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1. Mathieu’s equation
Mathieu’s equation is a second-order differential equation of

d2y
dx2

+ (A − 2Q cos 2x)y = 0 , (1)

with parameters A and Q. Its exact analytic solutions have not been developed. However, re-
cently, Daniel [1] proposed two linearly independent closed-form analytic solutions.

Daniel’s interest was a plane quantum pendulum; its wavefunction � satisfies the one-
dimensional time-independent Schrödinger equation of [1]

− h̄2

2ml2

d2�

dθ2
+ mgl (1 − cos θ )� = E� ; (2)

see Ref. [1] for its notations. Then, with a change of variable x = θ /2 and restructure of other
variables, Eq. (2) can be transformed to Mathieu’s equation.

With further change of variable z = exp(ix) and by introducing an ‘ansatz’ of [1]

�(z) = zp exp(−α/z + βz) f (z) , (3)

Daniel achieved an auxiliary function f(z) of [1]
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dz2
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]
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+

[
β2 − ω2

2
+ βδ

z
+ γ

z2
+ α(δ − 2)

z3
+ α2 − ω2/2

z4

]

× f (z) = 0 , (4)

which formed the basis for his solution method. Many of the new variables in Eqs. (3) and (4)
are arbitrary free parameters to be determined.

2. Daniel’s first solution
Daniel’s first solution selected α = ±ω/

√
2, β = ∓ω/

√
2, and δ = 2, to simplify Eq. (4). Then,

by the substitution of z = r − su with arbitrary r and s, Eq. (4) of f(z) was transformed to
another second-order differential equation of f(u) customised to his first solution, but that is
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not shown here for brevity. Further, he adopted a Laurent-series expansion for f(u) [1]:

f (u) =
∞∑

n=−∞

(n + ν )anu−n−ν , (5)

where 
( · ) is the gamma function; an is the expansion coefficient; and ν is arbitrary. Substi-
tution of Eq. (5) to the differential equation of f(u) resulted in a four-term recurrence relation
for an, instead of the usual three-term recurrence relations of Mathieu’s equation.

Daniel found that the recurrence relation for his an could be matched to one of the four-term
recurrence relations for hypergeometric functions of the second order studied by Exton [2].
Daniel’s interest was Exton’s four-term recurrence relation for Pn [1,2]:

Pn(a, b; c; t) = tn

n! 3F1

(
a, b, −n; c; −1

t

)
, (6)

where 3F1( · ) is a generalised hypergeometric function ρFq( · ) with ρ = 3 and q = 1. Note that
Eq. (6) contains a factorial n! and Eq. (5) has 
(n + ν).

To match the two recurrence relations, Daniel made several selections of his free parameters
such as a, b, c, r, s, γ , ν, and t = r/s. This process resulted in his an ≡ Pn of Exton. He then
inserted an to f(u) in Eq. (5) and finally to the ansatz of �(z) in Eq. (3). The outcome is Daniel’s
first solution �I(x) with z = exp (ix) [1]:

�I(x) = z−1/2 exp
(
−α

z
+ βz

) ∞∑
n=−∞

(
t
s

)n

3F1

(
a, b, −n; c; −1

t

)
(r − z)−n , (7)

which was proposed as an exact solution to both Mathieu’s equation and Schrödinger’s equa-
tion of quantum pendulum. For definitions of the parameters of Eq. (7), see Ref. [1].

Equation (7) requires the computation of 3F1( · ). However, for ρ > q + 1, the generalised
hypergeometric function ρFq( · ) diverges for all non-zero arguments in general [3], except when
its numerator parameters are non-positive integers. Furthermore, to make an ≡ Pn, one of
Daniel’s choices was ν = 1, without realising that the gamma function is not defined at non-
positive integers. Here, a paragraph of his is quoted verbatim [1]:

“It is worth pausing here in order to affirm that the range of summation of n from −∞ to ∞ in the Laurent series expansion of f(u) is

in no way affected by the n! appearing in the denominator of the above result for an. Simply insert the value ν = 1, as deduced from the

first step above, into the gamma function 
(n + ν) appearing in the Laurent series expansion of f(u) to see that 
(n + ν) = n!, which

clearly cancels the n! contained in the denominator above for an.”

His ν = 1 is also instrumental in determining other free parameters; without it, Eq. (7) is
not obtained. Anyway, his procedure involved a factorial of a negative integer. Daniel’s first
solution �I is therefore problematic.

3. Daniel’s second solution
Daniel’s second solution selected α = ±ω/

√
2 to simplify Eq. (4), but β and δ were undecided

at the beginning. Then, the following expansion of [1]

f (z) =
∞∑

n=−∞
(−1)nλnanz1−n (8)

was assumed as a solution to Eq. (4). Here, λ is a free parameter and an is now the expansion
coefficient of his second solution. Substitution of Eq. (8) to Eq. (4) led to another four-term
recurrence relation for an.

Daniel again discovered that the recurrence relation for an of his second solution could be
matched to another four-term recurrence relations for Gn by Exton [2]. Then, Gn of Exton is
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expressed in terms of a generalised hypergeometric function 2F2( · ) [1,2]:

Gn(a, b; c; t) = (a)n(b)n

(c)nn! 2F2(a + n, b + n; c + n, 1 + n; t) ,

where ( · )n is the Pochhammer symbol. Note that both ( · )n and n! are defined for n ≥ 0.
To match the two recurrence relations, Daniel determined his free parameters such as a, b, c,

t, β, δ, and λ. This procedure led to his second-solution an ≡ Gn of Exton. The final outcome
is Daniel’s second solution of �II(x) with z = exp (ix) [1]:

�II(x) = z(1/2)+δ exp
(
−α

z
+ βz

) ∞∑
n=−∞

(−λ)n (a)n(b)n

(c)nn! 2F2(a + n, b + n; c + n, 1 + n; t)z−n ,

which was offered as another exact solution to Eqs. (1) and (2): for its parameters, see Ref. [1].
Subsequently, Daniel claimed that his two solutions �I and �II were independent.

Daniel’s second solution contains both n! and ( · )n evaluated for n < 0, shortcomings at-
tributed to Exton [2]; hence, it is not computable. For his first solution, Daniel was wary of n!
under

∑∞
n=−∞; however, he did not make comments on this for his second solution.

4. Conclusion
Daniel’s exact solutions [1] of Mathieu’s equation involve the gamma function of non-positive
integers, the factorial of negative integers, and Pochammer symbols with a negative number of
factors; therefore they are flawed.
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