MARTIN A. J. PARRY¹

AL5 2JQ, England

ABSTRACT

Photorespiration in C₄ grasses remains slow under drought conditions ANA E. CARMO-SILVA^{1,2}, STEPHEN J. POWERS³, ALFRED J. KEYS¹, MARIA CELESTE ARRABACA² & ¹Department of Plant Sciences, Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JO, England, ²Centro de Engenharia Biológica, Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749–016, Lisboa, Portugal and ³Department of Biomathematics and Bioinformatics, Centre for Mathematical and Computational Biology, Rothamsted Research, Harpenden, Hertfordshire, The CO₂-concentrating mechanism present in C₄ plants decreases the oxygenase activity of ribulose 1,5-

bisphosphate carboxylase/oxygenase (Rubisco) and, consequently, photorespiratory rates in air. Under drought conditions, the intercellular CO₂ concentration may decrease and cause photorespiration to increase. The C4 grasses Paspalum dilatatum Poiret, Cynodon dactylon (L.) Pers. and Zoysia japonica Steudel were grown in soil and drought was imposed by ceasing to provide water. Net CO₂ assimilation (A) and stomatal conductance to water vapour decreased with leaf dehydration. Decreased carbon and increased oxygen isotope composition were also observed under drought. The response of A to CO₂ suggested that the compensation point was zero in all species irrespective of the extent of drought stress. A slight decrease of A as O₂ concentration increased above 10% provided evidence for slow photorespiratory gas exchanges. Analysis of amino acids contained in the leaves, particularly the decrease of glycine after 30 s in darkness, supported the presence of slow photorespiration rates, but these were slightly faster in Cynodon dactylon than in Paspalum dilatatum and Zoysia japonica. Although the contents of glycine and serine increased with dehydration and mechanistic modelling of C₄ photosynthesis suggested slightly increased photorespiration rates in proportion to photosynthesis, the results provide evidence that photorespiration remained slow under drought conditions.

Key-words: amino acids; CO₂ and O₂ response curves; isotope composition; modelling C₄ photosynthesis.

INTRODUCTION

The main objective of this study was to investigate whether photorespiration was increased by drought stress in three species of C₄ grasses and could, as a consequence, contribute to metabolic factors limiting net photosynthesis. Under

Correspondence: A. E. Carmo-Silva. Fax: 0044 1582 760981; e-mail: elizabete.carmo-silva@bbsrc.ac.uk

drought conditions, photosynthetic carbon assimilation decreases in both C3 and C4 plants (e.g. Chaves, Maroco & Pereira 2003). Closure of stomata is one of the major causes of the decrease in photosynthesis, but evidence has accumulated that metabolic limitations also contribute (Du et al. 1996; Saccardy et al. 1996; Ghannoum et al. 2003; Marques da Silva & Arrabaça 2004; Carmo-Silva et al. 2007). In C₄ leaves with Kranz anatomy, atmospheric CO₂ is initially fixed by phosphoenolpyruvate (PEP) carboxylase [PEPC, enzyme commission (EC) 4.1.1.31] into C₄ acids in the mesophyll (M) cells. The C4 acids are transported to the bundle sheath (BS) cells where they undergo decarboxylation, and the released CO_2 enters the C_3 pathway via ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco; EC 4.1.1.39). Rubisco is confined to the BS cells, and the specialized leaf anatomy decreases leakage of CO2 back to the M cells so that CO₂ accumulates.

Rubisco acts both as a carboxylase and an oxygenase. Molecules of CO₂ and O₂ are competing alternative substrates for reaction with the enediol of RuBP catalysed by Rubisco (Bowes & Ogren 1972; Laing, Ogren & Hageman 1974) and, therefore, rates of photorespiration relative to photosynthesis are determined by the relative concentrations of O₂ and CO₂ at the catalytic site of Rubisco in the chloroplast stroma. In fully hydrated leaves, the CO₂/O₂ ratio in BS cells of C4 species is three to six times higher than in M cells under atmospheric levels of CO₂ and O₂ (Dai, Ku & Edwards 1993; Kiirats et al. 2002). Therefore, the oxygenase activity of Rubisco, and consequently the photorespiratory rate, is slow. The consequences are a low CO₂ compensation point in C₄ plants (Forrester, Krotkov & Nelson 1966) and the absence of an enhancement of net photosynthesis when oxygen in the gas phase is decreased from 21 to 2% (Edwards, Ku & Monson 1985). These observations have been initially interpreted as a lack of photorespiration in C₄ plants. More recent studies with several C₄ species, including the three main subtypes and both monocotyledons and dicotyledons (Dai et al. 1993; Maroco, Ku & Edwards 1997), have revealed that the maximum rate of net photosynthesis occurs at O2 concentrations between 5 and 10%. The rise of C_4 photosynthesis to a maximum at 5–10%

has been explained by an oxygen requirement for the production of extra ATP needed for the CO₂-concentrating mechanism (Maroco *et al.* 1997). The decrease in photosynthesis by C₄ species when the O₂ concentration is elevated above 10% depends on the CO₂ concentration (Dai *et al.* 1993; Maroco *et al.* 1997, 1998) and is assumed to be due to photorespiration. To the best of our knowledge, the effect of O₂ on C₄ photosynthesis by dehydrated leaves has not been recorded.

Under water deficit conditions, the CO_2 concentration in the leaves may decrease because of decreased stomatal conductance and should cause photorespiration to increase. Mechanistic modelling of C₄ photosynthesis is not used as frequently as that of C₃ photosynthesis, mostly because of the additional complexity resulting from the structural and biochemical specialization characteristic of C₄ plants (von Caemmerer 2000). The model of von Caemmerer & Furbank (1999) uses basic equations to describe the carbon fluxes in C₄ photosynthesis and, with careful assumptions being made, can be used to estimate the CO₂ concentration in the BS, the rate of oxygenation of RuBP and hence photorespiration.

Photorespiratory metabolism requires the integration of the photorespiratory carbon oxidation cycle, the photorespiratory nitrogen cycle (Keys et al. 1978) and photosynthetic carbon assimilation (Keys 1999); consequently, there is an interdependence of reactions in different parts of the overall process. Because photorespiration is relatively little influenced by metabolite signals, amino acids can be used as metabolite markers for this pathway (Foyer, Parry & Noctor 2003). Although de novo assimilation of nitrogen and recycling of ammonia during photorespiration interact (Stitt et al. 2002), the ratio glycine/serine and both aspartate and alanine levels are strongly correlated with photorespiration rates in C₃ plants (Novitskaya et al. 2002). In the C₄ dicotyledon Amaranthus edulis, increased glycine content in the leaves with increasing O_2 in the atmosphere has been taken as indicative of photorespiration (Maroco, Ku & Edwards 2000); although increased serine has also been observed in A. edulis, this amino acid decreased with increasing O_2 in C_3 plants and is therefore discounted as an indicator of photorespiration. Post-illumination decreases in glycine (Kumarasinghe, Keys & Whittingham 1977; Rawsthorne & Hylton 1991) are mainly responsible for the post-illumination burst of CO2 in C3 plants, a phenomenon leading to the early recognition of photorespiration. Postillumination CO₂ bursts are generally not seen in C₄ plants, mostly because of the low conductance of BS cell walls to CO₂, but the post-illumination decrease in glycine should be observed if photorespiration is present.

Variations in carbon and oxygen isotope compositions (δ^{13} C and δ^{18} O) reflect the influence of environmental factors on the kinetics of photosynthesis, and the two isotopes are conveniently measured on the same leaf samples. The CO₂-concentrating mechanism present in C₄ plants results in lower discrimination against ¹³C than in C₃ plants, and hence an average δ^{13} C of -13.6‰ in C₄ as opposed to -27.8‰ in C₃ plants (Troughton 1979). Changes in δ^{13} C

under stress conditions reflect mostly variations in the CO₂ concentration at the carboxylation sites and the coordination between the C₃ and C₄ cycles (Farquhar 1983). On the other hand, changes in δ^{18} O are mainly the result of changes in evapotranspiration and reflect the isotope content of the soil water as well as the fractionation during transpiration (Barbour 2007), which is likely to change in conditions affecting the evaporative demand.

The experiments described aimed to detect photorespiration in three C_4 grasses and to determine whether the rate increased under drought conditions. The indicators of photorespiration used were the response of photosynthesis to CO_2 , inhibition of photosynthesis by O_2 , content of amino acids, post-illumination changes in amino acids and isotope fractionation. The three C_4 species studied have been reported to belong each to a different biochemical subtype, according to the main enzyme responsible for the decarboxylation of C_4 acids in the BS: *Paspalum dilatatum* Poiret, NADP-malic enzyme (NADP-ME); *Cynodon dactylon* (L.) Pers., NAD-malic enzyme (NADP-ME); and *Zoysia japonica* Steudel, PEP carboxykinase (PEPCK).

MATERIALS AND METHODS

Plant material and drought stress induction

The C₄ grasses *Paspalum dilatatum* Poir. cv. Raki (NADP-ME), *Cynodon dactylon* (L.) Pers. var. Shangri-Lá (NAD-ME) and *Zoysia japonica* Steudel 'Jacklin Sunrise Brand' (produced by Jacklin Seed Company, Post Falls, ID, USA) (PEPCK) were grown from seeds in pots with peat-free compost, prepared to Rothamsted Research's specification by Petersfield Products (Leicester, UK) supplemented with a slow-release fertilizer (Hydro Agri Ltd, Lincolnshire, UK) in a glasshouse. Artificial light was provided whenever the natural light was below a photosynthetic photon flux density (PPFD) of 500 μ mol m⁻² s⁻¹ during a 16 h photoperiod. Temperature was maintained at a minimum of 25 °C during the day and at 18 °C during the night.

Seeds of each species were washed with 10% hypochlorite and were soaked in water for 1 h before sowing. Water was supplied whenever needed during 2 weeks for *Paspalum dilatatum* and *Cynodon dactylon*, and 4–5 weeks for the slower-growing *Zoysia japonica*. The seedlings were transplanted to 1 L cylindrical pots containing equal amounts of soil. Five seedlings were used per pot. The dates of sowing and transplanting each species were adjusted, and the timing of the drought treatment was chosen in order to have plants at an adequate growth stage for taking measurements or for sampling all three grasses at the same time.

All plants were well watered until the beginning of the drought stress treatment. Pots were placed according to a split-plot design, where each column of pots was a main plot of a particular species, and the sampling days and the treatments (control versus drought stress) were randomized in the split plots. Each pot corresponded to an independent sample. All pots were watered in the evening and weighed on the following morning in order to ensure that all of them had similar amounts of water (mean overall weight of 800 ± 50 g). Water deficit was then imposed on the 'stress' pots by ceasing to provide water. The 'control' pots were watered once per day.

Five-week-old plants of P. dilatatum and C. dactylon and 9-week-old plants of Z. japonica were analysed. Control and non-watered plants of the three species were either assayed or harvested on consecutive days, starting when the weight of the non-watered pots had been suitably decreased, in order to obtain leaf samples with different levels of dehydration, and ending after a maximum of 9-12 d without watering. The water weight in each pot (WWP, g) was determined as the weight of the pot at each sampling time less 400 g (the mean weight of the pots with plants and totally dried soil was 404 ± 16 g).

The youngest fully expanded leaf of each P. dilatatum plant and two young fully expanded leaves of each plant of C. dactylon or Z. japonica were always analysed. Samples were collected in the growth environment 4 h after the beginning of the photoperiod. In vivo measurements were made during the first half of the photoperiod. It was assumed that, within each pot, all the leaves used were identical in terms of developmental stage, physiological and biochemical properties, and would have experienced the same drought condition.

From each pot, a sample formed by similar leaves to those being used for gas exchanges or amino acid analysis was collected to determine the leaf relative water content (RWC). The fresh (FW), turgid (TW) and dry (DW) weights were measured and used to calculate RWC by the equation RWC = 100[(FW - DW)/(TW - DW)] (Catsky 1960). Leaf area was determined by scanning the turgid leaves and analysing the image using the software Paint Shop Pro 9 (Jasc Software, Inc., Minneapolis, MN, USA) and the software Image J 1.33u (National Institutes of Health, Bethesda, MD, USA).

In order to facilitate the analysis of the physiological responses to CO₂ and O₂, groups of plants with different drought stress conditions were chosen for each species independently, considering both the RWC and the response in terms of the measured gas exchanges. Therefore, control (C) corresponds to all well-watered plants; moderately stressed (MS) to non-watered plants with RWC values between 96 and 80% in P. dilatatum, 95 and 80% in C. dactylon, and 95 and 85% in Z. japonica; and severely stressed (SS) to non-watered plants with RWC values lower than 80 or 85%. Unfortunately, no SS samples of C. dactylon were obtained in these experiments as the leaves of this species did not dehydrate as much as the other two grasses.

Gas exchange measurements (CO₂ and O₂ response curves)

Gas exchanges of carbon dioxide and water vapour by attached leaves were measured by infrared gas analysis using a six-chamber system designed and developed at Rothamsted (Lawlor, Kontturi & Young 1989). Experiments were conducted at 25 ± 2 °C, 35-40% relative

rial for gas exchange measurements was used here. Three leaves of P. dilatatum and 10 leaves of C. dactylon or Z. japonica of the five plants in each pot were used for each sample. After determination of FW and TW, the leaf samples were dried at 80 °C for more than 48 h and were weighed to allow calculation of RWC. Three control and six droughtstressed samples from each species were selected according to their RWC and were sent to Unidade de Análise Instrumental, Faculdade de Ciências da Universidade de Lisboa, Portugal for the analyses of the carbon and oxygen isotope compositions (δ^{13} C and δ^{18} O) in the leaf dry matter. Subsamples of ground leaf tissue were analysed, to give three technical replicates of each sample, using stable isotope ratio mass spectrometers (SIRA II; VG Isogas Limited, Manchester, UK for carbon, and IsoPrime; Micromass UK Limited, Manchester, UK for oxygen, with automatic sample preparation systems, EuroEA; EuroVector S.p.A., Milan, Italy). The Pee Dee belemnite and the Vienna standard mean oceanic water were used as standards for δ^{13} C and δ^{18} O calculations, respectively. The results were expressed as parts per thousand deviation from the standards with an analytical precision of $\pm 0.12\%$.

Amino acid analysis

Amino acids contained in leaves were determined by high-performance liquid chromatography (HPLC) of *o*-pthaldialdehyde (OPA) derivatives (Noctor & Foyer 1998). Three control and five non-watered pots were used per species per day during three consecutive days, making a total of 24 samples per species (9 control and 15 non-watered pots). The five plants within each pot were used for the collection of three samples: one light sample, immediately frozen with liquid N₂ (LN₂) in fully illuminated conditions; one dark sample, identical to the light sample but submitted to a period of 30 s in darkness before freezing in LN₂; and a third sample for the *RWC* determination. Taking into account the different leaf sizes, each light or dark sample of *P. dilatatum* consisted of one leaf from one plant, whereas each sample of *C. dactylon* or *Z. japonica* consisted of three leaves from two plants.

Reversed-phase HPLC was performed using a Waters Alliance 2695 Separation Module and a 474 scanning fluorescence detector operated by the Millenium³² software (Waters, Milford, MA, USA) with a Waters Symmetry C₁₈ 4.6×150.0 mm column (part no. WAT 054278) protected by a 4×3 mm guard cartridge (Phenomenex, Torrance, CA, USA). Because the fluorescent adducts formed by reaction with OPA in the presence of 2-mercaptoethanol are unstable, the autosampler was set to mix and pre-incubate $10 \ \mu$ L of each sample with $15 \ \mu$ L of OPA reagent for 2 min before injecting the mixture onto the column. The eluent used for the amino acid separation was obtained by mixing solvents containing different proportions of methanol, sodium acetate pH 5.9 and tetrahydrofuran.

Amino acids were extracted from the frozen leaf samples stored at -80 °C. Each sample was ground in LN₂, and then 1.4 mL of 0.1 M HCl was added to the fine powder. The mixture was ground further during thawing, and the homogenate was centrifuged for 10 min at $16\,000\,g$ and $4\,^{\circ}$ C. Samples for HPLC were prepared by adding a subsample of each supernatant to the internal standard and pure water, and these mixtures were stored at -20 °C. On the following day, the mixtures were centrifuged for 40 min at $16\,000\,g$ and 4 °C, and then filtered with syringe filters (0.2 μ m) into HPLC autosampler vials. Standard solutions of α -amino-nbutyric acid (internal standard), serine, glycine, glutamate, glutamine, aspartate, asparagine and alanine were prepared in 0.1 M HCl. A stock solution with all the standards was prepared and then diluted in order to have increasing concentrations for the calibration curves (0, 5, 10, 15, 20 and 25 μм).

Statistical analysis

All the analyses were made using GenStat 8.2, 2005 (Lawes Agricultural Trust, Rothamsted Research, Harpenden, UK). Non-linear modelling was used to fit an asymptotic exponential model to the variation of the leaf relative water content (*RWC*) with the amount of water in the soil. Using *F*-tests, non-significantly different (P > 0.05) parameters between species were amalgamated in order to have a parsimonious model of the data. The responses of the net CO₂ assimilation rate (*A*) and the stomatal conductance to water vapour (*gswa*) to the intercellular CO₂ concentration (*C*_i)

and to the given concentration of O2 were modelled similarly. Firstly, non-linear curves were fitted to the data from each individual plant. Statistically, the best models were an asymptotic exponential for the variation of A with C_{i} , a modified logistic for the variation of gswa with C_i and an 'exponential plus linear' for the variation of A with O_2 . The latter consisted of an exponential-associated increase followed by a linear decrease effective after maximal A was attained. Residual maximum likelihood (REML) analysis was then used to predict mean values of estimated parameters for each species by stress level combination that would occur if the number of plants in each group (C, MS and SS) was the same (Patterson & Thompson 1971). Such means were compared using a *t*-test on the appropriate degrees of freedom (d.f.) from the REML model and the standard error of the difference.

Regression analysis was applied to model the variation of the isotope compositions and amino acid content with RWC, including a squared term in this variable to check for nonlinearity. Non-significantly different (P > 0.05) parameters (*t*-tests) in the significant (P < 0.05) model terms were amalgamated in order to attain parsimony. The residuals were checked and found to generally conform to the assumptions of the analysis. All the absolute values and percentages presented in the text were calculated from the regression models pertaining to each data set. The difference between the values obtained for the content of each amino acid in the samples collected in the light and after 30 s in darkness was calculated (these being paired samples). Regression analysis revealed no significant effect of RWC on this difference for any of the amino acids studied, and therefore the REML method was used to output predicted mean values for the difference (dark minus light) for each species. Significance from zero was assessed through t-tests.

Modelling C₄ photosynthesis

The mechanistic model of C₄ photosynthesis of von Caemmerer & Furbank (1999), described in detail by von Caemmerer (2000) and based on the models of Berry & Farquhar (1978) and Peisker (1979), was applied to the data from the CO₂ response curves measured at high irradiance. A similar approach to that described by Massad, Tuzet & Bethenod (2007) was used on a plant-by-plant basis. Firstly, an asymptotic exponential model was found to provide the best description of the variation of net CO2 assimilation rate (A) with the intercellular CO_2 concentration (C_i) for each plant. The equations for enzyme-limited photosynthesis (von Caemmerer 2000) were then applied to the individual plants to estimate the maximum Rubisco carboxylation activity (V_{cmax}) and the maximum PEPC carboxylation activity (V_{pmax}) , as well as the CO₂ concentrations in the BS (C_s) and in the M cells ($C_{\rm m}$), for values of $C_{\rm i}$ from 0 to 560 μ mol mol^{-1} using a step size of 5 μ mol mol⁻¹. Applying the method, all four parameters were primarily estimated and then, for each plant, V_{pmax} and V_{cmax} were fixed at the mean of estimated values found between 75-175 and 300-400 μ mol mol⁻¹ C_i , respectively, to re-estimate C_s and C_m

Table 1. Summary of C_4 photosynthesis parameters assumed as constant at 25 °C (von Caemmerer 2000) and used in the equations for enzyme-limited photosynthesis

Parameter	Value	Description				
Kc	650 µbar	Michaelis–Menten constant of Rubisco for CO ₂				
Ko	450 mbar	Michaelis–Menten constant of Rubisco for O ₂				
$K_{\rm p}$	80 <i>µ</i> bar	Michaelis–Menten constant of PEPC for CO ₂				
0	210 mbar	O ₂ partial pressure in the BS and mesophyll cells				
$R_{ m d}$	$0.01 V_{\rm cmax}$	Leaf mitochondrial respiration				
R _m	0.5 R _d	Mesophyll mitochondrial respiration				
$g_{ m bs}$	3 mmol m ⁻² s ⁻¹	BS conductance to CO_2				
gi	2 mol m ⁻² s ⁻¹	Mesophyll conductance to CO ₂				
γ*	0.000193	Half the reciprocal of Rubisco specificity				

Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase; PEPC, phosphoenolpyruvate carboxylase; BS, bundle sheath; $V_{\rm cmax}$, maximum Rubisco carboxylation activity.

(over C_i), this time free from the instability of the numerical calculation of all four parameters simultaneously. The model parameters assumed as constant at 25 °C (von Caemmerer 2000) are listed in Table 1, and the equations applied were

$$A_{\rm n} = g_{\rm i}(C_{\rm i} - C_{\rm m}) \tag{1}$$

$$A_{\rm n} = \frac{C_{\rm s} V_{\rm cmax}}{C_{\rm s} + K_{\rm c} \left(1 + \frac{O}{K_{\rm o}}\right)} \left(1 - \frac{\gamma^* O}{C_{\rm s}}\right) - R_{\rm d}$$
(2)

$$A_{\rm n} = \frac{C_{\rm m} V_{\rm pmax}}{C_{\rm m} + K_{\rm p}} - g_{\rm bs} (C_{\rm s} - C_{\rm m}) - R_{\rm m}.$$
 (3)

In these equations, A_n represents the net CO₂ assimilation rate calculated from the asymptotic exponential curve. Mean values of V_{pmax} and V_{cmax} and mean curves for C_s and C_m versus C_i were then calculated for the treatment structure of the species by stress level over the plants.

The rate of PEPC carboxylation, $V_{\rm p}$, was calculated as

$$V_{\rm p} = \frac{C_{\rm m} V_{\rm pmax}}{C_{\rm m} + K_{\rm p}},\tag{4}$$

and the net CO_2 assimilation rate (A_c) was calculated as the solution to the quadratic expression for enzyme-limited photosynthesis (von Caemmerer 2000), taking the fraction of O_2 evolution in the BS as zero:

 $aA_{c}^{2} + bA_{c} + c = 0,$

© 2008 The Authors

this being

$$A_{\rm c} = \frac{-b - \sqrt{b^2 - 4ac}}{2a},\tag{5}$$

with

$$a = 1;$$

$$b = -\{(V_{p} - R_{m} + g_{bs}C_{m}) + (V_{cmax} - R_{d}) + g_{bs}(K_{c}(1 + O/K_{o}))\}$$

$$c = (V_{cmax} - R_{d})(V_{p} - R_{m} + g_{bs}C_{m}) - (V_{cmax} - g_{bs}\gamma^{*}O + R_{d}g_{bs}K_{c}(1 + O/K_{o})).$$

The rate of photorespiration (Pr) was predicted for each species by stress level combination using the equation below, which is derived from the equation of overall CO₂ assimilation that describes Rubisco carboxylation in the BS (von Caemmerer 2000):

$$A = V_{\rm c} - 0.5V_{\rm o} - R_{\rm d}.$$
 (6)

Considering that Pr will be half the rate of Rubisco oxygenation, V_{o} ,

$$Pr = 0.5V_{\rm o} = -(A - V_{\rm c} + R_{\rm d}), \tag{7}$$

where A is the overall CO_2 assimilation and the rate of Rubisco carboxylation, V_c , is calculated as

$$V_{\rm c} = \frac{C_{\rm s} V_{\rm cmax}}{C_{\rm s} + K_{\rm c} \left(1 + \frac{O}{K_{\rm o}}\right)}$$

RESULTS

Water relations

The variation of the relative water content (*RWC*) in the leaves of *P. dilatatum*, *C. dactylon* and *Z. japonica* with the water weight in pot (*WWP*) was described by an asymptotic exponential model (Fig. 1). In the gas exchange experiment, *RWC* decreased to lower values in *P. dilatatum* (40%) than in *C. dactylon* and *Z. japonica* (75%). In the amino acid experiment, watering of the pots of *Z. japonica* and *C. dactylon* was stopped, respectively, 1 or 2 d prior to those of *P. dilatatum*. As a result, lower *RWC* values were observed for the most stressed leaves of *Z. japonica* (40%) than for *C. dactylon* (60%) and *P. dilatatum* (80%).

CO₂ and O₂ response curves

The net CO₂ assimilation rate (A) by the leaves of *P. dilatatum*, *C. dactylon* and *Z. japonica* increased with the intercellular CO₂ concentration (C_i), both in control and drought stress conditions, as shown in Fig. 2a–c. The mean value for the maximal net CO₂ assimilation rate (A_{max}) in fully hydrated leaves of *P. dilatatum* and *C. dactylon* plants was higher than in *Z. japonica* plants. In MS leaves of the two former species, A_{max} decreased in relation to the control, whereas no significant difference (P > 0.05)

Journal compilation © 2008 Blackwell Publishing Ltd, Plant, Cell and Environment, 31, 925-940

Figure 1. Leaf relative water content (*RWC*) as a function of the amount of water in the soil, measured as the water weight in pot (*WWP*), of the control and non-watered plants of *Paspalum dilatatum* (black diamonds), *Cynodon dactylon* (grey squares) and *Zoysia japonica* (open triangles). Each data point corresponds to one sample, with 30 (a) or 24 (b) samples per species. The asymptotic exponentials fitted correspond to the best models statistically significant [(a), $R^2 = 89.6\%$, $s^2 = 11.9$, d.f. = 176; (b), $R^2 = 92.3\%$, $s^2 = 19.3$, d.f. = 70]. d.f. degrees of freedom.

between MS and control leaves was observed in Z. *japonica*. The mean values of A_{max} obtained for the severely dehydrated (SS) leaves of *P. dilatatum* and *Z. japonica* were slightly less than half of the values observed for each species under control conditions.

The stomatal conductance to water vapour (gswa) decreased with increasing C_i for both fully hydrated and drought-stressed plants of the three species (Fig. 2d–f). The mean values of gswa in fully hydrated leaves of *C. dactylon* were generally higher than in the other two species,

especially at low CO₂ concentrations, and were decreased by drought stress in all species. In MS leaves of *C. dactylon* and in SS leaves of *P. dilatatum* and *Z. japonica*, the maximal value of *gswa* was lower than in control or less dehydrated leaves, but no significant differences (P > 0.05) were observed between the control and MS plants of *P. dilatatum* and *Z. japonica*.

Photosynthesis by *P. dilatatum*, *C. dactylon* and *Z. japonica* plants under control or drought stress conditions was not dramatically affected by the O_2 concentration

Figure 2. Mean values of net CO₂ assimilation rate (*A*, a–c) and stomatal conductance to water vapour (*gswa*, d–f) in response to the intercellular CO₂ concentration (*C*_i) in the control (black diamonds), moderately stressed (grey squares) and severely stressed (open triangles) plants of *Paspalum dilatatum*, *Cynodon dactylon* and *Zoysia japonica*. The bars correspond to the standard errors of each mean value. Measurements were taken at ambient O₂ (21%), a photosynthetic photon flux density of 850 μ mol m⁻² s⁻¹ and at 25 °C.

© 2008 The Authors

Figure 3. (a–c) Mean values of net CO₂ assimilation rate (*A*) at different O₂ concentrations in the control (C, black diamonds), moderately stressed (MS, grey squares) and severely stressed (SS, open triangles) plants of *Paspalum dilatatum*, *Cynodon dactylon* and *Zoysia japonica*. The bars correspond to the SEs of each mean value. Measurements were taken at ambient CO₂ (360 μ mol mol⁻¹), a photosynthetic photon flux density of 850 μ mol m⁻² s⁻¹ and at 25 °C. (d–f) Representation of the 'exponential plus linear' model fitted to the variation of *A* with O₂ in the C (solid lines), MS (long-dashed lines) and SS (short-dashed lines) plants of each species. The lines correspond to the curves obtained by plotting the best model statistically significant. Also shown are the mean values estimated for the slope α^* , representing the linear decrease of *A* with O₂ after maximal net CO₂ assimilation rate (A_{max}) was attained, and the O₂ concentration corresponding to A_{max} (O₂*). The 'average' standard error of difference considering all data was 0.0683 for α^* and 2.5 for O₂* (with 55 degrees of freedom).

(Fig. 3a–c). However, lower values of A were generally observed at 2% compared with higher O₂ concentrations, and an 'exponential plus linear' model was successfully applied to the variation of A with O₂ (Fig. 3d–f), showing that after the maximal value of net photosynthesis (A_{max}) was attained, at O₂ concentrations generally between 4 and 10% (O₂*), a slight decrease of A with increasing O₂ tends to occur. Note that the predictions of the O₂* were poor because there was no clear definition of the point corresponding to A_{max} . Apart from an increase of O₂* to values closer to the atmospheric concentration in the dehydrated leaves of P. dilatatum (MS and SS), no other significant differences (P > 0.05) were observed.

Carbon and oxygen isotope compositions

The carbon isotope composition (δ^{13} C) in fully hydrated leaves of *P. dilatatum* (-15.2‰) was less negative than in *C. dactylon* (-16.3‰) and *Z. japonica* (-16.6‰). Drought stress had an identical effect on δ^{13} C for the three species, δ^{13} C being decreased by -0.5‰ when *RWC* decreased to 60% (Fig. 4a). No significant differences in the oxygen isotope composition (δ^{18} O) were found between *C. dactylon* and *Z. japonica* (P > 0.05). Higher values were generally observed for these two species than for *P. dilatatum* (Fig. 4b), and an increase of ca. 4‰ with dehydration (to 60% *RWC*) was observed for all species.

Amino acid analysis

The variation of the amino acid content in illuminated leaves of the three C₄ grasses with leaf dehydration is shown in Fig. 5. The fully hydrated leaves of *P. dilatatum* had generally more serine (Ser) than the other two species. This amino acid increased steeply in all three species when *RWC* decreased from 98 to 60% (*C. dactylon* and *Z. japonica*) or only down to 80% (*P. dilatatum*). Below 60% *RWC*, a slight decrease was observed for the leaves of *Z. japonica*. Glycine (Gly) had a quadratic variation with *RWC*. In *C. dactylon*, there was only a slight increase when *RWC* started to decrease and then glycine was kept nearly constant. *Z. japonica* had less glycine than the other two species in fully hydrated conditions, and the amount increased as the *RWC* decreased from 98 to 60%, but was not so strongly affected

Figure 4. Carbon (δ^{13} C, a) and oxygen (δ^{18} O, b) isotope compositions as a function of the relative water content (*RWC*) in the leaves of *Paspalum dilatatum* (black diamonds), *Cynodon dactylon* (grey squares) and *Zoysia japonica* (open triangles). Each data point corresponds to one sample, with 9 samples per species. The regression lines correspond to the best models statistically significant [*P. dilatatum*, solid lines; *C. dactylon*, dashed lines; and *Z. japonica*, dotted lines; (a), $R^2 = 90.1\%$, $s^2 = 0.40$, d.f. = 23; (b), $R^2 = 65.3\%$, $s^2 = 3.23$, d.f. = 24]. d.f., degrees of freedom.

by further decreases in *RWC*. In *P. dilatatum*, although high variability was observed, the regression showed increased glycine when *RWC* decreased from 99 to 80%. The ratio Gly/Ser was only decreased with *RWC* in *C. dactylon*. Glutamate (Glu) decreased with decreasing *RWC* only in *C. dactylon*, and glutamine (Gln) was not significantly affected by leaf dehydration (P > 0.05), the same being observed for the ratio Gln/Glu. Aspartate (Asp) decreased linearly with *RWC* in *P. dilatatum* and *Z. japonica*, but no significant variation with *RWC* was observed for *C. dactylon* (P > 0.05). Alanine (Ala) was not significantly affected by leaf dehydration (P > 0.05) in the three species, showing high variability, especially in *C. dactylon*. Conversely, asparagine (Asn) increased linearly with decreasing *RWC*, but only in *C. dactylon* and *Z. japonica*.

The content of some amino acids in the leaves collected after a period of 30 s in darkness changed significantly compared with corresponding leaves collected in the light (Table 2), but the difference 'dark minus light' was not affected by leaf dehydration (P > 0.05). In the three species, a decrease in glycine content after 30 s in darkness was observed. The ratio between glycine and serine also decreased, mostly because of the decreased glycine, as no significant differences were observed for serine. Both glycine and the ratio Gly/Ser showed a larger decrease in C. dactylon than in P. dilatatum or Z. japonica. Glutamate decreased in the dark compared with the light samples, but only for P. dilatatum and C. dactylon. Conversely, glutamine content was not significantly changed (P > 0.05), and the ratio Gln/Glu increased only in P. dilatatum, with no significant changes in C. dactylon or Z. japonica (P > 0.05). Aspartate decreased after 30 s in darkness in C. dactylon and Z. japonica. Concomitantly, in these two species, a substantial increase in alanine was observed. The content in asparagine was not significantly changed in 30 s of darkness (P > 0.05).

Mechanistic modelling of C₄ photosynthesis

The variation of the enzyme-limited net CO_2 assimilation rate (A_c) with the CO_2 concentration in the M cells (C_m) for each of the three C₄ grasses was affected by drought stress as shown in Fig. 6. The mean values estimated for the maximum PEPC carboxylation activity (V_{pmax}) and maximum Rubisco carboxylation activity (V_{cmax}) were higher in *C. dactylon* than in *P. dilatatum* and lower in *Z. japonica*, and were significantly affected (P < 0.01) by the drought stress level.

By application of the model equations, the concentration of CO₂ in the BS (C_s) is predicted to increase steeply with the increase in C_i , reaching values above 1000 µmol mol⁻¹ at low C_i (Fig. 7a–c). Accordingly, the rate of photorespiration (Pr) for each of the three C₄ grasses at the different stress levels was estimated to be always lower than 1.5 µmol m⁻² s⁻¹ and decreased with increasing C_i (Fig. 7d–f). The values predicted for Pr at ambient levels of CO₂ (360–390 µmol mol⁻¹) were slightly higher for the MS plants of each species than in the corresponding controls, whereas slightly lower values were obtained for the SS relative to the MS plants of P. *dilatatum* and *Z. japonica*.

DISCUSSION

Drought stress condition and photosynthetic responses to CO₂

The relative water content (RWC) in the leaves of P. dilatatum, C. dactylon and Z. japonica decreased with the decrease in water available in the soil (Fig. 1) and was used as a reference to analyse the effects of drought. The three species showed some differences in the extent of leaf dehydration. In the gas exchange experiment, P. dilatatum leaves were more severely dehydrated than the other two species. In the amino acid experiment, the plants of C. dactylon and Z. japonica were deprived of water before P. dilatatum in an attempt to get a similar range of RWC values in the samples of the three species. However, C. dactylon and (more dramatically) Z. japonica plants were more dehydrated in this experiment. The difficulty in obtaining similar dehydration levels for the three species was a result of the faster loss of water by the leaves of P. dilatatum than by those of C. dactylon and Z. japonica in response to the drying soil. When water deficit was rapidly imposed in these C₄ grasses by the addition of polyethylene glycol to the nutrient solution (Carmo-Silva et al. 2007), C. dactylon showed a faster decrease in RWC than P. dilatatum and Z. japonica. The

Figure 5. Variation of the amino acid content with the relative water content (*RWC*) in the leaves of *Paspalum dilatatum* (black diamonds), *Cynodon dactylon* (grey squares) and *Zoysia japonica* (open triangles) collected in the light: serine (Ser), glycine (Gly), Gly/Ser ratio, glutamate (Glu), glutamine (Gln), Gln/Glu ratio, aspartate (Asp), alanine (Ala), asparagine (Asn) (a–i, respectively). Each data point corresponds to one sample, with 24 samples per species. The regression lines and curves, when applied, correspond to the best models statistically significant [*P. dilatatum*, solid lines; *C. dactylon*, dashed lines; and *Z. japonica*, dotted lines; (a) $R^2 = 59.8\%$, $s^2 = 0.297$, d.f. = 69; (b) $R^2 = 56.1\%$, $s^2 = 0.035$, d.f. = 67; (c) $R^2 = 40.5\%$, $s^2 = 0.012$, d.f. = 68; (d) $R^2 = 88.5\%$, $s^2 = 0.406$, d.f. = 69; (e) P > 0.05; (f) P > 0.05; (g) $R^2 = 56.1\%$, $s^2 = 0.035$, d.f. = 67; (h) P > 0.05; (i) $R^2 = 56.1\%$, $s^2 = 0.035$, d.f. = 67; (h) P > 0.05; (i) $R^2 = 56.1\%$, $s^2 = 0.035$, d.f. = 67; (h) P > 0.05; (i) $R^2 = 56.1\%$, $s^2 = 0.035$, d.f. = 67; (h) P > 0.05; (i) $R^2 = 56.1\%$, $s^2 = 0.035$, d.f. = 67; (h) P > 0.05; (i) $R^2 = 56.1\%$, $s^2 = 0.035$, d.f. = 67; (h) P > 0.05; (i) $R^2 = 56.1\%$, $s^2 = 0.035$, d.f. = 67]. d.f. degrees of freedom.

differences are likely to result from the different methods used for drought stress induction (Chaves *et al.* 2003).

Stomatal closure and decreased photosynthesis are generally accepted as early consequences of leaf dehydration (e.g. Chaves *et al.* 2003), and this was observed among several C₄ grasses (Ghannoum *et al.* 2003; Marques da Silva & Arrabaça 2004; Carmo-Silva *et al.* 2007). The net CO₂ assimilation rate (A) decreased in the MS leaves of P. *dilatatum* and *C. dactylon* but not in *Z. japonica* (Fig. 2) compared with the controls, suggesting that photosynthesis by the latter species might be more resistant to moderate drought conditions. In SS leaves of *P. dilatatum* and *Z. japonica*, *A* decreased to about half of the values observed in control conditions. Stomatal closure was also observed in response to drought stress, as shown by the decrease in the stomatal conductance to water vapour (*gswa*) in the MS and

Figure 6. Enzyme-limited net CO_2 assimilation rate (A_c) as a function of the mesophyll CO_2 concentration (C_m) in the control (C, black lines), moderately stressed (MS, dark-grey lines) and severely stressed (SS, light-grey lines) plants of *Paspalum dilatatum*, *Cynodon dactylon* and *Zoysia japonica*. Also shown are the rates of phosphoenolpyruvate (PEP) carboxylation (V_p , dashed lines) and the maximum ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation activity (V_{cmax} , dotted lines). The mean values of V_{cmax} and maximum PEP carboxylase carboxylation activity (V_{pmax}) are presented below each graph. All parameters were calculated by applying a mechanistic model of C₄ photosynthesis (von Caemmerer & Furbank 1999). For simplification, assumption was made that the fraction of O₂ evolution in the bundle sheath is zero.

Figure 7. Representation of the predicted CO₂ concentration in the bundle sheath (BS) cells (C_s) and rate of photorespiration (Pr) as a function of the intercellular CO₂ concentration (C_i) in the control (C, black lines), moderately stressed (MS, dark-grey lines) and severely stressed (SS, light-grey lines) plants of *Paspalum dilatatum*, *Cynodon dactylon* and *Zoysia japonica*. For the estimation of C_s and Pr, using the equations for enzyme-limited C₄ photosynthesis (von Caemmerer & Furbank 1999), maximum ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation activity (V_{cmax}) and maximum phosphoenolpyruvate carboxylase carboxylation activity (V_{pmax}) were fixed at the mean values obtained for each group of plants (see Fig. 6), and other model parameters, namely, the O₂ concentration in the BS, were assumed to be constant at 25 °C. Also shown are the mean values of C_i , C_s , net CO₂ assimilation rate (A_c) and Pr, estimated through the modelling approach, at ambient concentrations of CO₂ (360–390 μ mol mol⁻¹) and O₂ (21%).

Species	Ser	Gly	Gly/Ser	Glu	Gln	Gln/Glu	Asp	Ala	Asn
P. dilatatum	NS	-0.007 (0.004)	-0.025 (0.019)	-0.029 (0.020)	NS	0.125 (0.056)	NS	NS	NS
C. dactylon	NS	-0.019 (0.004)	-0.145 (0.019)	-0.059 (0.020)	NS	NS	-0.055 (0.019)	0.115 (0.023)	NS
Z. japonica	NS	-0.007 (0.004)	-0.043 (0.019)	ŃS	NS	NS	-0.031 (0.019)	0.085 (0.023)	NS

Table 2. Estimated mean values of the difference between the amino acid content (mmol m⁻²) in the leaves of *Paspalum dilatatum, Cynodon dactylon* and *Zoysia japonica* collected in the light and after 30 s in darkness ('dark *minus* light') and respective SE of differences (SEDs) (in brackets)

There was no significant variation with relative water content (*RWC*) (P > 0.05) and, therefore, the overall mean values obtained for the samples of each species (considering all control and non-watered plants, in a total of 24 samples per species) were analysed by the residual maximum likelihood (REML) method.

NS, not significantly different from zero (P > 0.05); Ser, serine; Gly, glycine; Glu, glutamate;

Gln, glutamine; Asp, aspartate; Ala, alanine; Asn, asparagine.

SS plants compared with the controls (Fig. 2). The maximal values of gswa in the MS leaves of P. dilatatum and Z. japonica were not affected compared with the control, which demonstrates that the effect of the low CO₂ concentrations promoting the opening of stomata was stronger than the drought-induced stomatal closure at that stage. However, for higher CO₂ concentrations, gswa was always lower in dehydrated leaves compared with the control plants of each species, resulting in generally lower values of C_i for a given CO_2 concentration. The decrease of A_{max} in the most dehydrated leaves of each grass species compared with their controls suggests that metabolic limitations of photosynthesis are also present. The same conclusion has been reached for other C₄ grasses (Ghannoum et al. 2003). Net CO₂ assimilation consistently increased with increasing C_i and the CO₂ concentration corresponding to zero A (the CO₂ compensation point) was not significantly different from zero (P > 0.05) for either control or dehydrated leaves of any of the three species, suggesting little photorespiration.

O₂-sensitivity of C₄ photosynthesis

Net CO₂ assimilation rates (A) at ambient CO₂ (360 μ mol mol⁻¹) were little affected by the O₂ concentration in the gas phase, but A was lowest at 2% O2 and decreased significantly with O_2 after the maximal value (A_{max}) was attained (Fig. 3). Little sensitivity of C₄ photosynthesis to O₂ was found in two other grasses, Panicum antidotale (NADP-ME) and Panicum coloratum (NAD-ME), at low C_i (Ghannoum et al. 1998). The estimation of the O₂ concentration corresponding to A_{max} in the three C₄ grasses of the different metabolic subtypes (O_2^* , Fig. 3) agrees with previously reported results (Maroco et al. 1997). The inhibition of A at low O_2 concentrations is probably due to an extra energy requirement for the regeneration of PEP and the proper functioning of the C₄ cycle (Ku et al. 1991; Dai et al. 1993; Maroco et al. 2000). A reduced ATP production, by the O2-dependent photochemical reactions or even by mitochondrial respiration (Maroco et al. 1997), might lead to a deficient function of the C4 pathway. The slight decrease of A at O_2 concentrations higher than 10% is likely to be due to the competing oxygenation of RuBP that initiates the photorespiratory carbon oxidative cycle.

The rate of decreasing A with increasing O_2 (Fig. 3d–f), partly caused by photorespiration, suggests that rates in ambient air would be in the range $0-2 \mu mol m^{-2} s^{-1}$ (representing 0-6% of A_{max}) and would be slightly faster in C. dactylon than in the other two C_4 grasses, but the variability is large and there is no clear trend for its variation with leaf dehydration. Because A was affected by drought (Figs 2 & 3), there is a tendency for increased photorespiration in proportion to photosynthesis when leaf dehydration increases. Photorespiration in A. edulis (C4 dicotyledon), estimated by the release of NH₃, represented 6% of the rate of CO₂ assimilation (Lacuesta et al. 1997). In two C₄ grasses, a sharp increase of the CO₂ compensation point when the RWC fell below 60%, compared with very low values in fully hydrated leaves, led to the conclusion that photorespiration was greatly enhanced under drought conditions (Ghannoum et al. 2003). The results presented here show that photorespiration by the three C4 grasses studied is slow and not sufficient to explain the decrease observed in A under the drought conditions attained (Fig. 1).

Effects of dehydration on carbon and oxygen isotope compositions

Drought stress affected leaf carbon and oxygen isotope compositions (δ^{13} C and δ^{18} O) similarly in the three C₄ grasses (Fig. 4), with a decrease of 0.5‰ in δ^{13} C and an increase of 4‰ in δ^{18} O when the *RWC* decreased down to 60%. In cotton leaves (C3 plant), stomatal closure after abscisic acid treatment resulted in ¹³C and ¹⁸O enrichment (Barbour & Farquhar 2000). Conversely, a study with several C₄ grasses revealed a decrease of δ^{13} C under drought but no consistent variation in δ^{18} O (Ghannoum, von Caemmerer & Conroy 2002). The less negative values of δ^{13} C in *P. dilatatum* (NADP-ME) than in *C. dactylon* (NAD-ME) and Z. japonica (PEPCK) agree with previously reported differences among C4 grasses from the different subtypes (Hattersley 1982). On the other hand, differences in the leaf length and inter-veinal distance among grasses (Helliker & Ehleringer 2000) might explain the higher values of δ^{18} O in *C. dactylon* and *Z. japonica* than in P. dilatatum.

Variations in δ^{13} C are mostly due to changes in the ratio of intercellular to atmospheric CO₂ concentrations (C_i/C_a) and/or in changes in the fraction of CO₂ fixed by PEPC that subsequently leaks out from the BS without being assimilated by Rubisco (leakiness, ϕ) (Farquhar 1983). Variation in ϕ can result either from alterations in the physical conductance of BS cells to CO₂ or from alterations in the balance between PEPC and Rubisco activities (Peisker & Henderson 1992). In Sorghum bicolor (Williams et al. 2001) and in sugarcane (Saliendra et al. 1996), both carbon isotope discrimination and ϕ increased under drought conditions, suggesting that the coordination between the C₄ and C₃ cycles was affected. Conversely, Buchmann et al. (1996) related the decrease of δ^{13} C in several C₄ grasses (including P. dilatatum, C. dactylon and Z. japonica) under drought with decreased stomatal conductance, which affected the intercellular CO₂ concentration. Decreased gswa observed in the dehydrated leaves of each species (Fig. 2) resulted in decreased C_i/C_a compared with the control plants of each species (data not shown) and could contribute to the decrease in δ^{13} C (Fig. 4a). However, the data obtained do not exclude the possibility that impairment of photosynthetic metabolism increased ϕ and contributed to the decrease in δ^{13} C with drought in the three C₄ grasses.

The increase of leaf δ^{18} O with *RWC* (Fig. 4b) reflects the variation of δ^{18} O in the soil water, which becomes enriched in the heavy isotope under drought conditions because of evaporation, and variation because of evaporative and diffusional effects during transpiration (Barbour 2007). Decreased gswa in the dehydrated leaves (Fig. 2) probably contributed to the leaf ¹⁸O enrichment because H₂¹⁸O diffuses more slowly and has lower vapour pressure than $H_2^{16}O_1$, causing the water in the leaf to become enriched in ¹⁸O during transpiration. Variations in evaporation during plant growth are integrated in the oxygen isotope composition of the leaf material (Barbour & Farquhar 2000). Although fractionation of oxygen isotopes occurs during exchanges of CO_2 and O_2 with the atmosphere resulting from the sum of photosynthesis, photorespiration and mitochondrial respiration, these effects are quickly buffered in the leaf because of rapid isotopic exchange between the carbonyl oxygen in organic molecules and leaf water (Barbour 2007).

Although some suggestions have been made that photorespiration should be considered when interpreting the δ^{13} C (Gillon & Griffiths 1997) and δ^{18} O (Farquhar, Barbour & Henry 1998) of the leaf material, the rate of photorespiration present in C₄ plants is not likely to be of reasonable size to make considerable contribution to the variations in isotope ratios of leaf dry matter. In the present study, drought did not cause changes in δ^{13} C in the same direction as observed for C₃ species (Cerling 1999), where photorespiration is rapid.

Effects of dehydration on steady-state contents of amino acids in illuminated leaves

The increased amounts of glycine and serine in the dehydrated leaves of all three species, especially with decreases in *RWC* down to 80 and 60% (Fig. 5a,b), might be interpreted as an increase in photorespiratory metabolism and flux of glyoxylate into the pathway because of increased oxygenation of RuBP. Alternatively, these changes may reflect an increase in pool sizes of glycine and serine because of slower transfer to the mitochondria and peroxisome. Increased glycine and serine contents were also observed in droughted maize leaves (Foyer *et al.* 1998).

In leaves of C. dactylon, when RWC decreased from 98 to 60%, asparagine increased from 0.5 to 1.1 mmol m^{-2} (Fig. 5i) and glutamate decreased from 0.8 to 0.5 mmol m^{-2} (Fig. 5d). An increase of two- to sixfold in the amount of asparagine was previously reported in C. dactylon plants submitted to drought stress (Barnett & Navlor 1966), and the same authors reported a concomitant decrease in glutamate and alanine. In Z. japonica, the content of asparagine increased by fourfold and aspartate decreased when RWC decreased to 40% (Fig. 5i,g), but glutamate amounts were not affected. No significant effect of RWC on the alanine content was observed for any of the three C4 grasses (Fig. 5h). The contents of glutamate, asparagine and alanine were generally higher in C. dactylon than in P. dilatatum and Z. japonica, whereas the content of glutamine was lower in the first species.

Amino acid changes in 30 s of darkness

In illuminated leaves, carboxylation and oxygenation of RuBP will produce P-glycerate and P-glycolate. The latter enters the photorespiratory carbon oxidative cycle and, as a result, glycine will be converted into serine in the mitochondria. In darkness, the regeneration of RuBP and the production of both P-glycerate and P-glycolate will stop. The glycine pool will then decrease because the amino acid is no longer being formed, but it is still converted into serine. Therefore, the decrease in the amount of glycine in the leaves after 30 s in darkness compared with the amounts in fully illuminated leaves during steady-state photosynthesis will be related to the rate of photorespiratory production of P-glycolate through the oxygenation of RuBP. The pools of glycine and serine in the leaves are thought to reflect the photorespiratory fixation of O₂ quite accurately, given that the synthesis of these two amino acids occurs mostly through this process (Jolivet-Tournier & Gerster 1984). Earlier studies reveal that in C₃ plants, steady-state photosynthesis followed by 1 or 2 min in darkness results in a considerable decrease in glycine and an increase in serine (Roberts, Keys & Whittingham 1970; Kumarasinghe et al. 1977). The rate of incorporation of ¹⁸O into glycolate and glycine in maize (C₄ monocotyledon, NADP-ME) leaves increased with increasing O₂ concentrations, providing direct evidence for photorespiratory O₂ uptake, albeit at a much lower rate than in wheat (de Veau & Burris 1989). In A. edulis (C4 dicotyledon, NAD-ME), the decrease of both glycine and serine contents at very low O2 was consistent with photorespiratory production of both amino acids at atmospheric O2 levels (Maroco et al. 2000). In the C4 grasses P. dilatatum, C. dactylon and Z. japonica, there was no effect of decreased RWC (P > 0.05) Photorespiration and C₄ photosynthesis under drought stress 937

on the difference between the content of amino acids in the light and dark samples, and therefore, the mean changes after 30 s in darkness for each species, presented in Table 2, were estimated considering all the data for the control and non-watered plants together. A decrease in the glycine content was observed after 30 s in darkness, but serine content was not affected in any of the three species. The changes in glycine suggest that photorespiration was faster in C. dactylon (0.32 \pm 0.07 μ mol m⁻² s⁻¹) than in P. dilatatum and Z. *japonica* $(0.12 \pm 0.07 \,\mu\text{mol m}^{-2} \,\text{s}^{-1})$. Maroco *et al.* (2000) proposed that changes in the glycine pool would be a better indicator of the occurrence of photorespiration in maize (C_4) than changes in the serine pool. On the other hand, Novitskava et al. (2002) demonstrated that the ratio between the two amino acids is strongly correlated with the photorespiration in C3 plants. The decrease in Gly/Ser ratio in the dark was notably higher in C. dactylon than in P. dilatatum and Z. japonica (Table 2), suggesting that photorespiration in the NAD-ME grass might be faster than in the other two species, although still much slower than the values reported for C₃ species (Keys 1986; Novitskaya et al. 2002). Photorespiratory CO₂ evolution rates at atmospheric O₂ (21%) and CO₂ (350 μ mol mol⁻¹) for wheat (C₃) and maize (C_4) were estimated to be 27 and 2%, respectively, of net photosynthetic CO₂ assimilation (de Veau & Burris 1989). More extensive studies on isotopic oxygen uptake in the light found slightly faster photorespiration rates in NAD-ME compared with NADP-ME monocotyledon species (Furbank & Badger 1982; Siebke et al. 2003).

Glutamine synthetase is responsible for the reassimilation of NH₃ produced in the photorespiratory carbon oxidation cycle (Keys et al. 1978), and the glutamate produced by the glutamine:2-oxoglutarate aminotransferase (GOGAT) complex during the photorespiratory nitrogen cycle acts as a donor of amino groups needed for the photorespiratory carbon oxidation cycle (Keys 1999). The GOGAT reaction would be expected to stop quickly in the dark, justifying the decrease in glutamate content in the darkened leaves of P. dilatatum and C. dactylon, which was not evident in Z. japonica (Table 2). As suggested by Novitskaya et al. (2002), the trends in glutamate and glutamine might well reflect processes linked to photosynthesis other than photorespiration, including primary N assimilation, and cannot be interpreted as a result of altered photorespiratory NH₃ flux.

The decrease in aspartate, the primary C_4 acid formed in the M cells of NAD-ME and PEPCK species, in the darkened leaves of *C. dactylon* and *Z. japonica* (Table 2), is a clear consequence of stopping the primary fixation of CO_2 by PEPC. Accordingly, the increase in alanine in the same two species is consistent with continuing amination of pyruvate in the C_4 cycle. In wheat and potato (C_3 plants), decreased contents in both aspartate and alanine were found under photorespiratory conditions (Novitskaya *et al.* 2002). However, in durum wheat, a period of 30 s in darkness induced no changes in aspartate or alanine, although a clear decrease in glycine and serine was observed (data not shown). Moreover, the post-illumination changes in aspartate and alanine were restricted to *C. dactylon* and *Z. japonica*, with no changes being observed in *P. dilatatum* (NADP-ME), suggesting their association with the C_4 photosynthetic pathway rather than with the photorespiratory metabolism.

Modelling the CO₂ response of C₄ photosynthesis under drought conditions

A mechanistic model of C4 photosynthesis (von Caemmerer & Furbank 1999) was applied to the photosynthetic response of the three C4 species to the intercellular CO2 concentration at high irradiance shown in Fig. 2. This approach allowed the simulation of the effect of moderate and severe leaf dehydration on the rates of photosynthesis and photorespiration by the three grasses. At high irradiance, photosynthesis is assumed to be enzyme limited and mostly determined by the rates of PEP and RuBP carboxylation by PEPC and Rubisco, respectively, and by the regeneration of PEP (von Caemmerer 2000). The variation of the enzyme-limited net CO_2 assimilation rate (A_c) with the CO_2 concentration in the M cells (C_m) is represented in Fig. 6. The values predicted seem to agree fairly well with the experimental results (Fig. 2). However, there might be some overestimation of the modelled values of Ac for C. dactylon and Z. japonica. For simplification, it was assumed that the fraction of O₂ evolution in the BS is zero for all three species but this is not likely to be correct for the NAD-ME or PEPCK species, in which photosystem II (PSII) activity will probably increase the O₂ concentration in the BS, decreasing the actual value of photosynthesis. The mean values estimated for the maximum PEPC carboxylation activity (V_{pmax}) and maximum Rubisco carboxylation activity (V_{cmax}) were higher in C. dactylon than in P. dilatatum and were lower in Z. japonica, and decreased with leaf dehydration (Fig. 6). These results suggest that both enzymes responsible for the carboxylation of PEP and RuBP are down-regulated under drought conditions. The negative effect of drought on the photosynthesis response to CO₂ is more notable in the SS plants of *P. dilatatum* and Z. japonica, but a clear effect of leaf dehydration on the two enzymes and on $A_{\rm c}$ was simulated for the MS plants of each of the three species.

The application of the model equations to the experimental data from the CO₂ response curves allowed the simulation of a rate of photorespiration (Pr) for each of the three C_4 grasses at the different stress levels (Fig. 7). Even at the lowest C_i values, the predicted Pr was never higher than 1.5 μ mol m⁻² s⁻¹, and at ambient levels of CO₂ (360– 390 μ mol mol⁻¹), Pr was estimated to be less than 3.5% of $A_{\rm c}$ for all species and stress levels. The modelled data suggest that photorespiration is present at higher rates in the MS relative to the well-watered plants of each species, especially in Z. japonica. The lower values of Pr estimated for the SS compared with the MS plants of P. dilatatum and Z. japonica indicate that metabolic inhibition of photosynthesis occurs at the level of Rubisco, affecting both the rates of photosynthesis and photorespiration. Pr was estimated to be lower in C. dactylon than in the other two species.

However, higher values could have been predicted for either *C. dactylon* (NAD-ME) or *Z. japonica* (PEPCK) if a more realistic O_2 concentration in the BS, likely to be higher than in *P. dilatatum* (NADP-ME), had been considered.

Stomatal closure causes decreased C_i under drought conditions (Fig. 2). Concomitantly, lower values of C_s for a given CO₂ concentration are estimated for the dehydrated leaves compared with the controls (Fig. 7). The slower response of increasing C_s with increasing C_i under drought stress suggests that metabolic impairment might be present, affecting the effectiveness of the C4 cycle. As a result, A_{c} is also decreased and Pr increases, that is, the predicted rates of photorespiration increase as a proportion to the modelled net photosynthesis when leaf dehydration increases for all three species. Many assumptions have been made to allow the simulation of plant photosynthetic and photorespiratory responses by the application of a mechanistic model and, consequently, much uncertainty is involved. It was assumed that stomata apertures decreased uniformly and that g_m and g_{bs} were not changed with stress. Furthermore, it was accepted that the estimated values of $V_{\rm cmax}$ and $V_{\rm pmax}$ changed with stress. More accurate predictions will be possible when more measurements of the assumed parameters are available as, for example, the kinetic constants of Rubisco from each of the C₄ species.

CONCLUSIONS

Drought stress induced decreased leaf water contents, stomatal closure and decreased net CO₂ assimilation in the leaves of P. dilatatum, C. dactylon and Z. japonica. The response of net photosynthesis to CO₂ was typical of C₄ leaves, and extrapolation to zero A gave no evidence of a significant CO₂ compensation point even in droughted plants. Net CO₂ assimilation was decreased only slightly with increasing O_2 concentrations above 10% in the atmosphere around the leaves, but this trend was not increased by drought stress. Leaves of both control and droughted plants showed δ^{13} C and δ^{18} O typical of C₄ plants, and changes with RWC were not indicative of changes in photorespiration. Increased contents of glycine and serine in the dehydrated leaves of the three species provided the only suggestion for increased photorespiratory metabolism by water deficit. Changes in amino acid content after 30 s in darkness, especially the decrease in glycine, were consistent with slow photorespiration rates in all three species, but were slightly faster in C. dactylon (NAD-ME) than in P. dilatatum (NADP-ME) and Z. japonica (PEPCK), and not changed by drought stress in either species. Mechanistic modelling of CO₂ response curves as well as the O₂ sensitivity of C₄ photosynthesis by the three grasses suggested slightly increased photorespiration rates in proportion to photosynthesis. However, the overall results presented here suggest that the C4 grasses of the three different metabolic subtypes are able to maintain levels of CO₂ at the Rubisco site sufficiently high to limit oxygenase activity under drought stress.

ACKNOWLEDGMENTS

A.E. Carmo-Silva acknowledges Fundação para a Ciência e a Tecnologia, Portugal, for financial support (PhD grant SFRH/BD/13730/2003). Rothamsted Research is a grantaided Institute of the Biotechnology and Biological Sciences Research Council, UK. The authors thank AgResearch, Margot Forde Forage Germplasm Centre, New Zealand, for providing the seeds of *P. dilatatum*, and Alípio Dias & Irmão, Lda, Portugal, for providing the seeds of C. dactylon and Z. japonica; Dr Simon P. Driscoll, Rothamsted Research, England, for assistance on gas exchange measurements; Dr Rodrigo Maia, Faculdade de Ciências da Universidade de Lisboa, Portugal, for the isotope analysis; and Richard Parkinson, Rothamsted Research, Hertfordshire, England, for 'trouble' shooting in what concerns the problematic of C₄ grass growth and drought induction in a greenhouse in the UK!

REFERENCES

- Barbour M.M. (2007) Stable oxygen isotope composition of plant tissue: a review. *Functional Plant Biology* **34**, 83–94.
- Barbour M.M. & Farquhar G.D. (2000) Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. *Plant, Cell & Environment* 23, 473–485.
- Barnett N.M. & Naylor A.W. (1966) Amino acid and protein metabolism in Bermuda grass during water stress. *Plant Physiology* 41, 1222–1230.
- Berry J.A. & Farquhar G.D. (1978) The CO2 concentration function of C4 photosynthesis: a biochemical model. In *Proceedings* of the 4th International Congress of Photosynthesis (eds D. Hall, J. Coombs & T. Goodwin), pp. 119–131. Biochemical Society, London, UK.
- Bowes G. & Ogren W.L. (1972) Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. *Journal of Biological Chemistry* **247**, 2171–2176.
- Buchmann N., Brooks J.R., Rapp K.D. & Ehleringer J.R. (1996) Carbon isotope composition of C₄ grasses is influenced by light and water supply. *Plant, Cell & Environment* **19**, 392– 402.
- von Caemmerer S. (2000) Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Collingwood, Australia.
- von Caemmerer S. & Furbank R.T. (1999) Modelling C4 photosynthesis. In: C4 Plant Biology (eds R.F. Sage & R.K. Monson), pp. 173–211. Academic Press, New York, NY, USA.
- Carmo-Silva A.E., Soares A.S., Marques da Silva J., Bernardes da Silva A., Keys A.J. & Arrabaça M.C. (2007) Photosynthetic responses of three C₄ grasses of different metabolic subtypes to water deficit. *Functional Plant Biology* **34**, 204–213.
- Catsky J. (1960) Determination of water deficit in discs cut out from leaf blades. *Biologia Plantarum* **2**, 76–77.
- Cerling T.E. (1999) Paleorecords of C4 plants and ecosystems. In *C4 Plant Biology* (eds R.F. Sage & R.K. Monson), pp. 445–469. Academic Press, New York, NY, USA.
- Chaves M.M., Maroco J.P. & Pereira J.S. (2003) Understanding plant responses to drought from genes to the whole plant. *Functional Plant Biology* **30**, 239–264.
- Dai Z.Y., Ku M.S.B. & Edwards G.E. (1993) C₄ photosynthesis. The CO₂-concentrating mechanism and photorespiration. *Plant Physiology* **103**, 83–90.
- Du Y.C., Kawamitsu Y., Nose A., Hiyane S., Murayama S., Wasano K. & Uchida Y. (1996) Effects of water stress on carbon

 $\ensuremath{\mathbb{C}}$ 2008 The Authors

exchange rate and activities of photosynthetic enzymes in leaves of sugarcane (*Saccharum* sp.). *Australian Journal of Plant Physiology* **23**, 719–726.

- Edwards G.E., Ku M.S.B. & Monson R.K. (1985) C4 photosynthesis and its regulation. In *Photosynthetic Mechanisms and the Environment* (eds J. Barber & N.R. Baker), pp. 287–327. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam, the Netherlands.
- Farquhar G.D. (1983) On the nature of carbon isotope discrimination in C₄ species. Australian Journal of Plant Physiology 10, 205–226.
- Farquhar G.D., Barbour M.M. & Henry B.K. (1998) Interpretation of oxygen isotope composition of leaf material. In *Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes* (ed. H. Griffiths), pp. 27–62. BIOS Scientific Publishers Limited, Oxford, UK.
- Forrester M.L., Krotkov G. & Nelson C.D. (1966) Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. II. Corn and other monocotyledons. *Plant Physiology* 41, 428–431.
- Foyer C.H., Valadier M.H., Migge A. & Becker T.W. (1998) Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. *Plant Physiology* **117**, 283–292.
- Foyer C.H., Parry M.A.J. & Noctor G. (2003) Markers and signals associated with nitrogen assimilation in higher plants. *Journal of Experimental Botany* 54, 585–593.
- Furbank R.T. & Badger M.R. (1982) Photosynthetic oxygen exchange in attached leaves of C₄ monocotyledons. *Australian Journal of Plant Physiology* 9, 553–558.
- Ghannoum O., Siebke K., von Caemmerer S. & Conroy J.P. (1998) The photosynthesis of young *Panicum* C₄ leaves is not C₃-like. *Plant, Cell & Environment* **21**, 1123–1131.
- Ghannoum O., von Caemmerer S. & Conroy J.P. (2002) The effect of drought on plant water use efficiency of nine NAD-ME and nine NADP-ME Australian C₄ grasses. *Functional Plant Biology* 29, 1337–1348.
- Ghannoum O., Conroy J.P., Driscoll S.P., Paul M.J., Foyer C.H. & Lawlor D.W. (2003) Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C₄ grasses. *New Phytologist* **159**, 599–608.
- Gillon J.S. & Griffiths H. (1997) The influence of (photo)respiration on carbon isotope discrimination in plants. *Plant, Cell & Environment* **20**, 1217–1230.
- Hattersley P.W. (1982) δ^{13} C values of C₄ types in grasses. *Australian Journal of Plant Physiology* **9**, 139–154.
- Helliker B.R. & Ehleringer J.R. (2000) Establishing a grassland signature in veins: ¹⁸O in the leaf water of C₃ and C₄ grasses. *Proceedings of the National Academy of Sciences of the United States of America* **97**, 7894–7898.
- Jolivet-Tournier P. & Gerster R. (1984) Incorporation of oxygen into glycolate, glycine, and serine during photorespiration in maize leaves. *Plant Physiology* 74, 108–111.
- Keys A.J. (1986) Rubisco Its role in photorespiration. *Philosophical Transactions of the Royal Society of London Series* B-Biological Sciences 313, 325–336.
- Keys A.J. (1999) Biochemistry of photorespiration and the consequences for plant performance. In *Plant Carbohydrate Biochemistry* (eds J.A. Bryant, M.M. Burrell & N.J. Kruger), pp. 147–162. BIOS Scientific Publishers Ltd, Oxford, UK.
- Keys A.J., Bird I.F., Cornelius M.J., Lea P.J., Wallsgrove R.M. & Miflin B.J. (1978) Photorespiratory nitrogen cycle. *Nature* 275, 741–743.
- Kiirats O., Lea P.J., Franceschi V.R. & Edwards G.E. (2002) Bundle sheath diffusive resistance to CO₂ and effectiveness of C₄ photosynthesis and refixation of photorespired CO₂ in a C₄ cycle

mutant and wild-type Amaranthus edulis. Plant Physiology 130, 964–976.

- Ku M.S.B., Wu J.R., Dai Z.Y., Scott R.A., Chu C. & Edwards G.E. (1991) Photosynthetic and photorespiratory characteristics of *Flaveria* species. *Plant Physiology* **96**, 518–528.
- Kumarasinghe K.S., Keys A.J. & Whittingham C.P. (1977) Flux of carbon through glycolate pathway during photosynthesis by wheat leaves. *Journal of Experimental Botany* **28**, 1247– 1257.
- Lacuesta M., Dever L.V., MunozRueda A. & Lea P.J. (1997) A study of photorespiratory ammonia production in the C₄ plant *Amaranthus edulis*, using mutants with altered photosynthetic capacities. *Physiologia Plantarum* **99**, 447–455.
- Laing W.A., Ogren W.L. & Hageman R.H. (1974) Regulation of soybean net photosynthetic CO₂ fixation by interaction of CO₂, O₂ and ribulose 1,5-diphosphate carboxylase. *Plant Physiology* 54, 678–685.
- Lawlor D.W., Kontturi M. & Young A.T. (1989) Photosynthesis by flag leaves of wheat in relation to protein, ribulose bisphosphate carboxylase activity and nitrogen supply. *Journal of Experimental Botany* **40**, 43–52.
- Maroco J.P., Ku M.S.B. & Edwards G.E. (1997) Oxygen sensitivity of C₄ photosynthesis: evidence from gas exchange and chlorophyll fluorescence analyses with different C₄ subtypes. *Plant, Cell* & *Environment* **20**, 1525–1533.
- Maroco J.P., Ku M.S.B., Lea P.J., Dever L.V., Leegood R.C., Furbank R.T. & Edwards G.E. (1998) Oxygen requirement and inhibition of C₄ photosynthesis. An analysis of C₄ plants deficient in the C₃ and C₄ cycles. *Plant Physiology* **116**, 823–832.
- Maroco J.P., Ku M.S.B. & Edwards G.E. (2000) Utilization of O_2 in the metabolic optimization of C_4 photosynthesis. *Plant, Cell & Environment* **23**, 115–121.
- Marques da Silva J. & Arrabaça M.C. (2004) Photosynthesis in the water-stressed C_4 grass *Setaria sphacelata* is mainly limited by stomata with both rapidly and slowly imposed water deficits. *Physiologia Plantarum* **121**, 409–420.
- Massad R.S., Tuzet A. & Bethenod O. (2007) The effect of temperature on C₄-type leaf photosynthesis parameters. *Plant, Cell & Environment* **30**, 1191–1204.
- Noctor G. & Foyer C.H. (1998) Simultaneous measurement of foliar glutathione, gamma-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. *Analytical Biochemistry* **264**, 98–110.
- Novitskaya L., Trevanion S.J., Driscoll S., Foyer C.H. & Noctor G. (2002) How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis. *Plant, Cell & Environment* 25, 821–835.
- Patterson H.D. & Thompson R. (1971) Recovery of inter-block information when block sizes are unequal. *Biometrika* **58**, 545–554.
- Peisker M. (1979) Conditions for low, and oxygen-independent, CO₂ compensation concentrations in C₄ plants as derived from a simple model. *Photosynthetica* **13**, 198–207.
- Peisker M. & Henderson S.A. (1992) Carbon: terrestrial C₄ plants. *Plant, Cell & Environment* **15**, 987–1004.
- Rawsthorne S. & Hylton C.M. (1991) The relationship between the post-illumination CO₂ burst and glycine metabolism in leaves of C₃ and C₃-C₄ intermediate species of *Moricandia*. *Planta* **186**, 122–126.
- Roberts G.R., Keys A.J. & Whittingham C.P. (1970) The transport of photosynthetic products from chloroplasts of tobacco leaves. *Journal of Experimental Botany* **21**, 683–692.
- Saccardy K., Cornic G., Brulfert J. & Reyss A. (1996) Effect of drought stress on net CO₂ uptake by Zea leaves. Planta 199, 589–595.

- Saliendra N.Z., Meinzer F.C., Perry M. & Thom M. (1996) Associations between partitioning of carboxylase activity and bundle sheath leakiness to CO₂, carbon isotope discrimination, photosynthesis, and growth in sugarcane. *Journal of Experimental Botany* 47, 907–914.
- Siebke K., Ghannoum O., Conroy J.P., Badger M.R. & von Caemmerer S. (2003) Photosynthetic oxygen exchange in C₄ grasses: the role of oxygen as electron acceptor. *Plant, Cell & Environment* 26, 1963–1972.
- Stitt M., Muller C., Matt P., Gibon Y., Carillo P., Morcuende R., Scheible W.R. & Krapp A. (2002) Steps towards an integrated view of nitrogen metabolism. *Journal of Experimental Botany* 53, 959–970.

Troughton J.H. (1979) δ^{13} C as an indicator of carboxylation

reactions. In *Encyclopedia of Plant Physiology, New Series* (eds M. Gibbs & E. Latzko), pp. 140–149. Springer-Verlag, New York, NY, USA.

- de Veau E.J. & Burris J.E. (1989) Photorespiratory rates in wheat and maize as determined by ¹⁸O-labeling. *Plant Physiology* 90, 500–511.
- Williams D.G., Gempko V., Fravolini A., Leavitt S.W., Wall G.W., Kimball B.A., Pinter P.J., LaMorte R. & Ottman M. (2001) Carbon isotope discrimination by *Sorghum bicolor* under CO₂ enrichment and drought. *New Phytologist* **150**, 285– 293.

Received 22 December 2007; received in revised form 25 February 2008; accepted for publication 26 February 2008