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Simple measures of climate, soil properties and plant

traits predict national-scale grassland soil carbon
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Summary

1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertil-

ity and climate regulation, but the factors that control these stocks at regional and national

scales are unknown, particularly when their composition and stability are considered. As a

result, their mapping relies on either unreliable proxy measures or laborious direct measure-

ments.

2. Using data from an extensive national survey of English grasslands, we show that surface

soil (0–7 cm) C stocks in size fractions of varying stability can be predicted at both regional

and national scales from plant traits and simple measures of soil and climatic conditions.

3. Soil C stocks in the largest pool, of intermediate particle size (50–250 lm), were best

explained by mean annual temperature (MAT), soil pH and soil moisture content. The second

largest C pool, highly stable physically and biochemically protected particles (0�45–50 lm),

was explained by soil pH and the community abundance-weighted mean (CWM) leaf nitrogen

(N) content, with the highest soil C stocks under N-rich vegetation. The C stock in the small

active fraction (250–4000 lm) was explained by a wide range of variables: MAT, mean

annual precipitation, mean growing season length, soil pH and CWM specific leaf area;

stocks were higher under vegetation with thick and/or dense leaves.

4. Testing the models describing these fractions against data from an independent English

region indicated moderately strong correlation between predicted and actual values and no sys-

tematic bias, with the exception of the active fraction, for which predictions were inaccurate.

5. Synthesis and applications. Validation indicates that readily available climate, soils and

plant survey data can be effective in making local- to landscape-scale (1–100 000 km2) soil C

stock predictions. Such predictions are a crucial component of effective management strate-

gies to protect C stocks and enhance soil C sequestration.

Key-words: carbon sequestration, carbon storage, community weighted mean, particle size

fractions, pH, soil carbon, soil organic matter

Introduction

Soil carbon (C) stocks exceed those in both vegetation

and the atmosphere by 2–3 times and play a vital role in
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climate regulation and the maintenance of soil fertility

(Trumper et al. 2009), but these stocks vary by orders of

magnitude over regional and national scales, even within

a single ecosystem type (Bellamy et al. 2005; Carey et al.

2008). Presently, their mapping relies upon either proxy

measures that are often poor estimates of actual soil C

stocks, particularly at local scales (Jones et al. 2005;

Eigenbrod et al. 2010; Stevens et al. 2013), or direct mea-

surements, which are expensive and laborious (Bellamy

et al. 2005; Carey et al. 2008). Models are also used to

predict soil C, but these are typically used to make large-

scale or scenario-based projections and not fine-scale,

extensive soil C stock mapping (Schimel et al. 1994; Smith

et al. 2005).

Improved predictions of soil C stocks should be possi-

ble if the factors determining national, regional and local

distributions of soil C are better understood. It has long

been known that soil C is controlled by a wide range of

factors (Jenny 1941; Schimel et al. 1994) that can be

viewed as forming a ‘hierarchy of controls’ (D�ıaz et al.

2007; De Vries et al. 2012), which impact the basic pro-

cesses of plant growth and organic matter (OM) decom-

position and stabilization. At the apex of the hierarchy is

climate, which controls the metabolism of plants, fauna

and microbes (Burke et al. 1989;. Schimel et al. 1994;

Conant et al. 2011) and determines rates of rock weather-

ing (White 2005), thus influencing soil properties. The

next level in the hierarchy are soil abiotic properties, such

as texture and pH, which are largely controlled by under-

lying geology and processes of weathering (Jenny 1941;

White 2005), and which in turn influence soil C storage

by affecting plant growth and microbial activity (Pietri &

Brookes 2008; Schmidt et al. 2011). At a local level, soil

C storage is also strongly affected by land-use type and

intensity, which has an array of impacts on soil C cycling

(Conant, Paustian & Elliot 2001; Smith 2014). Moreover,

climate, soil properties and management all influence the

composition and growth of the vegetation, which in turn

affects the amount and chemistry of plant inputs, and the

turnover of soil organic matter (SOM; Cornwell et al.

2008; De Deyn, Cornelissen & Bardgett 2008; De Vries

et al. 2012).

Although it has long been acknowledged that the above

factors are the primary regulators of soil C storage, their

interdependence makes estimating their relative impor-

tance challenging. While some studies emphasize the

importance of the physical and chemical properties of soil

(Christensen 2001; Schmidt et al. 2011), there is also evi-

dence that plant community composition plays a signifi-

cant role (De Deyn, Cornelissen & Bardgett 2008). While

the importance of vegetation properties has long been rec-

ognized, and is represented in C models (Parton et al.

1993; Smith et al. 2005), they have typically been viewed

only from a tissue chemistry perspective, and the impor-

tance of other plant traits has rarely been considered. This

may be an oversight as plant species vary along a ‘fast–
slow’ traits axis, which distinguishes between fast-growing

species with rapidly decomposing litter and fast tissue

turnover times and their opposite (Reich 2014). Accord-

ingly, if species effects on ecosystem function are propor-

tional to their biomass (Grime 1998), then community

abundance-weighted means (CWMs) of species-level traits

may explain variation in soil C storage and sequestration

(Garnier et al. 2004). In line with this prediction, recent

work shows that CWM trait measures can explain ecosys-

tem-level variation in plant production, decomposition,

photosynthesis, respiration and soil C concentration, and

microbial community composition (Garnier et al. 2004;

D�ıaz et al. 2007; De Vries et al. 2012; Grigulis et al. 2013;

Everwand et al. 2014). While such studies point to the

tractability of scaling up from traits of individual plants

to ecosystem properties, the capacity of this approach to

predict soil C at spatial scales large enough to matter to

C stock management is unknown.

Another drawback of existing methods of soil C stock

prediction is that they typically predict only the total

amount of soil C and not its composition (Jones et al.

2005; Stevens et al. 2013). Soil C is diverse in its chemis-

try and interactions with soil particles, and as a result, soil

C particles vary greatly in their turnover rates (Trumbore

2000; Schmidt et al. 2011). Accordingly, soil C storage

and sequestration is determined not just by the total soil

C pool, but also by the half-lives of soil C components,

which can be categorized into pools of varying stability

(Schimel et al. 1994; Trumbore 2000). Such pools are

arbitrarily defined but are represented in modern soil C

models. Measuring them is inherently difficult, so we lack

reliable baseline data on the amount of C in these pools

for most of the Earth’s land surface. While isotopic tech-

niques (13C and 14C) can be employed (e.g. Trumbore

2000; Marschner et al. 2008), their use is impractical in

large-scale surveys given their high cost and requirement

for specialist equipment and personnel. An alternative

approach is to use more readily measurable size and den-

sity fractions, which broadly correspond to C turnover

times (Christensen 2001; Marschner et al. 2008). Fresh C

inputs are predominantly found in large particles that

constitute the active fraction, which turns over within

months to a few years, making it the source of most soil

C fluxes. In contrast, C found in particles of intermediate

size is typically humified OM that turns over on decadal

time-scales, while small and dense soil particles of physi-

cally and chemically protected soil comprise the stable C

fraction. This typically turns over on the scale of centuries

to millennia and is crucial to soil C sequestration (Schimel

et al. 1994; Trumbore 2000; Christensen 2001). While

relationships between many of the aforementioned drivers

and total soil carbon over large scales have been quanti-

fied previously (e.g. Burke et al. 1989), their relationship

with different C size fractions has received very little

attention (Evans, Burke & Lauenroth 2011). The relative

importance of the aforementioned drivers in determining

stable soil C may differ from those controlling rapid turn-

over fractions, and this could explain discrepancies

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1188–1196
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between studies of soil C drivers, which typically focus

upon total soil C.

In this study, we set out to identify which factors best

explain national-scale patterns of different C fractions in

the surface soil (0–7 cm) of grassland. This was done for

two reasons: (i) to identify the potential abiotic and biotic

(i.e. plant traits) determinants of these fractions at large

spatial scales and (ii) to assess the potential for using a

combination of simple plant trait and abiotic measures

that are readily available to surveyors to predict these soil

C stocks, that is to identify potential variables to be used

in pedotransfer functions and/or ecological production

functions for these fractions. To do this, we generated lin-

ear mixed-effects statistical models describing national-

scale patterns of surface soil C in different size fractions

across a wide spectrum of the soil and climatic conditions

found across England, and a broad range of grassland

types (including calcareous, mesotrophic, wet and acid,

Rodwell 1992). These quantified the relative importance

and predictive capacity of several abiotic factors and vari-

ous CWM plant traits with strong hypothetical or known

links with soil C cycling (De Deyn, Cornelissen & Bardg-

ett 2008). We hypothesized that stocks of the active soil C

fraction are best predicted by the drivers of plant inputs

to soil and the decomposability of these inputs (e.g.

climate and plant traits), while the stable fraction is better

explained by physical and chemical properties of soil (e.g.

soil texture and pH). We focussed on grasslands because

they cover c. 30% of the Earth’s land surface and store

c. 23% of the global terrestrial ecosystem C stock (Trum-

per et al. 2009). Moreover, in the United Kingdom (UK),

where our study was performed, they cover 36% of the

land surface and contain an estimated c. 32% of national

soil C stocks (Ostle et al. 2009).

Materials and methods

GRASSLAND SURVEY

This work was conducted as part of a broader investigation

aimed at quantifying relationships between agricultural intensifi-

cation, botanical composition and soil properties, including

microbial community composition, in temperate grasslands (De

Vries et al. 2012). We sampled from 12 English regions during

June and July 2005 (see Fig. 1). Within each region, there were

five sites, each containing three fields, but subject to three broad

management regimes: unimproved (U) and often designated as

Site of Special Scientific Interest, semi-improved (SI) or

improved (I) grassland, resulting in a total of 180 fields

(Fig. S1, Supporting information). The survey represented the

broad habitat classifications of acid (33 fields), calcicolous (42

fields), mesotrophic (81 fields) and wet grasslands (24 fields), the

main grassland types in the UK (Rodwell 1992), and fields were

allocated to land management intensity categories based on con-

sultation with farmers and land managers, and expert opinion.

This process also ensured that adjacent fields were of similar

soil type and topography. Typically, unimproved grasslands

receive <25 kg N ha�1 year�1 and are lightly grazed by livestock

and cut annually for hay, whereas SI and improved grasslands

receive 25–50 and >100 kg N ha�1 year�1, respectively, and are

subject to higher grazing pressures and more frequent cutting

for silage (Critchley, Fowbert & Wright 2007). This broad clas-

sification of grasslands has been used widely (e.g. De Vries et al.

2012; Grigulis et al. 2013) and reflects the typical grassland

farming systems that are found across the UK and other parts

of Europe (Rodwell 1992).

There were many different plant community types present in

the more botanically diverse unimproved grasslands, but the

improved categories were mainly the Lolium perenne (L.) domi-

nated MG6 and MG7 communities of the UK’s National Vegeta-

tion Classification (Rodwell 1992). Within each field, percentage

cover of each plant species was visually estimated from three ran-

dom 1-m2 quadrats within a 25 9 25 m plot of homogeneous

vegetation. These three cover values were averaged to obtain

field-level abundance estimates. Within each quadrat, five random

2-cm-diameter, 7-cm-deep soil cores were taken and pooled. The

use of 7-cm-deep cores follows the UK’s Department of Environ-

ment, Food and Rural Affairs (DEFRA) recommended sampling

depth for assessment of soil abiotic properties in permanent

grassland (DEFRA 2010), and was selected to capture the zone

of soil most influenced by plant traits, and of greatest C content

relative to subsurface soil. We recognize that significant soil C

stocks are found at depth in grasslands (Jobbagy & Jackson

2000), but sampling the whole soil profile was beyond the scope

of this study, especially given the comprehensive suite of vegeta-

tion and soil properties measured.

A 

B 
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D 

E 

F 
G 

H 

I 
J 

K 

L

M

Fig. 1. Sampling regions within England. In each region, five

farms were selected, and in each of these, three fields were sam-

pled, one unimproved grassland, one semi-improved and one

improved. Regions are (a) Worcester, (b) Upper Thames, (c)

Somerset, (d) Devon, (e) Cotswolds, (f) High Weald, (g) South

Downs, (h) Breckland, (i) Dales Meadows, (j) Yorkshire Ings, (k)

Yorkshire Dales/South Lake District, (l) Lake District. In the

validation region (m) Northumberland, 20 fields were sampled.

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1188–1196
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SOIL ANALYSIS

Soil samples were sieved (4 mm), homogenized and air-dried, and

analysed for moisture content, total C and pH, using standard

methods (see Allen 1989 and Appendix S1 for methods).

Standardized wet sieving (De Deyn et al. 2011) was then used to

separate the soil particles and the C within them into the active

(250–4000 lm), intermediate (50–250 lm) and stable fractions

(0�45–50 lm) (see Appendix S1 for details). To calculate soil C

stocks on a per-area basis, bulk density was calculated from core

volume and dry soil weight after removing all stones and roots

>3 mm diameter. It is possible that black C (charcoal) and inor-

ganic C were present in our samples, though the proportion of

these is likely to be small (see Appendix S1). Soil texture was clas-

sified by expert judgment and transformed into clay–silt–sand per-

centages using the central point of each category of the triangular

classification developed by the Soil Survey of England and Wales

(Hodgson 1997).

CLIMATE DATA

Both long-term climate data from Met Office UKCP09 data

bases (Jenkins, Perry & Prior 2009) and the grassland survey data

were assigned to 5 9 5 km grid cells. Mean annual temperature

(MAT) and mean annual precipitation (MAP) were calculated

from monthly data from 1981 to 2006. Mean growing season

length (MGSL) values were taken from the UKCP09 data base

containing monthly values from 1961 to 2003 and calculated as

the number of days bounded by a daily temperature mean >5

and <5 °C after 1st July for more than five consecutive days.

Mean growing degree-days (MGDD) was the day-by-day sum of

the mean number of degrees by which air temperature exceeded

5�5 °C. It was calculated using the mean of values from 1961 to

2006. The differences in time periods between these measures

reflect data availability in the UKCP09 data base.

PLANT TRAIT DATA

Plant species composition data were combined with data base

values of plant traits to give field-level CWMs for plant traits

with hypothetical links to soil processes (Garnier et al. 2004; D�ıaz

et al. 2007; De Deyn, Cornelissen & Bardgett 2008; De Vries

et al. 2012). To do this, trait values were assigned to all plant

species occurring in the 180 fields sampled, and plant cover was

used as the CWM weighting measure. Values for leaf dry matter

content (LDMC) were taken from a published account of plant

species in northern England (Grime, Hodgson & Hunt 2007).

Values for specific leaf area (SLA), relative growth rate (RGR)

and leaf nitrogen content (leaf N) were obtained from the TRY

data base (Kattge et al. 2011, Appendix S2), which contains trait

data from a wide range of authors and environments. See Appen-

dix S1 for details of trait measurement and justification of trait

choice.

STATIST ICAL MODELL ING

The grassland survey, climate and trait data were combined to

form a single data set (see Table S1 to see the range of conditions

covered) that was used to parameterize and test the likelihood of

competing mixed-effects statistical models according to a model

selection procedure (Pinheiro & Bates 2000). A separate model

was created to describe each soil C fraction as well as total C.

Our model selection approach involved adding explanatory vari-

ables in fixed sequential order according to our hypothesized

‘hierarchy of controls’ (Appendix S1, D�ıaz et al. 2007). The pro-

cess started with variables describing climatic conditions (MAP,

MAT, MGSL, MGDD) and then added physical and chemical

properties of soil that are driven mainly by underlying geology

and local hydrology (soil pH, sand silt and clay content and soil

moisture). The third set of terms was linked to management.

Here, contrasts were made between three competing management

terms, which either had three levels of U, SI and I or two, with

either SI and U or SI and I merged. Finally, we added trait

CWMs to estimate plant functional trait effects. CWMs for

RGR, SLA, LDMC and leaf N were placed in the model in all

combinations of one and two traits. Although microbial data

were available (De Vries et al. 2012), they were not used to pre-

dict C stocks as they are not readily measurable by most survey-

ors. All models were linear mixed-effects models with a random

effect for site to account for the spatial clustering of triplicate

fields. Mixed models were fitted using maximum likelihood and

the lme function of the statistical software R version 2.11.1 (Pin-

heiro & Bates 2000). Throughout the modelling process, qua-

dratic terms were used when the optimum of biological activity

occurs at intermediate levels (i.e. for temperature, pH and mois-

ture). See Appendix S1 and Table S2 for details.

The explained variance (EV) of the final model was calculated

as the r2 when fitting a linear regression to the actual data, with

the predicted values of the model as the explanatory variable.

To estimate the variance explained by the fixed effects, we used

the method of Nakagawa & Schielzeth (2013), which partitions

the EV by comparing the fit of model predictions to the data

when these terms are absent from the model to calculate a

‘marginal R2’ (R2M). We also used this technique to estimate

the proportion of unique (total) variance explained by each class

of variable in the model (soil, climate, plant traits). The impor-

tance of each variable in the model was also estimated by

observing Akaike Information Criterion (AIC) change (Di) on

deletion.

MODEL VALIDATION

To validate the fitted models, we collected new data for all the

variables retained in the models (Table 1) in 20 fields in the

county of Northumberland, England, in summer 2012. This is a

separate region to the north-east of the original 12 (Fig. 1).

Methodology was identical to before with the exception of site

selection. In this case, we intentionally chose sites covering a wide

range of the predictor variables found in the original data set,

but excluded sites from outside these ranges to avoid extrapola-

tion (Table S1), because our models were not mechanistic. To

validate the fitted models, predictor variable values for the

Northumberland sites were fed into the fitted models to produce

estimated values. These were then compared to actual values

using Pearson’s correlation and paired t-tests.

Results

Total soil C stock to 7-cm depth was best described

(Tables 1 and S3; EV = 74�2%, R2M = 26�9%) by a qua-

dratic relationship for MAT (Fig. 2a), with C stocks

being lowest at intermediate temperatures of c. 8�5 °C.

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1188–1196
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This temperature effect accounted for 13�7% of unique

variance. Variation in total soil C stock was also related

to soil pH, with stocks being lowest at intermediate pH

values of c. 6 (Fig. 2a) (quadratic relationship). Finally,

soil C stocks were related to soil moisture and maximal at

moisture levels of c. 100%, on a dry soil weight basis.

Together, these soil terms accounted for 15�2% of unique

variance.

Models explaining the three component fractions dif-

fered greatly in the variables they contained, indicating

that each is controlled by different factors. The active

fraction (4000–250 lm) (Fig. 3, Tables 1 and S4)

accounted for 11�1% of total C stocks across grasslands,

and the model describing it accounted for 41�0% of its

variation (R2M = 37�6%) and contained five variables,

each strongly linked to plant productivity and litter

decomposition. The most important of these were qua-

dratic relationships with MAT (Fig. 2b) and MAP; stocks

of this C fraction were highest in cold, wet conditions.

This pool was also positively associated with MGSL, pre-

sumably via higher net primary productivity, and resulting

inputs of C to soil (Table 1). Together, these climate fac-

tors accounted for 22�0% of unique variance. Soil pH

accounted for 8�7% of unique variance and also displayed

a quadratic relationship with the active C fraction, being

greatest in acidic soils. Finally, we found that the active C

fraction was predicted by the CWM of SLA; stocks were

higher under vegetation with thick and/or dense leaves.

This trait measure accounted for 4�3% of unique vari-

ance.

The intermediate fraction (50–250 lm) represented

54�7% of total soil C stocks to 7-cm depth across grass-

lands (Fig. 3) and was described by a model that was very

similar to that describing total C stocks (EV = 78�4%,

R2M = 19�9%, Tables 1 and S5); the retained terms

described quadratic relationships with MAT (Fig. 2c), soil

moisture and pH (Fig. 2c). Stocks of this C fraction were

lowest in soils of neutral grassland and at intermediate cli-

mates (MAT c. 9 °C, pH c. 6). Of the retained variables,

climate terms were marginally more important (11�8%
unique variance) than soil terms (9�6% unique variance).

The stable soil C fraction (0�45–50 lm), which com-

prised 32�4% of the total C stocks across grasslands

(Fig. 3), was not explained by climate or management

variables. The model (EV = 74�2%, R2M = 17�53%,

Tables 1 and S6) indicated a strong and quadratic rela-

tionship with soil pH, with the highest stocks being found

in neutral and alkaline grassland soils (Fig. 2d). C stocks

in this fraction also increased subtly with increasing

CWM leaf N content. This trait effect accounted for far

less variance (1�9% unique variance) than pH (14�16%
unique variance).

Comparison of predicted and observed values of soil C

stocks demonstrated that the fitted models made reason-

Table 1. Selected models for total soil carbon to 7-cm depth and soil carbon fractions of a range of size classes (kg C m�2)

Variable

Total soil carbon

Active fraction

(4000–250 lm)

Intermediate fraction

(50–250 lm)

Stable fraction

(0�45–50 lm)

Param.

est.

AIC

change

(Di)* P-value*

Param.

est.

AIC

change

(Di)* P-value*

Param.

est.

AIC

change

(Di)* P-value*

Param.

est.

AIC

change

(Di)* P-value*

Intercept 64�35 <0�0001 12�57 <0�0001 39�21 0�0001 4�22 0�12
MAP (mm) 0�0001 �6�4e-4 14�21 0�0001
MAP (mm)2 0�0001 5e-6 18�71 0�0009
MAT (°C) �10�72 14�64 0�025 �2�28 17�99 <0�0001 �6�91 10�37 0�0008
MAT (°C)2 0�62 13�23 0�0067 0�11 8�97 <0�0001 0�40 10�81 0�0003
Soil moisture

(% dry

weight)

0�035 �3�36 0�0002 0�021 2�05 0�049

Soil moisture

(% dry

weight)2

�1�8e-4 �5�36 <0�0001 �1�1e-4 4�02 0�014

MGSL (days) 0�010 4�17 0�013
Soil pH �5�86 18�89 �0�99 5�51 0�0086 �2�95 9�38 0�0012 �1�59 17�57 <0�0001
Soil pH2 0�52 11�64 0�077 4�3 0�012 0�26 6�69 0�0032 0�16 2�35 0�037
CWM SLA

(mm2 mg�1)

�0�024 9�09 0�0009

CWM leaf N

content

(mg N g�1)

0�039 4�13 0�01

AIC, Akaike Information Criterion; MAP, mean annual precipitation; MAT, mean annual temperature; CWM, community weighted

mean; MGSL, mean growing season length; SLA, specific leaf area.

*Assessed with a likelihood ratio deletion test. This was a single d.f. test for most terms but two for the main effects of variables with a

quadratic function. In these cases, both the main effect and the quadratic term were removed.

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1188–1196
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ably reliable predictions of observed stocks of total C and

the intermediate and stable fractions, but not the active

fraction (Fig. S2). Correlations between predicted and

observed values were r = 0�57–0�64, and there was no sig-

nificant difference between them (paired t-tests P > 0�05,
t = <2, d.f. = 19), with the exception of the active fraction

(r = 0�03, P < 0�05) (Table S7, Fig. S1).

Discussion

Our results indicate that regional and national patterns

of C fractions in the surface soils of grasslands can be

predicted using fairly simple measures of the abiotic

environment and community-level plant traits. Reason-

ably accurate prediction of soil C stocks across broad

gradients of soil and ecosystem types has been achieved

previously using dynamic models (e.g. Parton et al. 1993)

and proxy measures (Paruelo et al. 1998; Jones et al.

2005). However, it has not, to our knowledge, been

achieved for different size fractions of soil C within a

single land-use type, as shown here. The relationships

identified here may not always be mechanistically causa-

tive because climate, management and underlying geol-

ogy all directly affect soil C stocks while also selecting

for different plant trait syndromes (De Vries et al. 2012),
making trait measures an integrated measure of the envi-

ronment. Nevertheless, all terms in the models accounted

for unique variation, meaning that these relationships

strongly indicate the primary regulators of these soil C

fractions. Importantly, we found that several factors that

influence soil C stocks at small scales, such as agricul-

tural management (Conant, Paustian & Elliot 2001) and

soil texture (Christensen 2001), do not explain national

patterns in C stocks at these shallow depths. In contrast,

plant traits did explain the C stocks of certain fractions.

The surprising lack of soil texture effects on soil C pools

may be because soil C is controlled by physical proper-

ties of soil that were not captured by our field assess-

ment, for example mineral surface charges (Schmidt

et al. 2011), and secondary and tertiary aspects of soil

structure that determine the availability of C to decom-

posers, for example compaction and microaggregates

(Christensen 2001). Alternatively, the lack of soil texture

effects may be due to low data resolution or the rarity
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of clay-rich soils sampled (Table S1). We also highlight

that although plant traits explained a small proportion

of variance, their real importance may be greater than in

our models, given their correlation with many of the

other descriptor variables and their basal position in our

hierarchy of controls modelling procedure.

Looking at each model in turn provides insight into

the factors driving each pool and emphasizes the need to

view soil C as a heterogeneous material when attempting

to understand its dynamics and meaningfully quantify C

stocks. The active fraction model demonstrates that

stocks in this fraction are highest where plant growth is

high (high MAT and MGSL), but decomposition is pos-

sibly slow (low pH and high MAP) (Cornwell et al.

2008; Pietri & Brookes 2008). There was also, as hypoth-

esized, a strong relationship with the CWM of SLA.

Where vegetation possessed leaves that were thin and/or

low density and lacked more slowly decomposing struc-

tural materials (Reich 2014), stocks of this fraction were

lower (Fig. 2b), a finding that is consistent with previous

studies linking SLA to litter decomposition rates (e.g.

Garnier et al. 2004). The poor predictive capacity of our

active fraction model may be due to the dynamic nature

of this pool, which is highly variable seasonally (Chris-

tensen 2001). It may be better predicted by models in

which plant production and decomposition are more

explicitly defined.

Unlike the other C fractions, the stable pool was not

explained by climate, possibly because much of this C

would have entered this pool and become stabilized in dif-

ferent climatic conditions to those experienced today. This

finding is consistent with some large-scale gradient stud-

ies, which show stable soil C stocks to be largely insensi-

tive to temperature (Conant et al. 2011), although in

other regions (e.g. Inner Mongolia) mineral-associated C

is the largest C pool and shows a strong relationship with

climate (Evans, Burke & Lauenroth 2011). In contrast,

but in line with our hypotheses, stable C was strongly

influenced by soil pH. Higher stocks in more neutral and

alkaline soils may reflect greater microbial processing of

SOM in higher pH soils, resulting in greater transfer of C

to chemically protected pools (Fornara et al. 2011). There

was also a relatively small and unexpected effect of CWM

leaf N content, which might be explained by N-rich plant

material reducing the need for ‘microbial mining’, a pro-

cess where soil microbes decompose SOM to acquire N

(Craine, Morrow & Fierer 2007). Given that CWM leaf N

is higher in improved, fertilized grasslands (De Vries et al.

2012), it might also reflect higher inorganic N availability

in a more statistically parsimonious way than the deleted

management term. Management was not retained in any

of our models, and this may reflect the very broad catego-

ries used, which cover a range of fertilizer and mowing

regimes, and grazing intensities. Gathering detailed and

accurate data for such factors requires considerable effort,

and plant traits that respond to all these factors may act

as a good proxy substitute for them.

Models describing the total C stocks and the intermedi-

ate fraction were extremely similar, which is unsurprising

given that most soil C was in the intermediate fraction.

The decline of soil C stocks at intermediate pH is likely

caused by the balance of two contrasting processes:

reduced decomposer activity and the accumulation of

plant inputs in low pH conditions (Pietri & Brookes

2008), and greater transfer of C to the stable C fraction in

more neutral and calcareous soils (Fornara et al. 2011).

The moisture term in the total C model demonstrates that

stocks peaked at soil moisture levels typical of water-

logged, or wet grasslands where soil microbial activity is

low. The lack of plant trait terms in these models may

reflect the fact that most older soil C has either undergone

chemical and/or physical transformation into more com-

plex forms, or because current plant community composi-

tion does not reflect its origin.

Previous studies have shown that regression models

can predict soil C variation using climate and soil tex-

ture data at very large scales and within several conti-

nents (>100 000 km2) (Burke et al. 1989; Paruelo et al.

1998; but see Evans, Burke & Lauenroth 2011). Our
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findings indicate that a combination of plant trait data

and simple climate and soil measures can also help

to predict regional- and national-scale soil C stocks

(1–100 000 km2) in the surface soil, in a range of C

pools of varying stability. It is possible that this

approach could greatly improve regional- and national-

level predictions of surface soil C stocks compared to

current land cover proxy methods (Eigenbrod et al.

2010). Climate data are available for many parts of the

world, soil pH can be measured quickly and with little

equipment, and many countries produce regular national

surveys of plant community composition (e.g. Carey

et al. 2008). Furthermore, large international trait data

bases now exist (Kattge et al. 2011), and some traits,

such as leaf N, may be predictable from remote sensing

(Dahlin, Asner & Field 2013). Our approach may also

complement current soil C mapping approaches, which

use a combination of dynamic models such as CEN-

TURY (Parton et al. 1993) and RothC (Smith et al.

2005), direct measurements (Bellamy et al. 2005; Carey

et al. 2008) and proxy measures (Jones et al. 2005; Ei-

genbrod et al. 2010), in two ways. First, it could be used

to parameterize the starting conditions for soil C pools

in models, and secondly, it could provide more extensive

and fine-scale coverage than might be possible from

direct measurement, for example for cases in which land-

owners seek to map soil C.

The large amount of variation captured by the random

effects in our models is likely to represent site differences

in geology and legacies of landscape history (e.g. land use

and glaciation), which may already be captured in coarse-

scale soil surveys. The measures here could help refine

these coarse maps using local-scale information about

soils, climate and plant communities. Similarly, this

approach could help refine existing models that use proxy

measures with extensive geographic coverage (e.g. land

cover and climate) (e.g. Paruelo et al. 1998; Jones et al.

2005), by improving the characterization of existing rela-

tionships and including trait-based vegetation measures

that are general, more detailed and mechanistically infor-

mative. Such an approach requires extension to a wider

range of soil depths, environmental conditions and

ecosystem types before it can be widely applied. Neverthe-

less, our results show that it has great potential, especially

given the urgent need for large-scale, cost-effective and

accurate soil C stock characterization. Such information

is a precursor for the inclusion of soil C into C-trading

schemes and improved ecosystem service management.
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