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A B S T R A C T

Trapezoidal integration by linear interpolation of data points is by far the most commonly used method of
cumulative flux calculations of nitrous oxide (N2O) in studies that use flux chambers; however, this method is
incapable of providing accurate uncertainty estimates. A Bayesian approach was used to calculate N2O emission
factors (EFs) and their associated uncertainties from flux chamber measurements made after the application of
nitrogen fertilisers, in the form of ammonium nitrate (AN), urea (Ur) and urea treated with Agrotain® urease
inhibitor (UI) at four grassland sites in the UK. The comparison between the cumulative fluxes estimated using
the Bayesian and linear interpolation methods were broadly similar (R2= 0.79); however, the Bayesian method
was capable of providing realistic uncertainties when a limited number of data points is available. The study
reports mean EF values (and 95% confidence intervals) of 0.60 ± 0.63, 0.29 ± 0.22 and 0.26 ± 0.17% of
applied N emitted as N2O for the AN, Ur and UI treatments, respectively. There was no significant difference
between N2O emissions from the Ur and UI treatments. In the case of the automatic chamber data collected at
one site in this study, the data did not fit the log-normal model, implying that more complex models may be
needed, particularly for measurement data with high temporal resolution.

1. Introduction

Agriculture contributes an estimated 60–70% to global anthro-
pogenic nitrous oxide (N2O) emissions (Syakila and Kroeze, 2011; Tian
et al., 2019), primarily due to increased application of reactive nitrogen
(Nr) fertilisers to soils and subsequently aquatic systems, from which
N2O is released as a byproduct of the microbial processes of nitrification
and denitrification (Davidson et al., 2000). N2O is a potent greenhouse
gas as well as the most significant contributor to global stratospheric
ozone depletion (Ravishankara et al., 2009), which doubly increases the
incentive to mitigate these emissions. Current projections predict that
global rates of Nr fertilisation will continue to rise over the next century
to cope with a growing population, changing diets and greater demand
for food. Therefore, it has become increasingly urgent to address the
issue of N2O emissions from agriculture sources. However, food supply

is a sensitive issue both politically and economically, and there are a
limited number of mitigation options available that may reduce agri-
cultural N2O emissions without impacting crop yields.

Chemical inhibitors that target urease hydrolysis and microbial ni-
trification are commercially available and have been shown to reduce
Nr losses under laboratory conditions and in field trials, but with
varying success. Microbial inhibitors and compounds which block en-
zymes of microbially mediated pathways are also in development
(Sanz-Cobena et al., 2016; Ni et al., 2014; Singh et al., 2013; Rose et al.,
2017; Ruser and Schulz, 2015). Although there are many positive stu-
dies, which promote the pollution-reducing capabilities of these in-
hibitors, especially the reduction of NH3 losses, some questions remain
over the overall effectiveness of the inhibitors, which face claims that
reduction of NH3 losses may increase N2O emissions (Lam et al., 2016;
Carswell et al., 2018).
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Serious difficulties lie in the estimation of accurate emission factors
from experiments investigating N2O fluxes, due to the measurement
methods available and the unpredictable heterogeneous nature of mi-
crobial production of N2O (Butterbach-Bahl et al., 2013). As such, it can
be difficult to accurately assess the true impact of any particular N2O
mitigation effort. The majority of N2O flux studies (past and present)
deploy chamber methodology to measure emissions from soils (Dobbie
et al., 1999; Chadwick et al., 2014; Cowan et al., 2015). These cham-
bers are sampled periodically, and only represent a small surface area of
soil (chamber sizes typically vary from 10 cm2 to 1m2). Due to the
unpredictable spatial and temporal variability in N2O fluxes from
agricultural soils, estimates of emissions of N2O after fertiliser events
have large associated uncertainties (Cowan et al., 2017; Levy et al.,
2017).

In the absence of reliable predictive models, trapezoidal (linear)
integration between points is by far the most commonly used method of
cumulative flux estimation. However, this method does not provide
meaningful uncertainties in estimates. To better understand the results
of N2O emission experiments and to evaluate the effectiveness of the
sampling schemes used in mitigation experimentation, Bayesian
methods are being developed to estimate cumulative N2O fluxes and to
provide meaningful uncertainty estimates (Lehuger et al., 2009; Zhou
et al., 2015; Cowan et al., 2017; Levy et al., 2017). Through better
statistical handling of N2O measurement data, it is possible that un-
certainties may be better understood and reduced in future experi-
mentation.

To improve regional and national scale accounting for N2O emis-
sions, it has been suggested that the IPCC Tier 1 method (De Klein,
2006), assuming a constant EF for all applied Nr is too simplistic, and
that the development of a Tier 2 method which incorporates fertiliser
type and environmental conditions should be considered (Skiba et al.,
2012). However, it has also been recognized that due to the un-
predictable nature of N2O emissions, large uncertainties in inventories
may remain. To test these assumptions, coordinated experimentation is
required at a national scale from multiple experimental sites.

This study aims to use a Bayesian method for estimating cumulative
fluxes (Levy et al., 2017) to quantify the efficacy of a urease inhibitor in
a series of experiments replicated across the UK. The experiments
measure N2O EFs after application of Agrotain® (urease-inhibitor-
treated urea, N-(n-butyl) thiophosphoric triamide, Koch, KS, USA) on
intensively managed grassland silage crops at four sites in the UK, and
compare this with the two most commonly used synthetic nitrogen
fertilisers in the UK: ammonium nitrate (Nitram®, CF Fertilisers UK Ltd.,
Cheshire, UK) and urea. The results will then be used to analyse the
feasibility of a Tier 2 EF method for regional and national N2O emission
inventories.

2. Materials and methods

2.1. Field sites and experimental design

Four trials were conducted at intensively managed grassland sites in
the UK, during the growing seasons in 2016 and 2017 (Table 1).

The trials were carried out at Easter Bush farm estate (Midlothian,
Scotland) (Drewer et al., 2016; Jones et al., 2017), Henfaes Research
Station (Abergwyngregyn, Wales) (HF) (Shaw et al., 2016) and

Rothamsted Research, (North Wyke, southwest England) (NW) (Rennie
et al., 2017).

Two fields within the Easter Bush farm estate were used, referred to
as Easter Bush (EB) and Upper Joiner (UJ) field sites. The EB field had
historically been used to graze sheep (0.7 LSU ha−1) The UJ field had
predominantly been used for silage harvest with occasional grazing
during winter. The HF and NW sites were managed similarly, pre-
dominantly used for silage harvest with occasional grazing during
winter months (Carswell et al., 2018).

Experimental plots were arranged at each site in strips of 2m by 8m
(with a 0.5–2.0m spacing between them), positioned randomly to mi-
tigate bias resulting from spatial variability of soil properties. The plot
layout varied in the 2017 UJ trial, for which plots were arranged in a
square grid, each measuring 20m by 20m with no spacing between
them. Applications of nitrogen fertilisers in the form of ammonium
nitrate (AN), urea (Ur), and urea treated with the Agrotain® urease
inhibitor (UI) were applied to the plots (via manual spreading) two or
three times per site, each application was replicated on four plots with
an additional four control plots to which no Nr fertiliser was applied (a
total of 16 plots per fertiliser event; Table 2). Fertiliser applications
were applied at 60, 70 or 90 kg N ha−1 based on typical farm practices
at the respective sites.

2.2. N2O flux measurements

At all sites, measurements of N2O fluxes were taken using the static
manual chamber approach. At the EB and UJ sites, chambers consisted
of a cylindrical polyvinyl chloride (PVC) plastic pipe of 38 cm inner
diameter (ID) and 22 cm height fitted with sealed lid and a flange at the
base. The chambers were placed onto a plastic flanged collar that had
been inserted several centimeters into the soil (on average 5 cm) to
form a seal in the soil. A layer of draught sealant material held in place
by four strong gripping clips formed an airtight seal between the
chamber and the collar for the duration of the flux measurement.
Chambers were closed for 60min, during which four gas samples were
collected via a syringe and a three-way tap fitted to the lid, at t= 0, 20,
40 and 60min. Gas samples were stored in 20ml glass vials, which
were flushed with 100ml of air from the syringe using a double needle.
Samples were analysed using gas chromatography (7890B GC system
fitted with an electron capture detector and 7697A Headspace
Autosampler, Agilent Technologies, Santa Clara, California, United
States). At the EB and UJ sites the manual static chamber measurements
were carried out daily for two weeks after fertilisation, then every
second day for a further two to four weeks, with measurements only
made only on working days (Monday to Friday) between 09:00 and
15:00 GMT.

At the HF and NW sites, slots were cut into the soil and the cham-
bers (50×50×30 cm) were inserted, so that 15–20 cm of the chamber
height remained above the soil surface. On each sampling occasion, lids
were placed on the chambers and remained in place for 40min with
three gas samples collected via syringe, at t=0, 20 and 40min. Gas
samples were stored in pre-evacuated 20ml glass vial, which were
flushed with 50ml of air from the syringe using a double needle.
Samples were analysed for N2O concentration using a Perkin Elmer 580
Gas Chromatograph (linked to a TurboMatrix 110 Headspace
Autosampler) (Carswell et al., 2018). At the HF and NW sites manual

Table 1
Characteristics of the four field sites where fertiliser trials were carried out.

Site Year pH Annual rainfall
(mm)

Mean annual soil
Temp. (°C)

Grass species Previous management

EB 2016 6.02 793 9 Lolium perenne L. Mostly sheep grazing
HF 2016 6.32 1250 11 Lolium multiflorum Lam. Silage with winter grazing
NW 2016 5.77 1107 12 Lolium perenne L. Silage with winter grazing
UJ 2017 6.10 780 10 Lolium perenne L. Silage with winter grazing
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static chamber measurements were carried out following fertilisation at
three times weekly for weeks one and two, twice weekly for weeks three
and four, and once weekly thereafter. Measurements were made be-
tween 09:00 and 15:00 GMT.

Further measurements were made at the HF site using an automatic
chamber approach (via an Isotopic N2O Analyser, Los Gatos Research
Inc. San Jose, CA, USA). Chamber bases were inserted into the soil and
the chambers (50× 50×20 cm) attached to the bases at surface height
to ensure an air tight seal. Closing and opening of the chambers was
controlled by pneumatic actuators. The chambers closed for a 30min
measurement period (four times a day), during which the chamber-
headspace was sampled via a sampling port at a rate of 1 l min−1 at a
frequency of 0.1 Hz.

Fluxes were calculated as:

=F dC
dt

ρV
A

. (1)

where F is the gas flux from the soil (nmol m−2 s−1) dC/dt is the rate of
change in the concentration in time in nmol mol−1 s−1 estimated by
linear regression, ρ is the density of air in mol m−3, V is the volume of
the chamber in m3 and A is the ground area enclosed by the chamber in
m2.

2.3. Interpolation of N2O flux data

Cumulative fluxes over the experimental periods (30 days) were
calculated using a Bayesian approach, taking into account the log-
normal distribution of spatial samples and the lognormal peak-and-
decay pattern in time (Levy et al., 2017). Based on the assumption that
at a given time, N2O fluxes, F, are typically log-normally distributed in

Table 2
A summary of the nitrogen applications at the field sites. Equivalent quantities of total nitrogen were applied to four plots in the form of AN, U and UI for each event.

Site Date
Event 1

Total N applied
(kg N ha−1)

Date
Event 2

Total N applied
(kg N ha−1)

Date
Event 3

Total N applied
(kg N ha−1)

EB 2016-03-11 70 2016-07-15 70 / /
HF 2016-05-05 90 2016-06-13 90 2016-07-25 60
NW 2016-03-23 90 2016-05-19 90 2016-07-08 60
UJ 2017-05-25 70 2017-07-19 70 2017-09-15 70

Table 3
Cumulative fluxes estimated using linear and Bayesian interpolation methods over a 30 day period after ammonium nitrate fertiliser applications at the four field
sites. Values presented represent 4 plots (n=4) per event at each field site. Emission factors account for the effect of N application after the measured background
flux has been deducted from cumulative totals.

Site Event Fertiliser
applied

Background flux Linear interpolation
cumulative

Linear minus
background

Bayes interpolation
cumulative

95% C.I. Bayes minus
background

Linear EF Bayes EF

(kg N ha−1) (kg N ha−1) (kg N ha−1) (kg N ha−1) (kg N ha−1) min max (kg N ha−1) (%) (%)

Ammonium nitrate
EB 1 70 0.25 1.66 1.41 1.59 1.02 2.86 1.34 2.02 1.92
EB 2 70 0.19 0.31 0.11 0.45 0.32 0.68 0.25 0.16 0.36
HF 1 90 0.01 0.06 0.04 0.05 0.05 0.06 0.04 0.05 0.04
HF 2 90 0.04 0.14 0.10 0.15 0.13 0.16 0.10 0.11 0.12
HF 3 60 0.06 0.18 0.11 0.19 0.17 0.21 0.13 0.19 0.21
NW 1 90 0.23 0.88 0.65 1.65 0.96 3.50 1.43 0.73 1.59
NW 2 90 0.16 0.41 0.25 0.70 0.38 1.61 0.54 0.28 0.61
NW 3 60 0.07 0.10 0.03 0.20 0.14 0.34 0.14 0.06 0.23
UJ 1 70 0.92 1.50 0.59 1.39 0.97 2.26 0.48 0.84 0.68
UJ 2 70 0.51 0.43 −0.08 0.50 0.39 0.67 −0.01 −0.11 −0.01
UJ 3 70 0.93 1.66 0.73 1.53 1.08 2.34 0.60 1.05 0.85

Table 4
Cumulative fluxes estimated using linear and Bayesian interpolation methods over a 30 day period after all Urea (Ur) applications at the four field sites. Values
presented represent 4 plots (n=4) per event at each field site. Emission factors account for the effect of N application after the measured background flux has been
negated from cumulative totals.

Site Event Fertiliser
applied

Background flux Linear Interpolation
cumulative

Linear minus
background

Bayes interpolation
cumulative

95% C.I. Bayes minus
background

Linear EF Bayes EF

(kg N ha−1) (kg N ha−1) (kg N ha−1) (kg N ha−1) (kg N ha−1) min max (kg N ha−1) (%) (%)

Urea
EB 1 70 0.25 0.51 0.26 0.52 0.37 0.78 0.27 0.37 0.38
EB 2 70 0.19 0.23 0.03 0.30 0.24 0.40 0.11 0.05 0.15
HF 1 90 0.01 0.06 0.05 0.06 0.05 0.07 0.05 0.05 0.05
HF 2 90 0.04 0.28 0.24 0.25 0.22 0.28 0.21 0.26 0.23
HF 3 60 0.06 0.33 0.27 0.32 0.29 0.35 0.26 0.45 0.43
NW 1 90 0.23 0.32 0.09 0.63 0.36 1.43 0.40 0.10 0.45
NW 2 90 0.16 0.25 0.09 0.53 0.30 1.13 0.37 0.10 0.41
NW 3 60 0.07 0.11 0.04 0.18 0.11 0.37 0.12 0.07 0.19
UJ 1 70 0.92 0.89 −0.03 0.99 0.72 1.48 0.07 −0.04 0.10
UJ 2 70 0.51 0.81 0.31 1.06 0.64 2.10 0.55 0.44 0.79
UJ 3 70 0.93 1.08 0.15 0.97 0.77 1.27 0.04 0.22 0.05
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space, the probability density is given by:

= − −f F π σ F log F μ σ( ) 1/( (2 ) ) exp( (( ( ) ) /(2 )))log log
2

log
2

(2)

where μlog and σlog are the location and scale parameters, equivalent to
the mean and standard deviation of the log-transformed variate. The
mean of the distribution is given by:

= +μ μ σexp( 0.5 )log log
2

(3)

Following a fertilisation event, the time course of N2O flux is ex-
pected to rise to a peak, then decay exponentially, and this basic pattern

is reproduced by all process-based models (i.e. Li et al., 1992; Del
Grosso et al., 2006) and is also well described by the log-normal
equation:

= − −μ π kt t Δ k N Ω1/( (2 ) ) exp( ((log( ) ) /(2 )))·t in
2 2 (4)

where μt is the spatial mean of the N2O flux at time t, Δ and k are
analogues for the location and scale parameters, and with the addi-
tional term Nin is the fertiliser nitrogen input and Ω is the fraction of
this which is emitted as N2O as t tends toward infinity. Δ can be in-
terpreted as the natural logarithm of the delay between fertiliser ap-
plication and peak flux; k is a decay rate term. So, at time t following

Table 5
Cumulative fluxes estimated using linear and Bayesian interpolation methods over a 30 day period after all Urea with inhibitor (UI) applications at the four field sites.
Values presented represent 4 plots (n=4) per event at each field site. Emission factors account for the effect of N application after the measured background flux has
been negated from cumulative totals.

Site Event Fertiliser
applied

Background flux Linear interpolation
cumulative

Linear minus
background

Bayes interpolation
cumulative

95% C.I. Bayes minus
background

Linear EF Bayes EF

(kg N ha−1) (kg N ha−1) (kg N ha−1) (kg N ha−1) (kg N ha−1) min max (kg N ha−1) (%) (%)

Urea & inhibitor
EB 1 70 0.25 0.48 0.23 0.54 0.37 0.90 0.28 0.33 0.41
EB 2 70 0.19 0.23 0.04 0.29 0.23 0.40 0.10 0.06 0.14
HF 1 90 0.01 0.07 0.06 0.07 0.06 0.07 0.05 0.07 0.06
HF 2 90 0.04 0.19 0.15 0.18 0.16 0.19 0.14 0.17 0.15
HF 3 60 0.06 0.31 0.25 0.28 0.25 0.32 0.22 0.41 0.37
NW 1 90 0.23 0.10 −0.13 0.26 0.15 0.51 0.03 −0.14 0.03
NW 2 90 0.16 0.25 0.10 0.43 0.26 0.89 0.27 0.11 0.30
NW 3 60 0.07 0.07 0.01 0.16 0.09 0.33 0.09 0.01 0.15
UJ 1 70 0.92 1.13 0.22 1.33 0.87 2.46 0.41 0.31 0.58
UJ 2 70 0.51 0.49 −0.02 0.67 0.50 0.97 0.17 −0.03 0.24
UJ 3 70 0.93 1.26 0.33 1.22 0.89 1.83 0.29 0.46 0.41

Fig. 1. N2O fluxes following fertilisation with three different nitrogen forms at the Easter Bush field site (EB, Midlothian, Scotland) in 2016. The log-normal model
was used to estimate cumulative N2O fluxes. The 95% credible intervals of the posterior predictions are shown as the shaded area. Mean background fluxes from
control plots are included for each event (red dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

N. Cowan, et al. Environment International 128 (2019) 362–370

365



fertilisation, the mean flux is given by Eq. 5 or 6, at which time the N2O
flux has a distribution

∼F μ σln ( , )tlog, log
2N (5)

where

= −μ μ σlog( ) 0.5t tlog, log
2

(6)

The parameters μ, μlog and σlog were estimated using the Markov
Chain Monte Carlo (MCMC) method with Gibbs sampling (Gelman,
2013). This was implemented using the freely available JAGS software
(Plummer, 2016). The prior distribution for Ω was based on the data
collated by Stehfest and Bouwman (2006). The prior distributions for Δ
and k were based on the dynamics of the DNDC model (Li et al., 1992,
as described in Levy et al., 2017). To obtain the cumulative flux at time
t, we use the standard log-normal cumulative distribution function:

= ⎛
⎝

− ⎞
⎠

F Φ t Δ
k

N Ωln
cum t in, (7)

where Φ is the cumulative distribution function of the standard normal
distribution.

To account for background fluxes (fluxes of N2O expected in the
absence of any applied nitrogen), a cumulative background flux was
estimated using the mean of the fluxes measured from the control plots
during each event. This cumulative background estimate was then
subtracted from the cumulative fluxes estimated for each treatment.
The reported EFs in this study take background fluxes into account
when reporting final values (Tables 3 to 5).

3. Results

3.1. Measured N2O fluxes

A log-normal spatial distribution of data was typically observed for
each of the N application events where static chamber measurements
were made, with individual chamber fluxes ranging between −0.02
and 25.4 nmol N2Om−2 s−1 (Figs. 1 to 4). A variable, but significant
increase in emissions of N2O in the days after the fertiliser event was
broadly observed for all events, with a few exceptions. The time delay
between N application and the observed increase in N2O flux varied by
site and fertiliser type, although the vast majority of emissions appear
to have occurred within the 30 day window. Fluxes from control plots
varied across the sites and dates of application events; however, these
emissions were relatively low with a mean value of 0.4 nmol N2O
m−2 s−1.

The log-normal model generally fitted well to the measurements.
The exception was at the HF site, where the pattern of emissions does
not closely follow the log-normal pattern described in Eq.2 (Fig. 2),
having very extreme but short-lived peaks. It is unclear why these data
show the least correspondence with the log-normal pattern. Partly the
fit is dominated by the large number of near-zero fluxes in the tail of the
distribution. Partly it may be due to the small number of spatial samples
used in the autochamber system at this site. Each of these has a different
timing of the peak, and the ensemble mean does not closely follow the
log-normal pattern. The use of other meta-models needs to be explored
in this case.

3.2. Cumulative fluxes and emission factors

Cumulative fluxes calculated using the linear and Bayesian methods

Fig. 2. N2O fluxes following fertilisation with three different nitrogen forms at Henfaes Research Station (HF, Abergwyngregyn, Wales) in 2016. The log-normal
model was used to estimate cumulative N2O fluxes. The 95% credible intervals of the posterior predictions are shown as the shaded area. Mean background fluxes
from control plots are included for each event (red dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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were broadly comparable across the different sites. The direct com-
parison of the two interpolation methods shows that in this study the
Bayesian method predicted slightly larger fluxes than the linear method
(slope=1.04) and there is some disagreement in larger EF estimates
(R2= 0.79), but overall the comparison was good. Taking background
emissions into account, EFs ranged from slightly negative values
(−0.01%, where treatment plots emitted less N2O than control plots) to
a maximum of 1.92% of the N applied.

A large degree of relative variability was observed between EFs
reported for the different fertiliser types within the same field site. On
occasions, when the measurements were particularly variable, un-
certainties in cumulative fluxes estimated using the Bayesian method
were greater than 1% of the applied N. In these cases neither method
was able to determine accurate cumulative estimates based on the
available measurement data; this is represented in the large uncertainty
value reported by the Bayesian method (Fig. 5).

By combining the cumulative fluxes calculated by the MCMC chains
when using the log-normal Bayesian method, we can observe the pos-
terior distributions of the EFs predicted for each treatment across all
experiments (Fig. 6). The overlap of the distributions highlights the
similarity in emissions observed between the treatments; although the
shape of the distribution is distinctly different between the urea and AN
treatments with a higher probability of observing EFs above 1% for AN.

4. Discussion

Mean EFs estimated using the Bayesian interpolation method were
0.60 ± 0.63, 0.29 ± 0.22 and 0.26 ± 0.17% for the AN, Ur and UI
treatments, respectively. These observations are within the range of
results reported in similar experiments for which N2O EFs for applica-
tions of synthetic N fertilisers such as AN and Ur vary in the region of 0

to 3% of applied N (Dobbie et al., 1999; IPCC, 2014; Akiyama et al.,
2006; Stehfest and Bouwman, 2006), although values are well below
the 1% IPCC default value. The AN treatment occasionally exceeded the
1% default EF value, although most of the individual EFs for all treat-
ments remained below this value in this study (median EF=0.24%).

Emissions associated with either urea treatment applications occa-
sionally surpassed the emissions from the AN treatments, but EFs for
both the urea treatments consistently remained below the IPCC 1%
estimate (after background fluxes were taken into account), not
breaching the 0.5% mark in any experiment (although 95% C.I.s
reached values greater than 1.5% on occasion). Based on the posterior
distribution provided by the Bayesian method, EFs associated with AN
treatments were found to be larger than those of the urea treatments
55% of the time and that the EFs associated with UI were larger than Ur
60% of the time; however, the magnitude of these differences was in-
consistent and not statistically significant.

Our results agree with previous studies that AN fertilisers can emit
more N2O than equivalent applications of urea (Harty et al., 2016);
however, this study highlights that there is a large degree of variability
between each individual event and that on occasion, urea application
can emit more than AN fertilisers, as has been observed in other studies
(Bouwman, 1996; Smith et al., 1997; Bell et al., 2015). Our study
suggests that generally there is no significant increase in the production
of N2O when the Agrotain® urease inhibitor is applied to urea fertiliser;
however, this study highlights that due to the unpredictable nature of
N2O fluxes and the methods typically used to measure them, individual
experiments are likely to see a wide range of outcomes even if there
were no real treatment differences. This may explain the wide range of
observations in experiments investigating N2O emissions after using
inhibitors with fertiliser applications (Lam et al., 2016; Singh et al.,
2013; Rose et al., 2017; Ruser and Schulz, 2015).

Fig. 3. N2O fluxes following fertilisation with three different nitrogen forms at the Rothamsted Research site, (NW, North Wyke, southwest England) in 2016. The
log-normal model was used to estimate cumulative N2O fluxes. The 95% credible intervals of the posterior predictions are shown as the shaded area. Mean
background fluxes from control plots are included for each event (red dashed line). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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The reported fluxes and EFs in this study follow a log-normal dis-
tribution in both space and time, as is regularly observed in measure-
ment data (Stehfest and Bouwman, 2006). Clear differences were dif-
ficult to establish between treatments, which is typical for data that
follow a log-normal distribution, as demonstrated in Fig. 6. This ob-
servation highlights two major issues with fertiliser comparison ex-
periments. Firstly, based on the variability in these observations, a very
large number of replicates is needed when assessing treatments with

small effect sizes. This presents problems when resources to carry out
such large experiments is limited. The second issue is that the log-
normal distribution of the data complicates the analysis considerably.
Simply log-transforming the data does not suffice, because we are in-
terested in properties of the data in untransformed space, such as the
mean. The Bayesian method applied here provides a means of tackling
this problem.

The wide variation in emissions after fertilisation events is often

Fig. 4. N2O fluxes following fertilisation with three different nitrogen forms at the Upper Joiner field site (UJ, Easter Bush, Midlothian, Scotland) in 2017. The log-
normal model was used to estimate cumulative N2O fluxes. The 95% credible intervals of the posterior predictions are shown as the shaded area. Mean background
fluxes from control plots are included for each event (red dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. Comparison of the Emission factors estimated using the trapezoidal (linear) and log-normal Bayesian integration methods of all fertiliser applications at four
sites in the UK.
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attributed to multiple environmental variables (such as temperature,
oxygen availability, soil type, soil moisture, plant residue, soil carbon
content, pH). However, it is very difficult to accurately predict the
microbial interactions which affect N2O production from the informa-
tion that is available in most experiments (Bouwman, 1996). Correla-
tions between cumulative fluxes and environmental variables are sta-
tistically weak and inconsistent between the events at different sites.
What is apparent is that the EF for a given fertilisation event is very
unpredictable. The same fertiliser type applied at the same site under
similar conditions can produce quite different emissions on different
occasions, for reasons we do not always understand, and which cannot
always be predicted from the principles in process-based models
(Butterbach-Bahl et al., 2013).

Our study highlights several points of interest that should be taken
into account when Tier 2 EFs are being considered. The first point is
that different fertiliser types have a wide range of EFs that may not be
predicted using the obvious, easily measured environmental variables,
such as rainfall or soil mineral N concentrations. In this study, none of
the measured environmental or soil variables were able to explain the
variation in emission factors. The second point is that microbial pro-
duced emissions for each individual event are influenced by a wide
number of factors and vary with a log-normal exponential behavior,
potentially emitting an unpredictably large quantity of N2O over sev-
eral hours that could be greater than cumulative emissions for several
weeks afterwards, or alternatively, nothing at all under what appears to
be similar conditions (as observed in Skiba et al., 2013, and Levy et al.,
2017). As such, the application of usual meteorological and environ-
mental conditions used to predict N2O emissions at a Tier 2 level is
unlikely to reduce uncertainties at the regional or national scale any
more than the application of a Tier 1 inventory, as predicted in Skiba
et al. (2012).

What is noticeable in our study, is that the EFs of different fertiliser
types have different probability density functions (pdfs), as demon-
strated by the contrast of AN and urea treatments (Fig. 6). With a large
number of experiments across the region of interest, these pdfs will
become more defined and may better represent the emissions expected
from a particular event than the default 1% EF suggested by the IPCC
report. The exact number of experiments required to accurately predict
a regional pdf is unknown, because of the difficulty of measuring the
exact soil conditions within the soil microsites were N2O is produced.

A comparison of the Bayesian and trapezoidal linear interpolation
methods show that they did not differ systematically, but the former
provides rigorous uncertainties when a limited number of data points is

available. In this respect, the Bayesian method has been a success, as
large uncertainties are provided when data varies significantly in time
and space, something which was not possible to assess when using
traditional trapezoidal linear interpolation method. However, care
should be taken when using the Bayesian method when flux measure-
ments are more temporally defined (i.e. auto-chambers and eddy cov-
ariance), as the log-normal fit becomes too constrained and uncertainty
estimates are no longer valid.

5. Conclusions

A Bayesian approach was used to calculate EFs and their associated
uncertainties from the application of nitrogen fertilisers in the form of
ammonium nitrate (AN), urea (Ur) and urea treated with Agrotain®
urease inhibitor (UI) at four grassland sites in the UK. The study reports
that the EFs observed after 11 separate events followed a variable log-
normal distribution, with mean reported values of 0.60 ± 0.63,
0.29 ± 0.22 and 0.26 ± 0.17% of applied N emitted as N2O for the
AN, Ur and UI treatments, respectively. The study found that EFs as-
sociated with AN were more likely to be larger than those of the urea-
based treatments, but there was no significant difference in overall
emissions of N2O between the Ur and the UI treatments. The Bayesian
method used in this study successfully provided uncertainty values in
cumulative fluxes of N2O that traditional trapezoidal linear interpola-
tion methods could not. In its current form, the method is limited to
cases where the emissions show a peak and decline following fertili-
sation, as expected from first principles.
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