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Abstract

BACKGROUND: The reliance on and extensive use of pyrethroid insecticides have led to pyrethroid resistance in pollen beetle
(Meligethes aeneus). Widespread adoption of best practice in pollen beetle management is therefore needed. Decision support
systems (DSSs) that identify the risk period(s) for pest migration can help to target monitoring and control efforts, but they
must be accurate and labour efficient to gain the support of growers. Weather data and the phenology of pollen beetles in 44
winter oilseed rape crops across England over 4 years were used to compare the performance of two risk management tools: the
DSS proPlant expert, which predicts migration risk according to a phenological model and local weather data, and ‘rule-based
advice’, which depends on crop growth stage and a temperature threshold.

RESULTS: Both risk management tools were effective in prompting monitoring that would detect breaches of various control
thresholds. However, the DSS more accurately predicted migration start and advised significantly fewer days of migration risk,
consultation days and monitoring than did rule-based advice.

CONCLUSION: The proPlant expert DSS reliably models pollen beetle phenology. Use of such a DSS can focus monitoring effort
to when it is most needed, facilitate the practical use of thresholds and help to prevent unnecessary insecticide applications and
the development of insecticide resistance.
© 2015 Rothamsted Research Ltd. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical
Industry.

Supporting information may be found in the online version of this article.
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1 INTRODUCTION
Pesticide stewardship in the management of pollen beetles
(Meligethes aeneus F.) in oilseed rape (OSR) (Brassica napus L.) has
become an increasingly urgent issue in light of the threat posed by
insecticide resistance.1 – 4 This risk and its potential consequences
for farm incomes are accentuated in Europe by increased produc-
tion of the crop; total European Union production of rapeseed
increased from 18.9 million t in 2008 to 21.0 million t in 2013
(Eurostat, http://epp.eurostat.ec.europa.eu).

Good decision support is an important element of integrated
pest management strategies, and the adoption of these strate-
gies, where available, is encouraged in Europe as part of the
EU Directive to promote the sustainable use of pesticides
(2009/128/EC; effective since 1 January 2014). Decision sup-
port systems enable growers and advisors to determine levels of
risk to the crop, monitor appropriately to assess pest abundance
and take action if necessary, based on thresholds. Here we seek
evidence that use of a web-based DSS system can improve risk

assessment for pollen beetle management in winter oilseed rape
(WOSR).

Pollen beetles cause damage to flower buds by feeding in them,
resulting in bud abscission and loss of yield.5,6 They are the major
target of spring-applied insecticides,7 yet data exist to suggest
that insecticide treatment for pollen beetles is in marked excess of
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the frequency with which their populations reach control thresh-
old levels. According to a UK survey in 2008 by CropMonitorTM

(http://www.cropmonitor.co.uk/wosr/surveys/wosr-sprPest_
gyb08.cfm), the lower control threshold of 5 beetles plant−1 was
breached at only one of 48 WOSR fields sampled across England
and Wales, and the standard 15 beetles plant−1 threshold was
never attained at these sites. However, in the same year, an aver-
age of 0.3 insecticide applications per field were targeted against
pollen beetles in oilseed rape in Great Britain.8 It appears that
many growers may apply prophylactic ‘insurance’ sprays, rather
than following advice for monitoring and treating according to
thresholds. This is probably largely due to the extended period
over which monitoring is required (immigration can occur over
a period of about 3 weeks) and the perception that the recom-
mended monitoring procedure is laborious. According to the
rule-based advice current in the United Kingdom at the time of
this study, growers were recommended to monitor the number
of pollen beetles per main shoot at the headland and midfield
during the bud stage, when crops are susceptible to damage.9,10 It
was advised that pollen beetles fly at air temperatures of 15 ∘C or
above and migrate to crops in March and April, and this was the
only guidance by which to focus crop monitoring.

Not only is rule-based advice that relies on a simple temperature
threshold likely to lead to an excessive requirement for monitor-
ing, it is also likely to take insufficient account of the significant
factors governing the timing of migration. The 15 ∘C flight temper-
ature threshold advised in the United Kingdom9,11 accords with the
generally accepted threshold for mass migration of pollen beetles
to winter oilseed rape crops in Europe (e.g. Fritzsche12), but sig-
nificant migration has been reported at lower air temperatures.13

Šedivy and Kocourek14 reported that mass flight could occur at
temperatures above 13.5 ∘C. Ferguson et al.15,16 found evidence
for pollen beetle flight at 12 ∘C within a field plot of WOSR and
at 10.9 ∘C in a laboratory bioassay. This suggests that other fac-
tors such as wind speed, insolation or precipitation may interact
with air temperature to influence the microclimate experienced by
pollen beetles in field conditions.17

Decision support systems (DSSs) for pest management are
computer-based information systems that assist the grower in
decision-making in crop protection. They may incorporate models
of pest phenology and/or damage risk, are parameterised by mul-
tiple variables, and they generate risk assessments and other infor-
mation upon which the grower can act. When implemented effec-
tively, they can improve crop protection and minimise the input
and cost of pesticides.18 A DSS that accurately identifies the period
of risk by modelling the dynamics of the population of pollen bee-
tles local to the crop could allow monitoring to be more accurately
timed and therefore less onerous. This could increase the use of
thresholds and lead to reductions in unnecessary insecticide treat-
ments and in selection for insecticide resistance.19

‘proPlant expert’ (http://www.proplantexpert.com) is a
web-based DSS developed in Germany that alerts the user to
the start of pest migration and its progress. It provides local 3
day forecasts of pest migration risk and indicates days when crop
monitoring is needed. proPlant expert’s forecasts are based on
phenological models developed from historical data on pest abun-
dance in crops and a sophisticated use of weather variables.17,20

The model for pollen beetles is driven by daily records of air
temperature, rainfall, sunshine and wind speed, automatically
downloaded from local meteorological stations. proPlant expert is
widely used commercially for WOSR in Germany, Austria, Belarus,
the Czech Republic, France, Poland and Sweden, and output

from its pollen beetle model has recently been made available in
the United Kingdom at http://www.bayercropscience.co.uk/ (see
also Ferguson and Cook21). It is currently the only commercially
available phenological-model-based DSS for pollen beetles in
Europe.

Here we report on a 4 year study to compare the performance of
simple rule-based advice and a phenological-model-based DSS in
relation to pollen beetle management, taking as a model system
the current rule-based recommendations in the United Kingdom
and the proPlant expert DSS. Weather data and the phenology of
pollen beetles on sticky traps and in winter OSR crops across cen-
tral and eastern England were used to compare the accuracy with
which these two risk management tools identified migration risk,
the intensiveness of consultation required and the crop monitor-
ing effort that each advised. We use three notional control thresh-
old levels of pollen beetle numbers as benchmarks (two, five and
15 beetles per main raceme), reflecting the range of control thresh-
olds currently recommended in different European countries.6,22

2 EXPERIMENTAL METHODS
2.1 Field observations
The phenology of the beetles on winter oilseed rape crops in
spring was assessed on a total of 169 commercially managed fields
in the United Kingdom during March to early May in 2008–2011,
as part of a project to develop an integrated pest management
strategy for the control of pollen beetles.23 Pollen beetles were
regularly monitored at each field by counting on plants and/or
yellow sticky traps. Beetles on plants were counted on ten main
racemes equally spaced along each of two 30 m transects into the
field at the upwind and downwind edges of the crop (relative to
the prevailing west-south-westerly wind). Yellow sticky traps were
placed 3 m into the crop at the upwind and downwind sides of
the field, facing out of the crop. The growth stage of the crop
was recorded at each assessment according to the BBCH scale
of Lancashire et al.24 Much of the monitoring programme was
undertaken by volunteer farmers and advisers, and the intensity of
monitoring at each site was determined by the commitment they
were able to make.

For this study, a subset of 44 fields in eastern and central England
were chosen (two, ten, 12 and 20 fields in 2008, 2009, 2010 and
2011, respectively) (supporting information Fig. S1). These fields
were selected because pollen beetles were monitored both on
plants and on sticky traps approximately twice weekly during
the green-to-yellow bud stage (BBCH growth stages 51 to 59),
the period during which WOSR is susceptible to pollen beetle
damage.5,11 For each field site, the mean number of pollen beetles
per plant was calculated for each monitoring date and compared
with the two spray thresholds that were advised in the United
Kingdom until 2011 (5 and 15 beetles plant−1).9,10 An additional
threshold of 2 beetles plant−1 was included to reflect the lower
range of thresholds in current use in European countries.6,22

The frequency of monitoring requested was minimised (to twice
weekly) in the interests of encouraging wide participation of vol-
unteers, and it was therefore necessary to estimate some phe-
nological parameters. The period when plants in each field were
at the bud development growth stages (51 to 59), delimiting
the period when plants are at risk of pollen beetle damage, was
estimated by interpolation from growth stage data recorded on
the twice weekly monitoring dates, taking into account the pro-
gression of growth stages at other sites in the same year. It was
assumed that any breach of a pollen beetle threshold took place on
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the monitoring date on which it was observed. This conservative
assumption is independent both of the risk management tool used
(rule-based advice or DSS) and of the weather data on which they
were based. Any consequent delay in the recognition of a thresh-
old breach is likely to affect the performance assessment of each
management tool equally.

2.2 Weather data
Weather data were obtained from the UK Met Office or from
farmer-operated meteorological stations within 1–80 km (average
16 km) of each sampled field. The proPlant phenological model
requires daily measurements of minimum and maximum air tem-
perature (∘C), average air temperature (∘C), rainfall (mm), sunshine
(h) and average wind speed (m s−1).

2.3 Risk management tools
2.3.1 proPlant expert DSS
The standard version of the proPlant model marketed in Europe in
2011 was used throughout this study. proPlant expert’s web-based
user interface provides a graphical display of its model output,
showing forecasts of pollen beetle migration risk and weather data
for the day the system is consulted and for the following 2 days
(Fig. 1). proPlant expert is updated daily with forecast and recorded
weather data, and the model’s output for the previous month is
shown in the same graphic as the forecast. The ‘migration bar’
carries information on whether each day falls within the migration
period for the insect and indicates the degree of risk of pollen
beetle migration into WOSR crops using a traffic-light system of
green, yellow and red dots, signifying moderate, good or optimal
migration conditions, respectively (Fig. 1). For this study, days
when it is recommended that the crop should be monitored are
indicated by a vertical blue line beneath the migration bar. The line
is accompanied with an estimate of the percentage of the pollen
beetle population that has migrated from overwintering sites to
date. This information is intended to allow the user to estimate
the potential magnitude of any further migration, relative to the
number of beetles already in the crop, and is provided via another
menu in some commercially available proPlant expert versions.
proPlant expert advises that monitoring is necessary only on days
with good or optimal migration conditions, and that monitoring
should start on the day with the first yellow or red dot. Thereafter,
if a contiguous series of days with good or optimal migration
conditions occurs, monitoring is needed every third day and on
the last day in the series.

2.3.2 Rule-based advice
The rule-based advice against which the proPlant expert DSS was
compared was that available to UK growers during the period of
the study, i.e. that WOSR crops are at risk at bud stage, before
flowers are open, and that pollen beetles start to fly at 15 ∘C.9,10

2.4 Assessment and comparison of risk management tools
The performance of the two risk management tools was compared
for each of the three selected control thresholds (2, 5 and 15 bee-
tles plant−1) separately. For each site and for each risk management
tool, the dataset was delimited by the period between growth
stage 51 (or the start of field monitoring if later) and the day any
breach of threshold would have been detected had the advice
of the management tool been followed. If no threshold breach
was detected, the whole period from growth stages 51 to 59 was

included. Observations following any spring insecticide applica-
tions were excluded from the analysis.

Most assessments and comparisons of the two management
tools were made a posteriori, using known pollen beetle phenol-
ogy and known weather data. This enabled selection of the sub-
set of sampled sites with sufficient pollen beetles for analysis and
indicated the locations for which weather records were needed.
An analysis of the performance of the two management tools in
real time was also made. Each day from 2 March to 21 April 2011,
3 day forecasts of weather parameters were obtained for the UK
Met Office Bedford site. These parameters were used to provide 3
day proPlant expert forecasts of pollen beetle migration risk and to
indicate the likelihood of exceeding the 15 ∘C migration threshold
used in the rule-based advice. Using these data, the real-time per-
formance of each risk management tool in relation to field moni-
toring data from nine sites within 50 km of Bedford was assessed
and compared over 41 days from 10 March to 20 April 2011, the
period estimated by proPlant expert to encompass all pollen bee-
tle migration at Bedford. This approach takes into account the
uncertainty inherent in weather forecasts, as well as the accuracy
of the risk model. It was used both to assess the accuracy of risk
predictions and to validate the a posteriori approach applied to the
main dataset.

2.4.1 Performance criteria for comparisons between risk
management tools
Several performance measures were compared for ‘rule-based
advice’ and for the proPlant expert DSS:

i Effectiveness in prompting monitoring that would have led to
detection of breached control thresholds.

ii Timeliness in prompting the detection of these threshold
breaches.

iii Ability to warn of the start of migration. This was assessed by
comparing the proportion of sites where migration risk was
advised prior to or coincident with the first beetles in field
samples.

iv Accuracy of predicted migration risk in comparison with assess-
ments of risk made using the risk management tool a posteriori,
using known weather data.

v Number of days when significant migration risk, forecast consul-
tation or crop monitoring were advised.

a Migration risk. The number of days of significant pollen beetle
migration risk that were advised after the start of growth
stage 51 and prior to each threshold breach (or until the
end of growth stage 59) was counted. Days with significant
migration risk were taken to be all those with a maximum
temperature of ≥15 ∘C for rule-based advice and all those
with yellow or red dots for the proPlant expert DSS.

b Forecast consultation. The number of days when a weather
forecast consultation or a DSS forecast consultation was
advised during growth stages 51 to 59, up to the dates that
any threshold breaches would be detected, was counted.
For rule-based advice, all days during the susceptible plant
growth stage (51 to 59) were taken to be ‘forecast consulta-
tion days’, i.e. days when the weather forecast should be con-
sulted to determine whether the temperature was likely to
reach 15 ∘C. DSS forecast consultation days were designated
according to the following proPlant guidance: the DSS should
first be consulted on the day that crop growth stage reaches
51; thereafter, it should be consulted either every third day
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Figure 1. Example of proPlant expert’s output for pollen beetle migration using meteorological data from the Bedford (UK) weather station in 2011. The
bar and line graphs at the top illustrate weather data. The output of the migration model is given below the weather data on the migration bar, which
carries information on the likelihood of pollen beetle migration each day. The background colour of the bar indicates whether the day falls within the
migration period for the insect: pale grey indicates that it does not, and dark grey that it does (as seen throughout the period illustrated here). The degree
of risk of pollen beetle migration into winter oilseed rape crops is indicated on the migration bar using a traffic-light system of green, yellow and red dots
for each day, signifying moderate, good or optimal migration conditions, respectively. Days when it is recommended that the crop should be monitored
are indicated by a vertical blue line beneath the migration bar. The line is accompanied with an estimate of the percentage of the pollen beetle population
that has migrated from overwintering sites to date. When viewed in greyscale, green spots on the migration bar appear mid-grey, yellow spots are pale
grey and red spots are dark grey.

or on any day when a coloured dot on the migration bar
has been indicated by a previous consultation, whichever is
more frequent; the final proPlant expert consultation should
be made on the day after migration is predicted to be com-
plete or consultation should cease at flowering, whichever is
earlier.

c Crop monitoring. The number of crop monitoring days
advised during growth stages 51 to 59, up to the dates that
any threshold breaches would be detected, was counted.
For rule-based advice, all days with a maximum temperature
of ≥15 ∘C during growth stages 51 to 59 were taken to be
monitoring days. The DSS proPlant expert indicates spe-
cific monitoring days on its user interface (see Section 2.3.1
above).

2.4.2 Statistical analysis
The number of days of migration risk advised, the number of con-
sultation days advised and the number of monitoring days advised
prior to each threshold breach were analysed using bivariate
mixed models, accounting for variation between sites and years.
For the comparison of the real-time performance of rule-based
advice and the DSS, analysis of variance was used. Both analyses
were done using GenStat, v.14 (VSN International, 2011).

3 RESULTS
3.1 The dataset
The mean duration of the comparison of risk management tools
at the 44 sites included in the study was 17 days, and the mean
interval between field samples was 3.7 days (Table 1). The mean
distance between the sampling site and the nearest weather
station was 16 km, with a mode of 1 km and a range of 1–80 km
(Table 1). Although the 15 beetles plant−1 threshold was breached
at only one site, the 5 and 2 beetles plant−1 thresholds were

breached at 19 and 36 sites (43 and 82%), respectively; sufficient to
provide a good test of the performance of each management tool.

3.2 Relative performance of proPlant expert DSS
and rule-based advice
3.2.1 Effectiveness in prompting monitoring that would have led
to detection of breached control thresholds
The performance of both rule-based advice and the DSS in
prompting monitoring that would recognise breaches of thresh-
olds was very good. All breaches except for two at the 2 bee-
tles plant−1 threshold in 2010 would have been recognised using
either risk management tool. Even these two failures were proba-
bly an artefact arising from the experimental monitoring regime.
At Wicken, experimental monitoring detected that the threshold
had been breached on 12 April, a day when the maximum temper-
ature did not reach 15 ∘C and when neither management tool rec-
ommended monitoring; no further monitoring was recommended
before flowering. Had monitoring occurred on 10 April, in accor-
dance with either management tool, the threshold breach would
almost certainly have been detected then, as it was the last of three
days with temperatures above 15 ∘C. Similarly, at Broadmead field,
Woburn, proPlant expert advised monitoring on 28 April, a day
with optimum migration conditions. However, experimental mon-
itoring indicated that the threshold breach did not occur until 2
days later, by which time proPlant expert had advised that migra-
tion had ceased and monitoring was no longer necessary. Respon-
sive monitoring according to the recommendations of either man-
agement tool would almost certainly have prompted recognition
of the breached threshold.

3.2.2 Relative timeliness of threshold breach detection
The detection of breached thresholds would have been slightly
delayed using the DSS as opposed to rule-based advice (2 beetles
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Table 1. Summary of sampling site parameters

Year
Number of

sites
Mean kilometres to

weather station (range)
Mean days duration of risk

management tool comparison (range)
Mean days sample

interval (range)

2008 2 9 (1–17) 22 (21–23) 3.8 (3–6)
2009 10 1 (0)a 19 (8–33) 3.7 (1–7)
2010 12 15 (1–48) 21 (10–31) 3.8 (2–7)
2011 20 26 (1–80) 13 (5–19) 3.7 (2–7)
All years 44 16 (1–80) 17 (5–33) 3.7 (1–7)

a All sites were recorded to be either 1 km or <2 km from the sampling site, so there is no range.

plant−1 threshold: mean delay 0.68 days, SE 0.145, n= 34; 5 bee-
tles plant−1 threshold: mean delay 0.84 days, SE 0.158, n= 19; 15
beetles plant−1 threshold: 2 days delay, n= 1).

3.2.3 Ability to warn of the start of migration
The first records of pollen beetles on sticky traps or on plants in
experimental fields were consistently preceded by or accompa-
nied with a proPlant expert coloured-dot risk warning (Table 2).
Sticky traps caught beetles before they were found on plant sam-
ples at 91% of sites and were a better indicator of the start of migra-
tion than was the first day with a temperature of ≥15 ∘C. The latter
performed similarly to proPlant expert’s higher-level yellow or red
risk warnings of good or optimum migration conditions (Table 2).
The attainment of green bud stage, the growth stage when the
crop becomes susceptible to pollen beetle damage, was not a
good indicator of the start of pollen beetle migration (Table 2).

3.2.4 Accuracy of predicted migration risk in comparison
with assessments of risk made with the risk management tool a
posteriori, using known weather data
For each risk management tool, 3 day forecasts of good migration
conditions showed a high degree of accuracy compared with a
posteriori assessments using the same tool (Table 3). Their accu-
racy declined only moderately with prediction further into the
future. Over 92% of weather forecasts correctly predicted whether
air temperature would exceed 15 ∘C on the day that the forecast
was issued, declining to 85% for the forecast for 2 days ahead
(Table 3). Levels of accuracy of proPlant expert forecasts of good
migration conditions (yellow or red dot) were similar to the accu-
racy of temperature forecasts, consistent with its model’s use of
forecast weather data. There was no overall tendency either to
underestimate or to overestimate the likelihood of good migration
conditions, but both management tools tended to underestimate
the risk 2 days ahead (Table 3).

3.2.5 The number of days when significant migration risk, forecast
consultation or crop monitoring were advised
3.2.5.1 a posteriori analysis. The DSS proPlant expert consis-
tently advised significantly fewer days of pollen beetle migration
risk (yellow or red dots, ‘good’ or ‘optimum’ migration conditions,
respectively) than did rule-based advice (days with a temperature
of ≥15 ∘C). At the 2, 5 and 15 beetles plant−1 thresholds, pro-
Plant expert advised 9, 16 and 15% fewer risk days, respectively
(Fig. 2A). Significantly fewer days of forecast consultation (for the
DSS, consultation of proPlant expert’s migration risk forecast; for
rule-based advice, consultation of the weather forecast) were
advised by the DSS than by rule-based advice (28–30% fewer)
(Fig. 2B). The most marked difference in user input associated

with the two management tools was a significant reduction in the
number of days when crop monitoring was recommended by the
DSS, which advised 31, 43 and 51% fewer days monitoring than
suggested by rule-based advice at the 2, 5 and 15 beetles plant−1

thresholds, respectively (Fig. 2C).
Real-time analysis The comparison of real-time advice and a

posteriori advice at nine sites in the Bedford area in 2011 supported
the results of the main analysis and validated the a posteriori
approach. At almost every threshold level and both in real time
and a posteriori, the DSS proPlant expert advised fewer days of
good migration conditions, fewer days of forecast consultation
and fewer pollen beetle monitoring days than associated with
rule-based advice (Fig. 3). Differences between the two systems in
the real-time analysis matched or exceeded those in the a posteriori
analysis (Fig. 3).

4 DISCUSSION AND CONCLUSIONS
This study demonstrates that breaches of pollen beetle control
thresholds can be reliably identified both using rule-based advice
and using the web-based DSS proPlant expert. Moreover, by iden-
tifying a substantially reduced number of days for crop monitor-
ing, proPlant expert could markedly reduce the potential labour
cost of managing pollen beetle infestations according to control
thresholds and encourage DSS uptake. This could facilitate the use
of thresholds and lead to a reduction in unnecessary insecticide
sprays.

Both rule-based advice and the DSS proPlant expert performed
well in prompting monitoring that would detect breaches of spray
thresholds for pollen beetles in WOSR. However, at the 15 beetles
plant−1 threshold, proPlant expert DSS advised 29% fewer forecast
consultations than rule-based advice, and 15% fewer risk days
with good migration conditions. proPlant expert also specifically
identified a subset of migration risk days on which it advised
pollen beetle monitoring. These amounted to 51% fewer than the
number of days with temperatures of ≥15 ∘C, the flight threshold
temperature assumption underlying rule-based advice. This is
potentially of great significance for time-pressured growers and
crop consultants, for whom the labour cost associated with using
threshold-based advice is an important determinant of uptake
when set against the low cost of many insecticides.25 In practice,
it is unlikely that a user could or would monitor the crop every
day with temperatures of ≥15 ∘C, which we have assumed to
be necessary to implement rule-based advice fully. However, the
clear identification of a subset of optimal monitoring days by the
proPlant expert DSS is likely to give the user confidence that less
frequent crop monitoring can be effective and that it is practical
to use a DSS. The reduced need for user input is achieved without
loss of effectiveness in detecting breaches of threshold, and with
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Table 2. Ability of different indicators to warn of the start of pollen beetle migration

Percentage of sites where different indicators preceded or coincided with the first pollen beetles in samples

Pollen beetle sample type
First beetles found

on sticky traps
Date average crop growth
stage reached green bud

First occasion with
temperature of ≥15 ∘C

First proPlant dot
of any colour

First yellow or
red proPlant dot

First beetles found on plants 89.5 38.6 68.2 100.0 65.9
First beetles found on sticky traps – 22.7 63.6 100.0 52.3
Number of sites sampled 19a 44 44 44 44

a Sites are included in this comparison only if no pollen beetles were detected on sticky traps or on plants at the start of sampling.

Table 3. Accuracy of prediction of good pollen beetle migration conditions relative to a posteriori assessment of migration conditions

Rule-based advice: forecast
of maximum temperature of ≥15 ∘C

proPlant DSS: forecast of good migration
conditions (yellow or red dot)

Day 0 Day +1 Day +2 Day 0 Day +1 Day +2

% Predictions accurate 92.7 90.0 84.6 92.7 92.5 87.2
% Predictions overestimateda 7.3 7.5 5.1 2.4 2.5 0.0
% Predictions underestimateda 0.0 2.5 10.3 4.9 5.0 12.8
n 41 40 39 41 40 39

a Overestimated: the prediction forecast good migration conditions that did not occur when assessed a posteriori; underestimated: failure to predict
good migration conditions that did occur.

an average delay in threshold breach detection of less than a day
compared with rule-based advice. It seems likely that this small
delay would be accompanied with little additional risk to yield,
given the strong compensatory ability of the crop,26 – 28 and that
this would be outweighed by the benefit of using the DSS.

proPlant expert probably advises fewer days of migration risk
because its model (based on 20 years of phenological data) takes
into account more weather variables than the temperature-based
rule system we used in comparison. For example, a day might be
warm enough for migration but too windy. The proPlant expert
DSS also gives the user early warning of potential risk, indicat-
ing the earliest date that migration could start. In this study, pro-
Plant expert’s first migration risk warning consistently preceded
or accompanied the first pollen beetles sampled on crops or on
sticky traps. The date of the first proPlant expert dot preceded the
first beetle caught by an average of 9.5 days in this study (support-
ing information Table S1). This could assist forward planning for
growers and advisors, especially those using monitoring traps to
determine local movement of pollen beetles or their abundance.

The phenological model underlying proPlant expert allows the
DSS to provide not only warnings of good migration conditions
but also estimates of the progress of migration on the specific
days it recommends for monitoring. When combined with the
numbers of pollen beetles observed in field monitoring, this may
give the user confidence to target decision-making and control
activities more effectively. For example, if there are two beetles per
plant in a crop and migration is predicted to be 90% complete,
the risk of any new migration breaching, say, a 5 beetles plant−1

threshold must be less than if migration were only 40% complete.
The user might decide that the need for control is so unlikely
when migration is 90% complete that no further monitoring is
needed.

Most comparisons of the two systems presented here were made
a posteriori, using known weather data and known pollen beetle
phenology. The validity of this approach was confirmed by the

real-time study, in which the reductions in the number of days of
migration risk, forecast consultation and monitoring advised by
the DSS compared with rule-based advice matched or exceeded
the reductions found a posteriori. Weather forecast data for both
DSSs and for rule-based advice should be chosen to reflect the
conditions in the vicinity of the crop to which the advice is applied.
proPlant expert aims to use a network of weather stations so that
all crops are within 30 km of a station. Modern weather models
enable modelling of forecast data at a grid scale finer than that
of physical weather stations, enabling the interpolation of forecast
data at a truly local scale. In this study, the average distance
between weather stations and crops was 16 km. The two risk
management tools performed well in spite of the inclusion of 11
sites more than 30 km from their weather stations, including one
80 km away.

As expected, for both risk management tools, the accuracy
with which they forecast good migration conditions moder-
ately declined, relative to an a posteriori assessment, as they
predicted further into the future. However, they remained
85% or more accurate 2 days ahead. Modern weather fore-
casting models achieve high degrees of accuracy in predicting
temperature, the basis of rule-based advice on pollen bee-
tle migration risk. At 45 sites across the United Kingdom in
2010–2012, 86.6% of maximum temperature forecasts were accu-
rate to within ±2 ∘C on the second day of forecast (Met Office,
http://www.metoffice.gov.uk/about-us/who/accuracy/forecasts).
The degree of difference between proPlant expert’s predictive
advice in real time and its a posteriori advice at nine sites in 2011
was therefore consistent with the likely degree of inaccuracy in
the weather forecasts driving proPlant’s model.

In spring 2012, Bayer CropScience ran a trial version of proPlant
expert on their UK website as part of their stewardship of insec-
ticides, with positive feedback from a small sample of users.21

Wide introduction of proPlant expert to UK farmers and advis-
ers would help to increase the adoption of control thresholds
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Figure 2. Comparison of advice for pollen beetle management, derived
from rule-based advice and from the DSS proPlant expert using recorded
weather data a posteriori. (A) Number of days of migration risk advised up
to breaches of different thresholds (log10 days+ 1); (B) number of forecast
consultation days advised up to the date that a threshold breach would
be detected; (C) number of monitoring days advised up to the date that
a threshold breach would be detected (log10 days+ 1). Error bars= SED
for each pair of means; numbers above bars are backtransformed means.
Differences between each pair of means are significant (P < 0.001 in each
case); for days of migration risk, F2,39 = 48.6, 112.2 and 182.4 for 2, 5 and
15 beetles plant−1, respectively; for consultation days, F2,39 = 77.0, 94.5
and 146.1, respectively; for monitoring days, F2,39 = 131.3, 148.8 and 187.8,
respectively. rule-based advice; proPlant expert DSS.

into practice, encouraged by its labour efficiency and support for
decision-making. This should lead to better targeting of insec-
ticides and reductions in insecticide use, as in Germany,29 and
could make a significant contribution to managing insecticide
resistance.19

A recent study on temperature–activity relationships in pollen
beetles may provide scope to improve decision support models.16

Field studies have led to estimates of flight temperature thresh-
olds in the range 10–15 ∘C, but are likely to be influenced by
various meteorological and environmental variables and to be
subject to the sampling effect.12 – 15 Under controlled conditions
in the laboratory, Ferguson et al.16 showed that the relationship
between temperature and flight followed a sigmoid curve over
the range 6–23 ∘C rather than a simple threshold response. The
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Figure 3. Comparison of advice for pollen beetle management derived
from rule-based advice and from the DSS proPlant expert using recorded
weather data a posteriori or in real time. (A) Number of days of migration risk
advised (log10 days+ 1); (B) number of forecast consultation days advised;
(C) number of monitoring days advised (log10 days+ 1). Error bars= SED
for each group of four means; numbers above bars are backtransformed
means. Differences between each pair of means are significant; for days
of migration risk F2,24 = 5.7, 12.9 and 19.8 with p= 0.004, < 0.001 and
< 0.001 for 2, 5 and 15 beetles per plant, respectively; for consultation days,
F2,24 = 4.3, 9.8 and 28.6, respectively with p = 0.015,< 0.001 and< 0.001; for
monitoring days F2,24 = 11.3, 26.3 and 136.2, with p=< 0.001, < 0.001 and
< 0.001, respectively. rule-based advice a posteriori; rule-based advice
real time; proPlant expert DSS a posteriori; proPlant expert DSS real
time.

lower half of this curve agreed well with the range of temperatures
at which first flight has been reported in the field: 10% of beetles
flying in the range 10.9–12.5 ∘C and 50% of beetles flying in the
range 15.5–16.2 ∘C, similar to the 15 ∘C temperature at which
rule-based advice warns of significant migration risk.9,10 These
data could be used further to refine the accuracy of local-weather-
based phenological models for pollen beetle that underpin
web-based DSSs.

Temperature also influences the severity of bud damage when
pollen beetles arrive on the crop. Ferguson et al.16 demonstrated
strong positive relationships between temperature and the rates
of feeding and oviposition on OSR buds. Such data offer scope to
refine risk models to allow for the effect of weather on damage
rates. The ability of the crop to compensate for pollen beetle
damage is also influenced by temperature and other meteoro-
logical factors, as well as by growth stage27,30,31 and crop plant
density,28 and these factors should also be taken into account.
(Indeed, the most up-to-date advice available in the United
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Kingdom on risk assessment now builds plant density of the crop
into risk assessment,11 based on preliminary evidence that pollen
beetle risk is negatively related to plant density.28) Ultimately, a
risk model driven not only by automatically downloaded local
weather data and forecasts but also by plant growth stage could
provide information on the severity of damage risk, as well as of
migration risk, and might even offer a control threshold tailored
to local crop and weather conditions. To underpin such devel-
opments, more work would be needed to quantify the effects
of weather, growth stage and agronomic factors on winter OSR’s
ability to compensate for bud damage. In the long term, it may
even be able to predict the abundance and distribution of pollen
beetles by modelling their reproductive success the previous
year, predation and overwintering mortality and their movement
within the landscape.

For any DSS, reliability in offering accurate and effective timing
of monitoring and control while minimising sampling effort and
pesticide applications will remain key to engendering confidence
among farmers and to encouraging them to adopt control thresh-
olds more fully. A DSS based on a phenological model offers an
approach to fulfil this role in pollen beetle management.
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