed line, reduced model is the solid line.

in this screening analysis was expected as the values of the replace-
ment constant for each variable were selected by fitting them to the
observed data. However this did suggested that these variables may
not be important for the predictive performance of the model.

Up to this point the analysis was entirely automatic. However
at this stage mechanistic interpretation of each of the 82 potential
variables role in the model was required to ensure that the replace-
ment of specific variables was meaningful. For example some of the
variables are intermediate steps in a calculation whose reduction
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Fig. 3. Frequency of the ratio of reduced model RSS to full model RSS for the 1 1 1
variables considered in the screening analysis.

would be best accomplished through the replacement of the final
end point variable. The replacement of some variables would break
the mass balance of the model, for example allowing it to create
nitrogen or dry matter to translocate to the grain irrespective of the
status of the crop. On this basis 54 variables were eliminated from
the analysis. The remaining 28 model variables, together with 5
switch variables were identified for inclusion in the multi-factorial
analysis.

3.3. Multi-factorial analysis

The evolution of the estimated replacement probability for
selected variables is shown in Fig. 4 to illustrate the gradual con-
vergence of the computational analysis.

The models comprising the uppermost 75% of the model prob-
ability distribution are shown in rank order in Fig. 5. This shows a
small number of relatively better performing models, followed by
a gradual decline in model performance. In comparison to previ-
ously published work using the replacement method (Crout et al.,
2009; Tarsitano et al., 2011) the results here are notable for the
large number of models with relatively similar performance.

The replacement probabilities are shown in Table 3. Values
tending to unity imply that model performance improved when
the variable was  replaced (a noise variable). Values of 0.5 imply
that model performance was unaffected when the variable was
replaced by a constant (a redundant variable). Values tending to
zero implied that model performance was worse when the variable
was replaced.

The results in Table 3 were considered in the context of the
mechanistic basis of the model design with a view to defining a
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Table  3
Symbols and function of the model variables considered in the multi-factorial analysis together with the range of the variable in simulations of the full model and replacement
probabilities calculated using three values of  ̨ (Eq. (2) and further described in the main text).

Model variable Function Full model
range

Replacement
constant

Replacement probability

Temperature adjustments  ̨ = 2.50%  ̨ = 5%  ̨ = 10%

S CTEMP Switch to set canopy temperature to
air temperature

n/a 0 0.55 0.54 0.53

S  SOILMAX Switch to set the estimate of maximum
soil temperature to maximum air
temperature. Maximum soil
temperature is used in the early stages
of growth to estimate the temperature
controlling plant processes.

n/a 0 0.47 0.46 0.46

S  SOILMIN Switch to set the estimate of minimum
soil temperature to minimum air
temperature. Minimum soil
temperature is used in the early stages
of growth to estimate the temperature
controlling plant processes.

n/a 0 0.49 0.49 0.50

S  HTEMP Switch to remove the diurnal
temperature adjustments so that the
model uses daily mean temperature.

n/a 0 0.52 0.53 0.54

ENAV  A soil heat physics calculation feeding
into the calculation of HCROP and
maximum soil temperature.

0.027–19.7 0.027 0.42 0.46 0.47

HCROP Numerator in the correction applied to
air temperature to estimate canopy
temperature.

−3.62–7.67 0.76 0.48 0.46 0.47

CONDUC Denominator in the correction applied
to air temperature to estimate canopy
temperature in the canopy
temperature correction

0.014–0.115 0.022 0.45 0.50 0.50

TADJ  A temperature correction based on
mean air temp which feeds into
maximum soil temperature

0–6.13 0.25 0.57 0.53 0.52

Nitrogen uptake
MAXSTEMDE-
MAND

Maximum daily stem nitrogen uptake,
calculated from maximum stem N
concentration

0–88.8 5.44 0.48 0.47 0.47

LEAFDEMAND Daily leaf nitrogen demand calculated
from leaf expansion and leaf nitrogen
requirements.

−4.28–5.73 5.32 0.18 0.29 0.36

MINSTEMDEMAND Difference between stem nitrogen
concentration and the minimum stem
nitrogen (i.e. the stem nitrogen deficit)
on whole crop basis. Setting this
variable to removes plant control on
nitrogen uptake so that uptake is
limited only by soil supply.

0–58.5 0 0.41 0.43 0.44

Grain  filling
BIOANTH Biomass at anthesis; used to determine

the maximum biomass available for
translocation during grain filling

0–12602 9259 0.61 0.57 0.54

Nitrogen
mineralisation
FQ  Q Factor representing the influence of

soil moisture on nitrogen
mineralisation

0–1 0.39 0.55 0.54 0.53

TA  7-day moving average air temperature;
used to estimate the influence of
temperature on nitrogen
mineralisation

−2–19.8 5.58 0.49 0.48 0.48

Leaf  expansion
GAKILR Factor used to represent the effect of

drought on the canopy senescence
0–23.4 5.25 0.23 0.27 0.29

DRFACLAI Factor used to represent the effect of
drought on canopy expansion

−0.438–1 1.0 0.15 0.20 0.26

Vernalisation
POTLFNO Potential leaf number, used in the

calculation of vernalisation effect on
crop development

0–23.94 9.77 0.44 0.46 0.47

PRIMORDNO Primordia number, used in the
calculation of vernalisation effect on
crop development

0–10.84 9.74 0.60 0.54 0.50
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Table  3 (Continued)

Model variable Function Full model
range

Replacement
constant

Replacement probability

Temperature adjustments  ̨ = 2.50%  ̨ = 5%  ̨ = 10%

S VERNALISATION Switch to remove the influence of
vernalisation on crop development

n/a 0 0.76 0.71 0.68

Soil  surface evaporation
ALPHA Factor representing the effect of

canopy shading on soil surface
evaporation

1–1.35 1.34 0.54 0.52 0.51

PTSOIL Intermediate variable used in the
calculation of soil surface evaporation.

0.014–7.68 0.33 0.58 0.57 0.56

SLOSL  Intermediate variable used in the
calculation of soil surface evaporation.

0–409.7 8.36 0.43 0.43 0.43

Penman
EW  Intermediate variable used in the

calculation of vapour pressure deficit,
in turn used for the calculation of
evaporation

4.46–28.8 14.879 0.39 0.40 0.42

HSLOP tmean Intermediate variable used in the
calculation of Priestly–Taylor
evaporation

0.34–1.69 0.66942 0.45 0.45 0.44

WND  Wind speed, used in the calculation of
Penman evaporation (from
Priestly–Taylor evaporation)

0–9.3 6.8452 0.21 0.26 0.31

minimum form of the Sirius model whose overall performance
could be compared to the full model. Dry matter for grain filling
was derived from a combination of photosynthesis during the
grain filling period and translocation of stem and leaf biomass. The
model recorded biomass at anthesis (BIOANTH) and this was  used
to define the rate at which stem and leaf biomass could be translo-
cated to the filling grain. In effect translocation potential was
related to biomass at anthesis. The reduction analysis suggested
biomass at anthesis (BIOANTH) is redundant and that translocation
potential could be a constant across sites and treatments. In the
potential and drought treatments (where the data showed little
difference in biomass at the time of anthesis) the effect of this
replacement was to reduce the contribution of translocation to
grain yield. In the case of N limited treatments, where anthesis
biomass was relatively low, the effect was to increase the relative
contribution of translocation to grain yield.

The model allowed for the expansion of the canopy to be reduced
under water stress through the variable DrFACLAI and similarly
the rate of canopy senescence increased through the variable GAK-
ILR. These variables generally had low replacement probabilities
implying that they contributed to the model’s predictive skill.

The model used several interesting temperature adjustments
to account for the differences between air temperature and soil
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Fig. 4. Evolution of the replacement probability for a selection of the candidate
variables over the course of the analysis (variable symbols are defined in Table 3).

minimum and maximum and canopy temperatures. Three model
variables (ENAV, HCROP, TADJ) related to these adjustments were
identified as redundant and as outlined earlier their overall impor-
tance was assessed through the inclusion of three switch variables
(SwSOILMAX, SwSOILMIN, and SwCMAX) which had the effect of
replacing each of these temperatures with the appropriate air tem-
perature. All three were found to be redundant. Another interesting
feature of Sirius is that the diurnal variation in temperature is used
to estimate the rates of progress of a variety of plant processes
rather than simply using the mean temperature. This feature was
found to be redundant with replacement probabilities of approxi-
mately 0.5.

Sirius used plant nitrogen status to influence nitrogen uptake
and to drive nitrogen translocation between the stem and leaf
(Jamieson and Semenov, 2000). The variable MINSTEMDEMAND
was calculated for each day and represented the minimum nitrogen
demand which must be supported if growth was  to occur. If this
nitrogen was  not available from uptake it was obtained through
translocation of nitrogen from the leaf to the stem. MAXSTEMDE-
MAND provided an upper limit on crop nitrogen uptake in cases
where stem nitrogen was high, causing nitrogen uptake to cease.

Fig. 5. Model probabilities (Qi as calculated by Eq. (2)) in rank order for the models
comprising 75% of the distribution (for presentation purposes model probability is
calculated using the mean of the values derived from using  ̨ = 0.025, 0.05 and 0.1
in  Eq. (2)).
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Related to these variables LEAFDEMAND calculates the nitrogen
required for the expected leaf expansion and used this to calculate
appropriate transport of nitrogen between leaf and stem if that
was required to sustain leaf expansion. MAXSTEMDEMAND was
redundant in the analysis and MINSTEMDEMAND was  borderline
redundant. Given the values of the replacement constants the
effect of these was to remove the influence of plant nitrogen status
on nitrogen uptake, the crop simply removed whatever nitrogen
was available to it. The replacement probabilities for LEAFDE-
MAND varied between the likelihood methods but overall were all
<0.4. Therefore the minimum model simplified nitrogen uptake,
ignoring the effect of plant nitrogen status on uptake, but retaining
the use of leaf demand to drive internal nitrogen allocation. These
variables do not relate to the link between crop nitrogen status
and growth which remained unchanged in the minimum model.

Two variables associated with the prediction of nitrogen min-
eralisation were identified as redundant. These related to the
influence of soil moisture (FQQ) and temperature (TA) on the rate
of mineralisation. Both were replaced at the low end of their range
with the effect of reducing nitrogen mineralisation to a low con-
stant value.

The representation of crop development in Sirius combined the
effect of temperature, including the effect of low temperatures
(vernalisation), and daylength through simulation of the crop’s
leaf number. The approach is fully described by Jamieson et al.
(1998a) and is only briefly summarised here. Leaves are produced
at a constant thermal time interval (phyllochron) which is a cul-
tivar specific parameter. During the course of the growing season
the model sets a final leaf number depending on the vernalisation
and daylength experienced by the growing crop according to the
parameters defined for the cultivar. Anthesis occurred three phyl-
lochrons after the point when the crop simulated leaf number is
equal to the final leaf number. For cultivars with a vernalisation
requirement a potential final leaf number was calculated in the ver-
nalisation procedure. If the cultivar was daylength sensitive this
potential final leaf number was further modified by a daylength
function to set the final leaf number.

Two variables related to the vernalisation submodel (POTLFNO
and PRIMORDNO) were found to be redundant, moreover the
switch variable that turns off vernalisation entirely had a replace-
ment values of c. 0.7 indicating that model predictions were
improved when this variable is replaced.

Several variables related to soil surface evaporation (EVsoil)
were redundant (ALPHA, CONDUC, PTSOIL, SLOSL) such that EVsoil
is effectively replaced by a constant low value of 0.32 mm day−1.
However ignoring soil surface evaporation completely (i.e.
EVsoil = 0) had a detrimental effect on model performance, with the
implication that although the model may  be over-estimating evap-
oration, it did need to be considered. In the model soil evaporation
influences both the calculation of soil maximum temperature and
the soil water budget. Replacing soil evaporation with a constant
continued to have an advantage for model performance even when
soil maximum temperature was set equal to the maximum air tem-
perature implying that the changes to water budget are beneficial
to model performance.

In addition to the replacement probabilities for individual vari-
ables shown in Table 3 joint probabilities were calculated to
indicate whether there were cases where the replacement of one
variable was dependent on whether another variable was, or was
not replaced. These results (not presented) showed no notable
interactions for the redundant variables.

The analysis described is partial as the observational data used
do not provide a test for all aspects of the model, nor do they
represent a fully comprehensive range of site conditions. The
interpretation of the results of the analysis needs to reflect these
limitations if useful insights into the model design are to be gained.

For example, although setting translocation potential to a con-
stant improved model predictions in our analysis the replacement
would be problematic if modelled anthesis biomass was lower than
the proposed constant for setting the potential for translocation
(9258 g m−2), as might be the case under extreme stress. This find-
ing may  imply that translocation potential is not linearly related to
biomass and rather than simply set the variable to a constant it may
be more productive to consider this feature of the crops behaviour
more carefully in future model development.

Similar arguments apply to the redundancy of variables related
to vernalisation. We  are not suggesting that there is no such pro-
cess as vernalisation, rather that the modelled modification of leaf
number to account for vernalisation gives a worse result than that
obtained by ignoring the process in the model. This may  provide
an indication that the representation of the process in the model
is inappropriate. However caution is required, the findings were
dictated by the response of the model to the range of conditions
experienced over the 3 UK sites as New Zealand trials used a spring
wheat cultivar.

Redundancy in the variables related to nitrogen mineralisation
also illustrates the effect of partial data on the analysis. These vari-
ables had little effect on model performance as the crops nitrogen
supply was  high relative to the rate of nitrogen mineralisation.
This is true even in the treatment with no nitrogen fertiliser addi-
tions where the nitrogen supply is dominated by the residual soil
inorganic nitrogen at the time of planting.

3.4. Minimum model

On the basis of the above analysis a variant of Sirius was devel-
oped in which all the identified redundant model variables were
reduced with the aim of comparing the resultant predictions with
those of the full model. The differences were that (a) canopy and soil
temperatures were taken as equal to the air temperature; (b) there
was no allowance for diurnal variation in temperature on develop-
ment or other processes; (c) nitrogen uptake is simplified such that
the plant simply removes all nitrogen available to it in each time
step; (d) the effect of vernalisation is ignored, with development
being driven solely by temperature and photoperiod; (e) soil nitro-
gen mineralisation and soil surface evaporation were ignored; (f)
translocation potential was  considered a constant.

The resulting model predictions are compared to the full model
in Fig. 1 and the summary Nash–Sutcliffe statistics are presented
in Table 2. Notwithstanding these simplifications of the model the
performance was  almost identical to the full model, with slightly
improved performance for leaf area and grain weights.

3.5. Conclusions

In previous applications of the variable replacement approach
to model reduction all the models investigated were found to have
redundant variables (Crout et al., 2009; Gibbons et al., 2010; Cox
et al., 2006; Tarsitano et al., 2011). Similarly Sirius was found to con-
tain variables whose use was  redundant for predicting the data we
have used in this analysis. However, most of the model’s variables
could not be reduced to a constant; of the 1 1 1 variables considered
16 were ultimately identified as potentially redundant.

The areas of the model where there was evidence of redun-
dancy were (a) carbon translocation; (b) nitrogen physiology; (c)
adjustment of air temperature for various modelled processes; (d)
allowance for diurnal variation in temperature; (e) vernalisation
(f) soil nitrogen mineralisation (g) soil surface evaporation. A
minimum form of the model in which these features were either
removed or replaced by constants performed slightly better than
the full model with these data sets. This does not imply that
these processes are not important in the real crop system. Rather,
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it indicates that the model’s predictive performance was not
improved through their representation in the model.

The outcomes of the work we have described depended on our
choice of comparison data. In our case this was within season mea-
surements of multiple components of the crop over a relatively
small number of trials. We  focussed on challenging the mecha-
nisms within the model at a relatively detailed level in order to
evaluate which of the modelled processes are contributing to the
overall prediction of growth and development over the growing
season. Therefore the approach is analogous to the type of detailed
model inter-comparison described by Jamieson et al. (1998b). How-
ever our work could be described as a model intra-comparison as it
was based on the comparison of many simplified forms of the same
model. The approach provides automation to increase the efficiency
of the evaluation and is a systematic means of increasing the rigour
of the evaluation. However there is, as yet, no way  to avoid the need
for mechanistic model understanding and interpretation if model
performance is to be critically evaluated.

The analysis is dependent on the observational data used. Sub-
ject to this limitation it provides a test of whether a particular
formulation of model variables contributes to the models predic-
tive performance. The aim should not be to simply find a simpler
model and use it, but to use the identification of redundant vari-
ables as a means to challenge and improve the formulation used in
the model.
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