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A B S T R A C T

Soil microbial biomass carbon (SMBC) and nitrogen (SMBN) are important indices of soil bio-fertility. While
intensively managed cropping systems can reduce microbial biomass, application of manure is a potential way to
rebuilt microbial biomass and improve soil functions. However, the responses of SMBC and SMBN to manure
application relative to mineral fertilizers (NPK) in Chinese cropping systems remains unclear. We conducted a
meta-analysis based on 103 peer-reviewed publications with 1448 paired observations to identify the degree to
which climate types, soil properties and agricultural managements regulate the responses of microbial biomass
to manure amendment relative to NPK. The results indicated that manure application increased SMBC, SMBN,
SMBC/soil organic carbon (SOC) and SMBN/soil total nitrogen (TN) by 40%, 55%, 16% and 21%, respectively,
across all the observations compared to NPK. SMBC/SMBN under manure amendment (6.58 in average) was
lower than that in NPK (7.86 in average). Manure-related factors, e.g. manure types, duration of application,
manure-C and N input rates, were the strongest regulators of the response of microbial biomass. Soil properties
and climates also contributed to considerable degrees of variation in microbial biomass response based on
variance partitioning analysis (VPA). Results of the random forest (RF) models showed that manure type, ap-
plication rate (manure-C and N input) as well as soil initial properties (SOC, TN and clay contents) were likely
the predominant factors controlling the response of microbial biomass to manure application. Our study in-
dicates that manure application can be an effective way to restore the loss of microbial biomass due to intensive
application of NPK, yet variations in response are determined by specific manure type, application rate, as well
as local conditions of climate and inherent soil properties.

1. Introduction

In order to meet the challenge of feeding 22% of the global popu-
lation with only 7% of its arable land area, mineral fertilizers have been
intensively applied in agricultural system for decades in China, which is
now the largest consumer of mineral fertilizers in the world (Liu and
Diamond, 2005; Zhang et al., 2015). Although the grain yield has been
highly elevated by application of mineral fertilizers, there are growing
evidences that unlimited application of mineral fertilizers has incurred
substantial environmental risks, including severe disruption of soil
physical properties (Idkowiak, 2004), increase in greenhouse gas
emissions (Zhang et al., 2013) and nutrient run-off (Miao et al., 2011),
and disturbance in soil microbial community (Postma-Blaauw et al.,

2010; Qiu et al., 2016). In consequence, in 2015, the Ministry of
Agriculture and Rural Affairs of the People’s Republic of China has
announced a ‘Zero Increase Action Plan’ for the utilization of mineral
fertilizer by 2020 across the nation (Liu et al., 2015). Implement of
alternative management to replace mineral fertilizer is hence necessary
to accomplish yield demand meanwhile mitigate environmental costs.

Soil microbes are crucial component in a large number of important
ecosystem processes, including decomposition (Gessner et al., 2010),
nutrient acquisition (Perelo and Munch, 2005; Perelo et al., 2006a,b),
carbon (C) and nitrogen (N) cycling (Manzoni and Porporato, 2009) as
well as soil formation (Rillig and Mummey, 2006) and C sequestration
(Six et al., 2006). Soil microbial biomass, often measured as microbial
biomass carbon (SMBC) and nitrogen (SMBN), is a key indicator of soil
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biological traits (Acosta-Martinez et al., 2008; Xu et al., 2008). Declines
in microbial biomass in arable soils relative to unmanaged ecosystems
are often observed because of the decreases in plant C input and hence
C availability in agricultural systems (Fierer et al., 2009). Excess ap-
plication of mineral fertilizer can further introduce negative effect on
soil microbial biomass due to soil acidification, changes in community
composition, and various chemical interactions (Treseder, 2008; Maly
et al., 2009). A 12–48% decrease in SMBC and SMBN by mineral fer-
tilizer application related to no fertilizer or the initial values of the
experiments has been reported (Bittman et al., 2005; Maly et al., 2009;
Qiu et al., 2016). In addition, recent meta-analyses have suggested that
the decrease in SMBC and SMBN resulted from increased mineral N
inputs ranged from 5.8% to 20% in unmanaged ecosystems (Treseder,
2008; Liu and Greaver, 2010; Lu et al., 2011). In contrast to conven-
tional mineral fertilizer, organic amendments such as manure can in-
crease C availability for soil microbes by delivering high rate of exo-
genous C into soil, which can be beneficial for enhancing microbial
biomass compared with mineral fertilizer application only (Jangid
et al., 2008; Neufeld et al., 2017). Pan et al. (2009) demonstrated that
manure application increased SMBC and SMBN by 13% and 49%
compared with application of mineral fertilizer. Therefore, manure
amendment could be an alternative solution for the problems of ex-
cessive application of mineral fertilizer meanwhile improving soil bio-
fertility and maintaining grain yield (Li et al., 2015; Pan et al., 2009).

Although c.a. 4.6 billion tons of manure is produced from livestock
sector each year, only a small proportion were applied to arable fields
due to high labor costs of collecting, transporting and applying manure
to cropland, disconnection and lack of appropriate storage and handling
facilities (Niu and Ju, 2017; Ma et al., 2010; Ju et al., 2005). Given the
key role of soil microbes in regulating multiple ecosystem processes and
the potential of manure to rebuilt microbial biomass and associated
ecosystem functions, it is of great importance to better understand the
magnitude of microbial biomass responses to manure. Previous study
has suggested that after 10 years organic amendment soil microbial
biomass could be recovered to a near pre-cultivation level (Wu et al.,
2004), but responses of microbial biomass can be specific depending on
other management practice, manure type and abiotic factors such as
soil properties and climate (Liang et al., 2011; Zhen et al., 2014; Deng
et al., 2006; Gunapala and Scow, 1998; Jangid et al., 2008). There are
also considerable uncertainties in the magnitude of microbial biomass
responses to manure relative to mineral fertilizer under various en-
vironmental and management conditions. Up to now, there is however
no systematic synthesis of the independent single researches to compare
the effect of manure application on SMBC and SMBN with mineral
fertilizers that encompassing a range of agronomic managements, soil
types and climate conditions in China (Liang et al., 2011; Zhen et al.,
2014; Kallenbach and Grandy, 2011; Sun et al., 2014). It is therefore
pivotal to understand the relationships between the effect of manure
application on microbial biomass and various management and en-
vironmental factors in order to improve microbial biomass and restore
functions in intensive agricultural systems that are routinely fertilized
with mineral fertilizers at a national scale.

Thus, in the present study, we performed a comprehensive meta-
analysis to integrate previously published results on SMBC and SMBN
responses to manure amendment relative to agricultural systems that
receive only mineral fertilizers. Comprehensive information of man-
agement and environmental conditions that have potential influence on
microbial biomass were extracted to characterize how SMBC and SMBN
changes after manure application across major crop systems in China.
These variables were further categorized into three explanatory factors,
i.e. soil factors, farming practices and climate, and their contributions
to the variations in SMBC and SMBN responses to manure were parti-
tioned by variance partitioning analysis (VPA). Furthermore, a random
forest (RF) model was used to gain a mechanistic understanding of the
drivers of the variations in SMBC and SMBN responses to manure ap-
plication. Altogether the present study aimed to provide a predictive

and mechanistic understanding of the relative improvement in micro-
bial biomass by manure application across major intensively managed
cultivation systems in China.

2. Materials and methods

2.1. Data collection

To fully cover the research on microbial biomass in Chinese soils,
our meta-analysis was based on peer-reviewed articles published be-
tween 1990 and September 2017 using the online database Web of
Science (http://apps.webofknowledge.com/) and the China Knowledge
Resource Integrated Database (http://www.cnki.net/) for studies that
published in Chinese. Manure from different sources has processing
methods from fresh manure to compost and different nutrient contents.
In this study, we considered the following sources: swine (SW), sheep
(SP), poultry (PL), cattle (CT), horse (HS) and farmyard manure (FYM).
SOC and N content in SW is medium but it is higher in SP (http://www.
cnoa.com/). PL has a low C/N ratio and high N and cellulose con-
centrations (Mubarak et al., 2010) and the PL typically has high levels
of NH4

+ and NO3
− (Wang et al., 2004; Bernal et al., 2009). Organic

matter is more stable in CT (Velthof et al., 2000). And CT has a medium
C/N ratio, high dry matter, organic N contents and low NH4

+ (Lupwayi
et al., 2005). HS has high cellulose content (http://www.cnoa.com/).
Generally, FYM is a mixture of human and animal waste and household
garbage and so its nutrient content varies from year to year and the
nutritional composition and physicochemical properties of farmyard
manure are poor (Liu et al., 2010). Keywords that used in the literature
retrieval were manure with its sources, SMBC, SMBN, SOC and TN. Crop
types covered wheat, maize, rice, soybean and oilseed rape with dif-
ferent crop rotation patterns (wheat-maize, wheat-rice, wheat-soybean,
wheat-rape, rice-rape, rice-rice, maize, wheat, soybean, rice-rice-wheat,
etc.). The following criteria were used to select publications: 1) all
published results should be based on field experiments with a minimum
of three replications for each treatment, and 2) at least two types of
treatments must be involved: (a) balanced application of mineral N,
phosphorus (P) and potassium (K) fertilizers (NPK) and (b) manure
amendment alone (M) or combined with mineral fertilizers (NPKM).
We found a total of 103 publications that met the above criteria. We
focused on the dependent variables of SMBC, SMBN, SMBC/SOC and
SMBN/TN (focused variables). Because samples should be independent
in a meta-analysis, only the final observed values of the focused vari-
ables at one site were used if repeated measurements happened
(Gurevitch and Hedges, 1999; Tian et al., 2015). Within these pub-
lications we obtained 410 pairs of observations reported on SMBC, 332
pairs on SMBN, 394 pairs on SMBC/SOC and 315 pairs on SMBN/TN to
use for the meta-analysis.

Ten variables that are well known for affecting microbial biomass
were identified from each original study and compiled into the database
for analyses (Table 1; Appendix S1.). For instance, longitude and lati-
tude of experimental location can reflect climate types, which are pri-
mary factors influencing microbial growth. Soil properties such as soil
acidity (Fierer and Jackson, 2006), soil texture (Muller and Hoper,
2004) and initial TN and SOC contents (Kallenbach and Grandy, 2011)
can have strong influence on microbial community. Other variables
such as types of applied manure, duration of the practice (Maul and
Drinkwater, 2010) and land use types (Jangid et al., 2008) that would
influence microbial growth and their activities were also included.
These ten variables were further classified into different levels (Table 1)
to assess the relative changes of the focused variables at each level.
Experimental durations and rates of manure-C and N inputs were di-
vided different levels to make the variable distributed as evenly as
possible. The classification of SOC and TN was based on the standard
operating procedure of the second national soil census (NSCO, 1979). In
those studies that SOM content was reported instead of SOC, SOM was
converted to SOC using the van Bemmelen factor of 0.58 (Bemmelen,
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1890). The division of soil texture was based on the Chinese soil texture
classification (Xiong and Chen, 1986).

2.2. Meta- analysis

The natural logarithm of the response ratio (RR) was used as the
effect size of this meta-analysis which can reflect the size of the mag-
nitude of the focused variable in the investigated treatment (NPKM or
M) compared to a reference treatment (NPK) (Nony et al., 1995) and
calculated by Hedges et al. (1999):

=RR x xln( ¯ ¯ )t c (1)

where the subscript of t and c represents the investigated treatment and
the reference treatment, respectively; and x̄ is a mean of variable x.

The percentages of change in SMBC, SMBN, SMBC/SOC and SMBN/
TN from manure relative to NPK were calculated by (eRR++-1)×100%
(Luo et al., 2006), where RR++is the weighted response ratio and
calculated (Hedges et al., 1999):
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where m is the number of the level for a given variable, ki is the number
of comparisons between manure and mineral fertilizers at the ith level,
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where ntand ncare number of samples in the treatment and the re-
ference, and SDt and SDc are standard deviation of the treatment and
the reference, respectively, which are extracted from the publications.
If only the standard error (SE) for the treatment and the reference was
given in a paper, then SD was calculated:

=SD SE n (5)
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Therefore, the 95% confidence interval (CI) of ( ++RR ) was given:

= ±++ ++CI RR S RR95% 1.96 ( ) (7)

If 95% CI for a given focused variable does not overlap with zero,
the treatment was considered to represent a significant increase (the
overall mean response ratio > 0) or decrease (the overall mean re-
sponse rati < 0) compared to NPK (P < 0.05). If it overlaps with
zero, the treatment was considered to have no significant impact on
that variable compared to the reference (P > 0.05) (Aloe and Weiss,
2015).

The METAWIN 2.1 software was employed for meta-analysis
(Rosenberg et al., 1997). Firstly, we calculated an overall response ratio
for all the paired observations (reference and treatment). Then, the
ratios were calculated at each level for each categorical variable. Fur-
ther, between-group heterogeneity (Qb) was examined for a given fo-
cused variable (Table 1) to assess the manure effects among the levels of
a given variable using the chi-square test. Categorical variable that
associated with significant (the value at P < 0.05) and large Qb values
are considered to have a better ability to predict variation in the overall
response ratio relative to other variables in the analysis.

2.3. Statistical analysis

2.3.1. Variance partitioning analysis (VPA)
VPA was used to analyze the contribution of farming practices, soil

factors, climatic conditions and their interactions to the focused vari-
ables. Farming practices consisted of total C and N input from manure,
manure types, practice duration and land use type. Climatic conditions
included the mean annual temperature (MAT) and the mean annual
precipitation (MAP) for each site, which were collected from the
nearest meteorological station (http://data.cma.cn/). Soil factors in-
cluded contents of SOC and TN, total phosphorus (TP), total potassium
(TK), available N (AN), available P (AP) and available K (AK), pH, soil
clay content, soil bulk density (BD) and soil C/N ratio. Collinearity
among these variables was diagnosed by SPSS before VPA analysis
(Liang et al., 2016). The analyses were conducted using the vegan
package in R program (R version 3.2.2, 2015).

2.3.2. Random Forest model
Over the last two decades the use of RF model has received in-

creasing attention due to the ensemble classification and regression

Table 1
A list of variables and the levels of each variable tested for significance as
predictors in SMBC, SMBN, SMBC/SOC and SMBN/TN response in the meta-
analysis.

Variable group explanation

Climate STM Subtropical monsoon climate
NTM Temperate monsoon climate
NTC Temperate continental climate

Type of manure SW Swine manure, composted and
uncomposted

SP Sheep manure, composted and
uncomposted

PL Poultry manure, composted and
uncomposted

FYM Farm yard manure composted and
uncomposted

CT Cattle manure, compost and
uncomposted

HS Horse manure, compost and
uncomposted

Experimental > 30 The number of years manure input
duration 25–30

15–25
5–15
<5

Land use type P Paddy soil
U-P Upland-paddy soil
U Upland soil

N rate > 200 Rate of manure-N input (kg N ha−1 yr−1)
100–200
<100

C rate > 4000 Rate of manure-C input (kg C ha−1 yr−1)
2000–4000
<2000

TN >2.0 (rich) Soil nitrogen content in surface soil
(0–20 cm)

1.5-2.0 (medium) g kg−1

0.75–1.5 (less)
< 0.75 (poor)

SOC >20 (rich) Soil carbon content in surface soil
(0–20 cm)

12–20 (medium) g kg−1

6–12 (less)
< 6 (poor)

Soil texture Sandy Sand content > 50%; Clay
content < 30%

Loam Sand content20–50%; Clay
content < 30%

Clay Sand content < 20%; Clay
content > 30%

Soil pH >8 (alkaline
soils)

Soil pH in surface soil (0–20 cm)

6–8 (neutral soils)
< 6 (acid soils)
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analysis (Belgiu et al., 2016). This algorithm generates a lot of trees but
eventually gives a single prediction with low bias and low variance
(Breiman, 2002; Liaw and Wiener, 2002). The RF classifier is composed
of combination of tree classifiers where each classifier is generated
using random vectors that are independent of the input vector sam-
pling, and each tree votes the most popular projective units to classify
the input vectors (Breiman, 2002). The result drawn from the algorithm
is considered as more accurate than any of the individual classifiers
making up the ensemble (Dietterich, 2002). In our study, we first se-
lected the factors that are significantly related to SMBC and SMBN
changes after manure application compared to NPK from the con-
tribution factors that used in VPA analysis by SPSS. Then we employed
these dataset (sites) and conducted the RF model to explore the sig-
nificantly related controlling factors for SMBC and SMBN changes in the
cropland in China. There are three important parameters needed for
producing forest trees: the number of trees to be generated in the forest
(ntree), the number of variables to be selected and tested for the best
split when growing the trees (mtry) and the minimal number of ob-
servations at the terminal nodes of the trees. We set 1,000 for ntree
according to previous published article (Colditz, 2015; Reese et al.,
2014) as a higher number will result in more stable estimates of vari-
able importance (Grimm et al., 2008). The mtry was usually the square
root of the number of input variables (Gislason et al., 2006). The third
parameter was the minimal observation numbers at the terminal nodes
of the trees (nodesize) and in our study the value was set to 5 for re-
gression RF. The RF uses the bootstrap repeated sampling method and
the out-of-bag data (OOB) as a test sample for RF. The Mean Square
Error (MSEOOB) was used to estimate OOB predictions accuracy (Liaw
and Wiener, 2002). Differences between observed and predicted value
were calculated with the mean percentage error (MPE), root mean
square error of prediction (RMSEP), and R2 to verify the RF model
(Liaw and Wiener, 2002; Wiesmeier et al., 2011). The MSE, MPE,
RMSEP and R2 were calculated as follows:
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where ẑi
B00 is the average of all OOB predictions, obsi is the ith value of

the measured dataset, predi is the predicted by RF models for the ith

value of measured dataset,ˆobs is the average of the measured dataset.
The RF models were conducted using the “RandomForest” packages
(Liaw and Wiener, 2002) in R program (R version 3.2.2, 2015).

3. Results

3.1. Distribution of SMBC, SMBN, SMBC/SOC and SMBN/TN

The normal distributions for content of SMBC and SMBN and ratio
of SMBC/SOC and SMBN/TN were shown in Fig. 1 (at P < 0.001
level). With manure application, mean contents of SMBC
(400.54± 18.21 mg kg−1; mean± 95% CI, thereafter) and SMBN
(61.24 ± 2.48mg kg−1) were both significantly higher compared to
that in NPK application (299.92 ± 13.45mg kg−1 for SMBC, and
40.99 ± 1.79mg kg−1 for SMBN). Meanwhile, manure application
significantly increased the mean ratios of SMBC/SOC (2.77 ± 0.11%)
and SMBN/TN (3.80 ± 0.14%) compared to that in NPK application
(2.52 ± 0.12% for SMBC/SOC, and 3.34 ± 0.15% for SMBN/TN).

3.2. Relationship between SMBC, SMBN and manure-C and N

There were significant correlations between SMBC and SMBN for
manure and NPK applications (Appendix S2.). The average of SMBC/
SMBN ratio was 6.6 for manure application and 7.9 for NPK. SMBC
content was positively correlated with annual manure-C input
(R2=0.05, n=197) and manure-N input (R2=0.02, n=298;
Appendix S3.). Similarly, SMBN content also had significant correla-
tions with annual manure-C input (R2=0.12, n=129) and manure-N
input (R2=0.11, n=222).

3.3. Variations in SMBC and SMBC/SOC response to manure application

Manure brought an overall 40% increase in SMBC compared to the
treatments with NPK application only (Fig. 2). All but two of the ten
variables (SOC and soil pH) described in Table 1 significantly affected
the variation in the response of SMBC to manure amendment (Table 2).
The variable that contributed the most to the variation in this SMBC
response was manure type. Application of cattle manure (CT) had the
strongest influence on SMBC with a 69% increase, whereas application
of farmyard manure (FYM) exerted no significant effect (7.4%) (Fig. 2).
Other types of manure had similar effect on SMBC responses (35–43%).
The response of SMBC to manure amendment generally increased with
increasing experimental duration as well as manure-C and N input.
Among all climate types, SMBC was less responsive to manure addition
in subtropical monsoon climate (STM; 29%) than in other climate types
(45–50%). SMBC in upland cultivated soil was more responsive to
manure application (48%) compared to other land-use types (22–33%).
The increase in SMBC under manure addition was higher in soils with
moderate TN content (1.50–2.00 g kg−1) than in soils with low or high
TN content. The response of SMBC to manure was comparatively less in
soils with clay content> 30% (32%) than in soils with less clay content
(32–50%). Overall manure amendment increased SMBC/SOC by 16%
compared to NPK application (Fig. 3). All ten variables significantly
affected the variation in SMBC/SOC response to manure amendment
(Table 2). Most types of manure that applied increased SMBC/SOC by
18–27%, whereas FYM application resulted in non-significant decrease
in SMBC/SOC (-8%). Manure application that lasted for more than 30
years had a significantly larger effect on SMBC/SOC (34%) compared to
others with less experimental duration (11–18%). The effect of manure
application on SMBC/SOC increased with manure-C and N input, but
this increase was significant only when manure-C and N input was
greater than 4000 kg C ha−1 yr−1 (50%) and 200 kg N ha−1 yr−1

(40%) with a minimum of a three-year experimental duration. The
largest positive effect of manure application on SMBC/SOC was ob-
served in NTM (25%) among all climate types. The increase in SMBC/
SOC by manure was greater where the contents of soil TN and SOC were
high. SMBC/SOC was most responsive to manure application in loamy
soils (24%) and where soil pH < 8 (18–21%).

3.4. Variations in SMBN and SMBN/TN response to manure application

Across all observations, manure application increased SMBN by
55% compared to application with NPK only (Fig. 4). All but three
(climate types, land use types and soil pH) of the 10 variables sig-
nificantly affected the variation in SMBN response to manure amend-
ment (Table 2). The effect of manure on SMBN was dramatically dis-
tinct among different manure types. Application of sheep manure (SP)
led to the greatest increase in SMBN by 169%, followed by horse
manure (HS; 118%), whereas FYM application resulted in a non-sig-
nificant decrease in SMBN by 7%. Manure application that lasted for
25–30 years resulted in the greatest increase in SMBN by 85% com-
pared to other experimental duration (40–52%). Similar to SMBC, the
response of SMBN to manure amendment increased in consistent with
manure-C and N input. The effect of manure application on SMBN was
significantly less in soils with high TN content of> 2 g kg−1 (34%) but
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greater where SOC content was higher than 12 g kg−1 (65–66%). SMBN
was less responsive to manure application in clay soils (43%) than in
loamy and sandy soils (66% and 68%).

Compared to NPK, manure application provided an overall increase
in SMBN/TN by 21% (Fig. 5). Four variables related to manure practice
and two of soil variables (TN content and soil texture) significantly
affected the variation in the response of SMBN/TN to manure amend-
ment (Table 2). SMBN/TN was significantly increased by application of
HS (85%), CT (27%) and swine manure (SW; 19%), while the others
had no significant influence. Inputs of manure-C and N input that were
greater than 4000 kg C ha−1 yr−1 and 200 kg N ha−1 yr−1 resulted in
significant increases in SMBN/TN by 108% and 84%, respectively. The
increase in SMBN/TN by manure application was the greatest in soil
with moderate TN content (39% at 1.5–2.0 g kg−1) and in loamy soils
(39%) among all soil types.

3.5. Controlling Factors of the variations in SMBC and SMBN response to
manure application

Results from the variable partitioning analysis showed that 54, 30,
59 and 62% of the variation in the responses of SMBC, SMBC/SOC,
SMBN and SMBN/TN, respectively, to manure amendment relative to
NPK application could be explained by soil factors, climates, farming
practices and their interactions (Fig. 6). Soil factors contributed the
most (35%) to the variance in the response of SMBC to manure appli-
cation, followed by climate (18%) and their interaction (13%), whereas
the variation in SMBC/SOC response was mainly explained by climate
(29%). The variation in SMBN response to manure can be explained by
soil factors (12%), climate (19%), and interactions between soil factors
and climate (30%) and between farming practices and soil factors
(44%). Soil factors and climate explained 23% and 13% of the variance
in SMBN/TN response to manure application, and the interactions of

Fig. 1. Normal distribution of SMBC (a and b; x: mg kg−1), SMBC/SOC (c and d), SMBN (e and f; x: mg kg−1) and SMBN/TN (g and h). The (a), (c), (e) and (g)
represent the NPK treatment, and the (b), (d), (f) and (h) represent the manure treatment. The solid curve is a Gaussian distribution fitted to frequency data. The
lowercase a, b above the solid curve represents that significance between different treatments.
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three categorized factors also accounted for a considerable amount of
the variance in SMBN/TN.

The independent variables that used in our RF models overall ex-
plained 42% and 32% of the variances in the responses of SMBC
(RMSEP=0.017) and SMBN (RMSEP=0.029) to manure application
relative to NPK application across major croplands in China (Fig. 7a and
b). According to the amplitude of increase in MSE, manure-N input, soil
TN content and manure were the most important factors affecting the
variation in SMBC response (Fig. 7c), whereas the controlling factors for
the variation in SMBN response all related to initial soil properties, i.e.
available N (AN) and SOC content, and bulk density (Fig. 7d). Besides,
the effect of manure-related factors, manure-N input for example, was
more significant on variation in SMBC than in SMBN (21% vs. 8%).

Fig. 2. Percent changes in soil microbial biomass carbon (SMBC) under dif-
ferent categories. Open circles with error bars denote the overall mean response
ratio and 95% CI, respectively. The 95% CI that do not go across the zero line
mean significant difference between treatment and reference (P < 0.05). The
value in parentheses represent independent sample size.

Table 2
Between-group variability (Qb) among observations (n) indicating their po-
tential as predictor variables of SMBC, SMBN, SMBC/SOC and SMBN/TN re-
sponse to manure application compared to mineral fertilized agricultural fields.

Categorical SMBC SMBN SMBC/SOC

variables n Qb n Qb n Qb n Qb

All studies 410 332 394 315
Climate 410 27.10 ** 332 2.45 392 17.39 ** 315 0.89
Manure type 352 58.73 ** 276 62.41** 337 20.88 ** 266 34.33**

Experimental
duration

402 34.79 ** 315 34.15** 380 14.50 ** 309 13.43**

Land use 409 38.20 ** 326 7.08 390 7.45* 311 3.75
N rate 36 47.99 ** 28 12.80** 40 9.18* 25 22.43**

C rate 35 12.71 ** 23 37.58** 35 11.20 ** 23 37.55**

TN 361 20.18 ** 321 22.14** 343 10.24* 309 13.13**

SOC 403 6.63 309 23.11** 388 8.90* 301 4.39
Soil texture 409 19.32 ** 328 18.51** 394 16.05 ** 311 16.01**

Soil pH 409 1.58 323 1.58 394 11.66 ** 311 0.66

* P < 0.05.
** P < 0.01.

Fig. 3. Percent changes in SMBC/SOC under different categories. Open circles
with error bars denote the overall mean response ratio and 95% CI, respec-
tively. The 95% CI that do not go across the zero line mean significant differ-
ence between treatment and reference (P < 0.05). The value in parentheses
represent independent sample size.

Fig. 4. Percent changes in soil microbial biomass nitrogen (SMBN) under dif-
ferent categories. Open circles with error bars denote the overall mean response
ratio and 95% CI, respectively. The 95% CI that do not go across the zero line
mean significant difference between treatment and reference (P < 0.05). The
value in parentheses represent independent sample size.
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4. Discussion

4.1. Overall response of soil microbial biomass to manure application

Numerous studies have reported that in agricultural systems appli-
cation of manure usually resulted in an increase in soil microbial bio-
mass, even though the response of microbial biomass can be highly
variable depending on soil types, management practices and climate
conditions (Esperschuetz et al., 2007; Lentendu et al., 2014; Linderman
and Davis, 2004; Parham et al., 2002; Plaza et al., 2004). In the present
study, we analyzed a total of 1448 comparisons between manure and
mineral fertilizers and found that manure application overall increased
both SMBC and SMBN by 40% and 55%, respectively, across major
cultivation systems in China (Figs. 2 and 4). This increase in microbial
biomass was higher compared to a globally increase in SMBC by 36%
and SMBN by 27% (Kallenbach and Grandy, 2011), suggesting that
manure amendment can be more beneficial for microbial communities
to recover from long-term and intensively application of mineral ferti-
lizers in conventional agricultural systems of China. Despite the fact
that manure is rich in readily available C, N and other macro- and
micro-nutrients that microorganisms require for their growth and ac-
tivities (Feikea et al., 2009; Gupta et al., 1992), there are also various
effects of manure that microbes can profit from. For instance, manure
application can maintain soil moisture and ease rapid changes in soil
temperature (Naeini and Cook, 2000), which helps to provide a stable
environment for soil microbes to growth.

Although there was convincingly positive effect of manure appli-
cation on microbial biomass relative to mineral fertilizer, the mean
SMBC of treatments with manure amendment (400.54 ± 18.21mg C
kg−1) is still not comparable to that in unmanaged ecosystems, e.g.
670.1 ± 27.9 mg C kg−1 in grassland soils in China (Zhao et al., 2017).
This suggests that other agricultural disturbances such as tillage may
restrain the potential recovery in microbial biomass by manure appli-
cation (Stark et al., 2007). Nonetheless, even a small increase in

Fig. 5. Percent changes in SMBN/TN under different categories. Open circles
with error bars denote the overall mean response ratio and 95% CI, respec-
tively. The 95% CI that do not go across the zero line mean significant differ-
ence between treatment and reference (P < 0.05). The value in parentheses
represent independent sample size.

Fig. 6. Variable partitioning analysis (VPA)
was used to analyze the effects of soil factors
(S), anthropogenic farming practices (P) and
climates (C) and their interactions on the var-
iance of SMBC (a), SMBN (b), SMBC/SOC (c)
and SMBN/TN (d) in the whole cropland in
China for the percentage change among
manure and mineral fertilization system.
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microbial biomass can have significant improvement in belowground C
and N cycling as well as associated soil functions. We found that the
ratio of SMBC to SOC was significantly increased in treatments with
manure application by 16% compared to that with only mineral ferti-
lizers (Fig. 3). SMBC/SOC ratio could reflect the efficiency of the con-
version of exogenous C input into microbial biomass C (Anderson and
Domsch, 1989; Sparling, 1992) and consequently microbial residues,
which are considered as the primary C-containing constituents con-
tributing to the stable SOC pool (Liang et al., 2017). Therefore, appli-
cation of manure instead of mineral fertilizer alone has a great potential
in improving both bio-fertility and C sequestration for major agri-
cultural systems in China.

4.2. Driving factors of microbial biomass responses to manure application

We found that the responses of microbial biomass to manure inputs
are highly complex due to variations in factors related to climate con-
dition, management practices and initial soil environment. Results from
the VPA analysis suggested that both climate and soil factors imposed
considerable degrees of constraint on microbial biomass responses to
manure application, whereas the contribution of farming practices did
not reach a significant level (Fig. 6). However, manure-related factors
were proved crucial for microbial biomass, especially SMBC responses
to manure application (Fig. 7). It is possible that the magnitude of the
effect of manure-related factors was counteracted by land-use type,
which was also included as the farming practice factor but with rela-
tively smaller influence (Table 2). In addition, the effect of farming
practices could be overshadowed by soil and climatic factors, e.g. air
temperatures and precipitation, due to their primary control on the
accumulation of both above- and belowground biomass and hence
microbiological processes (Li et al., 2014; Moore and Lobell, 2015),
which would consequently constrain the response of microbial biomass
to manure application.

4.2.1. Farming practices
Manure-related factors, especially manure type and application rate

(C and N input), imposed the greatest impact on the magnitude of how
microbial biomass responses to manure application relative to mineral
fertilizer (Table 2; Fig. 7). Application of cattle manure resulted in the
greatest increase in SMBC (68%) among all type of manure, which was
in consistent with a recent global meta-analysis (Kallenbach and
Grandy, 2011). Whereas application of farmyard manure did not lead to
significant responses in both SMBC and SMBN as was previously ob-
served (Carpenter-Boggs et al., 2000; Parham et al., 2003). The diver-
gence in the response of microbial biomass to different manure that
applied could be closely related to the bio-chemical composition of
manure. In general, manure that comprises of larger proportion of low
molecular weight C such as sugar and water-soluble C are easier for
microbes to utilize than those with high contents of water-insoluble C
(e.g. cellulose) or lignin (Valenzuela-Solano and Crohn, 2006). The
relative high polyphenols content and C/N ratio in farmyard manure
(Ghoshal and Singh, 1995) makes it a low-quality source for microbes
to profit from. In addition to C availability, different N forms that
manure contained can also lead to the variation in the response of
microbial biomass to manure application. For example, contents of
NH4

+ and NO3
− were typically higher in poultry manure compared to

cattle manure (Zhou et al., 2013). Application of poultry manure can
therefore result in high NH4

+-N concentration in soils, which may
cause cyto-toxicity in microbes, suppress enzyme activities, and de-
crease C use efficiency (Lorenz, 2006; Geisseler and Horwath, 2010).
These all could attenuate the positive effect of poultry manure appli-
cation on soil microbes, leading to a less increase in SMBC compared to
cattle manure across China or at a global scale (Kallenbach and Grandy,
2011).

In addition to manure type, the duration of manure application also
imposed a significant impact on the variation in the response of mi-
crobial biomass (Table 2). We found that the magnitude of positive
effect from manure application on SMBC was greatest where the
practice lasted for more than 30 years (Fig. 2), which was similar with
previous studies that reported the longer the practice lasted, the greater
impact manure had on SMBC and SMBN (Bossio et al., 1998; Lundquist
et al., 1999). Long-term application of manure can help to rebuilt soil

Fig. 7. Relative importance of independent variables for controlling SMBC (a), SMBN (c) changes after manure application as determined using random forests (RF)
models and the performance of random forests models for detecting controlling factors of SMBC (b), SMBN (d) change in the croplands in China.
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environment that is favorable for microbes by improving soil pH, sub-
stantial supply of soil available C and N, and creating well-ventilated
conditions beneficial for rapid decomposition of manure and crop re-
sidues that will provide energy for the turnover of soil microbes (Ellmer
et al., 2015; Haynes and Naidu, 1998; Zhou et al., 2017a).

Land-use type, as a well-known factor influencing microbial com-
munity (Jangid et al., 2008), had significant impact on the variation in
the response of microbial biomass to manure application (Table 2), yet
its impact was relatively weak compared to that of manure-related
factors. Our results indicated that SMBC and SMBN are relatively re-
sponsive to manure application in upland soils among all land use
types. Cropping systems and land management practices can be diverse
under different land use types, which could affect the amount and
quality of C that returned to soils (Wardle, 1992; Jangid et al., 2011),
the decomposition rate of crop residues and manure (Singh et al.,
2007), and the utilization of N by microbes (Baijukya et al., 2006;
Kushwaha et al., 2000). In addition, land use types can differentially
affect edaphic properties such as soil texture, soil C and N availability,
pH and microclimate, which can influence physical and metabolic niche
diversity in soils (Lauber et al., 2008), thereby resulting in different
composition of microbial communities. Besides, manure amendment
may enhance soil aggregation in upland soils and thus improve aerobic
metabolism (Fenchel and Finlay, 1995), which is more efficient in
converting soluble C into microbial biomass compared to anaerobic
metabolism (Picek et al., 2000).

4.2.2. Climate types
The response of SMBC to manure application was distinct among

different regions of China with varying climatic conditions (Table 2,
Fig. 4). Previous studies on geographic distribution of microbial bio-
mass suggested that aboveground productivity contributes a great
proportion to the variation in SMBC among different biomes (Wardle,
1992; Fierer et al., 2009). In agricultural systems, however, application
of fertilizers and irrigation, as well as controlled crop management, can
artificially regulate productivity to similar levels (Kallenbach and
Grandy, 2011). Therefor the regional variation in the response of mi-
crobial biomass to manure application might be related to direct in-
fluence of climate on microbial growth rate instead of plant pro-
ductivity. Higher temperature and larger amount of precipitation may
generally create favorable conditions that are more conducive to the
growth of soil microbes. Previous studies also concluded that soil water
content was one of the major determinants of soil microbial community
composition (Drenovsky et al., 2004). We accordingly anticipated a
strong positive response of microbial biomass in region with subtropical
monsoon climate (STM), because the higher topsoil temperature and
moisture content in STM could increase the availability of C and N and
thus improve the growth of microbial biomass (Zhou et al., 2017b).
However, our results showed that SMBC was less responsive to manure
application in STM compared to higher latitude regions with cooler
temperature (Fig. 4). It is possible that under the subtropical cropping
systems where climate is not the limiting factor, growth of microbes can
be constrained by other factors such as higher turnover rates of both
newly entered C and the standing microbial biomass (Zech et al., 1997;
Santruckova et al., 2000) and enrichment in iron oxide (Bond-Lamberty
and Thomson, 2010; Keener et al., 2000).

4.2.3. Soil factors
We found that the response of microbial biomass to manure appli-

cation was closely related to the initial levels of SOC, TN and clay
content in soils (Table 2; Fig. 7). SOC and TN contents are often con-
sidered important indicators of substrate availability and stoichiometry
that could directly affect SMBC and SMBN (Li et al., 2015). As such, our
results showed that the response of microbial biomass to manure ad-
dition was comparatively lower in soils with relatively low SOC con-
centration. Soils with higher clay content typically have stronger che-
mical protection on labile C, limiting its accessibility for microbes to

utilize (Six et al., 2000). In accordance, we found that in clay soil the
increases in SMBC and SMBN were below the overall mean (Fig. 2 and
4), indicating that the effect of manure application on microbial bio-
mass relative to mineral fertilizers was depressed by high clay content
(> 30%) in soil. Previous studies also suggested C sources in newly
added manure were better protected from attacking by microorganisms
in clay soils than in sandy or loamy soils (Franzluebbers et al., 1996;
Gul et al., 2015; Hassink, 1994). In addition, soils with high clay con-
tent can have higher exchange capacity, which could lead to a slow
decomposition of the added manure (Thomsen et al., 2001) and hence
limited effect on the increase of microbial biomass.

Assessing the response of microbial biomass to manure application
in major cropping systems across China are difficult because the area is
in particular large with intensive human activities. Although we chose
the factors that could be more relevant to the variation in SMBC and
SMBN responses to manure application, the explanatory power of
random forest model was not high. There are many factors that may
affect the degree of explanation, such as method of manure stacking
and application, farmer’s cultivation habits and experiences, as well as
sampling time of the studies. In addition, different crop types have
distinctive root exudates which can affect the SMBC and SMBN and
land-use type with different crop types could best predict shift in mi-
crobial community composition (Lauber et al., 2008). Thus, better as-
sessment of the effect of manure application on microbial biomass
across major cropping systems of China requires for more detailed
studies related to agricultural management method in the future.

5. Conclusion

In the present study, we conducted a meta-analysis to investigate
the response of microbial biomass to manure application relative to
mineral fertilizers across major cropping systems in China. Our results
show that there are substantial increases in SMBC (40%), SMBC/SOC
(16%), SMBN (55%) and SMBN/TN (21%) after manure amendment
compared to those with mineral fertilizer application. The variation in
the response of microbial biomass to manure application is mainly at-
tributed to manure-related factors as well as local climate conditions
and inherent soil properties. Among the chosen variables, manure type
had the strongest impact on SMBC, with greatest response in systems
receiving cattle manure but insignificant response in systems receiving
farmyard manure. Soils with relatively low SOC and TN content, and
high clay content can constrain the positive effect of manure applica-
tion on microbial biomass. While there are certain challenges in
managing manure input, e.g. maintaining crop yield and reducing en-
vironmental risks, implement of manure application can compensate
some of the negative effect of intensively fertilized systems by im-
proving soil microbial biomass and associated ecosystem functions.
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