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Data isn't information. Information, unlike data, is useful. While there’s a gulf between data              

and information, there’s a wide ocean between information and knowledge. What turns the             

gears in our brains isn't information, but ideas, inventions, and inspiration. Knowledge - not              

information - implies understanding. And beyond knowledge lies what we should be seeking:             

wisdom. 

Clifford​ ​Stoll 
In​ ​High-Tech​ ​Heretic:​ ​Reflections​ ​of​ ​a​ ​Computer​ ​Contrarian​ ​(2000),​ ​185-186 
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Abstract 

Discovery of novel genes that control important phenotypes and diseases is one of the key               

challenges in biological sciences. Now, in the post-genomics era, scientists have access to a              

vast range of genomes, genotypes, phenotypes and ‘omics data which - when used             

systematically - can help to gain new insights and make faster discoveries. However, the              

volume and diversity of such un-integrated data is often seen as a burden that only those                

with specialist bioinformatics skills, but often only minimal specialist biological knowledge,           

can penetrate. Therefore, new tools are required to allow researchers to connect, explore             

and compare large-scale datasets to identify the genes and pathways that control important             

phenotypes​ ​and​ ​diseases​ ​in​ ​plants,​ ​animals​ ​and​ ​humans.  

 

KnetMiner​, with a silent "K" and standing for Knowledge Network Miner, is a suite of               

open-source software tools for integrating and visualising large biological datasets. The           

software mines the myriad databases that describe an organism’s biology to present links             

between relevant pieces of information, such as genes, biological pathways, phenotypes and            

publications with the aim to provide leads for scientists who are investigating the molecular              

basis for a particular trait. The KnetMiner approach is based on 1) integration of              

heterogeneous, complex and interconnected biological information into a knowledge graph;          

2) text-mining to enrich the knowledge graph with novel relations extracted from literature; 3)              

graph queries of varying depths to find paths between genes and evidence nodes; 4)              

evidence-based gene rank algorithm that combines graph and information theory; 5) fast            

search and interactive knowledge visualisation techniques. Overall, KnetMiner is a publicly           

available resource (http://knetminer.rothamsted.ac.uk) that helps scientists trawl diverse        

biological databases for clues to design better crop varieties and understand diseases. The             

key strength of KnetMiner is to include the end user into the “interactive” knowledge              

discovery​ ​process​ ​with​ ​the​ ​goal​ ​of​ ​supporting​ ​human​ ​intelligence​ ​with​ ​machine​ ​intelligence.  
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1​ ​INTRODUCTION 

The development of improved agricultural crops is a critical societal challenge, given current             

global developments such as population growth, climate and environmental change, and the            

increasingly scarcity of inputs (fuel, fertilizer, etc.) needed for agricultural productivity. To            

meet this challenge, we will need to design improved crop varieties, with higher yields,              

robustness to biotic (e.g. pathogens, pests) and abiotic shock. Furthermore, there is a need              

to accelerate the breeding programmes needed to implement these designs. The use of             

forward genetics, reverse genetics and “omics” technologies to understand         

genotype-phenotype​ ​relationships​ ​will​ ​be​ ​critical​ ​to​ ​achieving​ ​this​ ​goal. 

 

In the recent past, during the genomics era, scientists developed technologies to sequence             

and assemble the chromosomes of an organism and predict the gene content. Now, in the               

post-genomic era, next generation sequencing technologies have been developed and this           

has led to an explosion of more genomic data alongside a wealth of gene expression,               

protein expression, genetic and biological data, which are used by scientists to decipher the              

complex human, animal and plant systems and understand the molecular basis of            

phenotypes and disease conditions. The interpretation of such data has considerable           

potential as an adjunct to plant and animal breeding, however, it is not yet easy to                

interrogate these data and obtain clear, objective answers that can be applied in practice.              

For many scientists with expertise in biology, biochemistry or genetics, this “omics” data             

explosion is often seen as a challenge that only those with specialist bioinformatics or data               

analytics skills, but often only minimal specialist biological knowledge, can penetrate.           

Therefore, new high-quality tools for data integration and interpretation urgently need to be             

developed to allow researchers to connect, explore and compare the relevant large and             

small-scale datasets available for many species. Once we fully understand how biomedical            

or agronomic phenotypes are regulated and how diseases emerge, it should be possible to              

manipulate these processes and mechanisms and go on to devise new ways to improve              

crop and animal productivity and reduce disease levels and thereby improve human health             

and​ ​global​ ​food​ ​security. 

 

Genetics and ‘omics studies designed to identify gene-phenotype relationships often identify           

large numbers of potential candidate genes. At some stage, every scientist will need to              

choose which genes to investigate further in the lab. Often, this choice is done subjectively,               

based on hunches or (potentially selective) prior experience and generally without a robust             
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scientific justification. Data-driven systematic methods that search and filter the wealth of            

available data and evidence in order to objectively prioritize candidate genes based on             

validated algorithms will be of great value to life science researchers. Such methods and              

tools will save them valuable time and help to provide an evidence-based justification for              

why​ ​certain​ ​genes​ ​were​ ​considered​ ​and​ ​others​ ​not.  

 

The objective of this PhD project was to develop a tool that will allow researchers without                

specialist bioinformatics skills to explore and compare the wealth of existing open-access            

data from multiple species with their own experimental results in order to identify gene-trait              

relationships through the exploration of biological databases. An approach was taken that            

effectively connects heterogeneous information types, mines the information and then          

returns the results in an accessible, explorable, as well as scalable, format that can be easily                

manipulated, displayed and interrogated. The aim was to create a novel ​in silico environment              

from which new scientific insights and biological discoveries can be made. The resulting             

software is called KnetMiner - Knowledge Network Miner. Knowledge networks or graphs            

provide a perfect data structure for heterogeneous, complex and interconnected biological           

information and consist of labelled nodes, such as a gene, pathway, trait, publication, that              

are connected through labelled edges, such as encodes, interacts, published-in. KnetMiner           

was developed in stages to address the three overarching challenges i.e. biological data             

integration, gene mining and knowledge discovery. The KnetMiner software and the           

knowledge resources are freely available and provide a first step towards systematic and             

evidence-based gene discovery in order to facilitate crop improvement. The chapters of this             

thesis​ ​will​ ​describe​ ​the​ ​development​ ​and​ ​application​ ​of​ ​KnetMiner. 

 

 

1.1​ ​Overview 

Chapter 2 gives an introduction to the techniques used by biologists and breeders to link               

phenotype to gene(s). The main focus is on the accuracy of each method in regard to the                 

number of potential candidate genes that they may reveal. I explain why complementary             

computational methods are needed to accelerate the identification of causal genes and            

describe the types of evidence that need to be considered for candidate gene prioritisation              

and​ ​knowledge​ ​discovery​ ​tasks.  
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Chapter 3 gives an overview of the Ondex data integration and network generation platform.              

I present datasets, methods and workflows for the construction of genome-scale knowledge            

networks for several crop species including wheat, barley, potato, tomato, maize, poplar and             

Brassica.  

Chapter 4 presents the development, implementation and validation of a text-mining plugin            

for the Ondex platform. This text-mining plugin was developed to extend the previously             

constructed knowledge networks with novel gene-phenotype relations derived from the          

scientific​ ​literature. 

 

Chapter 5 describes how the genome-scale knowledge networks can be mined for relevant             

pieces of evidence and proposes a new method for candidate gene prioritization based on              

biological knowledge mining. Proof-of-concept and validation of the methodology is          

presented​ ​using​ ​a​ ​wheat​ ​dataset​ ​of​ ​known​ ​gibberellin​ ​genes.  

 

Chapter 6 presents a new web application, named KnetMiner, making big data available to              

scientists and breeders through an easy-to-use, user-targeted application. The KnetMiner          

platform is applicable to all species but the prototypes presented here use data from crop               

and animal species. I give a technical overview of the development and implementation of              

the​ ​KnetMiner​ ​web​ ​application​ ​and​ ​describe​ ​its​ ​configuration​ ​and​ ​deployment. 

 

Chapter 7 demonstrates KnetMiner with two different use cases based on the analysis of              

QTL/GWAS data in Arabidopsis and for the analysis of differentially expressed genes in             

wheat. The results highlight the power of KnetMiner to support scientists and breeders with              

biological​ ​knowledge​ ​discovery​ ​and​ ​crop​ ​improvement. 

 

Chapter​ ​8​ ​provides​ ​an​ ​overall​ ​conclusion​ ​and​ ​presents​ ​a​ ​summary​ ​of​ ​future​ ​work. 
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2​ ​BACKGROUND 

2.1​ ​Connecting​ ​genotype​ ​to​ ​phenotype 

In the past 50 years, science has tried to understand the relative importance and influence of                

genes and/or environment on shaping phenotypic traits ​(Polderman et al. 2015)​. Many            

biomedical and agronomic traits are complex and their expression is determined by a             

number of both genes and environmental factors. Complex traits have no apparent simple             

Mendelian basis for their variation. They may be the result of a single gene strongly               

influenced by environmental factors or the result of a number of genes of equal or differing                

effect; most likely a combination of both multiple genes and environmental factors.            

Discovering those genes that determine a particular biological phenotype in crops, animals            

or​ ​humans​ ​is​ ​referred​ ​to​ ​as​ ​the​ ​genotype​ ​to​ ​phenotype​ ​challenge.  

 

Perfect examples of ​complex traits in humans ​are general intelligence (IQ) and height.             

Studies have shown that IQ and height are highly heritable and polygenic traits involving              

many genes with small effect sizes. Height is approximately 80-90% heritable and at least 40               

loci have been associated with human height ​(Visscher 2008)​. Surprisingly, these loci            

explain only about 5% (of the expected 80%) of phenotypic variance and no gene (variant)               

has been discovered so far that contributes more than 0.5cm in height per gene despite               

studies of tens of thousands of people ​(Lango Allen et al. 2010)​. The exact heritability of IQ                 

is more controversial but is estimated to be about 40-50% ​(Davies et al. 2011)​. The influence                

of the environment on the development of complex traits is more challenging to quantify.              

Meta-analysis studies in data collected from young children have shown that environmental            

factors such as iodine deficiency can result in reduction of 12.5 IQ points ​(Qian et al. 2005)​.                 

Beside genetic and environmental factors, studies have shown large IQ differences between            

monozygotic twins due to epigenetic effects (i.e. DNA methylation) which resulted in            

differences in gene expression ​(Yu et al. 2012)​. Epigenetics is therefore seen as an              

important regulatory link between nature and nurture and can provide the key to transform              

the​ ​genetic​ ​information​ ​into​ ​phenotype​ ​​(Tammen,​ ​Friso,​ ​and​ ​Choi​ ​2013)​. 

 

Furthermore, as is becoming apparent in diseases such as cancer, a complex phenotype             

may be the consequence of groups of seemingly independent genes interacting through a             

network ​of different biological relationships. A mutation in a gene may change the three              

dimensional structure of the protein which may affect the biological interaction network that             
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rewires a phenotype. From these studies, and others like them, emerges a growing belief              

that searching for individual or small numbers of functional genes may not be the best               

approach and that a network biology approach is more appropriate for bridging the genotype              

to phenotype gap ​(Benfey and Mitchell-Olds 2008; Carter, Hofree, and Ideker 2013; Y.-A.             

Kim, Yoo-Ah, and Przytycka 2013)​. In particular, Kitano has argued ​(Kitano 2004) that some              

complex diseases (e.g. cancer) are difficult to treat because there are networks of genes and               

products which interact to increase the robustness of the system. Intervention at any single              

point​ ​in​ ​the​ ​network​ ​is​ ​therefore​ ​unlikely​ ​to​ ​have​ ​a​ ​major​ ​effect. 

 

Systematic genome-wide approaches and meta-analyses of all relevant studies are needed           

to determine how genetics, epigenetics, and environment interact to produce complex           

biomedical and agronomic traits. Identification of causal genes would facilitate the translation            

of research results into important clinical and commercial outcomes, including identifying           

new biomarkers for animal or human diseases that can lead to new diagnostics; and helping               

to select new varieties of crop or livestock animals with improved productivity or resistance to               

stresses such as disease. Searching for these causal genes in human, crop or animal              

genomes is, however, like searching for a needle in a haystack and gathering the evidence               

that​ ​supports​ ​the​ ​choice​ ​of​ ​one​ ​gene​ ​over​ ​another​ ​is​ ​even​ ​more​ ​daunting.  

 

2.2​ ​Genetic​ ​methods​ ​for​ ​dissecting​ ​complex​ ​traits 

The genetic variation found in a population of individuals is an experimental result that can               

be used to inform many areas of biology ​(Koornneef, Alonso-Blanco, and Vreugdenhil 2004)​.             

In plant and animal breeding, genetic variation is a key concept by which natural genetic               

diversity is characterised and exploited for human gain. Even if the underlying biological             

mechanisms are not completely understood, genetic variants can be associated with           

phenotypic variation, and used as markers for phenotypic prediction in breeding populations.            

Forward (classical) genetic approaches are designed to identify regions (loci) of the genome             

that are linked with a particular trait. Many traits of agronomic and medical importance are               

not monogenic, but are determined by the action of many genes each having a small effect                

on the phenotype. This often results in a trait being quantitative (rather than discrete) in               

nature, such as yield of grain in cereal crops, or carcass weight in livestock animals.               

Quantitative genetics uses populations and families and applies statistical techniques to           

identify these regions in the genome, which are referred to as Quantitative Trait Loci (QTL)               

(Kearsey​ ​1998)​.  
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Many comprehensive reviews are available describing forward genetics methods for          

correlating genotype and phenotype, for example see ​(Weigel 2012; Mauricio 2001) for            

reviews of methods used in plants or a comparison between two different genetic mapping              

strategies in soya bean ​(Sonah et al. 2015)​. For a review of molecular marker technology in                

plant sciences see ​(Henry 2012)​. The focus of this chapter is not ​per se the description of                 

forward genetics approaches but rather a review of their resolution and number of identified              

candidate​ ​loci.  

 

2.2.1​ ​QTL​ ​mapping​ ​(genetic​ ​linkage) 

Typically, QTL mapping is performed using segregating biparental populations. Commonly,          

low-density marker coverage on a few hundred members of the population (lines) is             

sufficient to identify many QTLs. For instance, a panel of 342 microsatellite markers were              

used to map QTL for carcass weight and other production traits in cattle ​(Zimin et al. 2009)​.                 

The multigenic nature of complex traits means that many QTL may be identified in a forward                

genetics screen. For example, a recent study in ​Brassica napus identified 47 QTLs which              

were relevant for seed yield ​(Shi et al. 2009) and a similar number of 50-60 QTLs were                 

reported to control seed oil and protein content in soya bean ​(Eskandari, Cober, and Rajcan               

2013a, [b] 2013)​. In the bioenergy crop Poplar five QTL hotspots for biomass yield were               

identified ​(Rae et al. 2009) and various QTL studies in pig have discovered more than 400                

fatness​ ​QTLs​ ​​(Rothschild,​ ​Hu,​ ​and​ ​Jiang​ ​2007)​.  

 

These estimated QTL intervals can span over several cM, a genetic distance based on              

recombination frequencies and translates into large genomic regions with tens to hundreds            

of candidate genes. The recombination frequency is not distributed uniformly along the            

chromosomes. In humans, for instance, recombination rate varies in a range of about 0.1 to               

4 cM per Mb ​(Kong et al. 2002)​. In cattle, there is an approximate correspondence of 1 cM to                   

10​6 base pairs and one gene every 127kb. Therefore, even the intervals between highly              

dense markers would contain in the region of 1.2M base pairs and with QTL intervals               

typically in region of at 20-40 cM so we could expect each QTL to overlay about 200-400                 

genes. This limited resolution is mainly the result of low recombination frequencies in             

biparental​ ​mapping​ ​populations,​ ​and​ ​not​ ​the​ ​effect​ ​of​ ​low​ ​marker​ ​density. 
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To increase the recombination frequency of biparental mapping populations, experimental          

populations can be created from multiple parents such as MAGIC (for multiple advanced             

generation intercross) and AMPRIL (for Arabidopsis multiparent recombinant inbred lines)          

populations ​(Kover et al. 2009; Xueqing Huang et al. 2011)​. The MAGIC population was              

recently used to investigate the genetic basis of variation in seed size and number ​(Gnan,               

Priest, and Kover 2014)​. The study identified 9 QTL for seed number and 8 for seed size.                 

QTL mapping accuracy increases with the MAGIC population to within 300kb, or an             

equivalent​ ​of​ ​60​ ​genes. 

 

These studies show that typical QTLs in both plants and animals generally encompass quite              

sizeable parts of the genome - typically several hundred genes. While QTL mapping             

improves the chances of finding the right gene (or genes), reducing the options down from               

22,000 in cattle or 100,000 in wheat, to hundreds of genes for a particular QTL, it is still a                   

daunting and expensive task to evaluate every potential candidate gene in the laboratory or              

in​ ​a​ ​field​ ​experiment.  

 

2.2.2​ ​GWAS​ ​(genetic​ ​association) 

Genome-wide association studies (GWAS) associate phenotype with genotype at a          

genome-wide level using “unrelated” individuals ​(Hirschhorn and Daly 2005)​. The limitation           

of family-based mapping populations can be overcome by the use of unrelated genotypes             

that have accumulated much higher number of recombination events since their last            

common progenitor ​(Sonah et al. 2015)​. GWAS can have different ​designs​, a simple design              

is to group individuals in large case-control groups. The control group may contain             

individuals that are healthy or show a certain phenotype, while the case groups includes              

individuals with a disease or a different phenotype. The study design of quantitative traits              

can vary and include more complex groupings. All individuals in each group are genotyped              

for a large number of markers to provide a high coverage of the genomes. The commonly                

used marker in GWAS are single nucleotide polymorphisms (SNP). For example, there is             

one SNP every 100 nucleotides between elite inbred lines of maize ​(Ching et al. 2002)​. In                

Arabidopsis, about 216,000 SNPs, or one every 0.5 kb, have been typed in over 1,000               

accessions ​(Horton et al. 2012)​. Using modern SNP-arrays, a large panel of these SNPs can               

be used as markers. For each of these SNPs, it is then investigated if there is a statistically                  

significant difference between the alleles in the case and control groups using for example a               

simple chi-squared test, or more sophisticated statistical tests for quantitative traits. Every            
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SNP receives a certain p-value from the statistical test. These associations then need to be               

evaluated to show whether they contribute to the trait of interest directly, or are linked/ in                

linkage disequilibrium (LD) to a QTL that contributes to the trait of interest. The negative               

logarithm of the p-values is often used to create so called Manhattan plots that visualise               

significant peak SNPs along the chromosomes (e.g. see Figure 1 in ​(Hui Li et al. 2012)​).                

SNPs​ ​above​ ​a​ ​certain​ ​threshold​ ​(e.g.​ ​-log(P-value)>8)​ ​are​ ​often​ ​considered​ ​as​ ​significant.  

 

In contrast to simple traits, GWA studies of complex traits often identify ​many significant              
associations along the genome. Identifying causal genes (rather than causal SNP) from            

GWAS requires estimations of the LD in the association population. For example, LD             

estimates in the global Arabidopsis population are reported to extend over not more than              

about 5 to 10 kb, or one to two genes, which is very convenient for GWAS ​(S. Kim et al.                    

2007)​. This means for every significant SNP a region +/- LD can be considered as a QTL                 

and all genes within this region can be considered potential candidate genes. Studies in              

soya bean have shown that for several simple Mendelian traits the SNP physically closest to               

the causal gene is not always the most highly associated, or peak SNP ​(Sonah et al. 2015)​.                 

For instance, the SNP closest to the causal gene for pubescence colour in soya bean               

showed the fourth greatest association. In all cases that were examined where the causal              

gene was known, it was found that the peak SNP was located within 100 kb of this gene and                   

sometimes much closer, but in no case was the causal SNP captured in the gene itself.                

Similar findings have been reported with GWAS performed in other plant species such as              

Arabidopsis ​(Atwell et al. 2010)​, rice ​(Xuehui Huang et al. 2010) and maize ​(Hui Li et al.                 

2012)​.  

 

Furthermore, GWAS are prone to a high false-positive rate of genotype-phenotype           

associations due to effects of the population structure and the large number of statistical              

tests. Epistasis and other factors can additionally lead to false-negatives where loci with             

known effects are not detected by the statistical tests applied in GWAS. Therefore, individual              

studies that report statistically significant associations between genes and phenotypes need           

to be approached with great caution until they have been replicated in multiple large samples               

(Chabris​ ​et​ ​al.​ ​2012)​.  

Although QTL intervals derived from GWAS encompass much smaller regions of the            

genome compared to QTLs from biparental mapping populations, they still produce many            

significant candidate SNPs. Consequently the biological interpretation of candidate SNPs to           
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elucidate the biological processes and pathways that they influence remains a major            

challenge.  

  

2.3​ ​Genomics​ ​and​ ​other​ ​omics​ ​technologies 

Omics technologies provide the key to characterize and use genetic variation information            

efficiently. For example, high throughput genomic sequencing provides the means to           

characterize individuals and populations, to understand the genetic repertoire that they           

contain, to associate individuals, haplotypes and specific loci with desired characteristics and            

to track the transmission of parent material through successive genetic crosses. Other            

“omics” technologies – for example, for measuring gene expression, the presence/absence           

of metabolites, automatic imaging for morphological changes, etc. – can all used to quantify              

different aspects of response to growth and development of an organism, as well as, natural               

or experimental changes. They provide a toolbox to complement genetic studies by            

enhancing our knowledge and understanding of gene function and the translation of            

genotype​ ​to​ ​phenotype.  

 

The transcriptional regulation of genes is influenced by genetic (e.g mutations, deletions,            

insertions, copy number variation etc.), epigenetic (e.g. methylation) and environmental          

factors (e.g. biotic or abiotic stresses). Changes in gene expression level consequently lead             

to changed concentrations of proteins in the cell that can impact biological pathways and              

other molecular interactions that ultimately more directly influence phenotype.         

High-throughput technologies such as Microarrays or RNA-sequencing make it possible to           

measure the abundance of the entire transcriptome (all expressed genes) of the cell.             

Experiments can be designed to study the effect of different treatments or environments on              

the same genotype or to compare gene expression in different genotypes. The aim of such               

studies is to identify those genes that show a statistically significant change in gene              

expression​ ​level​ ​between​ ​certain​ ​conditions.  

 

The number of differentially expressed genes (DEG) in transcriptomics experiments can be            

very large, depending on the effect size of the treatment or environmental change.             

Understanding the biological mechanisms implicated by a treatment or environmental          

change requires functional information about the DEG. Computational approaches have          

therefore been developed to summarise the representation of different functional classes in            

the DEG. The information on gene function comes from annotations of the reference             
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genome and is generally captured as Gene Ontology (GO) terms ​(Ashburner et al. 2000)​.              

This type of analysis is known as gene set enrichment analysis whereby a gene set is                

analysed for overrepresented functional annotations compared to a background set (e.g. the            

entire genome). Enrichment analyses are popular because they are simple to run and do not               

require ​a priori knowledge about the experiment. They can help with a global, initial data               

analysis. However, the precision of gene function annotation is a problem since too many              

times, the detail is missing in the ontology and so the function assignment is too general to                 

be helpful. Therefore, gene enrichment results tend to reveal very high-level biological            

processes​ ​that​ ​are​ ​not​ ​necessarily​ ​helpful​ ​in​ ​generating​ ​precise​ ​hypothesis.  

 

Analysis of QTL genes differs from the analysis of DEG. The aim of QTL analysis is to                 

identify the causal loci or alleles that control the variation in the phenotype. The majority of                

genes between two significant markers in a QTL analysis may be unrelated to the phenotype               

and only one or a few will be causal. In contrast all DEG in omics experiments are                 

“somehow” related to the phenotype of interest, and therefore, the DEGs needs to studied as               

a whole. The combination of QTLs and DEG provides key inputs to generate precise              

hypotheses​ ​about​ ​the​ ​biological​ ​processes​ ​and​ ​networks​ ​linking​ ​genotype​ ​to​ ​phenotypes.  

 

2.4​ ​Bioinformatics​ ​approach​ ​to​ ​gene​ ​discovery 

2.4.1​ ​Life​ ​Science​ ​databases 

Currently, over 1500 different Life Science databases are available and documented with            

publications in Nucleic Acid Research Databases ​(Galperin, Rigden, and Fernández-Suárez          

2015)​. The majority of them are open access and contain structured and unstructured data              

such as sequences, gene expression, protein interaction, quantitative traits, ontologies,          

literature or pathways. Bioinformatics approaches that systematically integrate and mine the           

wealth of biological knowledge available in myriad of databases provide another route to             

gene discovery. The key information types and databases for ​in silico gene discovery in              

plants​ ​are​ ​elaborated​ ​below. 

 

Ontologies 
A major advance in data interoperability in the biosciences in recent years has been the               

growing use of ontologies to unambiguously identify and describe biological concepts.           

Ontology terms are used to annotate identified objects such as genes, experiments, and             

biological materials in a consistent way. An ontology is both a controlled vocabulary of terms,               
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often with associated synonyms, definitions, etc., and a set of semantic relationships            

between terms. These relationships support greater interoperability through the extension of           

existing ontologies, the ability to combine annotations that have been applied at different             

levels of specificity (based on relevance to the current question and/or availability of data),              

and the ability to reason over a data set and extract implicit knowledge that hides between                

the annotation and the semantics. Ontologies are needed both to formally define the             

semantics for the primary data under consideration, but also to define the metadata - the               

information that describes the data provenance, the measurement method and scale used -             

so that the data can be correctly interpreted and the definition of the gene function or trait                 

remains consistent across interdisciplinary data resources. The use of ontologies also           

supports, through the use of synonyms, the mapping of annotated terms between different             

natural languages. One of the most comprehensive and best used ontologies in Life             

Sciences is the Gene Ontology ​(The Gene Ontology Consortium 2014) comprising over            

43,000 terms and over 6.5 Million gene annotations that use these ontology terms             

(01/09/2016). 

 

Genotype​ ​and​ ​genetics​ ​data 
Genetic variants that are linked to phenotypes via QTL mapping, GWAS or other genetics              

studies provide a key data resource for gene-phenotype discovery. Access to public            

databases that contain such information is invaluable, however, this information is often            

hidden in the literature in an unstructured manner; which makes it very hard to retrieve and                

integrate. This has been recognised in the animal sciences and a major database             

AnimalQTLdb ​(Hu, Park, and Reecy 2016) has been established that stores results from             

genetics experiments. Incentives have been set that require submission of data to            

AnimalQTLdb as part of a journal’s publication policy. AnimalQTLdb has developed to            

become a major genetic resource and provides a trait ontology that allows scientists to              

annotate QTL data with standardized ontology terms. Database curators integrate data from            

different genetic maps into genome based coordinates. QTL locations can therefore be            

downloaded in centiMorgan (cM), a genetic distance measure, and if a genome sequence is              

available in base pair (bp) coordinates. Such data are often available in data formats such as                

GFF3, SAM or BED. AnimalQTLdb contains 106,028 QTL for 1,768 traits based on 1,712              

publications in 7 species (Release 30, Aug 2016). Unfortunately, an equivalent resource at             

similar scale does not exist for plant species although Gramene ​(Ni et al. 2009; Monaco et                

al. 2014)​, GnpIS ​(Steinbach et al. 2013) or Triticeae Toolbox ​(Blake et al. 2016) provide               

limited QTL databases for rice, barley, wheat and several other crops. QTL positions in crop               
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databases are often only available in cM based on genetic maps of the specific mapping               

population​ ​because​ ​the​ ​genome​ ​sequences​ ​are​ ​not​ ​yet​ ​available.  

 

Genetic variants that do not have reported links to phenotypes might initially be considered              

less important to gene discovery. However, knowledge about published genetic variants and            

their effect on protein level can inform candidate gene prioritization since variants of genes              

with major effects can be given higher weight than genes with no reported variants or minor                

variant effects. The European Variation Archive (EVA) provides access to all types of genetic              

variants, ranging from single nucleotide polymorphisms to large structural variants from any            

eukaryotic organism. EVA uses the Variant Effect Predictor ​(Yourshaw et al. 2015) of             

Ensembl to annotate variant consequences. The variant consequences are described using           

Sequence​ ​Ontology​ ​terms.  

 

Reverse genetics approaches are based on disrupting genes of known sequence and            

studying the effect of the disruption on the phenome ​(Gilchrist and Haughn 2010)​. Reverse              

genetics resources consist of plant material (i.e. seeds) with a certain knockout gene that              

can be grown and used for functional characterisation of the disrupted gene. For several              

plant species, e.g. Arabidopsis, rice and wheat, reverse genetics resources have been            

generated that allow scientists to study the function of many genes more effectively             

(Kleinboelting et al. 2012; Chen et al. 2012; An et al. 2005)​. The data from such resources is                  

often available in custom tabular formats and could be used in gene prioritization tasks to               

rank​ ​genes​ ​higher​ ​for​ ​which​ ​gene​ ​knockouts​ ​with​ ​associated​ ​phenotype​ ​data​ ​exist. 

 

Phenotype​ ​data 
Genotypic data is stable for a given plant or animal. In contrast, phenotypic characterisation              

data is highly heterogeneous resulting from the experimental parameters applied on a given             

sample. The development of standards for capturing phenotypic data has been challenging            

since “phenotype” is a broad concept that covers all observable traits stored as descriptive              

data, numeric observations including time series, molecular data and image data.           

Phenotypic information can be obtained from dedicated phenotyping platforms, from farmers’           

fields, or from ecological diagnostics in natural environments. Phenotyping platforms          

measure a wide range of structural and functional plant traits at the same time as collecting                

accurate metadata on the environment and experimental setup ​(Fiorani and Schurr 2013)​.            

Traits are measured at different spatial scales, from the field level (e.g. crop yield) to the cell                 
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(e.g. cell wall polysaccharide composition) and over widely varying temporal scales, from            

seconds​ ​(e.g.​ ​photosynthetic​ ​response)​ ​to​ ​months​ ​(e.g​ ​whole​ ​season​ ​biomass). 

 

Phenotype data itself (without being associated to genotype) is important in upstream            

processes involved in trait discovery and QTL mapping but less to gene discovery ​per se​.               

Once phenotype data can be related to genotype, gene or mutants then it becomes a               

relationship of high importance. Reported gene-phenotype knowledge is one of the most            

valuable pieces of evidence in candidate gene prioritization. Such information is dispersed in             

many heterogeneous formats and locations. The public database UniProt contains a           

subsection ‘disruption phenotype’ that describes the ​in vivo effects caused by knockout or             

knockdown of a gene ​(“UniProt Website” n.d.)​. The Arabidopsis Information Resource (TAIR)            

provides phenotypic information for a range of genotypes with mutations in individual genes             

(“TAIR Website” n.d.)​. NCBI has the GeneRIF database ​(“Gene RIF Website” n.d.) that             

contains concise phrases describing a gene function that is sometimes used to add             

phenotypic descriptions. The majority of phenotypic information is, however, available in an            

unstructured form in the scientific literature and is therefore difficult to integrate with other              

knowledge resources such as ontologies. Text-mining techniques are required to extract and            

integrate​ ​such​ ​information​ ​effectively​ ​(see​ ​Chapter​ ​4). 

 

Due to the heterogeneous nature of phenotype data, a variety of ontologies have been              

developed for phenotypic data and experimental metadata, of which many are           

species-specific. For example, available ontologies for plants and crops include the Plant            

Ontology, the Crop Ontology, the Plant Trait Ontology and the Environment Ontology. The             

utility of such ontologies to annotate plant genomes are still limited. Even in model species               

such as Arabidopsis, most phenotypic descriptions are in free text which makes automated             

reasoning over such data very difficult. On the other hand, in other species such as               

Drosophila, the phenotype ontology is systematically used to annotate genes and alleles            

enabling​ ​more​ ​powerful​ ​search​ ​queries​ ​​(Osumi-Sutherland​ ​et​ ​al.​ ​2013)​. 

 

Gene​ ​expression​ ​data 
Gene expression data can be used as evidence to confirm the expression of candidate              

genes in tissues, organs, during developmental stages, under treatments of interest or in             

particular genotypes. For example a grain specific trait and QTL would require any causal              

gene to be expressed at some stage during grain development and potentially only             

expressed in certain individuals of a mapping population and not in others. Several gene              
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expression databases exist such as the Gene Expression Atlas ​(Petryszak et al. 2014) or the               

Gene Expression Omnibus ​(Edgar 2002)​. Reference-species resources such as TAIR have           

annotated Arabidopsis genes with Plant Ontology ​(Monaco et al. 2014) terms that describe             

in which tissues and during which developmental stages a gene is expressed. Other             

databases such as ATTED-II ​(Obayashi et al. 2009) analyse large amounts of expression             

datasets to compute clusters of coexpressed genes. Such co-expression data provides           

weak, speculative evidence that these genes are co-regulated and therefore could share a             

similar​ ​biological​ ​function​ ​or​ ​act​ ​together​ ​to​ ​control​ ​a​ ​phenotype. 

 

Interaction​ ​data 
Protein-protein interaction (PPI) data provides very useful knowledge for candidate gene           

discovery. In contrast to co-expression data, PPI data provides evidence about the physical             

interaction of proteins in the cell. A large number of methods have been developed over the                

years to study protein-protein interactions, e.g. affinity-tagged proteins, the two-hybrid          

system and some quantitative proteomic techniques ​(Berggård et al. 2007)​. Interaction most            

likely means that the proteins are involved in the same biological process and higher level               

traits although they might have different functions. Public PPI databases can be searched to              

identify previously reported interactions for a given bait protein. BioGRID ​(Chatr-aryamontri           

et al. 2014) and IntAct ​(Orchard et al. 2014) databases are populated by data either               

curated from the literature or from direct data depositions​. Data access and download are              

provided for many species and in different data formats such as PSIMI-XML, PSIMI-TAB,             

BioPAX or RDF. Other PPI databases such as STRING ​(Szklarczyk et al. 2010) provide              

integrated​ ​and​ ​computationally​ ​inferred​ ​interaction​ ​data. 

 

Functional​ ​annotation​ ​data 
Functional annotation of genes and gene products provides a key resource for candidate             

gene discovery. Gene Ontology annotations capture the knowledge that we have about the             

molecular function of genes in a systematic and cross-species comparable manner. GO            

provides a controlled vocabulary to describe biological processes, molecular functions and           

cellular components. GO annotations require the provision of evidence codes that describe            

the experimental or computational methods used to establish the gene function. The            

Evidence and Conclusion Ontology (ECO) is used to describe the evidence in a formalised              

manner and help to distinguish high quality annotations (e.g. inferred through mutant            

phenotypes) from low quality annotations (e.g. inferred through electronic annotations). As           

the best studied plant species ​Arabidopsis thaliana has about 50,000 (25%) GO annotations             
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of experimental evidence ​(“GO Statistics” n.d.)​. The majority of annotations in non-model            

species are electronically inferred through sequence based comparisons with model          

species. The common data type for functional gene annotations is the Gene Association             

Format (GAF). Many functional or structural bioinformatics databases provide mappings to           

GO terms e.g. EC2GO, Pfam2GO and InterPro2GO. Biological pathways provide a more            

fine-grained knowledge about the enzymes, chemical reactions and small molecules that           

form the elements of biosynthetic pathways. Popular pathway databases such as KEGG            

(Ogata et al. 1999)​, Reactome ​(Fabregat et al. 2016) and BioCyc ​(Caspi et al. 2013) provide                

curated pathway information for model species and computationally inferred pathways for           

non-model species. A common file format for pathway data is the Biological Pathway             

Exchange​ ​(BioPAX)​ ​format. 

 

Orthology​ ​data 
The function of the vast majority of genes in non-model species remains uncharacterised.             

Any effort to prioritize candidate genes without any evidence about their function is difficult or               

even impossible. Genes that have been well characterised in other species provide a reliable              

source of putative evidence assuming this knowledge can be transferred from one species to              

another. The principal idea supporting cross-species annotation transfer is that the function            

of proteins is, to some extent, conserved through evolution. Thus, two orthologs in two              

closely related species are likely to share the same function. But the level of conservation of                

protein function across species largely depends on the evolution of these species, including             

the evolution of their proteins, of their biochemical pathways and of their higher level              

biological traits. Orthologous relationships can be established when comparing the genomes           

of two or more species. Identification of orthologous gene sets typically involves            

phylogenetic tree analysis, heuristic algorithms based on sequence conservation, synteny          

analysis, or some combination of these approaches ​(Trachana et al. 2014; Kristensen et al.              

2011)​. Some of the prominent databases of orthologous genes include Ensembl ​(Herrero et             

al. 2016)​, OrthoDB ​(Kriventseva et al. 2015) OMA ​(Altenhoff et al. 2015) and Phytozome              

(Goodstein et al. 2011)​. The common data standard for orthology data provision is             

OrthoXML​ ​​(Schmitt​ ​et​ ​al.​ ​2011)​. 

 

In addition to using orthology data for cross-species annotation transfer, a more direct             

approach exploiting sequence database search with the BLAST ​(Altschul et al. 1990) or             

Smith-Waterman ​(T. F. Smith and Waterman 1981) algorithms can be used to infer putative              

gene function. This is a common shortcut taken by many scientists and bioinformatics tools              
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such as Blast2GO ​(Gotz et al. 2008)​. Such data can be used for exploratory analysis but is                 

prone to a high false positive rate. In the context of prioritizing genes it should be given a                  

much​ ​lower​ ​weight​ ​than​ ​more​ ​accurate​ ​orthology​ ​inference​ ​methods. 

 

2.4.2​ ​Data​ ​integration​ ​and​ ​biological​ ​networks 

The assembly of such diverse information is a technically challenging task for biologists and              

bioinformatician who also find it hard to evaluate the different sources of evidence and select               

from them the most plausible functional candidate genes. Even when this functional            

information gathering task is complete, assembling a coherent view of how the bits of              

evidence might come together to “tell a story” about the biology that could explain how               

multiple genes from QTLs or DEGs might be implicated in a complex trait is challenging.               

Bioinformatics approaches and public data resources can help to bridge the genotype to             

phenotype gap and prioritise candidate genes ​(Willet and Wade 2014)​. Using such ​in silico              

approaches, scientists can integrate multiple heterogeneous types of information and          

provide​ ​means​ ​to​ ​interrogate​ ​the​ ​information​ ​in​ ​a​ ​more​ ​systematic​ ​and​ ​informed​ ​way. 

 

As described above, the types of biological information that are useful for gene discovery              

and candidate gene prioritization can include known gene-phenotype links, gene-disease          

associations, gene expression and co-expression, allelic information and effects of genetic           

variation, links to scientific literature, homology relations, protein-protein interactions, gene          

regulation, protein pathway memberships, gene-ontology annotations, protein-domain       

information and other domain specific information. Such data is typically highly connected,            

e.g. through common references to named biological entities, and semi-structured, e.g.           

because some data can be found in databases and other in free text. Furthermore, these               

data types are not static because new types of data are constantly emerging from advances               

in high-throughput experimental platforms. These characteristics of Life Science data make           

networks, consisting of nodes and links between them, represent a flexible data model that              

can capture some of the complexity and interconnectedness in the data ​(Huber et al. 2007)​.               

In addition, networks are often considered as the layer that connects genotype to phenotype              

(Carter,​ ​Hofree,​ ​and​ ​Ideker​ ​2013)​. 

 

In summary, different routes to gene discovery exist that can utilise genetics, omics and              

bioinformatics approaches. All these approaches can identify hundreds of potential          

candidate genes for specific traits. Especially in crop species, experimental validation from            
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lab to greenhouse to field is a slow process that can last several years. Following a wrong                 

lead would waste significant effort, time and money. Therefore, it is important that only              

candidate genes with the highest level of evidence are considered for experimental            

validation. One of the key challenges is therefore to prioritise candidate genes and             

components of interaction networks that, if perturbed through potential interventions, have a            

positive impact on the biological outcome in the whole organism without producing negative             

side​ ​effects.  

 

2.5​ ​Related​ ​tools 

Data integration is recognised as a challenge of general importance in the Life Sciences, a               

number of biological data warehouse solutions have been constructed to facilitate data            

integration and information retrieval from diverse biological data, e.g. InterMine ​(R. N. Smith             

et al. 2012)​, BioMart ​(Yates et al. 2016)​, LAILAPS ​(Esch et al. 2015) and Ondex ​(Köhler et                 

al. 2006)​. The majority of biological data warehouse solutions use relational databases to             

store information and only a few systems such as Ondex use networks as their internal data                

structure.  

 

Once the data have been integrated, advanced data analytics tools are needed for data              

mining and knowledge discovery in order to identify gene-phenotype relationships and           

prioritise these results. A number of web-based resources for ​prioritizing ​candidate genes            

by exploiting multiple information types have therefore been developed ​(Moreau and           

Tranchevent 2012; Bornigen et al. 2012)​. For example, BioGraph is based on a data              

warehouse approach and uses unsupervised data mining for the exploration and discovery            

of biomedical information ​(Liekens et al. 2011)​. In total, BioGraph contains 532,889 distinct             

relations among 71,042 biomedical concepts, supported by 61,570 literature references. The           

biological knowledge graph, which includes many indirect relationships, is used for gene            

prioritization and hypothesis generation. The main limitations of existing gene prioritization           

tools such as BioGraph is that they are restricted to the analysis of human data and that the                  

data integration process is not easily reproducible and adaptable to other species.            

PosMed-Plus ​(Makita et al. 2009) was the first tool to prioritize candidate genes for two plant                

species (​Arabidopsis thaliana and rice) using a knowledge-based approach and including           

literature co-occurrence and cross-species information. Similarly important to predictions is          

the visualisation of complex interconnected information to scientists and breeders.          

Appropriate data visualisation can substantially increase the yield of downstream studies.           
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One of the most popular tools for network visualisation in Life Sciences is Cytoscape ​(P.               

Shannon​ ​et​ ​al.​ ​2003)​.  

 

The software, called KnetMiner (Knowledge Network Miner), developed as part of this PhD             

thesis addresses several key shortcomings of biological knowledge warehouse and mining           

approaches i.e. irreproducible data acquisition and integration, infrequent database updates,          

lack of extension to new species and new data types, limited knowledge network exploration              

and visualisation capabilities. As part of this work the Ondex software was extended and the               

novel KnetMIner software was developed. The software was formerly known as           

QTLNetMiner because of it’s original purpose to prioritise candidate genes within QTL            

regions. Once the capabilities had expanded to mine the entire genome or any gene list, we                

chose to rename it to KnetMiner. The silent “K” stands for Knowledge and not for Keywan as                 

some people interestingly assume. The software and knowledge resources are free and            

open-source. 
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3​ ​BUILDING​ ​GENOME-SCALE​ ​KNOWLEDGE​ ​NETWORKS 

Life Sciences data are dispersed in various databases and heterogeneous data formats            

which makes a systematic interrogation of the data technically challenging. Genome-scale           

knowledge networks (GSKN) provide a centralised and unified representation of          

heterogeneous but interconnected datasets that can enable more effective knowledge          

mining. This chapter introduces the Ondex software and presents data sets and methods for              

building knowledge networks for major crops such as wheat and barley. The results section              

describes global characteristics of GSKNs and illustrates on one example the value of             

Linked Data. The principles of this work are generic and can be extended with more datasets                

or to other species. Some parts of this chapter have been published in ​(Hassani-Pak et al.                

2016)​. 

 

3.1​ ​Background 

The discovery of the hypotheses linking genotype to phenotype and identification of the             

candidate genes increasingly involves the integration of multiple heterogeneous types of           

information. This information is spread across many different databases ​(Rigden,          

Fernández-Suárez, and Galperin 2016) that can include known gene-phenotype or          

gene-disease associations, gene expression and co-expression, allelic information and         

effects of genetic variation, links to scientific literature, homology relations, protein-protein           

interactions, gene regulation, protein pathway memberships, gene-ontology annotations,        

protein-domain information and other domain specific information. Such data is typically           

highly connected, semi-structured and the data types are not static as new types of data are                

constantly​ ​emerging​ ​from​ ​advances​ ​in​ ​high-throughput​ ​experimental​ ​platforms.  

These characteristics make networks, consisting of nodes and links between them, a natural             

data structure for the representation complex and interconnected biological data. Compared           

to relational databases, networks provide better query performance on highly connected           

data (many join statements are slow). In addition, networks provide more flexibility to model              

the data as data is not forced into a structure like a relational table, and attributes can be                  

added and removed easily. This is especially useful for semi-structured data where a             

representation​ ​in​ ​relational​ ​database​ ​would​ ​result​ ​in​ ​lots​ ​of​ ​NULL​ ​column​ ​values.  

In contrast to homogeneous networks, where all nodes have the same type (e.g.             

protein-protein interaction networks), heterogeneous information networks, referred to as         

knowledge networks, are networks where nodes and links can have various types ​(Sun and              
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Han 2012)​. Biological knowledge networks are composed of nodes which represent           

biological entities such as genes, transcripts, proteins and compounds, as well as, other             

entities such as protein domains, ontology terms, pathways, literature and phenotypes. The            

links in the network correspond to relations between entities and are described using terms              

which reflect the semantics of the biological or functional relationship such as ​encodes​,             

interacts​, ​controls​, ​expressed​, ​part_of, ​is_a​, ​published_in etc. A knowledge network is           

referred to as genome-scale knowledge network (GSKN) when it contains the entire known             

genome (all genes) of an organism as nodes in the network. A centralised GSKN that is                

build from dispersed, heterogeneous data can significantly facilitate both computer-aided          

data​ ​mining​ ​and​ ​manual​ ​data​ ​exploration. 

 

There are different ways of representing information in knowledge networks. Information           

such as gene position can be added as an attribute of the Gene node. However, when the                 

nature of the information is more complex, it should be represented as linked data. Linked               

nodes are connected through relations of well defined types. These triples can then be              

exploited for analysis in a more systematic way. For example, SNP information could either              

be represented in a compact manner as a series of attributes on a Gene node or in an                  

expanded way by using separate SNP nodes and creating links of type ​has_a to create               

triples. The latter approach provides more power for reasoning and allows linking specific             

SNPs​ ​to​ ​traits,​ ​for​ ​example,​ ​based​ ​on​ ​the​ ​results​ ​of​ ​a​ ​genome​ ​wide​ ​association​ ​study.  

 

Ondex ​provides a framework for building integrated knowledge networks from          

heterogeneous datasets ​(Köhler et al. 2006)​. In Ondex terminology, the nodes of a network              

are called concepts and the links between them are called relations. For achieving a certain               

integration or analysis task in Ondex, public and private data sources containing the desired              

type of information need to be selected. The Ondex framework uses a graph-based data              

model and provides an API to get data into that data model. The Ondex network data                

structure is based on a labelled and directed multi-graph that is relatively flexible and allows               

information and metadata from diverse biological databases to be captured. Ondex networks            

can be exported in several formats such as the Ondex exchange format OXL ​(Taubert et al.                

2007)​, RDF ​(Splendiani et al. 2012) or Cytoscape-compatible JSON. Networks can be            

visualised and inspected using tools like Cytoscape ​(P. Shannon et al. 2003) or the Ondex               

frontend itself (Figure 3.1). An Ondex integration workflow can be specified in an             

XML-defined language to achieve a reproducible integration and analysis goal. A workflow            

can include various operations to import data (parsers), identify equivalent nodes (mapping            
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methods), remove unwanted information (filters) and simplify the network structure          

(transformers). Workflows can be generated and executed either via a graphical user            

interface (Ondex Integrator) or via the command line interface (Ondex CLI). The Ondex             

Scripting Console provides a means to parse custom TAB data types for integration into              

Ondex where no dedicated Ondex parsers are yet available. The scripting syntax is based              

on​ ​a​ ​domain​ ​specific​ ​language​ ​developed​ ​in​ ​Lysenko​ ​2012.  

 

 

Figure 3.1. Public data sources that can be integrated into Ondex (A) using the Ondex               

Integrator and the Ondex Console (B). Following the data integration workflow, the            

integrated knowledge network (C) is loaded into the Ondex frontend for visualisation and             

exploration​ ​(D). 

 

Since its release, Ondex has undergone various phases of development. Recent work            

extended the Ondex Visualisation Toolkit (OVTK) with an on-demand information retrieval           

capability using web-service based scripts that add the retrieved information to a visualised             

network ​(Horn et al. 2014)​. This enables an exploratory analysis to start with a small network                

and then gradually, on-demand, move to a larger network. The OVTK is a stand-alone,              

Java-based toolkit that cannot be embedded in websites. A web-enabled version of the             

OVTK, called Ondex Web, was developed to allow Ondex networks to be embedded in              

web-pages ​(Taubert et al. 2014)​. Furthermore, a Cytoscape plugin, called OndexView, was            

30 

https://paperpile.com/c/HrsRJq/dvetl
https://paperpile.com/c/HrsRJq/rX7MW


developed that allows for concise graphical representations of integrated knowledge          

networks ​(Weile et al. 2011)​. Some extensive work was made to evaluate the utility of               

semantic web technologies (RDF, SPARQL) within the umbrella of Ondex ​(Splendiani et al.             

2012; Canevet et al. 2010)​. Two studies showed the contributions of Ondex towards             

Bayesian data integration ​(Weile et al. 2012) and towards logic-based modelling ​(Lesk et al.              

2011)​. Finally, Ondex was used as the main platform for biological network analysis             

(Lysenko et al. 2011; Defoin-Platel, Hassani-Pak, and Rawlings 2011) and in a biological             

study to identify candidate virulence genes in the fungus ​Fusarium graminearum ​(Lysenko et             

al.​ ​2013)​.  

 

Ondex has been under continuous technical development with major contributions by Jan            

Taubert ​(Taubert 2011)​, Artem Lysenko ​(Lysenko 2012) and Matthew Hindle ​(Hindle 2012)​.            

The developments have been focused on various aspects, such as improvements to            

application programming interfaces (APIs), webservices, workflow engine, plugins and         

visualisation components. I was part of the Ondex team from 2008-2011 and was             

responsible for the development of novel applications of Ondex to candidate gene discovery             

for biomass related traits in Willow (​Salix viminalis​). As part of this project, I extended Ondex                

with several new Java-based plugins and workflows that were essential to meet the             

requirements of trait-based candidate gene discovery. Some of these plugins included           

Ondex parsers for new data types such as Medline XML, UniProt XML, FASTA, GFF3, GAF,               

OrthoXML and GeneRIF. These provided the building blocks for the construction of larger             

data​ ​integration​ ​workflows​ ​as​ ​described​ ​in​ ​this​ ​chapter. 

 

3.2​ ​Methods 

The methods section is composed of four parts: i) the general principles of data integration in                

Ondex, ii) building crop-specific knowledge networks (CropNet), iii) building reference          

networks of model species and integration with CropNet and finally iv) steps involved to              

update​ ​genome-scale​ ​knowledge​ ​networks. 

 

3.2.1​ ​Ondex​ ​approach​ ​to​ ​data​ ​integration 

To illustrate the Ondex approach to data integration, an example is used of integrating a               

small knowledge network from three different data sources UniProt, Gene Ontology (GO)            

and PubMed. The goal is to merge these different data sources in order to gain insights from                 
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studying the overlaps. The main steps towards achieving this goal include parsing data,             

mapping​ ​equivalent​ ​concepts​ ​and​ ​collapsing​ ​redundant​ ​concepts​ ​(Figure​ ​3.2). 

 

 

 

Figure 3.2: The Ondex workflow involves parsing, mapping and collapsing the data. Ondex             

input datasets A and B are merged via common concepts (e.g. Protein). The mapping step               

creates relations of type ​equal between “identical” concepts. The collapsing is a network             

transformation that merges identical concepts into a single concept to avoid redundancy.            

The​ ​merged​ ​concepts​ ​contain​ ​a​ ​summary​ ​of​ ​all​ ​the​ ​data​ ​provenances. 

 

Parsing  
Ondex has a metamodel that describes what and how data are captured in an Ondex               

network. The metamodel is the core semantic framework for the data model and is based on                

an ontology for describing Ondex ​Concept Classes, Relation Types, Data Sources, Attribute            

Names ​and Evidence Types​. Every external data source is parsed so that it becomes a               

network that is an instance of the metamodel. Parsers are plugins in Ondex that read each                

dataset and produce independent networks within Ondex. Concepts and relations of an            

Ondex network will capture the parsed content within their attributes (key-value pairs). Some             

attributes such as ​Concept Class, Relation Type, Evidence Type ​and Data Source are             

requirement and others such Concept Name, Concept Accession or general attributes are            

optional. Attribute keys and values can be described by the metamodel, e.g            

ConceptClass=Protein​, ​DataSource=UniProtKB, ConceptAccession=P08684 ​and    
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ConceptName=P450​. Relations can have evidence terms and numerical weights which can           

quantify​ ​the​ ​strength​ ​of​ ​the​ ​relationship,​ ​e.g.​ ​p-value,​ ​blast​ ​e-value​ ​or​ ​bitscore. 

 

An alternative way of getting data into Ondex is by using the Ondex Scripting Console. The                

scripting code in Table A.3.1 shows how to parse a TAB file that was downloaded from                

Ensembl BioMart into Ondex. The file contains gene IDs in one column and gene-related              

SNP data in the other columns. The code creates ​Gene ​and ​SNP concepts for every line in                 

the TAB file and a relation of type ​has_variance that connects the two concepts. Concepts               

sharing the same accessions within the parsed dataset are automatically merged into one             

representative concept. The scripting functionality is not “type strict” in regard to the use of               

the Ondex metadata. It allows new metadata to be defined that is not part of the Ondex                 

metadata model. Validation steps need to be done manually by the user to confirm that the                

metadata is consistently used. These scripts can currently not be executed as part of larger               

integration workflows. Therefore the output network of a script needs to be manually saved              

in OXL format once it has been visually validated in Ondex. The OXL files can then be                 

parsed​ ​using​ ​the​ ​OXL​ ​parser​ ​and​ ​included​ ​as​ ​part​ ​of​ ​larger​ ​data​ ​integration​ ​workflows.  

 

As a general rule, biological entities that have gene identifiers as their primary accessions              

(e.g. AT1G35540) need to be represented as ​Gene ​concepts and entities that have protein              

identifiers (e.g. AT1G35540.1) need to be represented as ​Protein concepts. For example,            

translating a protein-protein interaction (PPI) dataset that is based on gene identifiers in the              

raw data into a ​Protein-Protein network would cause semantic problems in the downstream             

data integration process. For this reason, such a PPI dataset needs to be treated as if it                 

were a ​Gene-Gene interaction network. Although this might not correspond to the biological             

truth, it is the only way of modelling the given dataset correctly, without contravening against               

good​ ​practices​ ​of​ ​semantic​ ​data​ ​integration.  

 

Mapping 
Importing UniProt, GO and PubMed into Ondex creates individual Ondex networks for each             

dataset. Each of these networks may have information overlapping with the other networks             

that may provide more information about particular concepts or relations. For example,            

UniProt has references to GO and PubMed, but lacks the hierarchy of GO and the abstracts                

of publications that are necessary for proper querying and analysis. This missing information             

is contained within the Gene Ontology OBO and PubMed XML files. Thus, the GO concepts               

in the UniProt network need to be mapped to the Gene Ontology network. This process of                
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mapping ​can be done in a variety of ways in Ondex . For instance, “​accession based                

mapping​” can be used to create a relation of type ​equivalent between two concepts when               

they share a common unique identifier such as GO or PubMed IDs. Two concepts can be                

mapped (with default accession-based mapping parameters) following best practises of data           

integration​ ​in​ ​Ondex​ ​when​ ​they​ ​have: 

● Same​ ​Concept​ ​Class​ ​(case​ ​sensitive) 

● Different​ ​Concept​ ​Data​ ​Source​ ​(case​ ​sensitive) 

● Same​ ​Accession​ ​Data​ ​Source​ ​(case​ ​sensitive) 

● Same​ ​Accession​ ​value​ ​(case​ ​insensitive) 

 

Alternative mapping approaches can be used for mapping concepts with no common            

identifiers. These include “​name based mapping​” that maps based on shared names /             

synonyms or “​sequence based mapping​” that maps based on the similarity of sequence             

attributes. 

 

Collapsing 
With an accession based mapping approach, which requires exact matching of IDs, one can              

be confident in the reliability of the mapping results. Therefore, after relating concepts             

together based on mapping, all mapped concepts can then be collapsed to a single concept.               

In Ondex, this can be done with a network transformer such as the “​Relation collapser​”. The                

provenance of the data is stored within the ​Data Source attribute of each Ondex concept.               

Once two or more concepts have been collapsed this attribute will be assigned a summary               

of all the data provenances. This is how Ondex keeps track of the origin of the data. These                  

simple steps interconnect several data sources into one integrated knowledge network. The            

mapping and collapsing steps ensure that no concept occurs more than once in the network.               

Avoiding redundancy in the construction of the knowledge network makes successive data            

mining of the integrated resources significantly easier. The resulting knowledge network is            

content​ ​rich​ ​with​ ​light​ ​semantics​ ​and​ ​provenance​ ​on​ ​concepts.  

 

3.2.2​ ​Integration​ ​of​ ​crop​ ​specific​ ​data 

In this section, the datasets and methods are described to build crop-specific knowledge             

networks (CropNet). The methods and workflows are demonstrated on data from barley and             

wheat but are similarly applicable to other crop species. A full overview of all data sources                

and​ ​Ondex​ ​parsers​ ​used​ ​for​ ​building​ ​the​ ​knowledge​ ​network​ ​are​ ​given​ ​in​ ​Table​ ​3.1. 
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Genes​ ​and​ ​Proteins 
The starting point of building a genome-scale knowledge network for a certain species is to               

collect information and relations of its genes and gene products. Information about location             

of genes and the transcripts they encode can be derived from GFF3 files ​(“The Sequence               

Ontology - Resources - GFF3” n.d.) and sequence information can be obtained in FASTA              

format. The Ondex parser “​FASTA and GFF3​” takes standard GFF3 and protein FASTA files              

as inputs and produces a network of ​Gene ​and ​Protein concepts connected via relations of               

type ​encodes​. The parser only considers lines of the GFF3 file that are of type “gene” and                 

ignores other features such as “mRNA”, “CDS” and “exon”. Information such as            

chromosome, start and end are added as attributes of the Gene concepts. The protein ID               

(excluding the “.” and the integer suffix) in the FASTA files must match the gene IDs in the                  

GFF3 file to establish the correct relation between Gene and Protein concepts. Optionally a              

TAB file can be provided to the parser which explicitly specifies the gene-protein mapping              

method. The parser requires a taxonomy identification argument (TAXID) that is added to all              

genes and proteins contained in the GFF3 and FASTA files. This attribute can be used to                

distinguish the main organism (e.g. wheat) from other species included in the knowledge             

network. Wheat and barley gene models and protein sequences were downloaded from            

Ensembl and parsed using the FASTA-GFF3 Ondex parser. This created the Gene-Protein            

network​ ​in​ ​which​ ​concepts​ ​are​ ​connected​ ​via​ ​relations​ ​of​ ​type​ ​​encodes​​ ​(Figure​ ​3.3a).  

 

Figure 3.3: Overview of individual information types and relations (a-d) that can be integrated              

to​ ​build​ ​the​ ​CropNet​ ​(e). 
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The ‘TSV file parser’ can be used to add simple information such as gene location or                

synonymous names to the Gene concepts. The parser creates a concept for every line in a                

TAB file and adds information from the columns as attributes of the concept. This is               

generally a useful way for adding missing attributes to concepts in the knowledge network,              

however, it cannot create links (relations) to new ​Concept Classes​. The wheat POPSEQ             

dataset provides estimated gene locations in centiMorgans (cM) based on a whole genome             

sequencing approach ​(Chapman et al. 2015)​. The “​TSV file parser​” was used to add the               

POPSEQ-based​ ​cM​ ​coordinates​ ​to​ ​the​ ​wheat​ ​​Gene​ ​​concepts. 

 

Genetics​ ​and​ ​Genome​ ​Variation 
The next integration goal is to incorporate genome variation and genetics data into the              

knowledge networks. In order to ensure that SNP and QTL data can be associated with               

genes it is important that the datasets are based on the same physical or genetic maps. In                 

ideal case, every gene in the network will have a chromosome, start and stop position based                

on base pair (bp), and similarly QTL intervals would be defined using base pair. Otherwise, it                

is important that QTL intervals are transferred to the same genetic or physical map that               

specifies the gene positions before being incorporated into the knowledge network. An ideal             

resource is the AnimalQTLdb ​(Hu, Park, and Reecy 2016) that provides livestock QTL data              

in standardised GFF3 format. In crops, such a resource is not yet available and instead the                

manually curated QTL data is often provided in custom TAB format. Data about SNPs that               

are within or in close proximity of genes and their consequences can be downloaded from               

Ensembl BioMart. We use the Ondex Scripting Console to translate the raw TAB data into               

Gene-SNP and QTL-Trait networks (Figure 3.3b). The ​Gene-SNP ​network can be mapped to             

the Gene-Protein network based on common ENSEMBL gene ids (e.g.          

TRAES_2AL_65B19CC73). The ​QTL-Trait network can be incorporated in two ways: 1) it            

can be added to the Gene-Protein network without connecting the ​QTL concepts to it’s              

underlying ​Gene concepts as long as QTL and genes contain the attributes chromosome,             

start and stop or 2) explicit relations can be created between ​Gene and ​QTL concepts of                

type​ ​“​is_part​”.  

 

Orthology​ ​and​ ​Protein​ ​Domains 
The next step was to enrich and extend the wheat Gene-Protein network with new relations               

based on sequence analysis including orthology to other species, protein domains and            

sequence similarity to protein databases. Such information may sometimes be available as            

pre-computed datasets for download from public databases such as Ensembl, Phytozome or            
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OMA. It can also be locally computed using tools like OMA Standalone, InterProScan,             

HMMer, Smith-Waterman or Blast. We have downloaded precomputed wheat protein          

domain data and orthology relations to Arabidopsis and barley from Ensembl BioMart. The             

sequence alignments to the UniProt database were created by running a local TimeLogic​®             

DeCypherSW™ algorithm (Active Motif Inc., Carlsbad, CA) using all wheat protein           

sequences as query and all reviewed UniProt plant proteins (excluding Arabidopsis) as the             

database while taking the top 10 hits per query sequence (E-value<0.01). The Ondex             

Scripting Console was used to parse these additional wheat related datasets, transform            

them into Ondex networks and export them in OXL format (Figure 3.3c+d). These steps              

create new concepts of type ​Protein and ​Protein Domain and new relations of type ​ortholog,               

has_domain ​and has_similar_sequence that can be interlinked with the ​Protein ​concepts of            

wheat Gene-Protein network based on ENSEMBL protein ids (e.g.         

TRAES_2AL_65B19CC73.1). 

 

All these steps create a knowledge network for a crop of interest (​CropNet​) which contains               

genes, proteins, genetic, orthology and protein domain information (Figure 3.3e), but lacks            

knowledge​ ​about​ ​the​ ​biological​ ​role​ ​of​ ​these​ ​genes. 

 

3.2.3​ ​Integration​ ​of​ ​model​ ​species​ ​data 

A similar analytical approach was implemented next to build a ​reference knowledge            
network (RefNet)​. The first goal is to identify suitable model species, i.e. well studied              

species with a range of high quality annotation and interaction data. Data from Arabidopsis              

and other well-studied plants was taken to provide high quality functional gene information.             

Several curated Arabidopsis and plant datasets can be retrieved from public databases such             

as TAIR, Gramene and UniProt. Using similar principles as before, an Arabidopsis basic             

network was first developed consisting of ​Gene-Protein relations that can then be enriched             

and extended with functional and interaction data. These data include GO annotations,            

ontologies, pathways, phenotypes, protein-protein interactions (PPI) and links to relevant          

publications. Table 3.1 shows the ​Concept Classes and ​Relation Types that were created for              

each individual dataset. The ​RefNet was created by interconnecting these individual           

datasets based on mapping and collapsing equivalent ​Gene ​or ​Protein concepts. The PPI             

dataset provided by TAIR is based on Arabidopsis gene identifiers and not protein ids,              

therefore, it was translated into a ​Gene-Gene interaction network. Next, all reviewed plant             

proteins (excluding Arabidopsis) with their GO annotations and literature citations were           
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retrieved from UniProt and added to the RefNet. It is important that the ​Protein ​concepts in                

the RefNet have the same accessions as provided in the orthology and sequence similarity              

based​ ​datasets​ ​of​ ​​CropNet​,​ ​since​ ​these​ ​will​ ​be​ ​used​ ​to​ ​interconnect​ ​the​ ​two​ ​networks. 

 

Gene-phenotype information is the most valuable piece of evidence in trait-based gene            

discovery. Phenotypic information are available in dispersed locations including UniProt,          

TAIR and GeneRIF databases. These were incorporated using the Ondex Scripting Console.            

In the knowledge network, expert-curated phenotypic information are represented as          

Phenotype ​concepts linked to genes or as attributes of protein concepts from UniProt. The              

majority of phenotypic information is available in an unstructured form in the scientific             

literature which makes it difficult to integrate with other concepts in the knowledge network.              

A description of how to extract and integrate meaningful phenotypic information from            

publications​ ​when​ ​building​ ​the​ ​Arabidopsis​ ​knowledge​ ​network​ ​is​ ​presented​ ​in​ ​Chapter​ ​4.  

 

Lastly, the ​CropNet ​and the ​RefNet are brought together and linked through a final              

workflow. The integration can be based on common concept accessions whereby duplicated            

concepts are mapped and collapsed. For example, CropNet contains both wheat ​Protein            

concepts and ​Protein ​concepts from the reference species. These can function as anchors             

for linking the two networks through accession-based mapping steps by mapping and            

collapsing ​Protein ​concepts based on shared TAIR and UniProt accessions. Additionally,           

Protein Domain concepts from the CropNet can be connected to corresponding GO terms in              

the RefNet. This step exploits public GO mapping files ​(“Index of /external2go” n.d.) as the               

input to the Ondex mapping plugin ​External2GO​. This mapping method creates relations of             

type ​equal ​between semantically similar but non-duplicated concepts and therefore the           

relationships are kept and not collapsed. The result of this final integration workflow are the               

genome-scale knowledge networks for wheat or barley as presented in the results section.             

All workflows and datasets for building the wheat GSKN are available online ​(“Wheat             

Release​ ​Notes”​ ​n.d.)​.  

 

Table 3.1. Overview of some knowledge types and Ondex parsers that are used to create               

the crop and reference knowledge networks. The column Metagraph shows the network            

semantics produced by an individual parser using following notation: Concept          

Class--[Relation​ ​Type]-->Concept​ ​Class. 

Knowledge 
Type 

Source​ ​file​ ​data-type Ondex 
Parser​ ​Name 

Metagraph 

Gene-protein gene.gff3 fastagff  Gene--[encodes]-->Protein 
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protein.fa  

UniProt 
Protein 
Annotation 

uniprot.xml uniprotkb Protein--[pub_in]-->Publication 
Protein--[participates_in]-->BioProc 
Protein--[has_function]-->MolFunc 
Protein--[located_in]-->CelComp 
Protein--[cat_c]-->EC 

GO 
Annotations 

gene_association.tair.gz 
GAF2Ondex.txt 

gaf Gene--[has_function]-->MolFunc 
Gene--[not_function]-->MolFunc 
Gene--[participates_in]-->BioProc 
Gene--[participates_not]-->BioProc 
Gene--[pub_in]-->Publication 
Gene--[located_in]-->CelComp 
Gene--[not_located_in]-->CelComp 

Pathway biopax.owl biocyc Reaction--[cat_c]-->EC 
Reaction--[catalyzed_by]-->Enzyme 
Reaction--[part_of]-->Path 
Path--[part_of]-->Transport 
Transport--[catalyzed_by]-->Enzyme 
Comp--[consumed_by]-->Transport 
Comp--[produced_by]-->Transport 
Comp--[consumed_by]-->Reaction 
Comp--[produced_by]-->Reaction 
Enzyme--[activated_by]-->Comp 
Enzyme--[inhibited_by]-->Comp 
Enzyme--[activated_by]-->Protein 
Protein--[is_a]-->Enzyme 
Protein--[is_part_of]-->Protcmplx 
Protein--[produced_by]-->Reaction 
Protein--[consumed_by]-->Reaction 
Protcmplx--[is_a]-->Enzyme 
Protcmplx--[consumed_by]-->Reaction 
Protcmplx--[produced_by]-->Reaction 

Literature medline.xml medline Publication 

Interactions interactions_biogrid.oxl oxl Gene--[pub_in]-->Publication 
Gene--[genetic]-->Gene 
Gene--[physical]-->Gene 

GWAS Gene-SNP-Phenotype.oxl oxl Gene--[has_variation]-->SNP 
SNP--[associated_with]-->Trait 

Phenotype Gene-Phenotype.oxl oxl Gene--[pub_in]-->Publication 
Gene--[has_observ_pheno]-->Phenotype 

Gene 
Ontology 

go-basic.obo genericobo MolFunc---[is_a]--MolFunc 
MolFunc--[part_of]-->MolFunc 
CelComp--[is_a]-->CelComp 
CelComp--[part_of]-->CelComp 
BioProc--[neg_reg]-->BioProc 
BioProc--[pos_reg]-->BioProc 
BioProc--[is_a]-->BioProc 
BioProc--[part_of]-->BioProc 
BioProc--[regulates]-->BioProc 

Trait 
Ontology 

to-basic.obo genericobo TO--[is_a]-->TO 
TO--[part_of]-->TO 

Homology Arabidopsis_Plants.oxl oxl Protein--[h_s_s]-->Protein 
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Homology Inparanoid_Arabidopsis_
Yeast.oxl 

oxl Protein--[ortholog]-->Protein 
Protein--[paralog]-->Protein 

3.2.4​ ​Updating​ ​knowledge​ ​networks 

Three Ondex workflows were designed to build a genome-scale knowledge network for plant             

species. The first workflow integrates crop-specific (e.g. wheat) information. The second           

workflow integrates publicly available data from model species such as Arabidopsis into a             

reference​ ​network.​ ​The​ ​final​ ​workflow​ ​links​ ​the​ ​crop-specific​ ​and​ ​the​ ​reference​ ​networks. 

 

Public databases such as protein entries in UniProt, publications in PubMed and GO             

annotations are not static and are updated on a daily or monthly basis. For example, the                

number of publications in PubMed that contain the word Arabidopsis has risen by nearly              

20,000 new articles in the last 5 years (see Figure 3.4). In recent times, GO annotations,                

nucleotide and protein sequence repositories have had a similar sharp rise in their number.              

Therefore, it is increasingly important to keep such fast growing information up-to-date on a              

frequent and regular basis. On the other hand, crop-specific datasets such as genome             

assemblies, gene models and QTL data change less frequently and can therefore be             

updated​ ​on​ ​demand.  

 

 

Figure 3.4: Number of Publications in PubMed that contain the word Arabidopsis. Data from              

PubMed. 

 

Our approach to data integration is based on building a centralized knowledge store using              

data snapshots available at the time of integration. We have developed prototype scripts for              
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rebuilding the knowledge store in a semi-automated manner. The focus has been on             

automating the update of datasets that frequently change and are publicly accessible in             

standardised formats for which Ondex Parsers are available, i.e. ontologies, publications and            

GO annotations. We have therefore automated most of the RefNet data download and             

integration​ ​steps​ ​that​ ​include: 

● Backup​ ​of​ ​old​ ​RefNet​ ​datasets 

● Download​ ​and​ ​integrate​ ​new​ ​RefNet​ ​datasets​ ​including 

○ Genes​ ​and​ ​Proteins​ ​(FASTA,​ ​GFF3​ ​format) 

○ UniProt​ ​Plants​ ​(XML​ ​format) 

○ Gene​ ​Ontology​ ​(OBO​ ​format) 

○ Trait​ ​Ontology​ ​(OBO​ ​format) 

○ Arabidopsis​ ​Gene​ ​Annotations​ ​(GAF) 

○ PubMed​ ​abstracts​ ​(XML​ ​format) 

○ BioGRID​ ​interactions​ ​(TAB​ ​format) 

○ Pathway​ ​information​ ​(OWL​ ​format) 

● Re-run​ ​workflow​ ​that​ ​integrate​ ​new​ ​RefNet​ ​with​ ​existing​ ​CropNet 

● Export​ ​new​ ​GSKN​ ​in​ ​OXL​ ​or​ ​other​ ​formats 

 

The update and integration scripts make use of Ondex-CLI which is a lightweight version of               

Ondex that runs on the command line and not via a graphical user interface. About 20Gb of                 

random-access memory (RAM) is required when running Ondex-CLI with workflows and           

datasets that create the final GSKN. This process currently takes about ~5 hours to update               

datasets and re-build knowledge networks for species like wheat and barley. The results are              

manually​ ​inspected​ ​by​ ​studying​ ​the​ ​metagraph​ ​and​ ​integration​ ​logs. 

 

3.3​ ​Results 

3.3.1​ ​Comparison​ ​of​ ​GSKNs 

Genome-scale knowledge networks (GSKN) were developed for major plant and crop           

species including Arabidopsis, wheat, barley, maize, Brassica, potato, Solanaceae and          

poplar. The networks differ in the crop-specific information included (genes, SNP, QTL,            

traits, publications). Nevertheless, they all contain the identical reference networks          

consisting of Arabidopsis and other plant species from UniProt-SwissProt Plants. The size of             

the GSKN can vary depending on the genome size and data integrated for that particular               

organism (Table 3.2). The wheat and barley genome releases that were integrated contain             
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99,386 and 79,379 genes respectively. The current version of the wheat GSKN contains             

about 450k concepts and 1.7 million relations and the barley GSKN is slightly smaller with               

420k​ ​concepts​ ​and​ ​1.3​ ​million​ ​relations​ ​(26/05/2016).  

 

Table 3.2: The size of the individual knowledge networks in terms of total number of crop or                 

plant​ ​specific​ ​genes,​ ​concepts​ ​and​ ​relations​ ​(as​ ​retrieved​ ​on​ ​26/05/2015). 

Knowledge  
Network 

Number​ ​of  
Genes 

Number of  
Concepts 

Number of  
Relations 

Arabidopsis 29,507 221,334 823,287 

Wheat 99,386 448,653 1,669,464 

Barley 79,379 419,896 1,257,049 

Maize 39,469 335,882 1,367,956 

Brassica 59,225 428,803 1,361,537 

Potato 35,119 315,455 1,061,972 

Solanaceae 69,846 386,092 1,296,974 

Poplar 41,335 381,307 1,536,244 

 

The type and amount of information held in a knowledge network varies from species to               

species. Tables 2.3 and 2.4 provide an overview of the number and type of ​Concept Classes                

and ​Relation Types in the Arabidopsis, barley and wheat knowledge networks. The            

Arabidopsis reference network is included in both the barley and wheat networks. A total of               

130,815 genes are included in the wheat GSKN. Of this total, 31,429 and 99,386 genes are                

Arabidopsis and wheat specific, respectively. Similarly in barley, 80,662 genes are from            

barley and the remaining genes are from Arabidopsis. The 5 ​Chromosome ​concepts across             

all networks only represent Arabidopsis since wheat and barley networks have stored the             

chromosome information within the ​Gene attributes and not as explicit concepts. The            

Arabidopsis GSKN does not contain protein domains, orthology relations or sequence           

similarity to protein databases which can explain the smaller numbers seen in some ​Concept              

Classes​. The wheat network contains nil wheat specific QTL, SNP and trait information,             

whereas​ ​in​ ​barley​ ​we​ ​integrated​ ​QTL​ ​and​ ​SNP​ ​datasets​ ​from​ ​Gramene​ ​and​ ​Ensembl. 
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Table 3.3: Total number of concepts and type per Concept Class included in the              

Arabidopsis,​ ​barley​ ​and​ ​wheat​ ​knowledge​ ​networks. 

Concept​ ​Class Arabidopsis Barley Wheat 

Biological​ ​Process 27,525 27,486 27,525 
Cellular​ ​Component 3,787 3,787 3,787 
Compound 2,980 5,457 2,980 
EC 2,391 1,789 1,754 
Enzyme 15,150 26,698 15,150 
Gene 31,429 112,091 130,815 
Molecular​ ​Function 9,919 9,866 9,919 
Pathway 587 676 587 
Phenotype 6,489 6,489 6,489 
Protein​ ​Complex 187 192 187 
Protein​ ​Domain 0 7,032 9,417 
Protein 57,301 136,735 177,378 
Publication 62,270 61,329 61,305 
QTL 0 285 0 
Reaction 3,097 5,612 3,097 
RNA 1,296 1,296 1,296 
SNP 0 16,030 0 
Thing 187 192 187 
TO 1,314 1,314 1,314 
Trait 0 30 0 
Transport 54 96 54 
Total 225,963 424,482 453,241 
 

Table 3.4: Total number of relations and type per Relation Type included in the Arabidopsis,               

barley​ ​and​ ​wheat​ ​knowledge​ ​networks. 

Relation​ ​Type Name Arabidopsis Barley Wheat 

ac_by activated​ ​by 135 138 135 

ca_by catalysed​ ​by 15,150 26,698 15,150 

cat_c catalysing​ ​class 11,561 13,718 11,561 

control control 0 285 0 

cooc_wi co-occurs​ ​with 97,076 97,076 97,076 

cs_by consumed​ ​by 6,799 12,412 6,799 

enc encodes 32,498 111,877 131,277 

equ equal 3,398 2,234 2,212 

h_s_s has​ ​similar​ ​sequence 37,219 201,763 153,655 

has_domain has​ ​domain 0 60,465 253,873 

has_function has​ ​function 81,964 107,348 182,568 

has_observ_pheno has​ ​observed​ ​phenotype 6,489 6,489 6,489 
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has_part has​ ​participant 7 7 7 

has_variation has​ ​variation 0 23,898 0 

in_by inhibited​ ​by 250 266 250 

is_a is​ ​a 89,227 100,687 89,227 

is_part_of is​ ​part​ ​of 299 302 299 

interacts_with interacts​ ​with 6,481 6,481 6,481 

located_in located​ ​in 86,859 92,968 114,087 

neg_reg negative​ ​regulation 2,525 2,525 2,525 

not_function not​ ​function 172 172 172 

not_located_in not​ ​located​ ​in 713 713 713 

occ_in occurs​ ​in 96,435 96,435 96,435 

ortho ortholog 0 20,001 198,721 

part_of part​ ​of 10,619 12,904 10,619 

participates_in participates​ ​in 118,144 133,260 169,642 

participates_not participates​ ​not 199 199 199 

pd_by produced​ ​by 7,761 14,167 7,761 

pos_reg positive​ ​regulation 2,512 2,512 2,512 

pub_in published​ ​in 160,291 160,327 160,291 

regulates regulates 2,942 2,942 2,942 

Total  877,725 1,311,269 1,723,678 
 

 

3.3.2​ ​Search​ ​and​ ​visualisation​ ​of​ ​GSKN​ ​in​ ​the​ ​Ondex​ ​frontend 

Due to the large size of GSKNs visualisation and interaction with such size networks is not                

simple. To open a GSKN in the Ondex frontend takes about 5 minutes and requires at least                 

6Gb of RAM. Again due to the large size, the Ondex network is initially hidden in the main                  

visualisation​ ​window.  

 

Although the main network is too large to be displayed, the Metagraph window summarizes              

the different ​Concept Classes and ​Relation Types present in the knowledge network and             

their relationships. Figure 3.5 shows the metagraph of the barley GSKN. The knowledge             

network consists of 22 different ​Concept Classes representative of both biological entities            

(Gene, Protein, Protein Complex, Compound, SNP) and general entities (Biological Process,           

Pathway, Phenotype, Publication). The metagraph nicely visualises relationships between         

Concept Classes​, for example, ‘Biological Process (GO)’ has incoming relations from           

multiple ​Concept Classes​, such as Gene, Protein, RNA, Protein Domain and Enzyme            
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Classification. The Metagraph window allows users to make subsets of the main network             

visible/invisible. 

 

In addition, Ondex can be used to search, filter and annotate networks. For example, one               

can search for genes or phenotypes of interest and apply a neighbourhood search or a               

shortest path search to identify a potential link between selected concepts. Such smaller             

subnetworks can be gradually extended using the context-sensitive right-click menus in           

Ondex​ ​that​ ​allow​ ​additional​ ​links​ ​of​ ​certain​ ​types​ ​to​ ​be​ ​added​ ​to​ ​the​ ​network. 

 

Figure 3.5: The metagraph of the barley genome-scale knowledge network. Different node            

shapes and colors represent different Concept Classes. Relation Types are omitted here for             

clarity​ ​reasons. 
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3.3.3​ ​Application​ ​of​ ​GSKN​ ​to​ ​gene​ ​discovery​ ​and​ ​crop​ ​improvement 

The main driver for building GSKN was that selected data sources contain fundamental             

relationships that upon integration and consecutive analysis, can yield chains of functional            

associations among more distant concepts. In this case, the application was to identify             

chains of functional associations between traits (phenotypes) and causal genes. Here, we            

present an example network, extracted from the barley GSKN, to provide a proof-of-concept             

and demonstrate the potential application of Linked Data to gene and knowledge discovery.             

The barley GSKN was searched and filtered to identify a potential relationship between             

barley gene MLOC_10687.2 and increased/decreased seed size (Figure 3.6). The results           

show that this gene is located within QTLs for seed width (AQDE021) and leaf water               

potential (AQGZ019). It encodes a protein that has a DNA-binding WRKY domain and is              

orthologous to ​TTG2 in Arabidopsis. Evidence in Arabidopsis indicates that ​TTG2 mutants            

have smaller seeds and that ​TTG2 is involved in seed coat development and epidermal cell               

fate specification. PubMed references are provided within the knowledge network to           

strengthen​ ​the​ ​association​ ​(PMID:22251317​ ​and​ ​PMID:15598800).  

 

This example highlights the potential benefits of data integration and linked data to establish              

associations between distant concepts such as traits/QTL on one side and genes/biological            

processes on the other side. The original information was dispersed across several            

heterogeneous databases (Gramene, Ensembl, TAIR, GO and PubMed) and only by           

interconnecting them in a semantically consistent manner it is possible to search the             

information effectively. This and other similar examples provide a proof-of-concept for data            

integration needs in life sciences. Tools for knowledge mining and discovery still need to be               

developed that can exploit integrated knowledge networks more effectively in order to predict             

candidate​ ​genes​ ​for​ ​key​ ​agronomic​ ​traits​ ​in​ ​a​ ​systematic​ ​manner. 
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Figure 3.6: A heterogeneous network that links CropNet information on the left (Traits, QTL              

and​ ​Gene)​ ​to​ ​RefNet​ ​information​ ​on​ ​the​ ​right​ ​(Homology,​ ​Interaction​ ​and​ ​Annotation). 

 

3.4​ ​Discussion 

Navigating the heterogeneous data landscape is a technically challenging task for many            

biologists and bioinformaticians who have to spend excessive time pre-processing data for            

integrative analysis. Therefore, knowledge discovery is often hampered by the challenges of            

data integration and new approaches are needed to improve the efficiency, reproducibility            

and objectivity of these processes. Knowledge networks provide a solution for the            

representation of heterogeneous but interconnected information. Eleven knowledge        

networks have been created that are used for the identification of candidate genes and the               

generation of research hypotheses in the species Arabidopsis, poplar, wheat, barley, potato,            

tomato, Brassica, maize, pig, cattle and chicken. In addition, several new knowledge            

networks are near completion for model and commercial insect species such as Drosophila             

and bumblebee. The flexibility of the network construction approach has meant that it was              

possible to extend its application to other plant and animal species, often as part of national                

or international collaborations. Each time a new knowledge network was built, the Ondex             

plugins​ ​were​ ​refined​ ​and​ ​the​ ​workflows​ ​improved.  

 

The data integration approach is selective and does not attempt to integrate every dataset              

that is in the public domain. Instead, the method focuses on integrating datasets that add               

value to a particular application case (e.g. candidate gene discovery). Selected data sources             

usually contain fundamental relationships that upon integration and consecutive analysis,          
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can yield chains of functional associations among more distant concepts. The data            

integration method also does not attempt to utilise raw data, but instead, it integrates              

processed data. For example, NGS data is integrated as processed data in the form of SNP                

or gene expression information. Resulting networks are provided in OXL format that can be              

manually​ ​explored​ ​by​ ​humans​ ​or​ ​mined​ ​automatically​ ​by​ ​computers.  

 

Several shortcomings in Ondex can make it challenging for new users to fully exploit the               

power of Ondex data integration. One limitation of the data structure is that multiple relations               

of the same type between two concepts are not permitted in Ondex. For example, two               

proteins A and B cannot have multiple relations of type ​interacts between them based on               

different evidence. This situation can be modelled in Ondex by using a single ​interacts              

relation that contains multiple evidence types such as yeast-two-hybrid or affinity purification.            

In Ondex, there is a lack of user-friendly monitoring and reporting tools to provide useful               

information during the parsing, mapping, filtering and network transformation stages. There           

is also a lack of documentation, which can make it difficult to understand the semantics and                

metagraphs that the Ondex parsers create. Without this understanding, larger workflows and            

mapping parameter definitions can become cumbersome to design and test. The Ondex            

Integrator contains a plugin for exporting the Ondex network as an XML based report. This               

plugin can provide a quick way of retrieving the network metadata information. Nevertheless,             

effective integration often requires a step-by-step approach, whereby each step is evaluated            

by opening and investigating the Ondex network in the Ondex Visualisation Toolkit. A             

step-by-step integration approach, allows the user to systematically build a knowledge           

network that meets their particular investigation requirements. Due to the large size of             

GSKN, the exploration of such networks in Ondex is tedious, slow and requires powerful              

computers with sufficient RAM. Finally, the Ondex Integrator is missing a highly-configurable            

Ondex parser for custom tabular data types. Before TAB files can be included in an               

automated Ondex integration workflow, they first must be manually parsed into Ondex using             

the​ ​Ondex​ ​Console. 

 

The examples used here showed how to build knowledge networks for species with a              

sequenced genome. In many cases, especially for non-model organisms, whole genome           

sequences or gene models are not available. For these species, a transcriptome assembly             

(for example from RNA-seq data) can alternatively be used to build the knowledge network.              

A knowledge network that is based on a transcriptome assembly differs in that it won’t have                

gene locations with genome-wide coordinates, nor will it have standardised entity identifiers            
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across public databases. Data integration workflows and methods are therefore far more            

challenging​ ​for​ ​transcriptomes​ ​and​ ​the​ ​approach​ ​needs​ ​to​ ​be​ ​customised​ ​far​ ​more. 

 

The process of building knowledge networks has been partially automated to include data             

download and data integration of RefNet using the Ondex-CLI. Using these automated            

steps, new versions of the knowledge networks are created on a regular (monthly) basis.              

This approach rebuilds knowledge networks from scratch instead of updating the parts that             

have changed. Mechanisms are not currently available to determine which parts of the             

knowledge network have changed after an update. Future work could develop an analytical             

approach for identifying genes that have new links or updated annotations of interest. This              

would allow for the development of automated services to inform users when new             

information​ ​about​ ​their​ ​genes​ ​of​ ​interest​ ​becomes​ ​available.  

 

In conclusion, heterogenous data sources can be integrated to form a knowledge network.             

Heterogenous data sources can contain explicit references to each other, thereby making it             

relatively straight-forward to interconnect the data. In situations, where direct references           

don’t exist between the data sources, other approaches need to be exploited for             

interconnecting the different datasets. One such approach can be the analysis of the             

scientific literature to establish connections between different biological entities. ​Publication          

concepts provide an unstructured source of evidence that can be exploited to interconnect             

information in an Ondex network. This information can even create novel relationships            

between concepts that are not yet present in structured databases. Chapter 4 presents how              

the Ondex data integration framework was further enhanced with novel text-mining           

capabilities​ ​to​ ​facilitate​ ​the​ ​interlinking​ ​of​ ​datasets​ ​lacking​ ​direct​ ​references.  
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Appendix 
 

Table A3.1: An example script to parse a TAB file into Ondex and create gene-SNP relations                

using​ ​the​ ​Ondex​ ​Scripting​ ​Console​ ​: 

 

Allele Variation​ ​ID Distance to  
transcript 

Gene​ ​stable​ ​ID Strain​ ​name Consequence​ ​to​ ​transcript 

C/A tmp_morex_conti
g_1558931_656 

473 MLOC_10372 barke​ ​WGS downstream_gene_variant 

G/A tmp_morex_conti
g_1558931_667 

462 MLOC_10372 barke​ ​WGS downstream_gene_variant 

 
p ​= ​new ​PathParser​(​getActiveGraph​(), ​new ​DelimitedFileReader​(​"biomart_export.txt"​,      

"\\t+"​,​1​)); 

 

c1 ​= p​.​newConceptPrototype​(​defAccession​(​3​,​"IBSC"​,​false​), defDataSource​(​"ENSEMBL"​),    

defCC​(​"Gene"​)); 

c2 ​= p​.​newConceptPrototype​(​defAccession​(​1​,​"IBSC"​,​false​), defDataSource​(​"ENSEMBL"​),    

defCC​(​"SNP"​),​​ ​defName​(​9​),  

defAttribute​(​0​,​"Allele"​,​"TEXT"​,​​ ​​false​),  

defAttribute​(​2​,​"Distance"​,​"INTEGER"​,​​ ​​false​),  

defAttribute​(​4​,​"Strain_Name"​,​"TEXT"​,​false​), 

defAttribute​(​5​,​"Transcript_Consequence"​,​"TEXT"​,​false​); 

p​.​newRelationPrototype​(​c1​,​​ ​c2​,​​ ​defRT​(​"has_variation"​),​​ ​defEvidence​(​"ENSEMBL"​)); 

s​ ​​=​​ ​p​.​parse​(); 
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4​ ​EXTENDING​ ​ONDEX​ ​WITH​ ​TEXT​ ​MINING​ ​CAPABILITIES 

One of the strongest evidences for candidate gene discovery is a known link between gene               

and phenotype. The majority of such gene-phenotype information is available in an            

unstructured form in the scientific literature. Automated approaches are needed to extract            

and integrate phenotypic information from publications and link these to the corresponding            

genes. Such approaches will create novel, structured relationships between concepts and           

therefore improve the ability to reason over the data. As part of this thesis, the Ondex data                 

integration software was extended with additional text mining capabilities to improve the            

richness of knowledge networks and enhance gene discovery. The initial research on this             

topic​ ​was​ ​published​ ​in​ ​​(Hassani-Pak​ ​et​ ​al.​ ​2010)​. 

 

This chapter describes the motivation and the requirements for use of text mining methods              

as an important contribution to data integration in the biological sciences. First, the design              

and implementation of the text mining approach taken is described and then its application              

on two biological use cases is outlined. The first use case demonstrates how the developed               

methodology can be utilised to build a weighted association network which is benchmarked             

against a gold standard dataset. The second use case presents how knowledge networks             

can be extended with novel gene-trait relationships using the trait ontology as the input for               

the​ ​text​ ​mining.  

 

4.1​ ​Background 

A tremendous wealth of knowledge is contained within the scientific literature in the form of               

unstructured free text. PubMed comprises over 25 million publication citations. On average,            

Pubmed grows at a rate of 500,000 publications per year. It is the source of the most                 

up-to-date research results in the biomedical and life sciences. Searching PubMed for            

descriptors relevant to a scientist's research discipline such as disease, species or            

phenotype can retrieve thousands of publications. Reading publications, extracting facts and           

using the facts to create knowledge is a time-consuming task. Automated solutions that can              

extract relevant facts from text, integrate these facts seamlessly into the data and visualise              

the data intelligently are therefore in high demand. Such solutions can help humans or              

computers to make novel connections between previously unrelated biological concepts          

(Rebholz-Schuhmann,​ ​Oellrich,​ ​and​ ​Hoehndorf​ ​2012)​. 
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Text mining is the discipline of analysing unstructured free text in order to extract structured               

facts and knowledge from it. Many excellent reviews of, and introductions to text mining              

approaches have been published and these reviews categorize text mining approaches into            

three main types: co-occurrence-based, rule-based and machine-learning-based       

approaches ​(Cohen and Hunter 2008; Krallinger, Valencia, and Hirschman 2008; Ananiadou           

et al. 2006)​. ​Co-occurrence-based methods search for concepts that occur in the same unit              

of text (typically sentence or abstract) and create relationships between them. ​Rule-based            

systems are more sophisticated as they apply linguistic and semantic analyses to find             

explicit statements that explain the relationship between concept classes (e.g. <gene>           

controls <phenotype> or <protein> ​positively regulates <pathway>).       

Machine-learning-based methods differ in that they require a training information set           

consisting of labelled sentences. A trained classifier is then used to identify similar             

associations in a larger body of text or text corpus. The two main challenges that any type of                  

text mining method must deal with are the issues of ambiguity and variability of language.               

Variability ​means that there are different ways of expressing the same concept in written              

text. For example, the trait ​grain colour can also be expressed as ​bran colour or ​pericarp                

colour (synonyms). Additional synonyms include the variability associated with regional          

spelling differences of words. For example, British spelling of ​colour ​and the American             

spelling of ​color ​are synonyms. ​Ambiguity ​means that certain words or phrases can have              

different meanings. For example, the word ​ear can refer to the sense organ that detects               

sound but for plants an ear is the top part of a grain plant such as wheat. Additionally, EAR                   

is a three letter acronym of the gene name, Ethylene-responsive element binding            

factor-associated​ ​Amphiphilic​ ​Repression. 

 

In recent years, a plethora of stand-alone text mining systems have been developed ​(Leitner              

et al. 2013)​, mostly to support database curators in finding evidence text for particular              

information of interest, such as protein-protein interactions or functional gene annotations           

(Lu and Hirschman 2012; Mao et al. 2014)​. The input to text mining systems is generally a                 

text corpus. This can be fields from a database (e.g. comment fields from UniProt or               

GeneRIFs from NCBI), abstracts from PubMed or full-text journal articles, for example. The             

user then selects concept types such as gene, drug, disease, treatment etc. and the text               

mining method annotates the text corpus with entities that correspond to these classes. The              

output format is mostly based on tables that contain the associated facts (tuples or triples) in                

different columns, with links to database identifiers and extracted evidence text. In addition             

to user interface based systems, Java based libraries and frameworks have recently            
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emerged providing APIs that enable language processing functionality to be embedded in            

diverse applications ​(Cunningham et al. 2013; “Apache UIMA” n.d.)​. Such frameworks allow            

text mining workflows to be created that consist of elementary components, for example text              

segmentation,​ ​sentence​ ​boundary​ ​detection,​ ​entity​ ​detection​ ​and​ ​relation​ ​extraction​ ​. 

 

The aim of this work was to extend Ondex with text processing capabilities in order to                

augment the knowledge network with additional facts (knowledge) extracted from PubMed           

abstracts.​ ​The​ ​following​ ​requirements​ ​were​ ​considered​ ​as​ ​important:  

● Detection of entity names in publications. Entities and publications are both concepts            

of the knowledge network. Some concepts may contain several synonyms and others            

very​ ​few.​ ​It​ ​is​ ​important​ ​that​ ​any​ ​type​ ​of​ ​entity​ ​(​Concept​ ​Class​)​ ​can​ ​be​ ​recognised.  

● Building weighted association networks from the data produced in the first           

requirement and the data already available in the network (​published in relations).            

Edges between concepts are required to contain statistical confidence scores and           

evidence​ ​text.  

● Text mining features need to be implemented as Ondex plugins in order to be              

invoked​ ​as​ ​part​ ​of​ ​fully​ ​automated​ ​Ondex​ ​workflows. 

 

Several​ ​possibilities​ ​for​ ​the​ ​design​ ​of​ ​such​ ​a​ ​system​ ​were​ ​considered.  

● Export data from Ondex into a stand-alone text mining system and import the results              

back again. The advantage of this approach is that existing text mining tools could be               

used for the text analysis. However, the downsides are the limited flexibility,            

incompatibility of data formats and the manual intervention that would be necessary            

for​ ​moving​ ​the​ ​data​ ​back​ ​and​ ​forwards.  

● Use text mining web-services. The advantage would be that no manual intervention            

would be necessary. However, the disadvantages are again the limited flexibility and            

data​ ​incompatibility​ ​as​ ​well​ ​as​ ​the​ ​potential​ ​risks​ ​of​ ​slow​ ​speed​ ​of​ ​a​ ​web-service.  

● Integration of text mining features into Ondex. This would give text mining methods             

direct access to the Ondex graph API. The methods could be implemented as flexible              

Ondex​ ​plugins​ ​that​ ​can​ ​be​ ​invoked​ ​as​ ​part​ ​of​ ​automated​ ​Ondex​ ​workflows.  

Tight integration of text mining features into the Ondex data integration framework            

outweighed the benefits of the other approaches and therefore a set of basic text processing               

features were implemented that matched the requirements specified above. The          

implementation in Ondex was developed on top of Apache Lucene ​(“Apache Lucene -             

Welcome to Apache Lucene” n.d.)​. Lucene provides a library for information retrieval and             
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document ranking. This chapter describes the design and implementation of a           

co-occurrence-based text mining plugin for Ondex that can be used as a simple baseline for               

the future development of more sophisticated rule-based or machine-learning-based         

systems that exploit frameworks such as GATE ​(Cunningham et al. 2013) and Apache UIMA              

(“Apache​ ​UIMA”​ ​n.d.)​​ ​for​ ​advanced​ ​text​ ​analysis. 

 

 

4.2​ ​Methods 

A genome-scale knowledge network as developed in the previous chapter usually contains a             

large number of ​Publication concepts linked to other concepts through high quality, manually             

curated references provided in public databases. The section will first describe how an             

additional corpus of text can be added to a GSKN and then explain how new links can be                  

established between ​Publication ​concepts and other concepts (e.g. ontology terms) in a            

knowledge network. When consecutive co-occurrence associations are made as described          

in the final methods part, it is important to discern the source of relations (text-mining derived                

relations or from human-based curation), eventually providing more weight to manually           

curated​ ​data. 

 

4.2.1​ ​Document​ ​retrieval​ ​and​ ​indexing​ ​in​ ​Ondex 

Three alternative strategies are available for adding a collection of publications, referred to             

as a corpus, to an Ondex knowledge network. The first is to provide a PubMed XML file                 

(“MEDLINE®PubMed® XML Element Descriptions and Their Attributes” 2005) to the Ondex           

Medline parser, which can come from a PubMed search using a keyword (e.g. “Arabidopsis”              

or “disease resistance”). Secondly, if the Ondex graph already contains concepts with            

PubMed IDs, the Medline parser’s eFetch parameter can be used to retrieve the             

corresponding XML entries using NCBI web services (which download approximately 1,000           

publications/minute). Thirdly, a list of PubMed IDs can be provided to the Medline parser,              

which will also retrieve the corresponding XML entries using web services. It is possible to               

easily combine any of these strategies together as a single parsing tool. The Medline parser               

reads the XML files and creates unconnected Publication concepts with attributes such as             

PubMed ID (PMID), Digital Object Identifier (DOI), title, abstract, authors, journal, year,            

Medical Subject Headings (MeSH) and Chemical terms. Subsequently, the ‘Ondex          

accession based mapping’ is used to map publications previously available in the graph to              
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the new Publication concepts that contain titles and abstracts. To avoid redundancy, the             

‘Ondex relation collapser’ plugin is used to merge the mapped concepts into a single              

concept. These steps create the corpus which consists of connected ​Publication concepts            

that are linked through ​published_in ​relations with other concepts in the network and a set of                

unconnected​ ​​Publication​ ​​concepts​ ​that​ ​were​ ​newly​ ​added​ ​to​ ​the​ ​knowledge​ ​network. 

 

The Lucene search engine library is part of the Ondex API and allows knowledge networks               

to be indexed and searched efficiently. The graph indexing methods translate all concept             

types including ​Publication ​concepts of the Ondex network into Lucene documents, where            

different Lucene fields represent different concept attributes. All text is first converted to             

lowercase and non-alphanumeric characters and stop words (e.g. “the”, “of”, “a”) are            

removed, before the text gets tokenized (broken up) into words and added to the index.               

Typographical variants are thereby excluded, so that words like ​Kcnip3 ​and ​KCNIP3 ​are             

stored​ ​as​ ​​kcnip3​ ​​and​ ​​KCNIP‑3​ ​​or​ ​​kcnip_3​ ​​are​ ​stored​ ​as​ ​​kcnip​ ​3​​ ​in​ ​the​ ​index. 

 

4.2.2​ ​Mapping​ ​publications​ ​to​ ​concepts​ ​in​ ​the​ ​knowledge​ ​network 

With the ontologies, databases and publications integrated with Ondex, the next task is to              

detect a biological concept (name or synonym) in the title or abstract of a publication. This is                 

known as Named Entity Recognition (NER), which we have implemented using different            

Lucene search methods. The standard search method considers ​exact occurrence of the            

concept names in the abstract or title of the publication. Two other search methods have               

also been implemented: ​fuzzy search ​matches documents that contain terms similar to the             

specified query term based on the Levenshtein algorithm and ​proximity search supports            

finding patterns, i.e., ordered words appearing within a specific distance of one another.             

Concept names and synonyms are used as Lucene query terms, normalised the same way              

as the index, to search the title and abstract fields of the publication documents that are                

available in the index. Matching documents are ranked and scored using a modified version              

of the Lucene TF*IDF ​(Robertson 2004) based scoring function. The Lucene scoring method             

was modified to give a higher weight to publications containing the query in their title rather                

than in their abstract. This recognises the assumption that reference to a concept in a title                

will be more informative than in an abstract. If several synonyms of the same concept are                

found​ ​in​ ​the​ ​publication,​ ​the​ ​highest​ ​Lucene​ ​score​ ​is​ ​recorded. 
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The entity recognition step has been implemented as an Ondex mapping method. Having             

recognised a concept in the publication, a relation of type ​occurs_in is created, indicating              

that the given publication is related to the identified concept (Figure 4.1.a). In order to               

provide context or evidence for the relation, each abstract is split into sentences and each               

sentence containing the matching query is stored as evidence text. Furthermore, the Lucene             

score​ ​is​ ​added​ ​as​ ​a​ ​weight​ ​to​ ​the​ ​publication-concept​ ​mapping.  

 

 

Figure 4.1: a) The outcome of the data integration and entity recognition based mapping              

step. Blue relations are manually curated citations from databases and are given a fixed high               

score. Red relations are based on automated text mining methods and are given Lucene              

scores. b) The co-occurrence step creates a direct link between the co-cited concepts within              

each publication (qualifier of the relation) and calculates the score as the product of the two                

original tf-idf scores. c) The final association step combines all relations from the previous              

step into one single relation and different scores are calculated to determine the strengths of               

the​ ​association. 

 

4.2.3​ ​Using​ ​co-occurrence​ ​to​ ​build​ ​weighted​ ​association​ ​networks 

The final component of the text mining plugin is a transformation step that simplifies the               

Ondex knowledge network, computes association weights and combines text-based         
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evidence. This enables filtering of weak associations to make subsequent data mining and             

visualisation​ ​more​ ​effective. 

 

If more than one concept is linked to the same publication (abstract or title) then this step                 

directly connects them with a new ​cooccurrs_with relation. For example, if two concepts A              

and B are cited in the same publication, a relation of type ​cooccurrs_with is created and the                 

product of the two original Lucene scores assigned as the combined score of the relation               

(Figure 4.1.b). The combined score represents the relevance of a document d for the query               

“a AND b”, with a, b being possible concept names of A and B. It is often the case that two                     

concepts may be cited together more than once in different publications. For each pair A-B,               

the following quantities were calculated and assigned to the ​cooccurrs_with relation: (i) the             

inner product of the scores (​IP = S​i x​i y​i​) where the index i ranges over the co-citations of the                    

pair at hand, with S​i being the sum function, with x​i being the A score and y​i being the B                    

score in the i​th co-citation; (ii) ​M = Max​i​(x​i y​i​), with i ranging over the co-citations of the pair at                    

hand; (iii) ​N = number of documents in which A and B were co-cited. An illustration of all                  

three metrics is shown in Figure 4.1.c. During the derivation of co-occurrence data, the              

manually curated ​published_in relations are processed in an equivalent way to the            

occurrs_in ​relations but with a fixed score. To reflect the confidence in the curated              

published_in relations, this score is set at 2.0 (arbitrary high number). In cases where a               

concept is linked to a publication with both types of relation (​occurs_in and ​published_in​), the               

higher​ ​score​ ​is​ ​considered. 

 

4.3​ ​Results 

4.3.1​ ​Proof-of-concept​ ​and​ ​evaluation​ ​of​ ​the​ ​text​ ​mining​ ​approach 

This section presents a proof-of-concept study that was published in ​(Hassani-Pak et al.             

2010)​. The study was repeated using the latest versions of the public databases. The              

manual evaluation, however, is time-consuming and therefore the results of the 2009            

analysis are shown. The numbers in brackets indicate the size of the 2015 database              

versions.  

 

The database UniProtKB-SwissProt (release 15.8) was searched using the keyword          

“​Arabidopsis​” (TaxID: 3702) and the set of 8,582 proteins was downloaded in UniProt-XML             

format (14,095 proteins on 9/9/2015). Using the Ondex UniProt parser, this subset was             

loaded as ​Protein ​concepts into the knowledge network. The subset also served as the              
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Arabidopsis protein name dictionary to be used for text mining. This set of UniProt proteins               

contained 13,502 curated links to published papers represented as ​published_in ​relations to            

be incorporated into the co-occurrence analyses. PubMed was used to retrieve all Medline             

articles that contained the keywords ​“Arabidopsis thaliana​” in their abstract, title or MeSH             

header. On August 28​th 2009, this resulted in 28,653 articles being retrieved (53,455             

publications on 9/9/2015). This PubMed subset was downloaded in XML format, added to             

the network using the Ondex Medline parser and integrated with the publications from             

UniProt. A custom Plant Stress Ontology in tabular format was developed by collaborators at              

Warwick University. The ontology encompasses 33 concepts related to biotic and abiotic            

stresses such as the fungal disease Botrytis, Ethylene and Drought. This constituted the             

second​ ​dictionary​ ​that​ ​was​ ​added​ ​to​ ​the​ ​network​ ​using​ ​the​ ​Ondex​ ​Console. 

 

The three steps taken to create the knowledge network in the Ondex Integrator are              

illustrated as a metagraph in Figure 4.2. The integrated input data for ​Arabidopsis protein              

that already had manually curated links to publications are shown by the orange             

published_in relations (Figure 4.2 a). The NER step of the text mining plugin then linked               

proteins and stresses to individual publications from the integrated corpus (see blue            

is_related relations in Figure 4.2 b). The NER step also assigned Lucene scores and              

evidence sentences extracted from the publications to each blue relation. In the final step,              

co-occurring protein-stress pairs were identified and connected with ​is_related relations          

(Figure 4.2. c). Publications serve as evidence of the association between co-occurring pairs             

of concepts. All ​is_related relations between protein-stress pairs are annotated with three            

different​ ​scores​ ​(see​ ​Methods​ ​section). 

 

 

Figure 4.2: A metagraph illustrating the three steps towards creating a protein-stress            

association network using the Ondex text mining plugin that include a) Integrated input data,              

b) Named Entity Recognition (NER) and c) from co-occurrence to weighted association            

networks. 
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4.3.1.1​ ​Mapping​ ​concepts​ ​to​ ​the​ ​corpus 

In total, 52,430 protein and stress concepts were recognised from the corpus comprising             

19,884 publications. Approximately 2.6 concepts were recognised per publication. Lucene          

scores on ​occurs_in relations indicate how significant a protein or stress concept is to a               

document in the ​Arabidopsis ​corpus. In order to understand how Lucene scores are             

distributed, a histogram was plotted for the whole dataset (Figure 4.3). A long-tailed             

distribution is observed that is characterised by a peak at approximately 0.2 and a long tail                

that extends to a maximum value of approximately 15.0 (not shown). Few Lucene scores              

(tf-idf) were greater than 3.9, however, therefore for presentation purposes we elected to             

combine observations greater than this value into an additional category “More”. The data             

are a very close fit to a mixed distribution of two lognormal components. This observation               

can be explained by the fact that queries occurring in the title of a document receive an                 

enhanced Lucene score. Choosing a tf-idf cut-off value of 0.956, separates the data very              

clearly into two subgroups those representing NER results based on the abstract (tf-idf <              

0.956) and of the titles (tf-idf > 0.956). Thus for this particular dataset, at this cut-off value                 

there is a 98.85% chance of classifying a tf-idf score correctly that is the result of a query                  

matching​ ​either​ ​abstract​ ​or​ ​title​ ​of​ ​the​ ​document.  

 

 

Figure 4.3: The distribution and cumulative frequency distribution (line) of Lucene scores            

(tf-idf) from 52,430 protein and stress concept relations identified in the ​Arabidopsis corpus             

by the NER search method (for details see Methods section). The ‘More’ category comprises              

about​ ​1700​ ​observations​ ​with​ ​tf-idf​ ​scores​ ​ranging​ ​between​ ​4.0​ ​and​ ​15.0. 
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4.3.1.2​ ​Weighted​ ​association​ ​networks 

In a co-occurrence network, protein and stress concepts can be connected via one or              

several publications. In order to make the protein-stress relations more evident, the structure             

of the text mining based network is transformed to an association network. The resulting              

association network, after filtering out unconnected nodes, contained 3,145 proteins linked to            

32 stresses by 10,777 relations. In other words, 36.7% of reviewed ​Arabidopsis proteins             

from UniProt (3,145 of 8,582) were co-cited with at least one Stress term from the Plant                

Stress Ontology database. On average, each co-cited protein was related to approximately            

3.4​ ​stresses​ ​and​ ​each​ ​stress​ ​related​ ​to​ ​337​ ​proteins. 

 

Three different confidence scores were assigned to protein-stress associations. The ​IP score            

ranged between 0.01 and 347.26, the ​M score ranged between 0.01 and 26.86 and the ​N                

score ranged from 1 to 600. The highest IP score was found between “Light” and               

“Phytochrome A” (photoreceptor), while the lowest score was between “Hormone” and           

“ADP-glucose synthase” (a protein known to be regulated by hormones in rice cells ​(Zhu et               

al. 2011)​). In the majority of cases, the IP and M scores were numerically lower than the                 

co-citation number, N, but some opposite cases were observed. For example, the            

association between ​ACBP4 ​and ethylene only had one co-citation, but the IP and M scores               

each​ ​had​ ​13.51. 

 

Comparison of the three scoring metrics over all 10,777 protein-stress pairs showed that IP              

and N are the most strongly correlated (r = 0.79) and IP and M to a lesser extent (r = 0.53).                     

In Figure 4.4 it can be seen that IP is correlated with N but with a large variance especially                   

for small N. For example, for N = 5 the IP score is very variable and ranges between 0.1 and                    

13.0. The M score on the other hand does not seem to be correlated with N, in the sense                   

that​ ​a​ ​similar​ ​proportion​ ​at​ ​each​ ​N​ ​is​ ​greater​ ​than​ ​a​ ​given​ ​value. 

 

60 

https://paperpile.com/c/HrsRJq/OWeDI
https://paperpile.com/c/HrsRJq/OWeDI


 

Figure 4.4: Comparison of Inner product of the scores (IP) vs number of co-citations (N) (a);                

and​ ​the​ ​Max​ ​scores​ ​(M)​ ​vs​ ​number​ ​of​ ​co-citations​ ​(N)​ ​for​ ​all​ ​10,777​ ​protein-stress​ ​pairs​ ​(b).  

 

Because of the large size of integrated graphs, it can be useful to filter associations using                

confidence scores. The difficulty is finding a method to remove false positives while retaining              

true positives, thereby improving the signal-to-noise ratio while retaining sensitivity. Figure           

4.5 illustrates an association network for all protein-stress pairs that are co-cited five times or               

more. The co-citation number is the simplest way to potentially reduce noise in such              

association networks. ​(Jenssen et al. 2001) examined the accuracy and type of interactions             

found among genes mentioned more than once or more than five times together. They found               

a decrease in the number of false positives as the number of co-occurrences increased. In               

this study, we found that sorting and filtering by IP and M metrics was in general more                 

accurate than by simple co-citation frequency at reducing noise in the network, as both IP               

and M consider the frequency of terms in the corpus. None of the metrics seems to be                 

superior overall, however, and the selection of the best metric may depend on the individual               

use case. Considering several metrics at the same time when analysing protein-stress            

associations​ ​seems​ ​to​ ​be​ ​the​ ​method​ ​of​ ​choice​ ​to​ ​highlight​ ​key​ ​associations​ ​and​ ​filter​ ​noise. 
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Figure 4.5: An example protein-stress association network based on 5 or more co-citations.             

The network contains 444 proteins (red circles), 25 stresses (blue triangles) and 1133             

relations (blue edges). Proteins in the centre of the network (yellow circles) are implicated in               

several​ ​plant​ ​stress​ ​responses.​ ​The​ ​Ethylene​ ​association​ ​sub-network​ ​is​ ​highlighted. 

 

4.3.1.3​ ​Validation​ ​of​ ​ethylene-protein​ ​associations 

To test the validity of the association (co-citation) network, we decided to focus on ethylene,               

a major plant hormone included in our Plant Stress Ontology. The ethylene association             

network contained 533 proteins and the same number of relations, with IP scores ranging              

from 0.016 to 202.35 and M scores from 0.016 to 13.91 (see Figure 4.5). To compare our                 

predictions with a manually curated set, we chose the Arabidopsis Hormone Database            

(AHD; ​(Peng et al. 2009) as a gold standard. In AHD, 31 proteins are related to ethylene                 

response based on manual curation of the published literature. Our text mining derived             

ethylene network contained 22 of the 31 AHD proteins giving a recall rate of 71.0%. The 9                 

proteins omitted from the network were not in the UniProtKB-SwissProt database at the time              

of the analysis (release 15.8, 2009), and were not included in our protein dictionary.              

Considering​ ​this​ ​fact,​ ​the​ ​actual​ ​recall​ ​rate​ ​was​ ​100%.  
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In a second validation, we compared our network predictions to all 166 ethylene related              

proteins of AHD (including those extracted from GO) and achieved a recall rate of 44.8%.               

Table 4.1 shows the top 10 proteins (sorted by M score) from our analyses that are linked to                  

ethylene but were not found in AHD. The four different confidence scores N, M and IP                

display the strength of the association. To classify these as true or false positives, evidence               

sentences from the literature were manually inspected. This can be done within Ondex as              

the association network contains the publications (titles and abstracts) and annotates           

relations​ ​with​ ​evidence​ ​sentences​ ​extracted​ ​from​ ​the​ ​publication.​ ​For​ ​example: 

  

● the interaction of ACBP4 and AtEBP may be related to AtEBP-mediated defence            

possibly​ ​via​ ​ethylene​ ​and/or​ ​jasmonate​ ​signalling.​​ ​[PMID:​ ​18836139] 

● protein phosphatase 2C ABI1 modulates biosynthesis ratio of ABA and ethylene.           

[PMID:​ ​19705149] 

● a specific interaction of ETR1 with the histidine-containing transfer protein AHP1,           

supporting the idea that a phosphorelay module is involved in ethylene signalling            

[PMID:​ ​18384742] 

 

Preliminary analyses of this manually validated subset of text mining based associations that             

are not included in AHD indicate that the inner product (IP) and the maximum scores (M) are                 

highly significant (P<0.0001) correlates of a physiologically meaningful link between the           

protein​ ​and​ ​the​ ​stress. 

 

Table 4.1: Top 10 ethylene related proteins (sorted by M) that the text mining analysis               

predicted but were not found in AHD. Each row displays the top hit PubMed ID and the year                  

of publication. The next three columns show the weights of the protein-stress association             

according to the different scoring metrics, N, M and IP (see Methods section). The last               

column indicates whether the association is correct or not according to expert evaluation; the              

association​ ​is​ ​considered​ ​correct​ ​when​ ​True​ ​=​ ​yes.  

ACCESSION PROTEIN 
NAME 

PUBMED YEAR N M IP TRUE 

AT3G05420 ACBP4 18836139 2008 1 13.51 13.51 yes 

AT1G31812 ACBP6 18836139 2008 2 11.57 17.14 yes 

AT3G03190 ATGSTF6 14617075 2003 7 7.36 15.75 yes 
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AT4G26080 ABI1 19705149 2009 10 6.66 12.22 yes 

AT3G21510 AHP1 18384742 2008 3 6.60 6.70 yes 

AT1G75040 PR-5 15988566 2005 12 5.18 5.47 yes 

AT2G45820 Remorin 9159183 1997 4 5.04 6.77 no 

AT3G11410 PP2CA 19705149 2009 1 5.00 5.00 yes 

AT1G09570 Phytochrome​ ​A 8703080 1996 11 4.79 8.47 no 

AT1G04240 IAA3 19213814 2009 3 4.54 5.14 yes 

 

 

4.3.2​ ​Extending​ ​Ondex​ ​workflows​ ​with​ ​text​ ​mining 

The text-mining component is an essential part of the data integration workflow which             

creates the genome-scale knowledge networks. It extracts facts from the scientific literature            

in order to establish novel links between genes and Trait Ontology terms that did not exist                

before. Here we describe the datasets and methods for extending the plant knowledge             

networks using text mining. The animal versions are based on similar principles but using              

different​ ​datasets. 

 

The results presented here are based on a corpus composed of Arabidopsis-related            

publications from PubMed and TAIR. PubMed was searched for articles that contain the             

keyword “Arabidopsis” in their abstract, title or MeSH header (52,561 publications as of             

22/06/2015). Additionally the Arabidopsis TAIR gene-publication file is used         

(ftp://ftp.arabidopsis.org/home/tair/User_Requests/Locus_Published_20130305.txt) which  

contains references to 22,201 publications. This set added 255 (1.14%) citations to the             

corpus as the majority of the citations already existed in the initial PubMed corpus.              

Arabidopsis gene names and synonyms for 27,416 genes were downloaded from           

Phytozome. An alternative dataset could consist of non-Arabidopsis plant proteins and           

publications from UniProtKB-SwissProt containing 22,596 proteins with 18,519 curated         

literature references to 7,962 publications (as of 22/06/2015). The Gramene Trait Ontology            

(TO) ​(Jaiswal et al. 2002) encompassing over 1300 trait terms (names and synonyms) is              

used as the second dictionary for plant phenotypic descriptions, such as glutinous            

endosperm, disease resistance, plant height, shoot branching, photosensitivity and flowering          

time​ ​(Figure​ ​4.6).  
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Figure​ ​4.6:​ ​Excerpt​ ​of​ ​the​ ​Gramene​ ​Trait​ ​Ontology. 

 

An Ondex workflow was designed to parse all datasets and execute the text mining steps               

(Code 3.1). As the first step in the text mining process, the ‘​tmbased​’ mapping method               

creates ​occurs_in relations between Gene and Publication concepts as well as TO and             

Publication concepts based on occurrence of names or synonyms in the title or abstract of               

the publication. The second step ‘​coocurrence’ ​transforms the graph into a weighted            

association network which has direct links between Gene and TO concepts (Figure 4.7).             

These two steps connect 5553 Arabidopsis genes to 409 TO terms based on 18,341              

co-citations. Each ​cooccurs_with relation is assigned IP, M and N scores as defined in the               

Methods section. Since the text mining plugin was published in 2010, it has been extended               

with a new score which counts the number of evidence sentences (ES) when two concept               

names​ ​co-occur​ ​on​ ​sentence​ ​level.  

 
<?​xml​ ​version​=​"1.0"​​ ​encoding​=​"UTF-8"​?> 

<Ondex​​ ​​version​=​"3.0"> 
​ ​​ ​​<Workflow> 
​ ​​ ​​ ​​ ​​<Graph​​ ​​name​=​"memorygraph"> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"GraphName"​>​default​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"graphId"​>​default​</Arg> 
​ ​​ ​​ ​​ ​​</Graph> 
​ ​​ ​​ ​​ ​​<Parser​​ ​​name​=​"phytozome"> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"InputDir"​>​phytozome/Arabidopsis/​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"TaxID"​>​3702​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"AccDataSource"​>​TAIR​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"ChromosomeNumber"​>​5​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"PreferredSynonyms"​>​false​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"graphId"​>​default​</Arg> 
​ ​​ ​​ ​​ ​​</Parser> 
​ ​​ ​​ ​​ ​​<Parser​​ ​​name​=​"genericobo"> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"OboType"​>​TO​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"Obsoletes"​>​false​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"InputFile"​>​ontologies/to.obo​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"graphId"​>​default​</Arg> 
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​ ​​ ​​ ​​ ​​</Parser> 
​ ​​ ​​ ​​ ​​<Parser​​ ​​name​=​"medline"> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"InputFile"​>​pubmed/pubmed_result_arabidopsis.xml​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"ImportCitedPMIDs"​>​true​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"graphId"​>​default​</Arg> 
​ ​​ ​​ ​​ ​​</Parser> 
​ ​​ ​​ ​​ ​​<Mapping​​ ​​name​=​"tmbased"> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"OnlyPreferredNames"​>​false​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"UseFullText"​>​false​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"Search"​>​exact​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"graphId"​>​default​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"ConceptClass"​>​Gene​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"ConceptClass"​>​TO​</Arg> 
​ ​​ ​​ ​​ ​​</Mapping> 
​ ​​ ​​ ​​ ​​<Transformer​​ ​​name​=​"coocurrence"> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"TargetConceptClass"​>​Publication​</Arg> 
​ ​​ ​​ ​​ ​​ ​​ ​​<Arg​​ ​​name​=​"graphId"​>​default​</Arg> 
​ ​​ ​​ ​​ ​​</Transformer> 
</Workflow> 

</Ondex> 

 

Code 3.1: Ondex workflow with 5 steps that parse Phytozome (“phytozome” parser), Trait             

Ontology (“genericobo” parser) and PubMed (“medline” parser). Map Gene and TO concepts            

to publications (“tmbased” mapping) and transform the graph into a weighted association            

network​ ​(“coocurrence”​ ​transformer). 

 

Figure​ ​4.7:​ ​Metagraph​ ​after​ ​running​ ​the​ ​above​ ​workflow​ ​and​ ​filtering​ ​Publication​ ​concepts 

 

To demonstrate the output of the text mining we focus on flowering time related traits that                

are represented in the Trait Ontology. Figure 4.8 shows that most Arabidopsis genes             

co-occur with the term ‘flowering time’ (TO:0002616) and its child term ‘days to flower’              

(TO:0000344). The more specific terms such as days to tassel flowering, days to silk, male               

flowering​ ​and​ ​female​ ​flowering​ ​did​ ​not​ ​co-occur​ ​with​ ​any​ ​Arabidopsis​ ​gene​ ​names. 
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Figure 4.8: Weighted association network of Trait Ontology concepts (green circles) and            

Arabidopsis genes (blue triangle). Red relations represent ​cooccurrs_with relations; the          

widths reflects the IP score of the association. Gene labels are shown for genes that are                

connected through relations with highest IP scores. Grey relations between ontology terms            

represent​ ​​is_a​​ ​relations. 

 

4.4​ ​Discussion 

A major challenge for those working with high-throughput ‘omics datasets is to contextualise             

new results by comparing them with information, either from structured databases or the             

scientific literature. The development of data integration and text mining methods have,            

however, largely been conducted independently. This chapter described the design and           

implementation of a Java-based text processing plugin for the Ondex data integration            

framework. The plugin consists of information retrieval (IR), named entity recognition (NER)            

and co-occurrence methods. The requirements were to recognise the occurrence of specific            

concepts in the literature and to build weighted association networks that can integrate text              

mining based relations and curated literature references. Additionally, it was required to            

demonstrate that the entire process from data integration to text mining can be covered              

within​ ​simple​ ​and​ ​reproducible​ ​Ondex​ ​workflows. 
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The Java-based text mining plugin that has been developed features information retrieval            

techniques and dictionary-based NER to recognise concepts (names and synonyms) in an            

application case dependent corpus. In cases where the data integration step has used a              

source containing curated literature references (e.g. such as from TAIR or UniProt) these             

links are incorporated into the text mining and are given a stronger weight. Using              

co-occurrence relationships between ​Concept Classes of interest the plugin can generate           

weighted association networks. Our work demonstrates that basic text mining features can            

bring added value to data integration and be used as a simple baseline when developing               

more sophisticated systems. In the future, we hope to include machine-learning-based and            

rule-based approaches for entity recognition and relation extraction respectively. These          

should extract more information from the literature and have increased sensitivity and            

specificity. New text processing frameworks such as GATE and Apache UIMA ​(Cunningham            

et​ ​al.​ ​2013;​ ​“Apache​ ​UIMA”​ ​n.d.)​​ ​will​ ​thereby​ ​play​ ​a​ ​crucial​ ​role. 

 

The two application cases demonstrated the usability of the text mining plugin as part of               

simple Ondex workflows. Focusing on gene-trait and protein-stress association         

(co-occurrence) networks from ​Arabidopsis​, we showed that workflows incorporating text          

mining produced meaningful results consistent with manually curated data. We identified           

proteins involved in ethylene response in ​Arabidopsis​. Validating against the manually           

curated ​Arabidopsis ​Hormone Database (AHD) showed that our method produced a recall of             

71.0%. The lack of a proper gold standard dataset, made it impossible to calculate precision               

values and F-measures (ratio between recall and precision). For example, our approach            

identified many more significant associations that are not present in AHD (yet) but were              

considered plausible by domain experts. Overall, our recall rates are similar to other             

dictionary or rule-based approaches applied, for example, in cancer research that achieve            

NER rates of 60-70% ​(Kang et al. 2013) but lower than machine learning NER approaches               

that​ ​achieve​ ​recall​ ​rates​ ​of​ ​80-90%​ ​​(Spasić​ ​et​ ​al.​ ​2014)​.  

 

It is well known that text mining results can be noisy. The challenge lays in distinguishing                

significant information from noise. Improving the signal-to-noise ratio is a demanding task.            

We used four different scoring metrics IP, M, N and ES to score the confidence of                

associations and made a first attempt to compare them. Many alternative weighting schemes             

for the definition of association confidence between two concepts exist, and it is easy to               

envisage how a weighted mean of multiple scores may compensate for the weaknesses in              

any particular scoring scheme. Presuming large enough training sets are available in the             
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future, optimisation methods could be applied to pick the best weighting schemes or to train               

machine learning based methods. Meanwhile, interactive filters combined with visualisation          

methods in Ondex provide domain experts with tools to explore the results from both text               

mining​ ​and​ ​data​ ​integration​ ​in​ ​an​ ​intuitive​ ​and​ ​semi-automated​ ​way. 

 

Our text mining approach is currently applied to titles and abstracts from PubMed articles.              

The approach, however, is general and could be employed with full documents if these were               

available. Since there are unlimited ways of expressing the same thing in free text,              

dictionary-based NER techniques are more successful if they can choose from a greater             

number of synonyms. In this respect, the Trait Ontology is a rather immature ontology for               

text mining applications. The number of synonyms is low compared with the Gene Ontology              

(GO). For example the trait term ‘shoot branching’ (TO:0002639) contains no synonyms,            

whereas the biological process term ‘shoot branching’ (GO:0010223) contains several          

(secondary shoot formation, auxiliary shoot formation, axillary shoot formation, axillary shoot           

system formation, shoot branching). This could be one reason why we only found one third               

of the TO terms to be co-cited with Arabidopsis gene names. Other alternatives such as the                

Crop Ontology have similar issues and therefore stronger efforts are needed in the future to               

better​ ​integrate​ ​ontologies​ ​and​ ​make​ ​ontologies​ ​compatible​ ​with​ ​text​ ​mining​ ​applications. 

 

In conclusion, in this chapter it was shown that there are significant benefits to being able to                 

combine data integration and text mining. The text mining plugin developed here extends the              

data integration framework Ondex with basic text processing functionality. It gives Ondex the             

capability to create novel links between heterogeneous data sources using the scientific            

literature. It is flexible and computationally undemanding, and therefore practical to integrate            

into workflows for building enhanced knowledge networks. The enhanced knowledge          

networks can be exploited, as described in the next chapters, through automated data             

mining and manual data exploration steps to accelerate biological discovery and hypotheses            

generation​ ​processes. 
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5​ ​SEARCHING​ ​KNOWLEDGE​ ​NETWORKS​ ​AND​ ​RANKING​ ​GENES 

A genome-scale knowledge network (GSKN) can be very large and highly connected.            

Efficient methods are needed to search such networks, extract biologically plausible paths            

through the network and use these to identify and rank potential candidate genes. This              

chapter explains the requirements to be taken into account when searching a GSKN. It then               

presents a newly developed method, called KNETscore, for ranking candidate genes based            

on the notion of gene-evidence networks. Proof-of-concept and validation of the           

methodology are presented in the results, before the limitations and future work are             

discussed​ ​at​ ​the​ ​end. 

 

5.1​ ​Background 

As described in Chapter 3, GSKNs are labelled and directed multi-graphs that include all              

genes and proteins of an organism as concepts and link them directly or indirectly with a                

variety of other concept types such as proteins, pathways, publications, ontology terms, etc.             

GSKNs are indexed by converting concepts and relations into Lucene documents using            

fields to represent their attributes (see Chapter 4). Searching a knowledge network with             

search terms becomes equivalent to searching a collection of text documents. Due to the              

large number of documents in GSKNs, measures are required to rank documents based on              

their importance to the search terms. The measure of inverse document frequency (IDF) is a               

well-established method in information retrieval ​(Sparck Jones 1972)​. IDF is based on            

counting the number of documents d in the collection D being searched which contain (or               

are​ ​indexed​ ​by)​ ​the​ ​term​ ​t.​ ​The​ ​inverse​ ​document​ ​frequency​ ​is​ ​defined​ ​as: 

 

df (t, ) og  i D = l |D|
|{d∈D :t∈d}|  

 

A search term which occurs in many documents is seen as a bad discriminator and is given                 

less weight than one which occurs in few documents. The IDF is a measure of term                

specificity, it does not rank documents, because all documents containing a search term will              

have the same IDF score. This can be coupled with TF (the frequency of a term within the                  

document​ ​itself,​ ​the​ ​more​ ​the​ ​better)​ ​which​ ​is​ ​defined​ ​as: 

 

f (t, )t d = |d|
|t ∈ d|  
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TF*IDF which involves multiplying the IDF measure by the TF measure can be used for               

ranking documents by their relevance to the search terms. It emerged from extensive             

empirical studies of combinations of weighting factors ​(Salton and Yang 1973) and has             

proved very robust and difficult to beat, even by much more refined models and theories               

(Robertson​ ​2004)​. 

 

Nodes in a GSKN containing a certain search term will be referred to as evidence concepts.                

Once evidence concepts are identified, the aim is to find the genes that are linked to these                 

evidence concepts. The links do not need to be individual direct relations, but can also be                

formed from a series of transitive relations which define indirect paths through the network.              

However, given the density and high connectivity of GSKNs, a path that connects two              

concepts nearly always exists. Therefore, one objective of this chapter is to develop a              

method​ ​that​ ​can​ ​distinguish​ ​biologically​ ​plausible​ ​paths​ ​from​ ​non-plausible​ ​paths. 

 

Once the genes are identified that are directly or indirectly linked to the evidence concepts,               

the second objective of this chapter is to develop a method for scoring candidate genes               

based on the supporting evidence. It is important that the gene scoring method reflects how               

relevant a search term (e.g. flowering time) is to a gene in a collection (genome). A high                 

score should be given to genes with frequent and specific evidence concepts. The scoring              

method needs to be generic and compatible with any underlying GSKN. Additionally, it is              

required that the scoring method is not only accurate but can also be computed rapidly for                

thousands​ ​of​ ​potential​ ​candidate​ ​genes​ ​in​ ​large​ ​plant​ ​and​ ​animal​ ​genomes. 

 

5.2​ ​Methods 

5.2.1​ ​Gene-evidence​ ​networks​ ​and​ ​semantic​ ​motifs 

We define a ​gene-evidence network as a restricted gene neighborhood network that only             

contains biologically plausible paths for any given gene. Biologically plausible paths are ones             

that allow evidence (knowledge) to be transferred to a gene of interest, for example through               

ortholog or protein-protein interaction relationships. The difference between a gene-evidence          

network​ ​and​ ​an​ ​unrestricted​ ​gene​ ​neighbourhood​ ​network​ ​is​ ​explained​ ​below​ ​(​Figure​ ​5.1​). 

 

The direct neighbourhood (n=1) of a gene would retrieve all concepts with in-going or              

out-going relations, for example, the proteins it encodes, linked publications, SNPs etc.            

Increasing the neighbourhood to n=2 would extract protein orthologs, protein-protein          
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interactions and GO annotations, however it would also add unrelated new genes that were              

cited in the publications from n=1. At n=3 we could see a rapid expansion of the gene                 

neighbourhood as new information such as annotations of orthologous and interacting           

proteins would be added but also information about those new genes seen at n=2, or other                

unrelated proteins annotated to the GO concepts at n=2. Biological useful knowledge can be              

transferred to the target gene through even longer paths. For example, a path of length n=5                

such as “<gene> ​encodes <protein> ​ortholog <protein> ​encodes <gene> ​interacts <gene>           

involved_in <biological_process>” can provide weak but still useful information for candidate           

gene discovery. There are fairly obvious traversals through the network of n=5 and even              

more that can be useful, provided these biologically plausible paths are known. Since             

GSKNs are highly connected, well formed searches are needed to avoid an exponential             

growth of the graph traversal. This is not only problematic because of the sheer volume of                

information but also because it violates the definition of a gene-evidence network which             

requires it only to contain evidence that is biologically plausible when transferred to a gene               

of​ ​interest.  

 

Figure 5.1: Illustration of a gene-evidence network as derived through “biologically plausible”            

semantic motifs. Blue nodes represent ​Gene ​concepts; red nodes are annotations such as             

GO, TO, EC, Pathway, Publication concepts. A path that goes via bold edges is valid               

(biologically meaningful path that allows annotations to be transferred to the seed gene). A              

path that goes via dashed edges is invalid. A gene-evidence network contains only filled              

nodes,​ ​whereas​ ​a​ ​gene-neighbourhood​ ​network​ ​would​ ​also​ ​contain​ ​the​ ​unfilled​ ​nodes. 

 

To create gene-evidence networks, biologically plausible paths that can subsequently be           

extracted have to be formally specified in a knowledge network. Therefore, we use the              

notion of ​semantic motif to define a path through the metagraph that matches a particular               
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biologically plausible metamodel. Semantic motifs ​(Biemann et al. 2016) can start with gene             

concepts and end with other biological entities or functional annotations. For example, valid             

motifs going from gene concepts to annotations such as GO concepts can include paths that               

go via orthologs and interaction partners but exclude any path that goes via paralogs (Figure               

5.1). Semantic motifs can be formally defined and extracted from the knowledge networks             

using the Metadata-based Graph Query Engine (​MGQE​) which was implemented by           

Matthew Hindle ​(Hindle 2012)​. The method uses a parallelized implementation of the            

breadth-first search algorithm starting with a set of seed concepts and at each depth              

retaining concepts and relations that match a particular metamodel (​Concept Class or            

Relation Type​). The MGQE query syntax is somewhat idiosyncratic but it is effectively a low               

level form of a deductive database query language ​(Ramakrishnan, Raghu, and Ullman            

1995) and can be illustrated with the help of the example in Figure 5.1 which contains the                 

following​ ​three​ ​semantic​ ​motifs​ ​(not​ ​dashed​ ​paths): 

 

<1*​ ​Gene>​ ​​annotation​ ​​<3 ​̂ ​GO> 

<1*​ ​Gene>​ ​​ortholog​ ​<​2​ ​Gene​>​ ​annotation​ ​​<3 ​̂ ​GO> 

<1*​ ​Gene>​ ​​ortholog​ ​<​2​ ​Gene​>​ ​interacts​ ​​<2​ ​Gene>​ ​​annotation​ ​​<3 ​̂ ​GO> 

 

The​ ​MGQE​ ​query​ ​syntax​ ​for​ ​specifying​ ​these​ ​semantic​ ​motifs​ ​is​ ​shown​ ​in​ ​Table​ ​5.1. 

 

Table 5.1: MGQE query syntax for specifying three semantic motifs. Left column contains the              

Concept Class where * means “start” and ^ means “end”. Right column shows the permitted               

transitions​ ​between​ ​​Concept​ ​Class​​ ​pairs​ ​(see​ ​text​ ​for​ ​more​ ​details). 

Concept​ ​Class Transition 

1*​ ​Gene 
2​ ​​ ​Gene 
3 ​̂ ​GO 

1-3​ ​annotation 
1-2​ ​ortholog 
2-2​ ​interacts​ ​​ ​​ ​​ ​​ ​​ ​5 
2-3​ ​annotation 

 

The first column defines the Concept Classes that constitute valid semantic motifs. Concept             

Classes are labelled with ‘*’ or ‘^’ to indicate the start or end of a semantic motif respectively.                  

For example the Concept Class ‘​Gene​’ appears twice because it can either be the start node                

(1*) or an intermediate node (2) of a semantic motif. The second column defines valid               

transitions between Concept Class pairs. Two valid transitions are possible from the starting             

node ​Gene​, transition 1-3 is of type ​annotation ​and transition 1-2 of type ​ortholog​. The first                

transition (1-3) leads into an end GO node which therefore results in obtaining the first, and                
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also shortest, valid semantic motif. The next valid transitions are the 2-x transitions where x               

can be an intermediate or end Concept Class from the first column. In case x is an                 

intermediate node then again further valid transitions are required in order to create a              

complete semantic motif. When the Concept Classes on each side of the transition are              

identical (e.g. 2-2), this transition would be executed recursively. It is possible, however, to              

deny multiple identical transitions by restricting the maximum path length. This can be             

specified as part of the transition definition, for example ‘5’, and is defined as the total                

number of nodes and edges in a path. A transition is only applied if the specified path length                  

limit​ ​has​ ​not​ ​been​ ​exceeded.  

 

The advantage of the MGQE syntax is that it does not require repetitive statements to be                

made.​ ​For​ ​example,​ ​adding​ ​a​ ​fourth​ ​semantic​ ​motif​ ​(in​ ​red)​ ​to​ ​the​ ​above​ ​list: 

 

<1​ ​Gene*>​ ​​annotation​ ​​<3​ ​GO^> 

<1​ ​Gene*>​ ​​ortholog​ ​<​2​ ​Gene​>​ ​annotation​ ​​<3​ ​GO^> 

<1​ ​Gene*>​ ​​ortholog​ ​<​2​ ​Gene​>​ ​interacts​ ​​<2​ ​Gene>​ ​​annotation​ ​​<3​ ​GO^> 

<1​ ​Gene*>​ ​​ortholog​ ​<​2​ ​Gene​>​ ​co-cited​ ​​<2​ ​Gene>​ ​​annotation​ ​​<3​ ​GO^> 

 

would only require a single new transition (last line) to be added to the MGQE semantic motif                 

definition​ ​as​ ​shown​ ​in​ ​Table​ ​5.2 

 

Table 5.2: Same as Table 5.1 but additionally relations of type co-cited between Gene-Gene              

pairs​ ​are​ ​permitted.​ ​Recursions​ ​are​ ​restricted​ ​by​ ​setting​ ​the​ ​maximum​ ​path​ ​length​ ​to​ ​5. 

Concept​ ​Class Transition 

1*​ ​Gene 
2​ ​​ ​Gene 
3 ​̂ ​GO 

1-3​ ​annotation 
1-2​ ​ortholog 
2-2​ ​interacts​ ​​ ​​ ​​ ​​ ​​ ​5 
2-2​ ​co-cited​ ​​ ​​ ​​ ​​ ​​ ​​ ​5 
2-3​ ​annotation 

 

As part of this work, a minor extension was made to the original MGQE implementation in                

order to support multiple relation types between same Concept Classes (e.g. 2-2 ortholog             

and​ ​2-2​ ​co-cited). 
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5.2.2​ ​Extracting​ ​gene-evidence​ ​networks​ ​in​ ​wheat 

A list of semantic motifs (Table 5.3) was created that contains biologically plausible paths to               

be included in the gene-evidence networks for wheat. This list contained 57 distinct paths              

that can be projected onto the metagraph of the wheat knowledge network. The two halves               

of the table are nearly identical, however the first half uses the ​has_similar_sequence             

(h_s_s) Relation Type in the fourth column, while the bottom half uses the ​ortho ​Relation               

Type in the same column. This is because the wheat knowledge network contains two              

different​ ​types​ ​of​ ​homology​ ​relations. 

 

Table 5.3: The 57 semantic motifs that were chosen to be biologically plausible paths in the                
wheat knowledge network. Each line corresponds to a single semantic motif path. To be              
read from left to right, white columns indicate the ​Concept Class and grey columns the               
Relation​ ​Type​​ ​of​ ​the​ ​path. 

 1  2  3  4  5  

Gene enc Protein         

Gene enc Protein h_s_s Protein       

Gene enc Protein h_s_s Protein pub_in Publication     

Gene enc Protein h_s_s Protein has_function MolFunc     

Gene enc Protein h_s_s Protein participates_in BioProc     

Gene enc Protein h_s_s Protein located_in CelComp     

Gene enc Protein h_s_s Protein has_domain ProtDomain     

Gene enc Protein h_s_s Protein has_domain ProtDomain has_function MolFunc   

Gene enc Protein h_s_s Protein has_domain ProtDomain participates_in BioProc   

Gene enc Protein h_s_s Protein has_domain ProtDomain located_in CelComp   

Gene enc Protein h_s_s Protein cat_c EC     

Gene enc Protein h_s_s Protein cat_c EC equ MolFunc   

Gene enc Protein h_s_s Protein is_a Enzyme     

Gene enc Protein h_s_s Protein is_a Enzyme ca_by Reaction   

Gene enc Protein h_s_s Protein is_a Enzyme ca_by Reaction part_of Path 

Gene enc Protein h_s_s Protein enc Gene     

Gene enc Protein h_s_s Protein enc Gene pub_in Publication   

Gene enc Protein h_s_s Protein enc Gene has_function MolFunc   

Gene enc Protein h_s_s Protein enc Gene participates_in BioProc   

Gene enc Protein h_s_s Protein enc Gene located_in CelComp   

Gene enc Protein h_s_s Protein enc Gene has_obser_pheno Phenotype   

Gene enc Protein h_s_s Protein enc Gene cooc_wi TO   

Gene enc Protein h_s_s Protein enc Gene it_wi Gene   

Gene enc Protein h_s_s Protein enc Gene it_wi Gene pub_in Publication 

Gene enc Protein h_s_s Protein enc Gene it_wi Gene has_function MolFunc 

Gene enc Protein h_s_s Protein enc Gene it_wi Gene participates_in BioProc 

Gene enc Protein h_s_s Protein enc Gene it_wi Gene located_in CelComp 

Gene enc Protein h_s_s Protein enc Gene it_wi Gene has_obser_pheno Phenotype 

Gene enc Protein h_s_s Protein enc Gene it_wi Gene cooc_wi TO 

Gene enc Protein ortho Protein       

Gene enc Protein ortho Protein pub_in Publication     
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Gene enc Protein ortho Protein has_function MolFunc     

Gene enc Protein ortho Protein participates_in BioProc     

Gene enc Protein ortho Protein located_in CelComp     

Gene enc Protein ortho Protein has_domain ProtDomain     

Gene enc Protein ortho Protein has_domain ProtDomain has_function MolFunc   

Gene enc Protein ortho Protein has_domain ProtDomain participates_in BioProc   

Gene enc Protein ortho Protein has_domain ProtDomain located_in CelComp   

Gene enc Protein ortho Protein cat_c EC     

Gene enc Protein ortho Protein cat_c EC equ MolFunc   

Gene enc Protein ortho Protein is_a Enzyme     

Gene enc Protein ortho Protein is_a Enzyme ca_by Reaction   

Gene enc Protein ortho Protein is_a Enzyme ca_by Reaction part_of Path 

Gene enc Protein ortho Protein enc Gene     

Gene enc Protein ortho Protein enc Gene pub_in Publication   

Gene enc Protein ortho Protein enc Gene has_function MolFunc   

Gene enc Protein ortho Protein enc Gene participates_in BioProc   

Gene enc Protein ortho Protein enc Gene located_in CelComp   

Gene enc Protein ortho Protein enc Gene has_obser_pheno Phenotype   

Gene enc Protein ortho Protein enc Gene cooc_wi TO   

Gene enc Protein ortho Protein enc Gene it_wi Gene   

Gene enc Protein ortho Protein enc Gene it_wi Gene pub_in Publication 

Gene enc Protein ortho Protein enc Gene it_wi Gene has_function MolFunc 

Gene enc Protein ortho Protein enc Gene it_wi Gene participates_in BioProc 

Gene enc Protein ortho Protein enc Gene it_wi Gene located_in CelComp 

Gene enc Protein ortho Protein enc Gene it_wi Gene has_obser_pheno Phenotype 

Gene enc Protein ortho Protein enc Gene it_wi Gene cooc_wi TO 

 

This list was subsequently translated into the MGQE query syntax (Table 5.4) which is used               

to query each seed gene in the wheat knowledge network for the existence of any of these                 

57 paths. Not every gene node will necessarily contain all 57 paths, however, the ones it                

contains are extracted and their union is taken to produce an individual gene-evidence             

network for each of the 99,386 wheat genes. Gene-evidence networks provide the core             

elements​ ​for​ ​identifying​ ​and​ ​ranking​ ​candidate​ ​genes​ ​as​ ​described​ ​next. 

 

Table 5.4: Definition of 57 different semantic-motifs for extracting gene-evidence networks           

from the wheat knowledge network. Both columns use the formal MGQE syntax as             

described​ ​in​ ​​[Citation​ ​error]​.  

Concept​ ​Class​ ​(*=start​ ​​ ​^=end) Transition 

1* Gene 
2^ Publication 
3^ MolFunc 
4^ BioProc 
5^ CelComp 
7^ Protein 

1-10 enc 
1-7 enc 
10-10 h_s_s 5 
10-7 h_s_s 5 
10-10 ortho 5 
10-7 ortho 5 
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8^ Gene 
9 Gene 
10 Protein 
11 ProtDomain 
12 EC 
13^ Phenotype 
14^ ProtDomain 
15^ EC 
16^ TO 
17 Enzyme 
177^ Enzyme 
18 Reaction 
188^ Reaction 
19^ Path 
 

10-2 pub_in 
10-3 has_function 
10-4 participates_in 
10-5 located_in 
10-9 enc 
10-8 enc 
10-11 has_domain 
10-12 cat_c 
10-14 has_domain 
10-15 cat_c 
9-2 pub_in 
9-3 has_function 
9-4 participates_in 
9-5 located_in 
9-9 it_wi 8 
9-8 it_wi 8 
9-13 has_observ_pheno 
11-3 has_function 
11-4 participates_in 
11-5 located_in 
12-3 equ 
9-16 cooc_wi 
10-17 is_a 
10-177 is_a 
17-18 ca_by 
17-188 ca_by 
18-19 part_of 

 

 

5.2.3​ ​Gene​ ​Ranking 

Here we describe the development of a method for scoring and ranking gene-evidence             

networks based on their relevance to certain search terms. The scoring method consists of              

three components TF*IDF, IGF and EDF that are first explained individually and then             

brought​ ​together​ ​to​ ​form​ ​the​ ​gene​ ​scoring​ ​function. 

 

5.2.3.1​ ​Inverse​ ​Gene​ ​Frequency​ ​(IGF) 

The TF*IDF score reveals how specific a search term is to a document; it does not imply how                  

specific the document is to a gene in question. A publication can for example receive a high                 

TF*IDF score because not many other documents in the knowledge network contain the             

same search term. If the publication is, however, cited (linked) by hundreds of genes it               

should receive a smaller weight than a publication which is linked to one or two genes only.                 
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It was therefore necessary to develop a second metric that incorporates the specificity of a               

document to a gene as the number of genes a document is linked to. It is important to                  

remember that a search term can occur in one or many documents and that a document can                 

occur in one or many gene-evidence networks ( ‘occur in’ is taken as shorthand for is part of                  

a​ ​gene’s​ ​evidence​ ​network).  

 

Assume there are N genes (or N gene-evidence networks) in the collection (knowledge             

network), and that document d​i occurs in n​i of them. Then a measure similar to inverse                

document frequency, called ​IGF​, can be defined that weights a document ​d​i according to its               

specificity​ ​to​ ​the​ ​genes​ ​in​ ​the​ ​collection: 

 

gf (d ) og  i i = l ni
N  

 

which can be redefined as a probability ​(C. E. Shannon 1948) that a random gene g would                 

contain​ ​the​ ​document: 

(d ) (d  occurs in X ) P i = P i g ≈ N
ni  

gf (d ) og P (d )  i i =  − l i  

 

Note that IGF can be computed independently from the search terms because it only              

requires knowledge of gene-evidence networks and is not influenced by the input terms             

themselves. It is frequently assumed that term or document weights are additive ​(Robertson             

2004)​.​ ​So​ ​that​ ​a​ ​sum​ ​or​ ​mean​ ​weight​ ​of​ ​a​ ​set​ ​of​ ​documents​ ​can​ ​be​ ​defined​ ​as: 

gf (d ..d ) gf (d )i sum 1 n = ∑
n

i=1
i i (SUM) 

gf (d ..d ) gf (d )i mean 1 n = n
1 ∑
n

i=1
i i (MEAN) 

 

A simple gene scoring function could thus be based on the sum or mean of IGF weights of                  

all evidence documents of a gene. Given two scenarios: gene A with one evidence              

document that has a high IGF weight vs. gene B with many evidence documents that have                

low IGF weights. Taking the mean would always rank gene A higher than gene B. Taking the                 

sum might rank gene B above gene A if the sum of IGF scores of a B > A. Both methods are                      

taken​ ​forward​ ​and​ ​evaluated​ ​in​ ​the​ ​results​ ​section. 
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Because of our assumption that TF*IDF and IGF weights are independent and additive, it              

would be possible to multiply TF*IDF by IGF to retrieve a single measure of document               

specificity. 

 

5.2.3.2​ ​Evidence​ ​Document​ ​Frequency​ ​(EDF) 

Documents can therefore now be scored according to their specificity to search terms             

(TF*IDF) and their specificity to genes (IGF). A final measure is required that can specify the                

relevance of a search term to the gene-evidence network as a whole. The more evidence               

documents there are that contain the search terms the higher the relevance of the gene to                

the search term will be. This needs to be normalised by the total number of documents in a                  

gene-evidence network since larger networks are more likely to contain more evidence            

documents. Similar to the term-frequency measure which counts the number of terms in a              

document and normalises by the length of the document, ​EDF ​can be defined as the               

frequency​ ​of​ ​evidence​ ​documents​ ​in​ ​a​ ​gene-evidence​ ​network. 

 

Thus, given a gene-evidence network for a gene g with a set of documents X​g​={d​1​,d​2​,…,d​n​}               

that are directly or indirectly linked with g. The evidence document frequency of a gene g                

and​ ​a​ ​term​ ​t​ ​can​ ​be​ ​defined​ ​as: 

df (t, )e Xg = |X |g
|t∈d :d∈X |g  

where​ ​ is​ ​the​ ​number​ ​of​ ​evidence​ ​documents​ ​for​ ​gene​ ​g​ ​that​ ​contain​ ​the​ ​term​ ​t.t∈d ∈X |  | : d g  

   

A simple gene scoring function could be solely based on EDF. An example given two               

scenarios: gene A with a small gene-evidence network of size 2 and gene B with a large                 

gene-evidence network of size 100. Both of them have only one evidence document that              

contains the search term. Gene A would get a EDF score of 0.5 (1/2) while gene B would get                   

a score of 0.01(1/100). For this reason, gene A would have a higher relevance to the search                 

term​ ​compared​ ​to​ ​gene​ ​B. 

 

5.2.3.3​ ​Gene​ ​scoring​ ​function​ ​(KNETscore) 

All three measures TF*IDF, IGF and EDF have unique characteristics. Combining them can             

provide one single score that reflects the relevance and specificity of a query term to a gene                 

in​ ​a​ ​collection.  
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Thus, given a gene g and its gene-evidence network that consists of a set of documents                

X​g​={d​1​,d​2​,…,d​n​}. A novel gene scoring function, called ​KNETscore​, was developed that           

computes​ ​the​ ​relevance​ ​of​ ​a​ ​gene​ ​in​ ​the​ ​knowledge​ ​network​ ​to​ ​a​ ​search​ ​term​ ​t​ ​as​ ​follows: 

 

NETscore (t, ) df (t, ) tf df (t, ) igf (d ) K mean Xg = e Xg * 1
|t∈d :d∈X |i i g

∑
 

t∈d :d∈Xi i g

 * i di *  i (MEAN) 

NETscore (t, ) df (t, ) tf df (t, ) igf (d ) K sum Xg = e Xg * ∑
 

t∈d :d∈Xi i g

 * i di *  i (SUM) 

The rest of this chapter will present results from the gene scoring method for both MEAN                

and​ ​SUM​ ​and​ ​evaluate​ ​the​ ​ranking​ ​approach​ ​using​ ​a​ ​set​ ​of​ ​known​ ​candidate​ ​genes. 

 

5.3​ ​Results 

5.3.1​ ​Characteristics​ ​of​ ​gene-evidence​ ​networks 

A gene-evidence network represents biologically meaningful knowledge about a gene in           

question and is different to a gene neighbourhood network. Figure 5.2 shows the difference              

between those two types of networks. The gene-evidence network has less concepts than             

the unrestricted gene-neighbourhood network although it contains longer paths of length           

n=5, while the gene-neighbourhood networks was restricted to n=4. The result of a             

gene-evidence networks considers a gene to be, for example, related to ‘early flowering’ if              

any of its evidence concepts are related to ‘early flowering’. In this context, the word ‘related’                

does not necessarily mean that the gene in question will have an effect on ‘flowering time’,                

but it means that there is a valid piece of evidence that a human domain expert should                 

consider​ ​when​ ​judging​ ​if​ ​the​ ​gene​ ​is​ ​related​ ​to​ ​‘flowering​ ​time’. 
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Figure 5.2: Wheat gene ​TRAES_2DL_A468AE260. On the left the ​gene-evidence network is            

shown​ ​and​ ​on​ ​the​ ​right​ ​the​ ​gene-neighbourhood​ ​network​ ​for​ ​n=4.  

 

The size distribution of gene-evidence networks varies between the different GSKNs.           

Arabidopsis gene-evidence networks have on average 26.3 concepts where size two           

networks “<Gene> ​encodes <Protein>” are very rare since most genes are linked to various              

annotations (Figure 5.3 A). In contrast, the mean gene-evidence size in wheat GSKN has              

42.9 concepts but nearly 10% of genes have a gene-evidence network of size two; these are                

genes for which the only available information are the proteins they encode (without             

homology or protein domain data) (Figure 5.3 B). The average gene-evidence networks in             

wheat are double the size of Arabidopsis networks because of homology and protein domain              

information​ ​that​ ​is​ ​available​ ​in​ ​the​ ​wheat​ ​GSKN​ ​but​ ​missing​ ​in​ ​Arabidopsis. 

 

 

Figure 5.3: Size distribution of gene-evidence networks (#unique concepts) in Arabidopsis           

and​ ​wheat​ ​knowledge​ ​networks 

 

An evidence concept (e.g. GO concept) can be part of several gene-evidence networks.             

Figure 5.4 shows the number of genes that are connected to evidence concepts in              
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Arabidopsis and wheat knowledge networks. Both frequency distributions are characterized          

through a long tail which contains a large number of occurrences far from the ‘head’ of the                 

distribution. The big majority of evidence concepts are connected to only one gene; these              

include Protein concepts that are encoded by Gene concepts. The wheat distribution shows             

a small peak at 3, this is because of the hexaploid nature of wheat which means that                 

evidence concepts are often related to all three homoeologous wheat genes. About 10% of              

evidence concepts occur in more than 20 gene-evidence networks, these frequently include            

GO​ ​and​ ​Publication​ ​concepts. 

 

  

Figure 5.4: Size distribution of genes connected to evidence concepts in Arabidopsis and             

wheat​ ​knowledge​ ​networks 

 

5.3.2​ ​Validation​ ​of​ ​gene​ ​scoring​ ​method  

A gene scoring method (KNETscore) that consists of three components TF*IDF, IGF and             

EDF was developed. Figure 5.5 shows an example of A) a high scoring gene and B) a low                  

scoring gene for a certain search term. Both gene-evidence networks have about the same              

number of evidence documents. However, because the network size of A is much smaller it               

results in a higher EDF score, because the evidence documents are more specific to gene A                

results in a higher IGF score and because the search terms are more specific to the                

documents in A it results in a higher TF*IDF score. For these reasons, gene A ranks high                 

while gene B ranks much lower, even though they have the same number of evidence               

documents. 
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Figure 5.5: A) Example of a high scoring gene and B) example of low scoring gene. Flagged                 

blue triangles represent gene A and B along with their gene-evidence networks. Concepts             

that​ ​contain​ ​the​ ​search​ ​term​ ​have​ ​a​ ​larger​ ​size.  

 

To show the usability of KNETscore and compare the differences between MEAN and SUM              

scores, we focused on a set of 79 wheat genes known to be involved in Gibberellin (GA)                 

synthesis ​(Hedden and Kamiya 1997)​. GA is an important plant hormone that regulates             

growth and influences various developmental processes, including stem elongation,         

germination, dormancy, flowering and senescence. Searching the wheat knowledge network          

for the term “gibberellin” identifies 605 documents that contain the term “gibberellin” which             

are part of 8751 gene-evidence networks. All these gene-evidence networks were scored            

and ranked using the KNETscore SUM and MEAN methods. Global comparison of MEAN             

and​ ​SUM​ ​ranks​ ​of​ ​all​ ​8751​ ​“gibberellin”​ ​related​ ​genes​ ​shows​ ​a​ ​correlation​ ​of​ ​R​2​=0.77.  

 

We then studied how many of the known 79 GA genes (reference set) were found and how                 

they ranked using the two approaches respectively. The search identified 72 (91.1%) of the              

known GA genes. The top 25 genes of the SUM and MEAN ranking (after ranking all 8751                 

genes) contain 25 and 22 of the GA reference set respectively. The top 100 genes of the                 

SUM and MEAN ranking contain 46 (63.9%) and 48 (66.7%) of the GA reference set               

respectively. Table 5.5 shows the scores of the top 25 ranked wheat genes for the search                

term “​gibberellin​” based on KNETscore SUM, and adds the corresponding rank and score of              

KNETscore​ ​MEAN.  
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Table 5.5: Scores of top 25 ranked genes for search term “gibberellin” based on KNETscore               

SUM​ ​with​ ​the​ ​corresponding​ ​KNETscore​ ​MEAN​ ​rank​ ​and​ ​scores. 

Gene​ ​ID Sum_Rank Mean_Rank Sum_Score Mean_Score 

TRAES_5BL_D412D28CC 1 16 458.17 5.39 

TRAES_5DL_3E77D28A6 2 17 452.87 5.33 

TRAES_4AL_FABDF4EDA 3 18 452.87 5.33 

TRAES_3B_763D7ABA2 4 22 450.27 5.30 

TRAES_3B_A2E5CB642 5 19 441.72 5.32 

TRAES_1BL_32506F819 6 20 441.72 5.32 

TRAES_1AL_3A716350F 7 21 441.72 5.32 

TRAES_1AS_B90725283 8 3 390.02 6.29 

TRAES_1AS_570581E09 9 10 382.04 5.88 

TRAES_5BL_8123B1AD3 10 8 375.24 6.05 

TRAES_1DS_A44358D5B 11 11 373.74 5.75 

TRAES_1BS_2C29ED3EF 12 12 373.74 5.75 

TRAES_3B_7ABEA6AAD 13 9 366.51 5.91 

TRAES_3AL_14A36F545 14 7 359.33 6.09 

TRAES_2AL_B8AB48108 16 26 342.11 4.44 

TRAES_1BL_A1CF1385F 17 13 331.69 5.62 

TRAES_2BL_FF2BB4801 18 30 331.58 4.20 

TRAES_3B_0CC70372F 19 14 329.16 5.58 

TRAES_1AL_C6975BBBD 20 15 322.63 5.56 

TRAES_3AS_3A79F81AF 21 27 319.18 4.43 

TRAES_2AL_85471F53F 22 28 317.28 4.41 

TRAES_2BL_9E115B19F 23 31 305.89 4.08 

TRAES_2DL_66F9CEA3C 24 29 302.86 4.21 

TRAES_3B_791A6E8DF 25 32 292.87 4.07 

 

Gene TRAES_5BL_D412D28CC (TaGA20ox1B) is the top ranked gene using the SUM           

score and ranks 16 using the MEAN score. Gene TRAES_2AL_65B19CC73 (TaGA3ox4A)           

is the top ranked gene using the MEAN score and ranks 79 using the SUM score. The                 

gene-evidence network of TaGA3ox4A has 9 concepts and 5 contain the term “gibberellin”,             

whereas the gene-evidence network of TaGA20ox1B contains over 120 concepts of which            

85 contain the term “gibberellin”. TaGA3ox4A gets ranked top using MEAN scores because             

it’s evidence concepts are on average very specific and TaGA20ox1B gets ranked top using              

SUM scores because it has a relatively high number of evidence concepts while they may or                

may​ ​not​ ​be​ ​very​ ​specific. 
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Figure 5.6: On the left, gene TRAES_2AL_65B19CC73 (TaGA3ox4A) that scores highest           

using KNETscore MEAN. On the right, gene TRAES_5BL_D412D28CC (TaGA20ox1B) that          

scores highest using KNETscore SUM. Concepts with the search term “gibberellin” are            

slightly​ ​larger.  

 

The lowest ranked gene from the GA evaluation set is TRAES_3B_F6CE72D8D (TaGID2B)            

with a rank of 1280 using MEAN and 2887 using SUM (Figure 5.7). Interestingly it receives                

an identical score of 0.2 in both MEAN and SUM. The score is identical because TaGID2B                

has only one GA related evidence document which leads to SUM and MEAN being the same                

formula. The evidence document is the GO concept ‘response to gibberellin’ which receives             

a relatively high TF*IDF score of 3.29 for the search term ‘gibberellin’ (the range of TF*IDF                

scores among all 605 documents goes from 0.53 to 7.14 with a mean of 2.33). However,                

since this GO concept is linked to 815 other genes (as expected since GA is a key plant                  

hormone involved in many processes) it will receive a relatively small IGF score             

(log(99386/815)). In addition it is the only evidence concept among 34 total concepts which              

leads to a small EDF score (1/34). Although this gene has been in the GA reference set, the                  

evidence in the wheat knowledge network is not specific and sufficient enough to rank it               

higher. 

 

NETscore( gibberellin , TRAES_3B_F6CE72D8D)  K ′ ′   
DF  IGF  TF IDF  = E *  *   

1/34 log(99386/815) .29  =  *  * 3  
.2  = 0  
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5.4​ ​Discussion 

5.4.1​ ​Gene-evidence​ ​networks 

This chapter introduced the definition of semantic motifs and presented how they are used to               

find gene-evidence networks. Semantic motifs can be specified and extracted from the            

knowledge network using the Meta-data based Graph Query Engine (MGQE) that is part of              

Ondex. The MGQE query syntax requires knowledge about the metagraph to correctly            

define Concept Classes and Relation Types that constitute biologically plausible paths. The            

MGQE enables many complex graph queries to be defined in a very concise manner without               

the need of writing long and complicated SQL or SPARQL like query statements. The              

examples showed 57 distinct semantic motifs defined within a single query file. The             

disadvantage of, the concise query syntax of MGQE is that it can become cumbersome to               

decipher all graph queries that are represented within it. Additional shortcoming of MGQE             

are that it is not based on a defined deductive logic with associated theoretical basis and has                 

not​ ​query​ ​planning​ ​and​ ​optimisation​ ​strategies. 

 

Concepts that are included in a gene-evidence network are presumed to be transferable to              

the gene of interest, in contrast, concepts that are excluded from a gene evidence network               

(although still part of the GSKN) are presumed to be irrelevant to the gene in question.                

Notably, if a semantic motif fails to capture an important biological motif then downstream              

knowledge​ ​mining​ ​applications​ ​won’t​ ​be​ ​able​ ​to​ ​exploit​ ​this​ ​information. 

 

One current limitation of MGQE is the way it specifies the maximum number of recursive               

links (hops) a transition can make if the ​from and ​to Concept Classes are the same. The                 

current implementation in Ondex allows the number of hops to be restricted by specifying the               

total path length, but not by specifying the number of hops itself. This has inconsistency               

implications when creating gene-evidence networks as hops of type ‘interacts with’ are            

denied if they occur in the reference datasets (path length > 8) but are possible if they occur                  

in​ ​the​ ​wheat​ ​specific​ ​datasets​ ​(path​ ​depth​ ​<​ ​8).  

 

The semantic motif search considers the directionality of a relation as irrelevant and the              

relation will be traversed as long as the ​from and ​to Concept Classes, as well as, the                 

Relation Type matches the specification. This approach works well for all cases when the              

from ​and ​to ​Concept Classes are different. However, in cases when they are the same, as in                 

the Gene Ontology, it might be required to consider the directionality of the relation. For               

86 



example, when a gene is annotated to a GO concept one might want to include all its parent                  

terms (​is_a relations) but not its child terms into the gene-evidence network. Additionally, in              

cases when ​from and ​to Concept Classes are the same, the current implementation requires              

a​ ​maximum​ ​path​ ​length​ ​to​ ​be​ ​set​ ​to​ ​avoid​ ​loops.  

 

In future, more expressive graph query languages such as cypher ​(“Cypher Query            

Language” n.d.) or SPARQL ​(Hancock 2004) are needed to overcome some of these             

shortcomings. This would enable general statements about biologically plausible hops to be            

made​ ​regardless​ ​of​ ​when​ ​and​ ​where​ ​in​ ​the​ ​query​ ​path​ ​they​ ​occur.  

 

Gene-evidence networks are an important requirement for candidate gene discovery.          

Searching individual gene-evidence networks can, however, identify many potential         

candidate genes. Methods are required to rank candidate genes and help users to focus on               

genes​ ​with​ ​most​ ​important​ ​evidence​ ​information. 

 

5.4.2​ ​Gene​ ​scoring​ ​method 

Searching gene-evidence networks for keywords such as ‘gibberellin’ or ‘flowering’ can           

retrieve hundreds to thousands of genes that are ‘somehow’ related to the search terms.              

Methods are required that can sort the list and present the most relevant genes at the top                 

and the less important genes at the bottom. This task of sorting a gene list based on its                  

relevance to a search terms is placed somewhere between information retrieval (document            

ranking)​ ​and​ ​candidate​ ​gene​ ​prioritisation.  

 

The gene scoring method, KNETscore, that was developed as part of this thesis builds on               

the TF*IDF measure that has been well established in the field of information retrieval for               

more than 40 years ​(Sparck Jones 1972)​. It uses TF*IDF to rank documents by their               

relevance to a search term, and additionally, considers the properties of gene-evidence            

networks such as the specificity of documents to a gene (IGF) and the frequency of evidence                

concepts (EDF). Taking together they provide a measure to differentiate between genes that             

are highly relevant or less relevant to a search term. Omitting IGF or EDF from the score                 

would have two major consequences 1) genes that have the same evidence documents             

would always score equally and 2) evidence documents that are linked to hundreds of genes               

would​ ​be​ ​given​ ​the​ ​same​ ​weight​ ​as​ ​documents​ ​that​ ​are​ ​specific​ ​to​ ​one​ ​or​ ​two​ ​genes. 
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We have compared two alternative strategies for combining document relevance weights in            

cases where a gene has two or more evidence concepts 1) taking the sum (SUM) or 2)                 

taking the mean (MEAN) of all TF*IDF * IGF scores. The score ranges between MEAN               

(0.01-7.19) and SUM (0.01- 450.1) are very different, as expected. The ranking results of the               

GA reference genes however, show a strong positive correlation (R​2​=0.87). Our evaluation            

has shown that our method ranks 63.9% and 66.7% of 72 GA reference genes within the top                 

100 genes using SUM and MEAN respectively. Specific examples have shown that the SUM              

function gives higher scores to well-studied genes. In contrast, the MEAN doesn’t take into              

account the total number of evidence concepts, instead it looks at average specificity over all               

concepts. MEAN is therefore a more useful measure for identifying novel or newly studied              

genes that do not yet have large evidence networks or do not have many evidence               

concepts. MEAN scores are in general easier to interpret since they solely reflect the              

average specificity whereas SUM scores reflect a combination of both specificity and total             

number​ ​of​ ​evidence​ ​concepts.  

 

It is an important requirement that the scores can be computed rapidly. Evidence document              

retrieval and TF*IDF calculation can be achieved in constant time (O(1)) since all documents              

are indexed for direct retrieval via Lucene. To compute the second component, IGF, it is               

necessary to know the number of genes that are connected to an evidence document. This               

can be determined through graph traversal (depth-first search or breadth-first search)           

starting at the root node (evidence concept) and exploring as far as possible each branch               

and ensuring it matches a certain semantic motif. The time complexity of DFS or BFS               

algorithms can be expressed as O(|V|+|E|) where |V| is the number of nodes and |E| the                

number of edges in the knowledge graph. The graph traversal needs to be performed              

n-times for all n evidence documents that were retrieved through the search. To compute the               

last component, EDF, the gene-evidence network needs to be generated using graph            

traversal. So the total run time complexity for computing the score of a single gene can be                 

expressed as O(2n(|V|+|E|)). It would be very slow to compute this every time a search is                

performed. However, by developing two additional pre-build indices (HashMaps) that contain           

the necessary information to compute IGF and EDF, the computation of the score can be               

achieved in constant time O(1). More details about the implementation are given in the next               

chapter. 

 

Currently an equal weight is given to all evidence documents. Future work would be to               

investigate and incorporate specific domain knowledge into the scoring. For example, genes            
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that have SNPs with causative phenotypes could be ranked higher than genes without             

variation data. The choice of priority datasets will be application dependent and therefore it              

would​ ​be​ ​ideal​ ​to​ ​make​ ​this​ ​configurable. 
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6​ ​DESIGN​ ​AND​ ​IMPLEMENTATION​ ​OF​ ​KNETMINER 

Having developed genome-scale knowledge networks (GSKNs) and methodology for         

searching and ranking candidate genes, the next aim was to build user interfaces and data               

visualisation methods that can give researchers and breeders the means to interrogate            

knowledge networks themselves. This chapter describes the design and implementation of           

KnetMiner - a web-based application that was developed specifically for candidate gene            

discovery. 

6.1​ ​Background 

In the beginning of the Ondex project (2011), the only way to visualise and explore GSKNs                

was through the stand-alone Ondex frontend also known as the Ondex Visualisation Toolkit             

(OVTK). Integrated networks in the form of OXL files were loaded into OVTK and a series of                 

generic graph operations such as filters, annotators and layout algorithms were available to             

study the networks. Those graph operations made sense to a bioinformatician, however,            

they were not intuitive enough for use by biologists. The first idea was to develop an Ondex                 

frontend plugin with a task-focused user interface that automates several graph operations            

and thus facilitates searching of GSKNs. This attempt resulted in a “Genomics” Ondex plugin              

which consisted of a set of graph filters and annotators, as well as, a novel layout algorithm                 

(Figure 6.1). The plugin allowed users to enter query terms and specify genomic regions of               

interest. It then filtered Gene concepts based on the genomic positions, extracted a small              

gene neighbourhood and searched it for the query terms. The result was a subnetwork that               

was rendered in Ondex using a graph layout algorithm that positioned genes according to              

their genomic coordinates at the top of the screen and the rest of the network was placed                 

underneath using the GEM graph layout. It was clear, however, that this solution was              

impractical for two reasons. First, due to large RAM requirements (at least 8Gb RAM) and               

slow processing time it was tedious to work with it, and second, due to constraints in                

visualising genomic data with Ondex (designed for network visualisation). Therefore, a           

faster, more scalable and more user-friendly solution was needed that could overcome            

existing​ ​limitations. 
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Figure 6.1: The ‘Genomic’ plugin for Ondex to filter the knowledge network and visualise the               

subnetworks using a loci based layout algorithm. A) Gene (black lines) and QTL (red lines)               

concepts are placed based on their genomic positions. B) The ‘Genomic’ plugin filters genes              

based on specified regions, extracts gene neighbourhood networks and visualises genes           

based on position (top of screen) and the neighbourhood using the GEM layout (bottom of               

screen). 

 

6.2​ ​Objectives 

The aim was to develop a software resource that targets two types of end users. The first                 

type, those with a strong domain expertise and experimental data for a particular trait who               

want to identify novel targets or generate new hypotheses about biological processes            

involved in the trait. The second type, those biologists that are beginning to study a new trait                 

of interest and need to efficiently review the existing knowledge without having to manually              

navigate​ ​from​ ​database​ ​to​ ​database​ ​as​ ​is​ ​currently​ ​the​ ​case. 

 

The ​first ​requirement identified for both user types is to have a solution that enables GSKNs                

to be interrogated with user data (search terms, QTL and gene list) without requiring any               

technical expertise about data integration or retrieval. The ​second ​requirement is that the             

solution needs to be scalable and fast even when the knowledge networks are very large.               

The ​third ​requirement is that different types of outputs, including genome and network             

visualisations, should be simply interchanged and coordinated to increase the user’s           

understanding. The ​final ​requirement is to provide a modular and portable solution that             

enables developers to build instances for new species and to deploy them on any IT               

infrastructure​ ​that​ ​meets​ ​the​ ​software​ ​requirements. 

It was decided that a web-accessible application, consisting of a client that can run in a web                 

browser and a separate backend server, is the ideal design pattern to suit these              
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requirements. Demanding computation can be performed on server-side and visualisation of           

the output using flexible web technologies on client-side. The project was given the name              

KnetMiner​ ​and​ ​a​ ​set​ ​of​ ​key​ ​objectives​ ​were​ ​defined: 

 

● Objective 1: Develop a fast application/web server with methods to query a large             

knowledge network with user provided data (search terms, QTL and gene list) and to              

generate​ ​bespoke​ ​files​ ​to​ ​be​ ​visualised​ ​in​ ​client​ ​applications. 

 

● Objective 2: ​Develop a network visualisation tool that can be embedded in websites             

and​ ​has​ ​functions​ ​for​ ​the​ ​exploration​ ​of​ ​data​ ​rich​ ​knowledge​ ​networks. 

 

● Objective 3: ​Develop a visually appealing web application with a simple submission            

page for user data (keywords, QTL and gene list) with different visualisations for             

search results such as tables, networks and genome coordinate based maps (gene,            

QTL). These must all be easy to navigate between, for example using a tabbed              

interface,​ ​and​ ​with​ ​extensive​ ​cross-referencing. 

 

● Objective 4: ​Enhance the client application through the provision of advanced query            

support (AND, OR, NOT), real-time user feedback, query term suggestions and           

visual​ ​presentation​ ​of​ ​evidence​ ​information. 

 

● Objective 5​: Provide a modular solution and facilitate the management of the build             

and​ ​deployment​ ​processes. 

 

6.3​ ​KnetMiner​ ​System​ ​Overview 

A KnetMiner web application instance is divided into client and server subsystems (Figure             

6.2). The client component, called ​KnetMiner-Client​, is deployed in an Apache Tomcat            

container and holds the application submission and presentation interfaces. The client is            

mostly based on JavaScript, jQuery and DHTML for data presentation, with optional            

dependencies to Java Applet and Flash. The client machine sends HTTP requests via Ajax              

to a Java servlet which passes the requests via a socket connection to the database. The                

database server, called ​KnetMiner-Server​, holds the knowledge network in a          

memory-based Ondex graph database. The application logic and data processing of the            

KnetMiner-Server are implemented as a Java multithreaded server. In a single threaded            
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server, the incoming requests were processed in the same thread that accepted the client              

connection which meant long-running requests made the server unresponsive for a long            

period. In contrast, in a multithreaded server connections are handed off to a worker thread               

that will process the request and enable the server to accept new requests in the meantime,                

making it more responsive. The KnetMiner-Server produces query-dependent views (OXL,          

JSON, TAB files) of the knowledge networks which are passed on to the JavaScript methods               

that​ ​requested​ ​them​ ​in​ ​order​ ​to​ ​be​ ​presented​ ​in​ ​the​ ​web​ ​browser. 

 

Figure 6.2: The architecture of a single KnetMiner web server based on a client-server              

design​ ​model.  

 

6.4​ ​The​ ​KnetMiner-Server 

6.4.1​ ​Pre-processing​ ​the​ ​knowledge​ ​network 

The KnetMiner-Server is a Java Archive (JAR) that requires as an argument the path to the                

GSKN (OXL file) that has already been built using Ondex. Initially, when the JAR is run, it                 

pre-processes the GSKN in order to allow fast responses to client requests and to generate               

basic​ ​statistics​ ​of​ ​the​ ​database​ ​content.​ ​The​ ​steps​ ​involved​ ​in​ ​the​ ​pre-processing​ ​include: 
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1. Parsing​ ​GSKN​ ​OXL​ ​file​ ​into​ ​a​ ​memory-based​ ​graph​ ​database 

2. Indexing​ ​the​ ​GSKN​ ​using​ ​Lucene.​ ​The​ ​index​ ​is​ ​stored​ ​in​ ​a​ ​new​ ​sub​ ​folder 

3. Traversal of the entire GSKN using the MGQE (see Chapter 5) for all ​Gene ​concepts               

and​ ​semantic​ ​motifs​ ​(packaged​ ​with​ ​the​ ​server​ ​JAR​ ​file) 

4. Building two indices with the results of the network traversal: ​gene-evidence map            

and​ ​​evidence-gene​ ​map​. 
5. Retrieve total number of genes, concept, relations in the GSKN, as well as, the              

minimum,​ ​maximum​ ​and​ ​average​ ​size​ ​of​ ​gene-evidence​ ​networks. 

The pre-processing of the GSKN requires about 10GB RAM on a server with 4 cores and                

takes about 10 minutes for a network with 0.5 Million concepts, 1.5 Million relations, 100,000               

seed​ ​genes​ ​and​ ​57​ ​semantic​ ​motifs.  

 

6.4.2​ ​Incoming​ ​request​ ​types 

Once the pre-processing has completed, the KnetMiner-Server is ready to receive messages            

from client applications. Methods have been implemented to support different types of            

requests (Table 6.1) that come via socket connections. Every client request is parsed to              

identify the request type which then triggers the corresponding subroutines as described in             

more​ ​detail​ ​below. 

 

Table​ ​6.1:​ ​Methods​ ​(services)​ ​provided​ ​by​ ​the​ ​KnetMiner-Server. 

Request 
type 

Input Output Description 

keyword Keywords 
QTL 
Gene​ ​list 

Gene​ ​file​ ​(TAB) 
Evidence​ ​file​ ​(TAB) 
Genomic​ ​file​ ​(XML) 

Search the knowledge network. Rank all      
genes​ ​and​ ​evidences.​ ​Produce​ ​output​ ​files. 

gene_net Keyword 
Gene​ ​list 

Ondex-OXL 
CytoscapeJS-JSON 

Extract gene evidence networks. Annotate the      
network to highlight important information.     
Produce​ ​network​ ​output​ ​files. 

evidence_net Ondex 
Concept​ ​ID 

Ondex-OXL 
CytoscapeJS-JSON 

Extract paths in gene-evidence networks that      
end with given concept. Produce network      
output​ ​files. 

counthits Keywords Number Number of genes and evidence concepts      
‘matching’​ ​a​ ​query 

countloci QTL Number Number​ ​of​ ​genes​ ​within​ ​a​ ​QTL​ ​region 

synonyms Keywords File​ ​(TAB) Searches the knowledge network for query      
terms.​ ​Identifies​ ​synonymous​ ​concept​ ​names. 
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A request of type ​keyword takes keywords, QTL and a gene list and produces a ranked list                 

of​ ​candidate​ ​genes​ ​and​ ​evidence​ ​information.​ ​The​ ​steps​ ​involved​ ​in​ ​this​ ​process​ ​include: 

1. Parse​ ​query​ ​terms,QTL​ ​and​ ​gene​ ​ids​ ​(if​ ​provided).  

2. Search​ ​the​ ​Lucene​ ​index​ ​to​ ​identify​ ​and​ ​rank​ ​matching​ ​concepts.  

3. Perform​ ​a​ ​lookup​ ​in​ ​the​ ​evidence-gene​ ​map​ ​to​ ​retrieve​ ​genes.  

4. Score​ ​genes​ ​based​ ​on​ ​their​ ​importance​ ​to​ ​the​ ​search​ ​terms​ ​(see​ ​Chapter​ ​5). 

5. Determine​ ​overlaps​ ​with​ ​user​ ​provided​ ​QTL​ ​and​ ​gene​ ​list.  

6. Export​ ​results​ ​as​ ​TAB​ ​and​ ​GViewer-XML​ ​files​ ​to​ ​the​ ​web​ ​data​ ​folder.  

7. Return​ ​the​ ​file​ ​path. 

 

A request of type ​gene_net takes a list of gene ids and search terms, and returns a network                  

as​ ​output.​ ​The​ ​steps​ ​involved​ ​in​ ​preparing​ ​the​ ​network​ ​include:  

1. Extract​ ​gene-evidence​ ​networks​ ​for​ ​given​ ​input​ ​genes​ ​from​ ​the​ ​knowledge​ ​network.  

2. Annotate​ ​the​ ​gene-evidence​ ​networks​ ​with​ ​hide​ ​or​ ​show​ ​attributes.  

3. Export​ ​the​ ​sub​ ​network​ ​in​ ​Ondex-OXL​ ​and​ ​CytoscapeJS-JSON​ ​format.  

4. Return​ ​the​ ​file​ ​path. 

 

The request of type ​evidence_net takes as input an Ondex concept and returns a network               

of genes connected to the given Ondex concept via valid semantic motifs. The steps              

involved​ ​include​ ​following​ ​subroutines: 

1. Identify gene-evidence networks that contain the given concept. This is efficiently           

done​ ​through​ ​a​ ​lookup​ ​in​ ​the​ ​evidence-gene​ ​map​ ​to​ ​retrieve​ ​all​ ​gene​ ​ids. 

2. Extract​ ​gene-evidence​ ​networks​ ​for​ ​given​ ​gene​ ​ids. 

3. Filter​ ​gene-evidence​ ​networks​ ​by​ ​retaining​ ​paths​ ​that​ ​end​ ​with​ ​the​ ​given​ ​concept​ ​id. 

4. Export​ ​the​ ​sub​ ​network​ ​in​ ​Ondex-OXL​ ​and​ ​CytoscapeJS-JSON​ ​format. 

5. Return​ ​the​ ​file​ ​path. 

 

The request type ​synonyms takes as input a string of search terms and produces a list of                 

synonyms​ ​for​ ​each​ ​term.​ ​The​ ​steps​ ​involved​ ​in​ ​this​ ​process​ ​include: 

1. Divide​ ​search​ ​terms​ ​into​ ​major​ ​tokens​ ​(split​ ​AND,​ ​OR,​ ​NOT) 

2. Search​ ​the​ ​knowledge​ ​network​ ​for​ ​every​ ​token​ ​using​ ​Lucene 

3. Organise​ ​the​ ​hits​ ​into​ ​Concept​ ​Class​ ​categories 

4. Extract​ ​top​ ​scoring​ ​concept​ ​names​ ​per​ ​Concept​ ​Class​ ​category​ ​for​ ​each​ ​search​ ​term 

5. Export​ ​the​ ​results​ ​in​ ​TAB​ ​format 

6. Return​ ​the​ ​file​ ​path 
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The request of type ​count_hits takes as input a string and returns the number of total                

concepts, evidence concepts and genes matching the search term. The steps involved in             

producing​ ​counts​ ​efficiently​ ​include: 

1. Search​ ​the​ ​Lucene​ ​index​ ​to​ ​identify​ ​evidence​ ​concepts.  

2. Perform​ ​a​ ​lookup​ ​in​ ​the​ ​evidence-gene​ ​map.  

3. Determine​ ​the​ ​number​ ​of​ ​distinct​ ​genes​ ​the​ ​evidence​ ​concepts​ ​are​ ​linked​ ​to.  

4. Return​ ​all​ ​three​ ​numbers​ ​from​ ​previous​ ​three​ ​steps. 

 

The request of type ​count_loci takes as input a QTL region and returns the number of                

genes​ ​within​ ​the​ ​given​ ​region.​ ​The​ ​steps​ ​involved​ ​in​ ​producing​ ​the​ ​counts​ ​include: 

1. Retrieve​ ​all​ ​​Gene​ ​​concepts​ ​from​ ​knowledge​ ​network​ ​(filter​ ​by​ ​TAXID) 

2. Get chromosome, start and end values (in base pairs) for each gene. If this is not                

available​ ​get​ ​chromosome​ ​and​ ​centimorgan​ ​(cM)​ ​values. 

3. Count​ ​how​ ​many​ ​genes​ ​are​ ​within​ ​the​ ​given​ ​QTL​ ​boundaries. 

 

6.5​ ​KnetMiner​ ​Client​ ​Subsystem 

The KnetMiner-Client is deployed as a WAR file (Web application ARchive) in a Tomcat              

container and is what the user sees in the web browser. The client is implemented based on                 

DHTML, CSS, JavaScript, jQuery and Java Servlets. Here we describe the two major client              

components,​ ​the​ ​user​ ​query​ ​interface​ ​and​ ​the​ ​data​ ​visualisation​ ​interfaces,​ ​of​ ​KnetMiner.  

 

6.5.1​ ​User​ ​query​ ​interface 

The query interface was designed to provide a simple submission page for user data              

(keywords, QTL and gene list) and to support the refinement of search queries. The user               

interface is divided into four sections A, B, C and D (Figure 6.3) and the question marks next                  

to each section provide documentation or example queries. The search terms provided in A)              

are the only required user input, while the other fields in the form are optional (QTL and gene                  

list). Pressing the ​Search ​button uses all information provided in A, C and D to submit a                 

server​ ​request.  

 

This sections provides an overview of the different components that are available in the user               

query​ ​interface. 
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Figure 6.3: The KnetMiner user query interface. A) Search term input, B) Query suggester,              

C)​ ​QTL​ ​input​ ​and​ ​D)​ ​Gene​ ​list​ ​input. 

 

6.5.1.1​ ​A​ ​Google-like​ ​search​ ​interface 

The main search field of KnetMiner allows users to input any search terms as lists of                

keywords, for example related to a trait of interest. The search provides full support for the                

Lucene query syntax so that different terms can be combined with the logical operators OR,               

AND, NOT to create more complex query statements. The terms can be high level              
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descriptions of a phenotypic trait (e.g. disease resistance) but also more specific terms such              

as biological processes, protein families or gene names (e.g. defense response to fungi,             

LRR or SNC1). KnetMiner sends a ​keyword ​request to the server when the user clicks the                

Search ​button. The server processes the request and returns several output files that are              

visualised in different tabs of the results page (more detailed explanation will follow in the               

visualisation​ ​section).  

 

Additionally a feedback mechanism was implemented that constantly (in real-time) returns           

the number of resulting documents and genes while the user is typing the query (Figure 6.4).                

This feature is activated once the query term is at least 3 characters long and is updated at                  

each additional keyboard event. It uses the ​count_hits function to send data to and retrieve               

from the server asynchronously (in the background) without interfering with the display of the              

existing page. This feature provides several benefits to users: 1) helps to detect spelling              

mistakes, 2) gives a hint if the query term is too general or too specific before the user                  

executes the search and 3) motivates the user examine their query and explore different              

spelling,​ ​language​ ​or​ ​more​ ​complex​ ​query​ ​statements​ ​(AND,​ ​OR,​ ​NOT). 

 

 

Figure 6.4: The search interface of the cow KnetMiner and the user feedback mechanism. a)               

The query ‘obisity’ contains a spelling mistake which prompts a feedback that no results can               

be found. b) The user corrects the query to ‘obesity’ and is given as feedback that 133                 

documents and 159 genes can be found. c) The user extends the search to ‘obesity or BMI’                 

finding 12 more documents and 21 more genes. d) The query is made more specific by                

excluding any evidence document that contains the word ‘FAT’ which results in 94             

documents​ ​and​ ​122​ ​genes. 
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6.5.1.2​ ​Query​ ​suggestions 

There are many ways by which a single trait can be referred to in the literature. The first                  

difficulty users are faced with when using an information retrieval system is therefore to know               

which terms to include in a query. A common strategy for users is to start with a simple query                   

and gradually refine it. KnetMiner contains a query suggestion wizard that helps users to              

refine their query by suggesting more specific terms or alternative synonyms (Figure 6.5).             

The suggested terms are derived from the underlying knowledge network. For example,            

using the query suggestion wizard on the term ‘drought’ would suggest other terms such as               

‘drought sensitivity’ or ‘response to dehydration’. The wizard allows adding, replacing or            

excluding the new terms from the query. The real-time messaging directly updates when the              

query changes to indicate if the new query would lead to a different number of resulting                

candidate​ ​genes.  

 

By opening the query suggestion wizard, the query string is sent to the KnetMiner server and                

a request of type ​synonyms is made. A server function first tokenizes the entire string into                

its main components (splitting by AND, OR, NOT). The knowledge network is then searched              

and concepts containing the tokenized terms in their concept names are identified. All             

synonymous terms are retrieved and ranked by the Lucene score. Per ​Concept Class​, the              

top 25 concept names for every term are returned in a text output file to the client. A                  

client-side JavaScript function renders the data in a table-like frame, grouping the            

information by query tokens and ​Concept Classes (e.g. ​Gene, Pathway and ​Biological            

Process​). The ​Concept Classes are represented with the same symbols that are consistently             

used throughout the whole KnetMiner application. This visual aspect aims preparing users to             

the meaning of the different evidence types that are present in the knowledge networks, so               

that​ ​they​ ​are​ ​well​ ​versed​ ​before​ ​they​ ​start​ ​exploring​ ​the​ ​gene-evidence​ ​networks. 
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Figure 6.5: The output of the ‘Query Suggester’ for the search terms ‘drought OR heat’. The                

tabs at the top contain the different query tokens (i.e. heat and drought). The tabs on the left                  

contain suggested synonyms per ​Concept Classes​, i.e. ​Trait Ontology, Gene Ontology (BP),            

Protein ​and ​Gene ​(from top to down). The drought and Gene Ontology (BP) tabs are               

selected​ ​in​ ​the​ ​screenshot. 

 

6.5.1.3​ ​Adding​ ​QTL​ ​data​ ​to​ ​the​ ​search 

KnetMiner provides an optional field to input one or many QTL regions. This feature is only                

available if the species for which the KnetMiner instance has been built has a sequenced               

genome and genes have a physical location defined by a coordinate system (base pair or               

centimorgan). Entering the chromosome, start and end position of a QTL will automatically             

display the number of genes that are within the QTL boundaries (​count_loci request). An              

option is provided to restrict the search to the provided QTL genes. Genes that rank low                

when searching the whole genome, might rank high when the search space is reduced to               

the QTL genes. The QTL information that the user provided will be visualised in the Gene                

and​ ​Map​ ​views​ ​as​ ​part​ ​of​ ​the​ ​search​ ​output. 

 

Note that genetic marker names as an input for start and end position of a QTL are not yet                   

supported. Users are required to independently identify base pair positions for their QTL             

intervals by aligning known genetic markers to a genome sequence assembly with physical             

distance​ ​measured​ ​in​ ​base​ ​pairs​ ​(bp). 
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6.5.1.4​ ​Adding​ ​gene​ ​lists​ ​to​ ​the​ ​search 

Users may wish to include candidate genes from expression studies or other ‘omics studies              

in the search. KnetMiner provides an input form for entering gene names or accessions (one               

per line). The user gene list will be visualised in the Gene, Evidence and Map views as part                  

of​ ​the​ ​search​ ​output.  

 

The gene list (optional) is incorporated into the ​keyword request that is sent to the server.                

The server first tests if the given gene names or ids match any ​Gene ​concept in the                 

knowledge network and, second, flags all genes in the main search output that were part of                

the​ ​user​ ​gene​ ​list.  

 

An option is provided that adds user genes to the results output regardless of whether they                

were related to the search terms (​Map gene list without restrictions​). The “unrelated” user              

genes can not be assigned a score and evidence information, and will therefore appear at               

the bottom of the Gene View results table. This feature was added to allow users to explore                 

gene-evidence​ ​networks​ ​of​ ​any​ ​genes​ ​of​ ​interest. 

 

6.5.2​ ​Visualisation​ ​of​ ​search​ ​results 

Different views for exploring the search output were developed; each has a different aim and               

helps address different questions. The main design principle was to divide the visualisation             

into two steps in contrast to the original ​Genomics ​plugin (see Background) which             

immediately exposed users to networks. First, it was decided to present the results in              

formats that are intuitive and familiar to biologists such as tables and chromosome views,              

allowing them to explore the data, make choices or to refine the query if needed. These                

initial views help users to reach a certain level of confidence with the selection of potential                

candidate genes. However, they do not provide the full evidence path that resulted in the               

prediction of the candidate genes. In a second step, to enable the evidence path to be                

investigated in full detail, a network visualisation component allows users to study the             

gene-evidence networks of selected genes. Consistent graphical symbols are used for           

representing evidence types throughout the different views, so that users develop a certain             

level of familiarity before being exposed to networks with complex interactions and rich             

content.  
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This section describes the four different views ​Map View​, ​Gene View​, ​Evidence View and              

Network​ ​View​​ ​in​ ​which​ ​the​ ​search​ ​results​ ​are​ ​presented. 

 

6.5.2.1​ ​Map​ ​view 

The Map view visualises candidate genes and QTL according to their coordinates on a              

chromosome-based map (Figure 6.6). It is intended to provide an overview of the genomic              

locations of a specific set of features associated with a specific search rather than as a way                 

to view all features on the genome. The Map view displays the top 100 scoring genes as                 

triangles and uses color coding to distinguish genes with high (green), medium (orange) and              

low (red) scores. User defined QTL and QTL retrieved from the knowledge network (because              

it is matching the query terms) are displayed as rectangles with a variable length that               

corresponds to the QTL interval. This view not only illustrates effectively the overlap of              

genes and QTL but also the relative position of candidate genes with respect to the QTL.                

Chromosomes themselves can also be colour-coded to create banding pattern effects that            

illustrate for example genome rearrangements or differences between hetero- and          

euchromatic​ ​regions​ ​as​ ​are​ ​commonly​ ​used​ ​in​ ​traditional​ ​cytogenetic​ ​maps. 

 

The current implementation of the KnetMiner Map view makes use of GViewer - a              

customizable Flash movie that is part of the free and open-source GMOD tools             

(www.gmod.org). This means that a Flash plugin needs to be installed to be able to see the                 

map. GViewer has two input files: a base map which defines the number and sizes of the                 

chromosomes, and an annotation file which defines the position of features such as genes              

and QTL. The base maps in the different KnetMiner instances are static and are created               

manually as part of the configuration of the client application. The annotation file, however, is               

generated by the KnetMiner server (see ​keyword request) and dynamically loaded when            

generating​ ​the​ ​Map​ ​view. 

 

The Flash dependency and the fact that GViewer is not under active development (while still               

having several major bugs) means that it is not an ideal solution for modern web applications                

any​ ​longer.  
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Figure 6.6: The Map View. Shows genes (triangles) and QTL (rectangles) from the             

knowledge network that are related to the search terms. Enables zooming into selected             

chromosomes​ ​(below). 
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6.5.2.2​ ​Gene​ ​view 

The Gene view displays the identified candidate genes in a table. The genes are sorted by                

their KNETscore, the most relevant ones at the top and the less important ones at the                

bottom (Figure 6.7). The top 100 genes are shown by default, but an option is provided to                 

display up to 1000 genes and the full table can also be downloaded. The first column                

displays the gene accession or if available, the gene name. The next two columns provide               

information about the location of the gene. The fourth column shows the computed             

relevance score (see Methods) which is used to sort the table. The fifth column indicates the                

number of distinct QTL that overlap with this gene (including QTL from the knowledge              

network and from the user input). The sixth column indicates whether the gene is part of the                 

user provided gene list (yes/no). Finally, the last column summarizes the supporting            

evidence​ ​concepts​ ​that​ ​contain​ ​the​ ​search​ ​terms.  

 

The evidence concepts are grouped according to their evidence types (​Concept Classes​)            

and these are illustrated utilising the same graphical symbols as presented in the knowledge              

networks or metagraphs. An integer in the centre of the ​Concept Class symbol counts the               

instances of this class (number of concepts). For example, an orange rectangle with the              

number 18 and a green pentagon with the number 2 mean that the gene-evidence network               

of this gene has 18 concepts of type Publication and 2 concepts of type Trait Ontology which                 

contain the search term. The evidence images are clickable and extend to provide one              

representative description string for each evidence concept. If the evidence is a publication             

then​ ​the​ ​PubMed​ ​id​ ​is​ ​shown​ ​and​ ​linked​ ​via​ ​URL​ ​to​ ​PubMed.  

 

Two checkboxes at the top of the table ‘Known targets’ and ‘Novel targets’ make it easier to                 

select multiple genes when user genes were provided during the search. ‘Known targets’             

selects all user genes that have some evidence concepts, while, ‘Novel targets’ selects all              

user genes that have no evidence concepts. A slightly different network visualisation            

approach has been developed for novel genes which initially shows routes to GO and TO               

concepts and hides the rest of the network. More details are available in the first use case of                  

Chapter​ ​7. 

  

In summary, the Gene view table is built by parsing the server-side generated output file and                

rendering it using client-side JavaScript functions. It provides sortable columns, appealing           

graphical images and is rich in detail. All together it enables domain experts to make               
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effective selections of suitable candidate genes that can be explored further in the Network              

View; with the ultimate goal to identify strong candidate genes for experimental validation.             

The gene-evidence networks can be generated by either clicking on a gene name or              

selecting a set of genes and clicking the ​View Network button underneath of the table which                

will​ ​send​ ​a​ ​request​ ​of​ ​type​ ​​gene_net​​ ​to​ ​the​ ​server. 

 

 

Figure 6.7: The Gene view displays genes and evidence concepts from the knowledge             

network that are related to the search terms. Networks can be shown for single or multiple                

genes. 

 

6.5.2.3​ ​Evidence​ ​view 

The Evidence view provides a document-centric table of the search results sorted by the              

Lucene score (Figure 6.8). A legend at the top of the table illustrates the total number of                 

evidence documents found per evidence type. The table shows all concepts from the             

knowledge network containing the query terms. An action button allows users to exclude             
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specific documents from the next search by adding a ‘NOT Concept ID’ to the user query                

statement. For every concept, the total number of genes and the total number of              

user-provided genes is displayed that are directly or indirectly connected to this evidence             

concept in the network. This is a very useful view to quickly get to genes that are, for                  

example, involved in a specific pathway or to identify concepts that are enriched in the               

user-provided gene list. Clicking on the number of genes in column five will send a request                

of type ​evidence_net to the server and generate a network which shows the concept and               

how​ ​the​ ​genes​ ​are​ ​linked​ ​to​ ​it. 

 

 

Figure 6.8: The Evidence view presents the evidence concepts from the knowledge network             

that contain the search terms. The column GENES contains the number of genes directly or               

indirectly​ ​linked​ ​to​ ​that​ ​concept.​ ​Clicking​ ​on​ ​the​ ​number​ ​will​ ​visualise​ ​a​ ​network. 

 

6.5.2.4​ ​Network​ ​view 

The initial version of KnetMiner used Ondex Web ​(Taubert et al. 2014) as its main network                

viewer. Ondex Web is a modified version of the Ondex Visualisation Toolkit (OVTK) and was               

106 

https://paperpile.com/c/HrsRJq/rX7MW


especially developed to meet the requirements of KnetMiner. Features such as           

context-sensitive menus and annotation tools provide users with intuitive ways to explore            

and manipulate the appearance of heterogeneous biological networks. Ondex Web is open            

source,​ ​written​ ​in​ ​Java​ ​and​ ​can​ ​be​ ​embedded​ ​in​ ​websites​ ​as​ ​an​ ​applet.  

 

Since Ondex Web was released, the security requirements imposed by modern web            

browsers and Java (starting with Java 7 Update 51) mean that it is not possible to run Java                  

applications that are not signed by a trusted authority or that are missing permission              

attributes. A signed certificate for Ondex Web has been acquired and the permission             

information is available for use on PCs with Java and Java enabled web browsers. However,               

Ondex Web does not work on Apple iOS devices and will never be compatible with touch                

devices such as tablets or smartphones. Furthermore, the large size of the applet (80 Mb)               

means very slow loading time when it is started the first time (subsequent calls are faster                

because it gets cached). All these features of Ondex Web cause problems for both users               

and​ ​developers​ ​and​ ​a​ ​replacement​ ​solution​ ​was​ ​sought. 

 

The development of new web software technologies and the rise of mobile touch devices              

motivated an investigation into alternatives that would be free, easy to use, well supported,              

not require dependencies such as Java, run on any OS and any web browser, and would be                 

touch-enabled. Several JavaScript based libraries that would allow rendering and          

visualization of networks were evaluated including Vis.js, Arbor.js, Sigma.js, D3.js and           

CytoscapeJS. CytoscapeJS was ultimately chosen because of its powerful graph API,           

appealing graph visualisation, its large community of developers and its popularity within the             

bioinformatics community. A new network viewer, called ​KnetMaps​, especially optimised for           

the visualisation and exploration of heterogeneous knowledge networks was designed by me            

and​ ​implemented​ ​by​ ​Ajit​ ​Singh. 

 

KnetMaps displays the gene-evidence networks that are requested by the previous views            

(Figure 6.9). It uses CytoscapeJS, a fully featured open-source graph library written in             

JavaScript, to render a JSON file that is produced by the KnetMiner-Server. KnetMaps has              

touchscreen compatibility and can be used on tablets, touch PC’s and smartphones running             

MS Windows, Apple iOS and Google Android operating systems. Touch gestures such as             

tap, hold and drag have been incorporated and these significantly enhance the user             

experience​ ​when​ ​directly​ ​interacting​ ​with​ ​the​ ​network​ ​visualisation. 
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Gene-evidence networks are labelled and directed multi-graphs. This means that concepts           

and relations can have different semantics (Gene, Protein, Pathway, Phenotype, etc.).           

KnetMaps can visualise heterogenous networks and can incorporate additional search          

specific ​visualisation effects on top of it. Concepts (nodes) are displayed using different             

symbols and colours (detailed in the Legend below the network). Relations (edges) use             

various colours depending on the relation type. All the genes are displayed as blue triangles               

but the gene(s) originally selected for viewing have a double border to visually distinguish              

them from other genes. The KnetMiner-Server annotates the nodes and edges in a             

gene-evidence network regarding their relevance to the search query. When the network is             

initially visualised, only those nodes and edges are shown that were set to be visible, and a                 

shadow effect is added to concepts that have hidden concepts connected to them. This              

effect enables users to focus on the most important information and to expand the network if                

additional information is required. Additionally, the node symbol size is increased to visually             

highlight​ ​nodes​ ​that​ ​have​ ​attributes​ ​which​ ​contain​ ​the​ ​user’s​ ​search​ ​terms. 

 

Right-clicking a concept or relation opens a circular ​context menu with features like Item              

Info (to display specific information about the selected concept or relation in a sliding overlay               

panel), Show Links (to show hidden elements in its neighbourhood), Hide (to hide the              

selected concept or relation), Hide by Type (to hide all the concepts or relations of a                

particular type, i.e., the same type as the selected concept or relation), Label on/off (to               

toggle the visibility of the Label on/off for the selected concept or relation) and Label on/off                

by Type (to toggle the visibility of Labels on/off for all concepts or relations of a particular                 

type). 
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Figure 6.9: The KnetMaps can display gene-evidence networks extracted from the           

knowledge network. A blurred effect on concepts indicates hidden relations in its            

neighborhood that can be expanded via the context menu. The Item Information panel on              

the right shows the rich information content of the concepts and relations. The top              

configuration panel allows the selection of the layout algorithm and other global networks             

settings​ ​to​ ​be​ ​made. 

 

Gene-evidence networks are content-rich which means that concepts and relations not only            

have a type but also have various attributes such as synonyms, accession numbers,             

cross-references and other data. The ​Item Info panel on the right is used to display the                

content of the selected concept or relation. It automatically slides open if users right-click a               

concept or relation and select “Item Info” option. Once open, it also automatically updates              

the displayed content if users select another concept or relation. The panel displays             

information such as concept/relation type, labels, Annotations, Attributes (such as          

publication abstracts, title, authors, amino-acid sequence, TAX ID, etc.) and Accessions           

(with links which cross-reference to TAIR, Ensembl, UniProtKB, PubMed, KEGG, IPRO,           

PFAM, etc., where relevant). A user’s search query terms, where found, are highlighted in              

the Item Info and in the network. The eye-shaped icons next to concept synonyms and               

accessions in the Item Info enable users to update the concept label (i.e., the preferred               

concept name) in the network with this new value. This is a useful feature when preparing                

publication​ ​ready​ ​images​ ​requiring​ ​customization. 
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A ​configuration ​panel on the top allows users to change the graph layout using a variety of                 

graph layout algorithms, supported by CytoscapeJS, which have been incorporated in the            

KnetMaps such as WebCola (default), circular, Arbor, Grid, Cose and Concentric. It also             

provides options to show/hide labels or to change the label font size on all concepts and                

relations. Finally, the network can also be exported in JSON and OXL formats or as a PNG                 

image. 

 

6.6​ ​Development​ ​of​ ​new​ ​KnetMiner​ ​Instances 

Every species or group of closely related species has its own knowledge network and is               

deployed as a separate instance of KnetMiner. This model, in contrast to deploying one              

large application, provides better flexibility (instances can be deployed independently) and           

robustness (crash of one instance does not affect other instances of KnetMiner). The             

disadvantage is that it is challenging to make some classes of change across the set of                

KnetMiner​ ​instances. 

 

The steps involved in developing a new instance of a KnetMiner server-client application             

include cloning the source code, customization of several configuration files, building new            

client and server packages and deploying them on a server. This section gives a detailed               

description of these steps. It requires Java, Maven, Git, Tomcat and a genome-scale             

knowledge​ ​network​ ​to​ ​be​ ​available. 

 

6.6.1​ ​KnetMiner​ ​project​ ​model  

The KnetMiner source code is freely available from GitHub under the GNU LGPL license              

agreement.  

 

git​ ​clone​ ​https://github.com/KeywanHP/KnetMiner 

The KnetMiner project contains a ​common ​project and several independent modules (one            

for each KnetMiner species). The ​common ​project contains most of the source code for both               

the client and the server. The modules consist mostly of configuration files that enable each               

KnetMiner​ ​instance​ ​to​ ​be​ ​customised. 
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Maven is used to manage each project’s build based on the concept of a project object                

model (POM). The parent project (​KnetMiner/pom.xml​) contains all general specifications          

including dependencies and inherits these to every module. All modules have the ​common             

project as a dependency. Building the parent project (​mvn package​) automatically builds the             

common​ ​project​ ​and​ ​packages​ ​all​ ​modules. 

 
 <modules> 

<module>​arabidopsis​</module> 

<module>​common​</module> 

<module>​poplar​</module> 

<module>​pig​</module> 

<module>​tomato​</module> 

<module>​potato​</module> 

<module>​wheat​</module> 

<module>​rice​</module> 

<module>​barley​</module> 

<module>​chicken​</module> 

<module>​cow​</module> 

<module>​boleracea​</module> 

<module>​maize​</module> 

</modules> 

 

 

6.6.2​ ​Configuration​ ​of​ ​KnetMiner​ ​client​ ​and​ ​server 

The simplest way of configuring a new instance (module) of KnetMiner is by cloning the git                

repository and using an existing module as a template. The client has considerably more              

options for customization as shown in Table 6.2. The server provides several configuration             

files​ ​as​ ​shown​ ​in​ ​Table​ ​6.3​ ​but​ ​only​ ​few​ ​of​ ​them​ ​need​ ​to​ ​be​ ​modified. 

 

Table​ ​6.2:​ ​Client​ ​configuration​ ​files​ ​and​ ​parameters 

File Description 

client/src/main/r
esources/​config.x
ml 

Specifies the server host and port to which a socket connection will be             

established (‘localhost’ can be used if client and server run on the same             

machine). 
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<entry​ ​key="ServerHost">localhost</entry> 

<entry​ ​key="ServerPort">8189</entry> 

client/src/main/w
ebapp/html/javasc
ript/​utils-config
.js 

Specifies​ ​global​ ​variables​ ​that​ ​are​ ​used​ ​in​ ​the​ ​JavaScript​ ​code. 

 

URL​ ​of​ ​the​ ​web​ ​folder​ ​in​ ​which​ ​the​ ​output​ ​files​ ​are​ ​written​ ​by​ ​the​ ​server 

var​ ​data_url​ ​=​ ​"​http://localhost:8080/species_data​"; 

URL​ ​of​ ​the​ ​Ondex​ ​Web​ ​applet 
var​ ​applet_url​ ​=​ ​"​http://ondex.rothamsted.ac.uk/OndexWebBeta​"; 

Disables​ ​the​ ​QTL​ ​Search​ ​and​ ​the​ ​Map​ ​view​ ​in​ ​set​ ​to​ ​false 
var​ ​reference_genome​ ​=​ ​true; 

Shows​ ​the​ ​TAXID​ ​in​ ​the​ ​​Gene​ ​View​ ​​if​ ​set​ ​to​ ​true 
var​ ​multiorganism​ ​=​ ​false; 

Adjusts​ ​scaling​ ​in​ ​GViewer​ ​if​ ​first​ ​chromosome​ ​is​ ​not​ ​the​ ​longest 
var​ ​longest_chr​ ​=​ ​196087864; 

client/src/main/w
ebapp/html/​index.
jsp 

Provides​ ​parameters​ ​to​ ​customize​ ​the​ ​website:  

 

title​:​ ​HTML​ ​title​ ​of​ ​the​ ​website 

image​:​ ​Path​ ​to​ ​the​ ​top-right​ ​header​ ​image​ ​(logo)  

chromosomes​: Comma separated values; used in drop down menu of          

the​ ​​QTL​ ​Search​​ ​interface. 

assembly​:​ ​String​ ​that​ ​is​ ​displayed​ ​in​ ​the​ ​​Map​ ​view​. 

client/src/main/w
ebapp/html/​releas
e.html 

Can contain custom HTML that will be shown when users click on            

Release​ ​Notes​. 

client/src/main/w
ebapp/html/image/
organism.png 

An image that will be shown at the top right of the website (the file               

name​ ​needs​ ​to​ ​remain​ ​​organism.png​). 

client/src/main/w
ebapp/html/data/​b
asemap.xml 

Specifies the number, length and appearance of the chromosomes as          

displayed in the Map view. The specification can be found here:           

http://gmod.org/wiki/Flash_GViewer_Documentation#The_BaseMap  
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client/src/main/w
ebapp/html/data/​s
ampleQuery.xml 

Specifies example queries that will be provided under the help (?)           

section of the user query interface and automatically prefill the query           

form.​ ​The​ ​format​ ​is: 

<sampleQueries> 

<query> 

<name></name> 

<description></description> 

<term></term> 

<withinRegion></withinRegion> 

<region> 

<chromosome></chromosome> 

<start></start> 

<end></end> 

<label></label> 

</region> 

<gene></gene> 

<gene></gene> 

</query> 

<sampleQueries> 

client/​pom.xml Specifies the maven build and dependency options. Contains the name          

of​ ​the​ ​WAR​ ​output​ ​file. 

 

 

Table​ ​6.3:​ ​Server​ ​configuration​ ​files​ ​and​ ​parameters 

File Description 

server/src/main/resource
s/​config.xml 

Specifies the main configuration options of the server application         

such​ ​as: 

● <entry​ ​key="DataPath">  

Path to a web folder which stores the temporary output          

files (i.e. /var/www/species_data). Needs to match the       

client’s​ ​‘var​ ​data_url” 

● <entry​ ​key="SpeciesTaxId">  

Specifies the species taxonomy ID and needs to be         

identical​ ​to​ ​the​ ​species​ ​TAXID​ ​in​ ​the​ ​knowledge​ ​network. 

● <entry​ ​key="ServerPort">  

The server port of the Socket connection. It has to match           

client’s ServerPort. Different ports need to be used when         

113 



multiple application servers are running on the same        

machine.  

● <entry​ ​key="reference_genome">  

Needs to match the client's “var reference_genome”       

variable 

server/src/main/resource
s/​chromosomes.xml 
 

Provides a mapping between the chromosome names [String]        

used in the Map View (GViewer) and QTL Search, with the ones            

used​ ​in​ ​in​ ​the​ ​knowledge​ ​network​ ​[Integer].  

server/src/main/resource
s/​SemanticMotifs.txt 

Contains​ ​semantic​ ​motifs​ ​as​ ​specified​ ​in​ ​Chapter​ ​5. 

server/src/main/scripts/
startup.sh 
 

Shell script to start the KnetMiner application server. Contains         

the filename of the knowledge network (OXL) and the maximum          

RAM​ ​allocation​ ​(-Xmx). 

server/src/main/scripts/
shutdown.sh 

Shell​ ​script​ ​that​ ​terminates​ ​a​ ​running​ ​KnetMiner​ ​server​ ​process. 

server/​pom.xml 
 

Specifies​ ​the​ ​maven​ ​build​ ​and​ ​dependency​ ​options.  

 

6.6.3​ ​Deployment​ ​of​ ​KnetMiner​ ​client​ ​and​ ​server 

Once configured, the new KnetMiner client and server packages can be generated with the              

command:  

 

mvn​ ​package 

This will compile and package the maven module into ready-to-deploy files inside the             

subfolders named ​target​. The ​client ​package consists of a WAR file that can be deployed on                

a Tomcat web server and opened in a web browser (e.g.           

http://localhost:8080/KnetMinerMySpecies​). The ​server ​package consists of a zip-archive        

which includes a Java JAR file called ​knetminer-server.jar​. This can be copied to a server               

and​ ​the​ ​Java​ ​multithreaded​ ​server​ ​can​ ​be​ ​started​ ​with​ ​the​ ​command: 

 

java​ ​-Xmx10G​ ​-jar​ ​knetminer-server.jar​ ​MySpeciesNetwork.oxl 
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Note this requires that the server has at least 10GB of RAM and that the knowledge network                 

(​MySpeciesNetwork.oxl​)​ ​is​ ​available​ ​in​ ​the​ ​execution​ ​folder. 

 

After successful deployment, the KnetMiner website can be opened and a query submitted,             

the server log files will indicate that a request has been received and output files are created                 

in​ ​the​ ​specified​ ​data​ ​folder​ ​(​http://localhost:8080/species_data​). 

 

6.7​ ​Discussion 

The analysis and visualisation of large integrated datasets such as GSKNs requires scalable             

software solutions. We have taken the methodology developed in the previous chapter and             

wrapped it into a scalable client-server software resource, called KnetMiner, that gives            

anyone easy access to the integrated datasets. KnetMiner is a web application that             

efficiently ​interrogates the GSKN with user data such as search terms, QTL and gene list.               

The data visualisation components have been developed specifically for facilitating          

candidate gene discovery and hypothesis generation for research. The main key benefits of             

KnetMiner​ ​are: 

● A visually appealing web application with a simple submission page for user data             

(keywords, QTL and gene list). The user is ​guided ​and ​supported ​when writing the              

search terms through features such as real-time user feedback and query term            

suggestions.​ ​No​ ​technical​ ​knowledge​ ​(metagraph,​ ​query​ ​statements)​ ​is​ ​required.  

 

● The output is ​dynamic ​and ​rich in detail including different visualisations such as             

tables, networks and genome coordinate-based maps that are easy to navigate           

through​ ​a​ ​tabbed​ ​interface,​ ​and​ ​with​ ​extensive​ ​cross-referencing.  

 

● A lightweight JavaScript-based network viewer, called KnetMaps, that is optimised for           

visualising and exploring data rich knowledge networks and incorporates         

search-specific​ ​​visualisation​ ​effects​. 
 

● The underlying knowledge networks are ​regularly updated to include the latest           

database​ ​releases. 
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● The software platform is ​configurable and ​portable ​so that developers can easily            

build instances for new species and deploy them on any IT infrastructure that meets              

the​ ​software​ ​requirements. 

 

Future work will investigate new methods for network analysis and data visualisation that are              

specifically directed to accelerating gene discovery research. For example, KnetMiner          

currently lacks the support for gene or annotation enrichment analysis ​(Glass and Girvan             

2014) which could provide another view of the knowledge network without being restricted to              

user provided search terms. Additionally, we would like to investigate how gene expression             

data can be incorporated into the search and the network visualisation in order to further               

improve candidate gene scoring, decision making and hypotheses generation processes.          

Gene expression data could be either provided by the user directly or automatically retrieved              

from​ ​gene​ ​expression​ ​databases​ ​such​ ​as​ ​the​ ​Gene​ ​Expression​ ​Atlas​ ​​(Petryszak​ ​et​ ​al.​ ​2014)​. 

 

The KnetMiner Map view uses currently the GMOD GViewer which requires Flash. We are              

currently in the process to replace it with a more modern and lightweight visualisation              

component and will, therefore, evaluate existing JavaScript libraries for genome          

coordinate-based visualisation of features such as gene, QTL or SNP data ​(Gómez et al.              

2013)​. Our objective is to make KnetMiner as user-friendly as possible and compatible with              

mobile​ ​touch​ ​devices. 

 

The query suggestion wizard benefits from the fact that many concepts in the knowledge              

network contain names and synonyms. Further work is needed to improve the selection             

process of the most suitable query suggestions by removing redundancies and taking            

advantage of the ontology structure when it is available. For example, the parent-child             

relations of an ontology (e.g. GO or TO) can be exploited to provide more specific or general                 

query suggestions. Some other ideas and approaches for improving query suggestion           

workflows​ ​for​ ​the​ ​Life​ ​Sciences​ ​were​ ​discussed​ ​in​ ​our​ ​paper​ ​​(Esch​ ​et​ ​al.​ ​2014)​. 

 

In summary, this chapter has successfully shown the implementation and benefits of a             

client-server design model for exploring large knowledge networks. Multiple instances of           

KnetMiner have been developed and deployed for species such as Arabidopsis, poplar,            

wheat, barley, potato, tomato, Brassica, maize, pig, cattle and chicken. Several of the             

KnetMiner instances have been developed as part of national and international           

collaborations, for example with the Roslin Institute (UK), National Agricultural Technology           
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Institute (Argentina), IPK Gatersleben (Germany) or the University of Western Australia.           

These have shown that the KnetMiner instances can be configured for diverse species.             

Work is in progress to develop new instances of KnetMiner for insects and pathogens. The               

next​ ​chapter​ ​will​ ​present​ ​applications​ ​of​ ​KnetMiner​ ​to​ ​real​ ​biological​ ​problems. 
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7​ ​APPLICATIONS​ ​OF​ ​KNETMINER​ ​IN​ ​GENE​ ​DISCOVERY​ ​RESEARCH 

In several biological studies, KnetMiner enabled the interpretation of hidden relationships           

between important agronomic traits and causal candidate genes. For example, it was used             

to investigate traits such as height of biomass willows ​(Hanley and Karp 2014) or to pinpoint                

the causal genes in a Arabidopsis petal size QTL (Koumproglou ​et al​., submitted). This              

chapter presents two very different applications of KnetMiner. The first application case            

shows the utility of KnetMiner to help with the interpretation of transcriptomics (RNA-seq)             

experiments using an example dataset from bread wheat (​Triticum aestivum​). Wheat is the             

third most-grown cereal crop in the world after maize and rice, and has a hexaploid genome                

5 times the size of the human genome. The second application case presents the utility of                

KnetMiner for candidate gene prioritisation in GWAS and QTL data using an example             

dataset from ​Arabidopsis thaliana (Guillaume ​et al​., submitted). Several of the identified            

gene-phenotype relationships are currently being validated using gene knockout or          

knockdown​ ​experiments​ ​in​ ​different​ ​species. 

 

7.1​ ​Using​ ​KnetMiner​ ​to​ ​interpret​ ​a​ ​transcriptomics​ ​study​ ​in​ ​wheat 

7.1.1​ ​Introduction 

The majority of bread produced in the UK or US is from red-grained wheat (Figure 7.1.1).                1

The red colour of the grain is due to the presence of coloured compounds, called flavonoids,                

in the seed coat (bran). These flavonoids give wholemeal bread not only its colour, but also                

a slightly bitter taste which is disliked by many people. White-grained wheat varieties can be               

bred that lack the red compounds of the seed coat and are milder in flavor. Wholemeal                

bread made from white-grained varieties has therefore been found to be more appealing to              

people. However, white grains are prone to germinate before harvest, a particular problem in              

countries such as the UK where cool, wet weather before harvest is common. This              

"pre-harvest sprouting" or PHS, results in a loss of grain quality and even a small proportion                

of sprouted grains can result a serious loss of value for the crop. For this reason,                

white-grained wheats are mainly grown in warmer, drier parts of the world such as Australia,               

necessitating​ ​the​ ​costly​ ​importation​ ​of​ ​grain​ ​by​ ​UK​ ​millers​ ​and​ ​bakers. 

 

1 ​ ​​http://wholegrainscouncil.org/whole-grains-101/whole-white-wheat-faq 
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​ ​  

Figure 7.1.1: Lines of an Avalon x Cadenza doubled-haploid population segregating for red             

& white grains. The colour has been intensified by staining in 1M NaOH (Figure kindly               

provided​ ​by​ ​Andy​ ​Phillips,​ ​Rothamsted​ ​Research). 

 

Major loci controlling grain colour in wheat are the ​R Myb ​homoeologous genes on the long                

arms of chromosomes 3A, 3B and 3D. Previous small-scale studies have shown that ​R Myb               

transcription factor gene regulates the transcriptional activation of four genes (​CHS, CHI,            

F3H​ ​and​ ​DFR​)​ ​in​ ​the​ ​flavonoid​ ​biosynthesis​ ​pathway​ ​(Figure​ ​7.1.2)​ ​​(Eiko​ ​and​ ​Noda​ ​2005)​.  
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Figure 7.1.2: Scheme of the flavonoid pathway leading to synthesis of anthocyanins,            

flavonols, and proanthocyanidin (PA). The red pigment has been shown to be PA. The              

enzymes involved in the pathway are shown as follows: CHS, chalcone synthase; CHI,             

chalcone isomerase; F3H, flavanone-3β-hydroxylase; DFR, dihydroflavonol-4-reductase;      

LDOX, leucoanthocyanidin dioxygenase; FLS, flavonol synthase; LAR, leucoanthocyanidin        

reductase; ANR, anthocyanidin reductase; and UFGT,      

UDP-Glc:flavonoid-3-O-glucosyltransferase.​ ​(Bogs​ ​et​ ​al.​ ​2007) 

 

A global transcriptome (RNA-seq) experiment was designed by the Phillips lab at            

Rothamsted Research to understand the transcriptional differences between red and white           

grains. The red and white lines used were near-isogenic lines NILs of a white wheat variety                

called Holdfast with introgression of a red R allele ​(Flintham 2000)​. The mRNA was              

extracted from isolated inner pericarp tissues (a tissue sample including the integuments)            

from developing grain of red (RI) and white (WI) lines. Three biological replicates per sample               

were​ ​included.​ ​The​ ​RNA​ ​was​ ​sequenced​ ​using​ ​Illumina​ ​HiSeq​ ​2000. 

 

As part of this thesis, the RNA-seq reads were mapped to the wheat reference genome               

(Ensembl v21, cDNA transcripts) using BWA ​(Heng Li and Durbin 2010)​. Transcript            

abundance was estimated using eXpress ​(Roberts and Pachter 2013) and differentially           

expressed genes identified with edgeR ​(Robinson, McCarthy, and Smyth 2009)​. In total 214             
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genes were differentially expressed (p<0.05) of which 104 had a considerable fold change             

(logFC > 2) between red and white grain (Figure 7.1.3). Of these 104 genes, 67 genes were                 

lower in expression and 37 genes more highly expressed in the inner pericarp of white               

compared to red grain and might therefore be under the direct (or indirect) control of the R                 

Myb​ ​transcription​ ​factor. 

 

 

Figure 7.1.3: The fold change (FC) of a gene in red versus white grain is plotted as a                  

function of average counts per million (CPM). Red dots indicate differentially expressed            

genes​ ​with​ ​p<0.05​ ​and​ ​a​ ​minimum​ ​two-fold​ ​expression​ ​differences​ ​(blue​ ​lines). 

 

Having identified a list of differentially expressed genes (DEG), the questions scientists            

would​ ​consequently​ ​ask​ ​are: 

● Do​ ​any​ ​of​ ​these​ ​DEG​ ​contribute​ ​to​ ​the​ ​expression​ ​of​ ​the​ ​grain​ ​colour​ ​trait? 

● Do​ ​any​ ​of​ ​these​ ​DEG​ ​contribute​ ​to​ ​the​ ​expression​ ​of​ ​the​ ​PHS​ ​trait? 

● Which​ ​biological​ ​processes​ ​and​ ​pathways​ ​are​ ​underlying​ ​these​ ​traits? 

● Are​ ​there​ ​any​ ​common​ ​genes​ ​or​ ​mechanisms​ ​that​ ​regulate​ ​both​ ​traits? 

● Which other processes besides of grain colour and PHS are affected by the R (Myb)               

loss-of-function​ ​mutants? 
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The evidence sources users would need to navigate in order to answer these questions and               

evaluate whether any of these genes might have a role in that trait would include the GO                 

terms, role in biochemical pathways, interaction networks, comparative information from          

related organisms, evidence of expression in tissue of interest, phenotype information, the            

scientific literature and other resources that might be specific to the domain of interest. Even               

when this functional information gathering task is complete, assembling a coherent view of             

how the bits of evidence might come together to “tell a story” about the biology that could                 

explain how multiple genes might be implicated in a complex trait is demanding. The use               

case presented here demonstrates how KnetMiner can considerably reduce the data           

integration and exploration demands on the user by solving many of the technical challenges              

and​ ​providing​ ​the​ ​tools​ ​that​ ​allow​ ​biologists​ ​to​ ​focus​ ​on​ ​the​ ​biological​ ​story. 

 

7.1.2​ ​Choosing​ ​the​ ​right​ ​search​ ​terms 

The use case presented here demonstrates the capabilities of KnetMiner for analysing a list              

of differentially expressed genes and to identify new targets or mechanisms that might help              

explain the as yet unknown basis for the link between colour and PHS. These traits will first                 

be​ ​analysed​ ​separately​ ​and​ ​afterwards​ ​together.  

 

Seed dormancy and germination are the underlying developmental processes that activate           

or prevent pre-harvest sprouting in many grains and other seeds. The user can provide this               

knowledge as a list of keywords into the search box. The KnetMiner Query Suggester can be                

used, on the one hand, to understand which evidence concepts from the knowledge network              

match the keywords and, on the other hand, to provide alternative synonyms or more              

specific keywords. For example, the keyword ​dormancy matches Gene Ontology (GO), Trait            

Ontology (TO), gene, protein and publication evidence concepts from the wheat knowledge            

network (Figure 7.1.4). The TO and GO concepts are divided into terms specific for seed               

and bud dormancy. The term “​grain dormancy” does not, however, occur in the knowledge              

network. As an alternative it is possible to specialise the search keyword to “​seed dormancy​”               

as it can be assumed that processes involved in grain dormancy are similar to the ones                

involved in seed dormancy but different to bud dormancy. When using ​“germination” as a              

keyword​, it was necessary for similar reasons to be more specific and use “seed              

germination” as a keyword. The term ​pre-harvest sprouting appears to be part of the Gene               

Ontology​ ​and​ ​is​ ​suggested​ ​as​ ​a​ ​synonym​ ​for​ ​​seed​ ​germination​. 
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Figure 7.1.4: Screenshot of the Query Suggester. The header tabs list the different keywords              

and the left-hand tabs group the suggestions by evidence types, from top to bottom: Gene               

Ontology​ ​Biological​ ​Process,​ ​Trait​ ​Ontology,​ ​gene​ ​and​ ​protein. 

 

The keyword “​grain color​” matches a TO concept from the wheat knowledge network with              

the synonyms ​bran color and ​pericarp color​. Using “​grain color​” as a keyword, however,              

would miss many documents and genes that are related to “​seed color​” or other processes               

that might be influencing grain colour. Therefore, either a boolean operator can be used to               

search for both keywords “​seed color​” OR “​grain color​”, or the single keyword “​color​” can be                

used followed by a filter for irrelevant results. Additionally, the colour of the grain is known to                 

be determined through proanthocyanidin (PA) a compound in the flavonoid pathway. These            

terms can, thus, be included to the grain colour related search terms. In summary, KnetMiner               

was​ ​used​ ​with​ ​the​ ​following​ ​search​ ​queries: 

 

1. Grain​ ​colour 

a. ​ ​color​ ​OR​ ​flavon*​ ​OR​ ​proanthocyanidin 

2. Pre-harvest​ ​sprouting​ ​(PHS) 

a. “seed​ ​germination”​ ​OR​ ​“seed​ ​dormancy” 

b. seed​ ​AND​ ​(germination​ ​OR​ ​dormancy) 

3. Grain​ ​colour​ ​and​ ​PHS 
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a. “seed germination” OR “seed dormancy” OR color OR flavon* OR          

proanthocyanidin 

 

Additionally, the IWGSC gene ids of the 104 differentially expressed wheat genes were             

entered​ ​into​ ​the​ ​​Gene​ ​List​​ ​and​ ​the​ ​option​ ​“Map​ ​gene​ ​list​ ​without​ ​restrictions”​ ​was​ ​selected. 

 

7.1.3​ ​General​ ​features​ ​for​ ​exploring​ ​genes​ ​supplied​ ​by​ ​the​ ​user 

The Gene View table shows all wheat genes that were found to be related to the search                 

terms. User provided genes are indicated through a “yes” in the ​user ​column. Sorting the               

table by this column ​puts the top scoring user genes at the top of the table even though                  

other genes outside the user's gene list might have higher scores. The various evidence              

concepts including GO, TO, phenotype, pathway, gene, protein and literature are           

summarised​ ​in​ ​the​ ​​evidence​​ ​column.  

 

As it was shown in Chapter 5, the gene scoring function considers all evidence types equally                

and does not weight one higher than the other. The user, however, might want to look first at                  

genes that have pathway and phenotypic evidence before looking at genes that have mostly              

publication as their source of evidence. This can currently only be achieved manually by              

scrolling through the gene list, looking at the evidence type symbols and selecting those              

genes​ ​that​ ​have​ ​the​ ​desired​ ​information.  

 

It can often be observed, especially in wheat, that several genes have exactly the same               

score and the same evidence information. This is a characteristic of genes that have nearly               

identical gene-evidence networks. In a hexaploid species such as bread wheat, there are             

three homoeologous copies of each gene which often results in all homoeologues having             

very similar gene-evidence networks and therefore identical scores and evidence          

information.  

 

Figure 7.1.5 shows the gene-evidence network of 8 genes provided as potential candidate             

genes that have identical score and evidence information. The evidence from sequence            

homology indicates that these wheat genes are encoding CHS from the flavonoid pathway.             

Additional phenotype data as provided by TAIR (green rectangle) and text-mining based            

relations (blue edge with *) reveal that CHS loss-of-function mutants show a yellow seed              

color: ”​CHS RNAi plants generated using this method showed yellow seed color and a              
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decrease in anthocyanin content--phenotypes typically observed in CHS loss-of-function         

mutants” ​(Higuchi et al. 2009)​. Protein-protein interaction data shows that CHS interacts with             

DFR,​ ​CHI​ ​and​ ​FLS. 

 

 

Figure 7.1.5: An excerpt from the gene-evidence network of 8 differentially expressed genes             

in​ ​white​ ​versus​ ​red​ ​samples.​ ​The​ ​ortholog​ ​of​ ​all​ ​8​ ​genes​ ​is​ ​the​ ​CHS​ ​gene​ ​from​ ​Arabidopsis.  

 

Genes supplied by a user that are associated with the search terms and therefore have               

evidence documents are referred to as ​known targets​, whereas those that are not             

associated with any search term and thus have nil evidence documents are referred to as               

novel targets​. A checkbox at the top of the ​Gene View table allows a user to select all                  

known targets or ​novel targets instantly in order to be studied further in the Network View.                

Two distinct strategies are used to visualise the network of ​known targets versus the network               

of​ ​​novel​ ​targets​.  

 

125 

https://paperpile.com/c/HrsRJq/MoyRT


The ​Evidence View offers another way of exploring a user’s gene list. In contrast to the ​Gene                 

View​, it provides a document-centric organisation of the results. The columns ​GENES ​and             

USER GENES count the number of total genes and user-provided genes annotated to the              

evidence document respectively. This information can be used to calculate which documents            

are significantly overrepresented for a given set of genes. However, it needs to be noted that                

only​ ​documents​​ ​​that​ ​contain​ ​the​ ​search​ ​terms​ ​are​ ​listed​ ​in​ ​the​ ​​Evidence​ ​View​. 

 

7.1.4 Candidate gene discovery for grain colour and pre-harvest sprouting          

traits 

From the 104 differentially expressed wheat genes in red ​versus ​white grain, KnetMiner             

identifies 35 genes as being related to grain colour and 27 genes to traits related to                

germination or dormancy (Table 7.1). Interestingly, both these sets have 16 genes in             

common indicating that grain colour and dormancy could be controlled by similar genes. To              

understand the biological function of these genes and the mechanisms behind these traits, it              

is essential to analyse the gene-evidence networks which reveal the biological story (in the              

form​ ​of​ ​labelled​ ​relations)​ ​that​ ​link​ ​the​ ​wheat​ ​genes​ ​to​ ​the​ ​evidence​ ​information.  

 

Table 7.1 shows 46 differentially expressed wheat genes in the red vs. white grain              

comparison (out of 104 genes with p<0.05 and |logFC| > 2) that KnetMiner can relate to                

grain colour or pre-harvest sprouting traits. The second column indicates the corresponding            

ortholog(s)​ ​in​ ​Arabidopsis​ ​or​ ​when​ ​not​ ​available​ ​the​ ​best​ ​Blast​ ​hit​ ​to​ ​other​ ​plants​ ​(UniProt). 

Gene​ ​Id Ortholog Grain​ ​color Pre-harvest​ ​sprouting 

TRAES_4DS_8C9BC2BFA AHP1,​ ​AHP2,​ ​AHP3,​ ​AHP5 1 1 

TRAES_7AS_556F7B49E ASK2/SKP1B 1 1 

TRAES_2DS_8827E95F0 CHS 1 1 

TRAES_2BS_A3FACFBB7 CHS 1 1 

TRAES_2DL_BC7F606B9 CHS 1 1 

TRAES_2BS_4AC3D17E8 CHS 1 1 

TRAES_2AL_ED4D3BEC1 CHS 1 1 

TRAES_2BL_07EC87598 CHS 1 1 

TRAES_2AS_0EA2792B8 CHS 1 1 

TRAES_2BS_0FA5E53AD CHS 1 1 

TRAES_3B_96D744B6B DFR 1 1 

TRAES_3AL_197871859 DFR 1 1 
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TRAES_7AL_8D7C375FF FZR1,​ ​FZR2 1 1 

TRAES_3B_0B9FADF42 IMD3 1 1 

TRAES_2DL_C0E026879 STH/BBX25,​ ​STO/BBX24 1 1 

TRAES_3B_82E1F5484 tny 1 1 

TRAES_6AL_9032339D6 AT4G28570 1 0 

TRAES_2BL_A06E8F248 AT5G45280,​ ​AT4G19410 1 0 

TRAES_6DS_5B0F73A26 CHS-E​ ​(UniProt) 1 0 

TRAES_2BL_B2B3C624C ELI3 1 0 

TRAES_4DL_5A3D8F519 F3'5'H​ ​(UniProt) 1 0 

TRAES_2DL_F47B9B20E F3H 1 0 

TRAES_2BL_E3C1E6450 F3H 1 0 

TRAES_2DL_4C86F28DC F3H​ ​(UniProt) 1 0 

ANON1 ANON1 1 0 

ANON2 ANON2 1 0 

ANON3 ANON3 1 0 

TRAES_2DS_DE2E9E2D5 LBD37,​ ​LBD38,​ ​LBD39 1 0 

TRAES_1AL_19AF54D53 LTL1,​ ​AT5G33370 1 0 

TRAES_5BL_B2F45B45A LTP6 1 0 

TRAES_3DL_4D42B475B MYB11,​ ​MYB111,​ ​MYB12 1 0 

TRAES_2DL_2050A1ADC PAL1,​ ​PAL2,​ ​PAL3,​ ​PAL4 1 0 

TRAES_2DL_F4216BDB8 PME5 1 0 

ANON4 ANON4 1 0 

ANON5 ANON5 1 0 

TRAES_3B_05835EDC0 BGAL10 0 1 

TRAES_4DL_3E8E652D3 HSP/HSC​ ​(UniProt) 0 1 

TRAES_1BS_27474466D LCR69 0 1 

TRAES_7AS_CC48D0C77 LCR69 0 1 

TRAES_3DL_B9C57507A NACA3 0 1 

TRAES_3DS_0A0650113 OVA9 0 1 

TRAES_3B_607315E21 PGY2 0 1 

TRAES_3B_7A9E4CA37 TFL1/MFT 0 1 

TRAES_2DL_83168C1E0 ZB8​ ​(UniProt) 0 1 

TRAES_2BL_5A50FDA1A ZB8​ ​(UniProt) 0 1 

TRAES_2AL_9D78F85E2 ZB8​ ​(UniProt) 0 1 
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The next step is to explore the gene-evidence network of the 16 genes that KnetMiner can                

relate to both traits grain colour and PHS (Figure 7.1.6). KnetMiner was therefore used with               

the search terms 3a. (see above) and the 16 common gene ids as parameters. Initially, only                

those paths from the gene-evidence network are shown where there is a search term and all                

other concepts are hidden. This effect enables users to focus on the most important              

information and to expand the network if additional information is required. In the wheat              

knowledge network, most functional gene information is inferred through homology to           

Arabidopsis, rice and other plant species. The homolog itself does not always have direct              

evidence related to the trait, however, it might physically interact, e.g. based on             

protein-protein interaction evidence, with genes or proteins that are related. In these cases,             

KnetMiner exploits indirect information and predicts an involvement in a trait based on             

guilt-by-association​ ​principles.  

 

 

Figure 7.1.6: KnetMiner was used with the search terms: “dormancy OR color OR flavon*              

OR proanthocyanidin” and the common 16 genes for grain colour and PHS from Table 1               

were selected and the gene-evidence network was visualised in the KnetMaps. Concept            

labels​ ​containing​ ​any​ ​of​ ​the​ ​search​ ​terms​ ​are​ ​highlighted​ ​yellow. 
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CHS (​TT4​) and DFR (​TT3​) in Arabidopsis are well-characterised enzymes in the flavonoid             

biosynthesis pathway and are linked to grain colour traits based on phenotype data and              

literature information, i.e. “​CHS RNAi plants generated using this method showed yellow            

seed color and a decrease in anthocyanin content--phenotypes typically observed in CHS            

loss-of-function mutants.​” ​(Higuchi et al. 2009)​. KnetMiner also links both genes to dormancy             

based on co-occurrence of the gene names with the term ​seed dormancy in             

(Martínez-Andújar et al. 2011)​; and the extracted evidence sentence: “​In another study,            

induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4              

reestablished​ ​seed​ ​dormancy.​” 

 

Another interesting gene in the network is ARR4 which is annotated to the GO terms               

“embryo development ending in seed dormancy” (GO:0009793) and “positive regulation of           

flavonoid anabolism” (GO:0009963) based on “Inferred from Mutant Phenotype”         

(PMID:15634699) and “Inferred from Reviewed Computational Analysis” (PMID:22589469)        

evidence respectively. None of the differentially expressed wheat genes is directly           

orthologous to ARR4, however, evidence shows that it interacts with AHP1           

(PMID:17545225) and AHP5 (PMID:18642946) which are the orthologs (Ensembl Compara)          

of TRAES_4DS_8C9BC2BFA in wheat. This is one of 37 differentially expressed genes that             

are higher (logFC = 3.4) expressed in white grain than in red grain. AHP1 and ARR4 are                 

components of cytokinin signalling network ​(Hwang et al. 2012)​. The involvement of            

cytokinin in dormancy is usually related to the embryo, not the seed coat, and therefore               

providing a highly interesting candidate gene. This is only one of many examples that shows               

how gene-evidence networks produced by KnetMiner can be systematically explored by           

human​ ​domain​ ​experts​ ​to​ ​generate​ ​novel​ ​leads​ ​for​ ​follow-up​ ​research. 

 

7.1.5​ ​Exploring​ ​novel​ ​candidate​ ​genes​ ​unrelated​ ​to​ ​initial​ ​search​ ​terms 

The previous examples have shown the utility of KnetMiner for identifying and ranking             

candidate genes provided by a user based on the relevance to trait-based search terms, i.e.               

46 differentially expressed genes that were related to grain colour or PHS traits. However,              

KnetMiner can also be used to discover the function of genes provided by a user that are not                  

related to the initial search terms, i.e., the remaining 58 differentially expressed genes in the               

red​ ​​versus​ ​​red​ ​grain​ ​comparison. 
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These genes (referred to as novel targets) appear in the ​Gene View with a score of 0 with nil                   

evidence documents because they are not related to any of the search terms. The              

gene-evidence networks of novel target genes can be studied individually or simultaneously            

by selecting ​novel targets at the top of the Gene View table and clicking ​Show Network​. The                 

network contains the selected genes and routes to connected GO or TO terms, but hides               

information such as publications in order to reduce the size of the visible network. Figure               

7.1.7 shows the network of three homoeologous wheat genes that are more highly             

expressed in red grain (logFC=-5.58, p=6.6E-24) and appear to encode a transcription factor             

that​ ​regulates,​ ​among​ ​others,​ ​calcium​ ​signalling​ ​processes. 

 

Figure 7.1.7: Gene-evidence network of homoeologous wheat genes containing the WRKY           

domain and are orthologs of the WRKY43 transcription factor in Arabidopsis. WRKY43            

interacts with several gene products such as CML9 that are involved in calcium signalling              

and​ ​have​ ​evidence​ ​associating​ ​them​ ​with​ ​stress​ ​tolerance.  

 

Selecting a large number of genes for network visualisation can result in very large networks               

despite the automatic data reduction steps that hide certain evidence types such as             

publications. To improve clarity, concepts and relations can be annotated based on specific             

attributes or network properties. The annotated network of the 58 novel target genes is              

shown in Figure 7.1.8. Important GO and TO concepts that are used to annotate several of                

the novel targets have an increased size and appear in the centre of the network. The                
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analysis of the network shows that further processes controlled directly or indirectly by the R               

Myb ​transcription factor in wheat, appear to be related to zinc binding, salt tolerance, lipid               

transport,​ ​cell​ ​wall​ ​differentiations​ ​and​ ​flower​ ​development. 

 

 

 

Figure​ ​7.1.8:​ ​Annotated​ ​gene-evidence​ ​network​ ​of​ ​58​ ​novel​ ​target​ ​genes​ ​(created​ ​in​ ​Ondex). 

 

7.1.6​ ​Summary 

It is known that grain colour in wheat is the result of flavonoid accumulation in the inner                 

integument (testa). Mutations in the R (​Myb​) gene yield white grains (positive trait) and can               

cause pre-harvest sprouting (negative trait). R (​Myb​) is known to regulate several genes in              

the flavonoid pathway but it is not well understood which other genes are regulated by the R                 

(​Myb​) transcription factor that can cause the grain to end dormancy and to start germination.               

A transcriptomics experiment was designed to identify genes that are differentially expressed            

between red and white grains, but means are required that can support the explanation of               

how​ ​these​ ​genes​ ​can​ ​control​ ​complex​ ​traits​ ​such​ ​as​ ​grain​ ​colour​ ​and​ ​PHS. 
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Provided with a list of genes and trait-based search terms (referred to as an initial, informal                

hypothesis), KnetMiner can rapidly search and evaluate a vast amount of heterogeneous            

relations and evidence types to determine if direct or indirect links between the genes and               

the hypothesis can be established. It produces a table of ranked candidate genes and allows               

users to explore their very rich gene-evidence networks. These networks provide an            

opportunity to explain how genes and biological processes are contributing to the original             

hypothesis or phenotype. In addition, they allow a user to identify potential new links to areas                

that have not been considered before. Such networks can contain complex interactions that             

require appropriate visualisation tools to navigate the highly interlinked information. In           

conclusion, KnetMiner gives domain experts (biologists) the required tools to systematically           

dissect a complex trait, identify trait-related candidate genes, and to refine an original             

hypothesis or define new hypotheses through the exploration of biological knowledge           

networks. 

 

Many of the genes identified here encode known enzymes of the flavonoid biosynthetic             

pathway: chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), dihydroflavonol        

4-reductase (DFR). Expression of several of these genes was confirmed by quantitative            

reverse transcription polymerase chain reaction (QRT-PCR). The biological validation of          

gene-phenotype relationships identified by KnetMiner is currently being explored by reverse           

genetics tools in wheat such as RNAi ​(Travella 2006)​, TILLING ​(Chen et al. 2012) or               

CRISPR/Cas9 ​(Shan et al. 2014) to generate knock-down or knockout lines and study the              

phenotype. 

 

The KnetMiner Evidence View contains enrichment information for documents that match           

the search terms. Future work will include the development of an Enrichment View that              

provides integrated tools for gene and annotation enrichment analysis regardless whether           

they are related to the search terms or not. The enrichment analysis would take into account                

the gene-evidence networks and look for enrichment of any type of evidence document             

including​ ​GO,​ ​TO,​ ​pathways​ ​etc.  

 

7.2​ ​Using​ ​KnetMiner​ ​to​ ​interpret​ ​GWAS​ ​and​ ​QTL​ ​studies​ ​in​ ​Arabidopsis 

7.2.1​ ​Introduction 

Arabidopsis thaliana ​is a small flowering plant that is commonly used as a model organism in                

plant biology. Although it is not of major agronomic importance, Arabidopsis offers significant             
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advantages for basic research in genetics and molecular biology. It has a relatively small              

genome size (135Mb) consisting of 5 diploid chromosomes and 27,416 coding genes and a              

short life cycle of about 6 weeks from germination to seed maturation. Such advantages              

have made Arabidopsis a model organism for studies of a large number of plant traits.               

Recently, the Multiparent Advanced Generation Inter-Cross (MAGIC) population was         

developed as a resource for identifying quantitative trait loci (QTL) in Arabidopsis ​(Kover et              

al. 2009)​. About 500 MAGIC lines have been resequenced at low coverage in order to obtain                

about 500k single nucleotide polymorphisms (SNPs) for each line. Peter Eastmond and his             

lab at Rothamsted Research have grown the MAGIC lines in a glasshouse experiment and              

measured the content of different fatty acids (chemical phenotypes). The trait measurements            

were​ ​normalised​ ​using​ ​REsidual​ ​Maximum​ ​Likelihood​ ​(REML). 

 

As part of this thesis, the data from this study was analysed using ​genome_scan (v4.0) in                

order to identify significant genotype-phenotype associations and QTL across the 5           

Arabidopsis chromosomes (http://mus.well.ox.ac.uk/19genomes/magic.html). The    

genome_scan output for a given trait is a table of SNPs and p-values indicating the               

significance of a polymorphism to that phenotype. These can be visualised in so-called             

Manhattan graphs that plot the logP value of every SNP sorted by genomic coordinates.              

Figure 7.2.1 shows the results for palmitic acid content (the first fatty acid produced during               

fatty acid synthesis). Many statistically significant SNPs can be identified even after choosing             

logP>5 (blue line) or even logP>7 (red line) as a significance threshold. Similarly for a               

mapped​ ​QTL​ ​the​ ​identified​ ​genomic​ ​region​ ​can​ ​encompass​ ​tens​ ​to​ ​hundreds​ ​of​ ​genes. 

 

133 

https://paperpile.com/c/HrsRJq/T6AK7
https://paperpile.com/c/HrsRJq/T6AK7


 

Figure 7.2.1: Manhattan plots showing significant SNPs for palmitic acid content (the first             

fatty acid produced during fatty acid synthesis). Significant loci (logP > 7) are found on               

chromosomes 1, 3 and 5. Green dots represent SNPs in proximity to known fatty acid genes.                

The​ ​plot​ ​was​ ​created​ ​using​ ​the​ ​R​ ​package​ ​qqman​ ​(Turner​ ​2014). 

 

Having identified statistically significant SNPs and QTLs for a given trait, the questions             

consequently​ ​asked​ ​by​ ​the​ ​users​ ​of​ ​such​ ​data​ ​are: 

● Do​ ​the​ ​SNPs​ ​occur​ ​within​ ​or​ ​in​ ​the​ ​neighbourhood​ ​of​ ​trait-related​ ​candidate​ ​genes? 

● Do​ ​the​ ​QTLs​ ​contain​ ​any​ ​trait​ ​related​ ​candidate​ ​genes? 

● Which​ ​biological​ ​processes​ ​and​ ​pathways​ ​underlie​ ​these​ ​traits? 

● Which​ ​other​ ​phenotypes​ ​are​ ​influenced​ ​by​ ​these​ ​genes​ ​(alleles)? 

 

Evaluating the functional candidacy of every potential candidate gene requires a user to             

navigate heterogeneous evidence sources including functional gene annotations, phenotype         

data, scientific literature, gene expression information, protein-protein interaction and other          

relevant datasets to genetics. Explaining how complex, polygenic traits are influenced by the             

genes (alleles) identified in the genetics study is an even harder challenge that requires as               

the first step the assembly of a knowledge network. This can quickly become a              

time-consuming and resource-intensive task that can be prone to information being missed            
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and subjective biases being introduced. Here, we demonstrate how KnetMiner can be used             

to prioritise candidate genes that resulted from GWAS and QTL studies in a reproducible,              

effective​ ​and​ ​systematic​ ​manner. 

 

7.2.2​ ​Identifying​ ​candidate​ ​genes​ ​in​ ​GWAS​ ​output 

KnetMiner for Arabidopsis was used with the search term “​fatty acid OR lipid” which returned               

6932 genes ranked by score. The score ranges from 0.01 to 4.13 based on the relevance of                 

the gene to fatty acid pathways, processes, phenotypes etc. The results were downloaded             

from the ​Gene View in tabular format. The downloaded file contains for every gene the               

chromosome, start and stop information. The KnetMiner list was compared with a list of 774               

expert curated Arabidopsis lipid genes     

(http://aralip.plantbiology.msu.edu/data/aralip_data.xlsx) that are largely restricted to      

enzymes.​ ​From​ ​the​ ​774​ ​expert​ ​curated​ ​lipid​ ​genes​ ​630​ ​(81.4%)​ ​occur​ ​in​ ​the​ ​KnetMiner​ ​list. 

 

A custom Python script was written that checks for every significant SNP (logP > 6) in the                 

GWAS output if it is located within or 1000bp down/up-stream of a candidate gene provided               

by KnetMiner. If this is true the SNP id in the GWAS output is changed to the corresponding                  

name of Arabidopsis candidate gene and the candidate gene is recorded in a separate file.               

In total, 63 Arabidopsis genes were identified with significant genetic variation (alleles) in the              

MAGIC lines that can alter total lipid (palmitic acid) content. SNPs that are within or in                

proximity of the 63 genes provided by KnetMiner are shown as green dots in Figure 7.2.1.                

The Manhattan plot shows that many of the peak SNPs are in the neighbourhood of potential                

candidate​ ​genes. 

 

Functional analysis of genes that may influence traits underlying lipid content abnormalities            

in some MAGIC lines could be studied one by one, however, the bigger biological picture is                

usually more evident when the significant genes are studied simultaneously in an integrated,             

connected manner. KnetMiner can, therefore, be used once again and supplied with the             

same search terms “​fatty acid OR lipid” and the list of 63 significant genes as the ​User Gene                  

List​. The results are identical to the first search, but this time the genes provided by the user                  

are indicated with a “yes” in the ​Gene View​. These can be selected individually or by using                 

the ​target genes checkbox. Pressing the ​View Network button generates a connected and             

integrated gene-evidence network for all selected candidate genes (Figure 7.2.2). The           

heterogeneous evidence concepts in the network include Gene Ontology annotations,          
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AraCyc pathways, phenotype data, literature references, protein-protein interactions,        

relations to UniProt based on BLAST, relations to Trait Ontology based on text-mining.             

Initially only those paths from the gene-evidence network are shown where there is a search               

term and all other concepts are hidden, but can be displayed if additional information is               

required. The gene-evidence network can be explored to determine biological processes and            

pathways underlying this complex, polygenic trait. The analysis showed that many of the             

genes​ ​were​ ​involved​ ​in​ ​processes​ ​and​ ​pathways​ ​related​ ​to​ ​fatty​ ​acid​ ​metabolism. 

 

 

Figure 7.2.2: Integrated gene-evidence network of significant lipid genes that were indicated            

with​ ​green​ ​dots​ ​in​ ​the​ ​previous​ ​Manhattan​ ​plot. 

 

7.2.3​ ​Identifying​ ​candidate​ ​genes​ ​in​ ​QTL​ ​mapping​ ​output 

This section presents an alternative workflow for identifying candidate genes in QTLs that             

are associated with a phenotype. The previous workflow analysed every SNP from the             

association mapping individually. Alternatively, it is possible to define regions that are above             
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a certain p-value as a QTL. The borders where the red threshold line cuts the peaks of the                  

graph in Figure 7.2.1 can be defined as a QTL. For example, choosing logP > 7 as a                  

statistical threshold, it is possible to define 2 large QTL region on chromosome 1, one small                

region​ ​on​ ​chromosome​ ​3,​ ​and​ ​one​ ​on​ ​chromosome​ ​5.  

 

● QTL​ ​1:​ ​Chromosome​ ​1,​ ​935413-​ ​2901633​ ​[562​ ​genes] 

● QTL​ ​2:​ ​Chromosome​ ​1,​ ​21722576​ ​-​ ​28378561​ ​[1698​ ​genes] 

● QTL​ ​3:​ ​Chromosome​ ​3,​ ​8132487​ ​-​ ​8175461​ ​[10​ ​genes] 

● QTL​ ​4:​ ​Chromosome​ ​5,​ ​9529165​ ​-​ ​9862793​ ​[74​ ​genes] 

 

 

Figure​ ​7.2.3:​ ​Definition​ ​of​ ​search​ ​terms​ ​and​ ​multiple​ ​QTL​ ​in​ ​the​ ​KnetMiner​ ​search​ ​interface. 

 

The defined genomic regions contain in total 2,344 potential candidate genes. KnetMiner            

evaluates every gene whether it can be directly or indirectly related to the search terms, and                

ranks​ ​the​ ​genes​ ​based​ ​on​ ​the​ ​computed​ ​relevance​ ​score​ ​(see​ ​Chapter​ ​5). 

 

The ​Gene View contains the ranked candidate genes with their location and the evidence              

concepts. The top scoring gene from each QTL are AT1G64400, KCS2 and AT5G27600. No              

trait-related​ ​candidate​ ​genes​ ​were​ ​found​ ​in​ ​the​ ​QTL​ ​on​ ​chromosome​ ​3. 
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Figure 7.2.4: QTL genes are ranked and the evidence concepts are summarised in the Gene               

View. The selected genes ​LACS3 ​(AT1G64400), ​KCS2 ​(AT1G04220) and ​LACS7          

(AT5G27600)​ ​are​ ​the​ ​top​ ​scoring​ ​gene​ ​of​ ​each​ ​QTL. 

 

The gene-evidence network of the three top candidate genes can be easily generated and              

viewed in the KnetMaps. Exploring the relations between the genes can identify common             

processes and pathways that might explain the complex nature of the trait and justify why               

several QTL were identified. Figure 7.2.5 shows the gene-evidence network of ​LACS3            

(AT1G64400), ​KCS2 ​(AT1G04220) and ​LACS7 ​(AT5G27600). It is evident that all three            

genes encode enzymes (long-chain-fatty-acid CoA ligases) that catalyse reaction RXN-7904          

of the fatty acid activation pathway and RXN-9644 of the linoleate biosynthesis I (plants)              

pathway. The ​Item Info of KnetMaps provides external links to the original data sources, for               

example to PlantCyc, so that further details such as chemical equations of the reaction can               

be​ ​easily​ ​reached​ ​from​ ​KnetMiner. 
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Figure 7.2.5: The gene-evidence network of the top ranked genes ​LACS3, KCS2 and LACS7              

from each QTL. All three genes encode enzymes that catalyse reaction RXN-7904 of the              

fatty​ ​acid​ ​activation​ ​pathway​ ​and​ ​RXN-9644​ ​of​ ​the​ ​linoleate​ ​biosynthesis​ ​I​ ​(plants)​ ​pathway. 

 

Interestingly, the highest scoring gene in KnetMiner is ​LACS3 ​(AT1G64400) which is not part              

of the 63 candidate genes identified in the SNP-based analysis of the GWAS data. ​LACS3 ​is                

located on chromosome 1 from 23,915,598 to 23,919,783. The closest SNPs are about 8kb              

downstream and 4kb upstream of ​LACS3​. Although these two SNPs are significant (logP =              

8.3) for total lipid content, their distance exceeded the arbitrary maximum distance of 1kb              

that was defined as the selection criteria for candidate genes. This shows that although the               

SNP based approach is potentially very accurate, important candidate genes can easily be             

missed because of uneven or low marker (SNP) density, or because of arbitrary threshold              

definitions​ ​such​ ​as​ ​logP​ ​or​ ​maximum​ ​distance​ ​to​ ​candidate​ ​gene. 

 

The ​Evidence View and the ​Map View provide further complementary views that can help to               

visualise the relative position of candidate genes within a QTL or to systematically dissect              

the biological processes and pathways underlying QTL genes. The column QTL in the             

Evidence View indicates how many of the QTL genes are related to that specific evidence               

(e.g​ ​GO​ ​concept,​ ​pathway,​ ​reaction). 
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7.2.4​ ​Summary 

GWAS or QTL studies are only the beginning of every gene discovery investigation to              

determine genes, biological processes and pathways underlying a complex, polygenic trait.           

The challenges of evaluating the functional candidacy of potential candidate genes include            

data acquisition, integration, mining and visualisation. This use case showed the utility of             

KnetMiner in facilitating the interpretation of genetic experiments. Two different approaches           

for​ ​using​ ​KnetMiner​ ​were​ ​illustrated:​ ​a​ ​SNP-based​ ​and​ ​a​ ​QTL-based​ ​approach. 

 

The SNP-based approach was divided in two steps. First, KnetMiner was used to create a               

genome-wide list of candidate genes for a given trait. This list was refined outside of               

KnetMiner with a script that takes as input the GWAS (SNP-Pvalue) output and the              

KnetMiner genes in order to evaluate if any genes have at least one significant SNP within a                 

1kb radius from the start and end of the gene. This approach identified 63 Arabidopsis genes                

with significant genetic variation (alleles) in the MAGIC lines that can alter total lipid (palmitic               

acid) content. The analysis showed that many of these genes were involved in processes              

and​ ​pathways​ ​related​ ​to​ ​fatty​ ​acid​ ​metabolism. 

 

The QTL-based approach consists of a single step. KnetMiner was used with 4 distinct QTL               

regions for palmitic acid content and trait-related search terms as parameters. The defined             

genomic regions contained in total 2,344 potential candidate genes. In contrast to the             

previous 2-step approach, KnetMiner directly evaluated and ranked all QTL genes. The top             

candidate gene per QTL was ​LACS3 ​(this gene was not found in the previous SNP-based               

approach), ​KCS2 ​and ​LACS7​. The integrated networks of the top scoring gene from each              

QTL were studied and interesting connections were found such as all three genes encode              

enzymes (long-chain-fatty-acid CoA ligases) that catalyse reaction RXN-7904 of the fatty           

acid activation pathway and RXN-9644 of the linoleate biosynthesis I (plants) pathway.            

Some​ ​of​ ​these​ ​genes​ ​(alleles)​ ​are​ ​currently​ ​subject​ ​of​ ​experimental​ ​validation. 

 

In conclusion, KnetMiner has a user-friendly interface that facilitates the biological           

interpretation of GWAS and QTL data. It has a predictive component that ranks candidate              

genes and a explorative component that enables domain experts to generate hypotheses            

that can explain the translation of the genotype to the phenotype via network biology. Future               

work would investigate a more seamless integration of GWAS input data into the KnetMiner              

user interface and the development of analytical tools for the exploration of public genetics              

140 



resources such as AnimalQTLdb ​(Hu, Fritz, and Reecy 2007) or Triticeae Toolbox ​(Blake et              

al.​ ​2016)​. 

 

 

 
 
 

 

  

141 

https://paperpile.com/c/HrsRJq/iU6j7
https://paperpile.com/c/HrsRJq/dtsM
https://paperpile.com/c/HrsRJq/dtsM


8​ ​CONCLUSION 

Biological knowledge discovery is often hampered by the challenges of data integration and             

new approaches are needed to improve the efficiency, reproducibility and objectivity gene            

discovery. KnetMiner provides an easy to use web interface to visualisation and data mining              

tools for the discovery and evaluation of candidate genes from large scale integrations of              

public and private data sets. It addresses the needs of scientists who generally lack the time                

and technical expertise to connect, explore and compare the wealth of genetic, genomic,             

transcriptomic, proteomic and phenotypic information available in the literature, from key           

model​ ​species​ ​and​ ​from​ ​a​ ​potentially​ ​wide​ ​range​ ​of​ ​related​ ​biological​ ​databases.  

 

The first major achievement of this work was the development of genome-scale knowledge             

networks (GSKNs) for 11 species including crops such as wheat, maize and willow. This was               

achieved by extending the Ondex data integration platform with text mining capabilities            

(Hassani-Pak et al. 2010) and by optimising the process of building knowledge networks             

(Hassani-Pak et al. 2016)​. The process is pragmatic in that it allows a network of appropriate                

complexity to be developed and updated without an excessive technical and semantic            

burden to the user. Feasibility studies have shown that knowledge networks provide a             

suitable data structure for effective gene mining and biological knowledge discovery. GSKNs            

can encompass millions of labelled nodes, semantic links and manifold attributes. The            

current version of the Arabidopsis GSKN integrates Arabidopsis gene and proteins with            

multiple information types including gene-SNP-phenotype associations, protein-protein       

interactions and annotations to GO, EC, pathway, protein domain and publications. We            

conducted a study to evaluate the suitability of annotation transfer from model species such              

as Arabidopsis to non-model species such as wheat or rice ​(Defoin-Platel, Hassani-Pak, and             

Rawlings 2011)​. For example, the Arabidopsis GSKN integrates homology relations to the            

yeast interactome and yeast GO annotations that can be useful in understanding            

developmental traits in plants. All crop GSKNs link into the Arabidopsis knowledge network             

via orthology relations which can be exploited for the transfer of phenotypic information.             

Importantly, GSKNs not only contain information from structured databases but also novel            

gene-phenotype relationships extracted from unstructured PubMed abstracts by our own text           

mining tools as described in Chapter 4. In the past, despite of appreciating the value in                

GSKNs, biologists and breeders were unable to take great advantage of these resources             

because of the slow and cumbersome process to interrogate them using the available             

Ondex​ ​standalone​ ​application. 
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The second major achievement was the development of new web-based tools for mining             

and visualising large knowledge networks. The KnetMiner web server searches, evaluates           

and scores millions of relations and concepts within the GSKNs in real-time to determine if               

direct or indirect links between genes and trait-based keywords can be established. Modified             

measures of information content are used to rank potential candidate genes for their             

relevance to the trait. KnetMiner accepts as user inputs: search terms in combination with a               

gene list and/or genomic regions. It produces as outputs: (i) ranked candidate genes and              

supporting evidence tables, (ii) interactive network maps to visualise and explore           

gene-knowledge networks and (iii) interactive chromosome maps with genes, SNP, QTL,           

GWAS data. All components have been optimised for web use on desktop and mobile touch               

devices. Feasibility studies in different crop species demonstrated that KnetMiner can enable            

biological knowledge discovery which was not easily possible before in these species. For             

example, it supported the discovery of an inferred relationship between a gene and a plant               

height phenotype in willow ​(Hanley and Karp 2014)​, a gene that might be controlling grain               

color and pre-harvest sprouting in wheat (manuscript submitted) and a gene controlling petal             

size in Arabidopsis (manuscript submitted). These and other examples have shown that the             

KnetMiner web server and the GSKNs are important tools for biologists and breeders             

wanting​ ​to​ ​interpret​ ​the​ ​results​ ​of​ ​genetic​ ​and​ ​omics​ ​studies. 

 

In​ ​summary,​ ​the​ ​main​ ​key​ ​benefits​ ​of​ ​KnetMiner​ ​are: 

● The user is ​guided ​and ​supported ​when writing the search terms through features             

such as real-time user feedback and query term suggestions. No technical           

knowledge​ ​(metagraph,​ ​query​ ​statements)​ ​is​ ​required.  

 

● The output is ​dynamic ​and ​rich in detail including different interactive visualisations            

such as tables, network and genome maps that are easy to navigate through a              

tabbed​ ​interface,​ ​and​ ​with​ ​extensive​ ​cross-referencing.  

 

● Support for ​non-model diploid and polyploid species and different information types           

to connect genes to phenotypes including functional annotation, genetic association,          

homology,​ ​protein-protein​ ​interactions​ ​and​ ​text-mining. 

 

● The underlying knowledge networks are built automatically and are ​regularly          
updated​​ ​to​ ​include​ ​the​ ​latest​ ​database​ ​releases​ ​as​ ​described​ ​in​ ​Chapter​ ​3. 
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● The software platform is ​configurable and ​portable ​so that developers can easily            

build instances for new species and deploy them on any IT infrastructure that meets              

the​ ​software​ ​requirements. 

 

Future work ​will investigate new methods for knowledge network mining and data            

visualisation that are specifically directed to accelerating gene discovery research. For           

example, KnetMiner currently lacks the support for gene or annotation enrichment analysis            

(Glass and Girvan 2014) which could provide another view of the knowledge network without              

being biased by the user provided search terms. Additionally, we would like to investigate              

how gene expression data can be incorporated into the search and the network visualisation              

in order to further improve candidate gene scoring. Gene expression data could be either              

provided by the user directly or automatically retrieved via APIs from gene expression             

databases such as the Gene Expression Atlas ​(Petryszak et al. 2014)​. Future work would              

also investigate a more seamless integration of GWAS input data into the KnetMiner user              

interface and the development of analytical tools for the exploration of public genetics             

resources such as AnimalQTLdb ​(Hu, Fritz, and Reecy 2007) or Triticeae Toolbox ​(Blake et              

al.​ ​2016)​. 

 

Currently the proposed gene ranking algorithm gives equal weight to all integrated evidence             

documents. However, not all integrated datasets are of same quality. Future work would be              

to investigate a weighting scheme for different types of evidence. For example, genes that              

have causative SNPs linked to phenotypes could be ranked higher than evidence that is              

inferred through sequence homology; or curated gene-phenotype evidence can be weighted           

stronger than text-mining based evidence. Since this choice is generally dependent on the             

application, the evidence weighting scheme could be made configurable by the user. Finally,             

the proposed gene ranking approach computes a score based on frequency and specificity             

of evidence documents, however it does not determine how significant the score is, i.e. the               

probability of obtaining a given score by chance. Similar to the approach of BLAST using               

score and e-value, our future work would develop an e-value for KnetMiner gene scores              

which would estimate the number of hits retrieved by chance for a given search term and a                 

GSKN​ ​with​ ​certain​ ​network​ ​properties. 

 

In summary, KnetMiner is an intuitive tool that makes gene discovery fun and efficient for               

biologists and breeders. Some KnetMiner servers (e.g. for Arabidopsis, wheat, poplar) have            
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been running for several years and new KnetMiner servers are about to emerge soon.              

KnetMiner is used by different labs at Rothamsted Research and elsewhere to accelerate             

gene discovery pipelines for crop breeding and crop improvement. While we have so far              

mostly concentrated on crop species, the approaches we have taken are generic and             

GSKNs and KnetMiner servers can readily be built for other species. This PhD thesis              

described the version of the KnetMiner software that was available at the time of writing. We                

are constantly improving the usability of the software, adding new features and extending the              

knowledge mining approaches. The latest version of the KnetMiner software and           

documentation​ ​will​ ​be​ ​available​ ​at:​ ​http://knetminer.rothamsted.ac.uk/.  
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