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Abstract: Food security, sustainability of food production, and greenhouse gas (GHG) production of
ruminant livestock are topics that generate scrutiny and debates worldwide. In a scenario of increas-
ing human population and concerns with climate change, it is necessary to increase animal-derived
food in sustainable operations. Grazing systems are crucial for ruminant production worldwide,
and in the tropics, well-managed grasslands can provide sustainable intensification of this activity.
In these regions, production often relies on grass monoculture managed extensively, a practice that
commonly has led to the occurrence of degraded soils, limited animal productivity, and increased
intensity of GHG emissions. Silvopastoralism is a practice that promotes several ecosystem services,
showing potential to maintain soil quality while reducing the environmental impacts of ruminant
production. These systems also have the potential to improve animal productive performance and
reduce GHG emissions. The review was guided by a search in the Web of Science database using
population terms and refined by document type (Article) and language (English OR Portuguese)
following PRISMA protocol. Infographics were created using the Bibliometrix package in R soft-
ware (version 4.3.2), and a specific topic on Tithonia diversifolia (Hemsl.) A. Gray was explored to
demonstrate the importance of this forage resource for tropical silvopastoral systems and its potential
contribution to food security. The T. diversifolia shrub is widely distributed in Latin America and
tropical regions and presents several characteristics that make it a good option for silvopastoral
systems. Focusing on the tropics, our objectives were to present one literature review addressing the
role of grazing ruminant production towards the current climate change and food security challenges.
Additionally, we aimed to explore the state of knowledge on silvopastoral systems and the use of
T. diversifolia, presenting their potential to cope with this scenario of increased concerns with the
sustainability of human activities.

Keywords: food security; grasslands; greenhouse gases; methane; shrubs

1. Introduction

Grasslands are among the largest and most crucial ecosystems globally, serving as
a primary pillar for human population development, particularly by supporting grazing
ruminants’ production [1]. Increased demand for animal food products, including milk and
meat, is expected in the next few years due to a growing global population and changing
dietary habits in many countries worldwide. Consequently, this trend will likely result in a
greater demand for limited resources, such as land, fuel, water, and minerals [2]. Consider-
ing these factors, enhancing the production levels of animal food products is necessary to
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meet these higher demands. However, at the same time, greenhouse gas (GHG) emissions
from livestock production are identified as primary anthropogenic sources contributing
to climate change. Enteric methane (CH4) accounts for about 40% of emissions from the
sector [3], with a global warming potential 25 times greater than that of CO2 [4]. In addition
to its environmental impacts, CH4 production may be equivalent to a 2–12% loss of dietary
gross energy [5], representing a limiting factor to animal productive performance. There-
fore, achieving higher production should involve using sustainable practices, commonly
referred to as sustainable intensification, to ensure that ruminant livestock production
remains a feasible activity for both population and the planet [6,7].

The productivity (in terms of quality and quantity) of tropical grasses, the primary nu-
trient source for ruminants in the tropics, is often reduced during severe climatic conditions,
leading to fluctuations in animal performance throughout the year. Various approaches
to overcome this situation and maximize productivity in these grazing systems have been
documented in the literature [1,8]. More recently, the use of trees or shrubs in grazing
systems, an agroforestry practice named silvopastoralism, is gaining attention as a practice
capable of providing benefits to forage production, animal performance, and the environ-
ment. Therefore, it represents a tool with the potential to enhance sustainability in tropical
grazing systems [9,10].

Tithonia diversifolia (Hemsl.) A. Gray is a shrub species native to Central America
but widespread in tropical and subtropical regions across the globe, showing promising
potential for use in silvopastoral systems [11,12]. Compared to other tropical forages, T.
diversifolia demonstrates greater crude protein (CP) and phosphorus content, maintaining a
relatively stable nutritional value even during dry seasons while exhibiting tolerance to
acidic soils and moderate to low water and fertilization demands [11,13,14]. Indigenous
populations have traditionally used this plant for treating various diseases due to the
presence of bioactive secondary compounds [15]. These compounds also influence ruminal
fermentation, potentially reducing CH4 emissions [11,16].

Given the characteristics of silvopastoral systems and T. diversifolia, as well as the
relative novelty of both topics, it is evident that more comprehensive assessments of these
in ruminant production, along with accurate analyses of the available data, are needed
for the consolidation and elucidation of silvopastoralism and the use of this forage as a
viable option for farmers in tropical regions to improve system productivity sustainably.
Therefore, the objectives of the present review were to provide an overview of the role of
grazing ruminant production towards the scenario of climate change and food security
challenges as well as fundamental key aspects of the existing knowledge and potential
impacts associated with the utilization of silvopastoralism in this context, with a specific
focus on tropical systems and the utilization of the tropical shrub T. diversifolia.

2. Ruminant Production and Food Security—A Brief Overview

The food production sector is facing a challenging moment worldwide due to the in-
creased number of people with inadequate access to nutritious diets, presenting insufficient
daily intake of nutrients such as carbohydrates, proteins, and fats, leading to vitamin and
mineral deficiencies. Simultaneously, issues like obesity and type two diabetes, which pose
significant risks to human health, are increasingly prevalent in society [17,18]. Concurrently,
there is a growing concern regarding the environmental impact of human activities. The
livestock production sector is particularly noteworthy in this aspect, often cited as one
of the primary contributors to these harmful effects on the environment [19,20]. Animal
husbandry is identified as responsible for 14.5% of total anthropogenic GHG emissions in
the atmosphere, with a very significant portion of these emissions, as mentioned earlier,
being represented by the enteric CH4 that arises from the fermentative process in the gas-
trointestinal tract of ruminants, serving as a byproduct from their feed digestion, especially
structural carbohydrates [3,21]. However, products such as meat and milk obtained from
ruminants can be part of well-balanced diets for humans, providing essential macro and
micronutrients, including proteins, fatty acids, vitamins A, B12, calcium, iron, zinc, and
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others, contributing significantly to promoting health in the population and reducing the
occurrence of several illnesses [18,22,23].

The world’s population growth, coupled with changes in the profile of societies such
as increased average income and more widespread dissemination of the western lifestyle,
leads to the estimation that the demand for animal food products will be 70% higher in
2050 relative to 2010 [2,24]. Ruminant production stands out in this scenario, as these
animals can be reared on non-arable lands, consuming fibrous feedstuff to produce high-
quality protein food, contributing significantly to achieving food security without relying
on grains and other cereals that could be used in the human diet [6,25,26]. According
to the Food and Agriculture Organization of the United Nations (FAO), food security
entails “access to sufficient, safe, nutritious food to maintain a healthy and active life”.
Therefore, sustainable ruminant production should be crucial in meeting the increasing
demand for food in human society while simultaneously achieving the targeted reductions
of anthropogenic GHG emissions, frequently a focal point of discussion in climate-related
scientific conferences [18,21,25,27].

Despite these facts, some scientists still propose a drastic reduction in the number of
ruminants as a solution to avoid a climatic disaster [28]. However, the feasibility of this op-
tion must be analyzed in a broader context, considering the previously highlighted benefits
that ruminant livestock production generates and the fact that livestock grasslands ecosys-
tems support the livelihood of millions of people worldwide, providing economic goods
and social-cultural services to these populations. Additionally, grasslands offer ecosys-
tem services such as soil protection, maintenance of groundwaters quality, and climate
regulation through carbon (C) sequestration, representing 25% of global soil sequestration
potential [1,29–31].

Aiming for sustainability, ruminant production in pastoral systems should prioritize
society’s economic, environmental, social, and cultural demands. Productivity and the
mitigation of GHG should serve as guiding principles to prevent ecological issues such as
increased emissions and soil C loss, as well as shortage or unaffordable prices of animal
food products [30]. Tropical grasslands are renowned as biodiversity hotspots, hosting
several endangered species and serving as a pillar for environmental preservation [32]. As
previously mentioned, tropical grasses are frequently susceptible to quality oscillations
due to climatic factors, especially during dry seasons, when the plant may exhibit reduced
CP content and increased structural carbohydrates, resulting in diminished productivity
and increased GHG emissions per unit of generated product (i.e., GHG emissions’ inten-
sity) [33,34]. The use of silvopastoral systems by intercropping tropical forage grass species
with native C3 trees and shrubs is considered a management practice with potential to
address the variation in forage productivity, as the presence of these trees and shrubs can
enhance the system’s resilience to extreme climate conditions, particularly during dry sea-
sons, and contribute to increased biomass production, enhancing nutritive value of forages
in such pastures, potentially resulting in a reduced intensity of CH4 emissions [10,35].

3. Silvopastoralism in Ruminant Production

Due to increasing demand for animal products, especially in developing countries
(which are mostly located in the world’s tropical regions, particularly in Latin America),
deforestation has occurred in order to expand pasture areas to support the growing re-
quirements for higher animal production, since deforestation costs are usually lower than
those associated with production intensification [36]. Approximately 70% of agricultural
land is used for livestock production in the tropics. Pastures on these farms are commonly
based on grass species cultivated in monocultural extensive systems, in which inadequate
management practices often lead to issues like overgrazing and reduced soil productive
potential, affecting animal performance and eventually leading to increased environmental
impacts of the activity. Additionally, modest stocking rates are often observed, reducing
productivity per land area [37,38]. Furthermore, the intensive use of inorganic fertilizers
and biocides has diminished soil surface cover and destroyed crucial microbial communi-
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ties responsible for soil ecosystem functions, contributing substantially to the deterioration
of the physical, chemical, and biological properties of the soil [30]. Recognizing such factors
has accelerated efforts towards sustainable intensification, which aims at increasing product
generation per unit of area while simultaneously reverting soil degradation and enhancing
ecosystem services [36].

The conscientious management of ruminants in agroforestry systems, particularly in
silvopastoral systems which involve utilizing land for both forest products and animal
production through the browsing of shrubs and trees and/or grazing of co-existing forage
crops can significantly mitigate the ecological challenges posed by ruminant production
systems [9]. Several tropical regions have implemented silvopastoral systems, reporting
numerous benefits. To enhance our understanding of the current scenario regarding the
utilization of these systems and the primary effects of their adoption, we conducted a
brief systematic review following the Preferred Reporting Items for Systematic Review and
Meta-Analyses (PRISMA) [39] guidelines. The Web of Science electronic database platforms
were utilized to find papers using search population terms (i.e., TS = (silvopastoral OR
silvipastoril OR silvopasture OR silvopastoralism)), refined by document type (i.e., Article)
and language (i.e., “English” OR “Portuguese”). Intervention, comparison, and outcome
terms were not used since the objective was to obtain an overview of the silvopastoral
systems-related aspects being researched. The timeframe was extended until 5 March 2024.

This search yielded 1603 documents exported to BibTeX for evaluation through the
Bibliometrix package [40] using R version 4.3.2 [41]. Over the last 8 years, we observed an
exponential increase in published works on silvopastoral systems, reaching the highest
number of documents published per year in 2022 (Figure 1C).
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When evaluating the corresponding authors’ data, it is evident that Brazil and the
United States of America (USA) are the two countries that contribute the most to research
in this area, respectively (Figure 1B), followed by Spain, Argentina, Mexico, and Colombia.
This pattern influences the collaboration map, revealing a solid connection between Brazil,
the USA, and other countries in South America, Central America, and Europe (Figure 1A).

The substantial number of studies on silvopastoral systems in South, Central, and
North American countries was expected, given that many of these nations widely adopt
ruminant production practices in pastures, including extensive tropical regions. For exam-
ple, Brazil, with approximately 239 million hectares of agricultural land, and the USA, with
about 405 million hectares, feature extensive permanent meadows and pastures covering
around 173 million and 245 million hectares, respectively. Similarly, Argentina, Mexico, and
Colombia, with agricultural land areas of around 117 million, 97 million, and 42 million
hectares, respectively, each have substantial coverage of permanent meadows and pastures,
approximately 74 million, 74 million, and 38 million hectares, respectively [42].

To comprehend the benefits of adopting silvopastoral systems, we analyzed the first
40 most frequently used keywords from these 1603 articles in a word cloud (Figure 2).
Among the prominently featured words, in addition to “silvopastoral system”, are “forage
production”, “management”, “pastures”, “carbon (C) sequestration”, and “nutritive value”,
along with terms related to climate change, biodiversity, and ecosystem services.
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Figure 3 was also derived from the author’s keywords, with clusters formed on the X
and Y axes. The X-axis signifies centrality, providing information about the importance of
a theme, while the Y-axis symbolizes density, serving as a measure of the theme’s develop-
ment [43]. Consequently, four quadrants are formed: the motor themes (well-developed
and crucial for structuring the research field), the niche themes (of limited importance
for the field), the emerging or declining themes (weakly developed and marginal), and
the basic themes (concerning general topics transversal to different research areas within
the field) [43]. We observe that the motor themes for silvopastoral systems studies have
been associated with C sequestration, and keywords focused on nutritive value, such as
crude protein and digestibility. Additionally, other terms related to forage, such as grazing
and leaf area index, are prominent. Meanwhile, basic and well-developed themes like soil
fertility, greenhouse gases, animal welfare and behavior, shade, and forage production are
highlighted in the fourth quadrant.
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The impact of silvopastoral systems management on forage production and nutritive
value has been extensively studied [44–46], and the primary factor analyzed in these
parameters has been shade and its effect on forage production and nutritive value [47–49].
Generally, the main impacts of excessive shade include increased in fiber content due to
plant etiolation and enhanced lignification in the pursuit of vertical growth in competition
for light [45,50]. However, benefits are observed in low to moderate shade, with forage
production similar or superior to plants grown in full sun, presenting better nutritive value
with enhanced crude protein content due to delayed maturity and reduced senescence
rates [51,52].

Studies have reported that silvopastoral systems may enhance C sequestration in
soil [53–55], which may be attributed to increased abundance of microbial species, im-
proved soil nutrient cycling and stability, enhanced watershed function, more abundant
biodiversity and wildlife habitat while simultaneously achieving higher levels of healthy
food production [30]. Additionally, most tropical grass species use the C4 photosynthetic
pathway, resulting in higher rate of lignin deposition and reduced digestibility and vol-
untary feed intake, especially during periods of scarcity, such as dry seasons [34,56]. In
silvopastoral systems, animals can use foliage, pods, and even fruits from trees or shrubs
as feed complementation, helping overcome feed shortages in critical periods [10,57].

Moreover, pastures in such systems exhibit increased productivity. They can influence
grazing area microclimate parameters, providing reduced temperature, and increased hu-
midity, benefiting animal behavior, and allowing for extended grazing periods due to more
favorable environmental conditions [58,59]. In a silvopastoral system with Andropogon
gayanus grass pasture cultivated alongside native trees in the northeast region of Brazil,
Zambrano et al. [60] observed that Anglo-Nubian goats dedicated more time to grazing
than animals in an A. gayanus monocultural system. These authors also noted increased
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forage biomass production and reduced environmental temperature in the silvopastoral
system compared to the monoculture. Another benefit of silvopastoral system for animal
production is the increased shade area in pastures due to the presence of trees, mitigat-
ing heat stress in grazing animals, especially in regions with hot climates, as frequently
observed in tropical and subtropical countries of Latin America [48].

Using an in vitro fermentation system, Ovani et al. [61] assessed the inclusion of
Chloroleucon acacioides tree fruits in tropical grass-based diet substrates. These authors
observed greater estimated microbial biomass production and short-chain fatty acids
synthesis, associated with increased organic matter degradability in treatments containing
C. acacioides fruits compared to the control treatment consisting of 100% tropical grass
hay. Furthermore, the authors highlighted the potential for incorporating this tree species,
native to the Brazilian Amazon, into tropical grass pastures, as its fruits can serve as a
nutrient source for animals during periods when forage quality and biomass production
are reduced, such as in dry seasons.

A widespread beef cattle management in many parts of the world is to raise animals
on a continuously grazing system, and then, for finishing stages, the animals are taken
to feedlot systems and fed on grain-based diets so they can increase their weight faster
and be ready for the market. Usually, this practice is associated with lower GHG emis-
sions per unit of generated product since lower overall time is required from rearing to
slaughter. However, this kind of statement does not consider all the emissions generated
by feedlot operations, including those of grain crop production or machinery utilized
in such management, a factor that usually underestimates GHG emissions from feedlot
systems [30]. Undoubtedly, standard grain production practices can be changed and more
regenerative, reducing its overall emissions and impacts. However, in addition to the C
sequestration potential that well-managed grazing systems present, grazing is a natural
behavior for cattle. Consequently, pastoral systems provide an opportunity for increased
welfare conditions for these animals [29,62]. In addition to the ecosystem services that con-
ventional grazing systems can provide [36], in silvopastoral, trees and shrubs by-products
can be a source of phenolic compounds that interfere both positively or negatively with
feed intake and digestibility [10], and several of these plants, especially those containing
tannins, offer a range of benefits, including the increased flow of dietary amino acids to
the small intestine, control of gastrointestinal nematodes infections, reduction of bacterial
loads in feces, decreased occurrence of frothy bloat in animals consuming legume forages,
and mitigation of enteric CH4 production during ruminal fermentation, characterizing
one of the most prominent benefits of silvopastoralism considering all the concerns about
ruminant production in a climate change scenario [34,63–66]. Albores-Moreno et al. [67]
used an in vitro system to evaluate the impacts of tree foliage consumed by cattle in Mexico
on ruminal fermentation parameters. These authors reported reductions in CH4 production
of up to 31% when diets were supplemented with 300 g/kg DM of foliage in substrates in
relation to the control treatment, containing only tropical grass forages; in this study, the
authors highlighted that the presence of condensed tannins could be one of the possible
explanations for such reductions.

Soltan et al. [68] fed Santa Inês sheep with a tropical-grass-based diet supplemented
with Leucaena leucocephala, a tannin-containing legume tree/shrub used in silvopastoral
systems in Latin America [69]; these authors observed reduced CH4 emissions when
compared to the control diet, with no supplementation. In addition to a direct reduction
of CH4 production in the rumen, dietary tannins may also lead to reduced emissions of
another important GHG: some tannins may form complexes with dietary protein, increasing
their flux and absorption in the small intestine and also shifting the excretion of nitrogen
(arising out of these proteins) from urine to feces, which can be an advantage in terms of
nitrous oxide (N2O) emissions, since fecal nitrogen is in its organic form and less prone to
volatilization, while urinary nitrogen is mostly urea, which can be easily converted into
N2O [70,71].
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Silvopastoral systems using legume trees or shrubs can benefit from the ability of these
plants to do biological atmospheric nitrogen fixation. This process leads to increased inputs
of this element into the soil, reducing the need for nitrogen fertilization [72]. Nitrogen
fertilization is a chief source of N2O emissions from agriculture since microbial processes
that nitrogen goes through in the soil, especially nitrification and denitrification, lead to the
production of this gas. In addition to direct emissions from the application of fertilizers,
it is also necessary to consider emissions deriving out of nitrogen that lixiviates from
agricultural fields that may also lead to N2O emissions [73]. Therefore, the presence of
legumes in silvopastoral systems may provide this additional benefit concerning GHG
emissions and production sustainability.

4. Tithonia diversifolia and Sustainable Ruminant Production

As previously observed in this review and highlighted by other authors [74–76], many
tree and shrub species can be used in silvopastoral systems, including both cultivated and
native plants. One such shrub species is T. diversifolia, known as titonia, botón del oro,
Mexican or wild sunflower. Belonging to the Asteraceae family, T. diversifolia originates
from Mexico but has now spread widely across the humid and sub-humid tropics in
Central and South America, Asia, and Africa [77,78]. It typically grows between 1.5 to
4.0 m tall, presenting leaves with serrated edges and peduncles ranging from 5 to 20 cm
long, with yellow inflorescence [79]. Among the forage options for tropical silvopastoral
systems, T. diversifolia presented characteristics such as high CP compared to tropical
grasses, good adaptability to harsh environmental conditions, high biomass production,
and have led to increased volatile fatty acids production and microbial protein synthesis
on in vitro trials, characteristics that made this plant stand out as a promising option for
such systems [14,77,80,81].

In the African continent, a study was conducted to verify the biomass production of T.
diversifolia under different pruning practices, with the idea of using residues from pruning
as natural fertilizer for the soil [82]. The authors observed that adopting a cutting height
of 50 cm above soil on a bi-monthly frequency could lead to an annual DM production
as high as 7.2 t ha−1, which makes evident how productive and effective this forage can
be in providing available biomass for grazing ruminants. This author highlighted that
productivity numbers may vary according to region.

Also, given the fast decomposition of T. diversifolia plant material and its ability to
mobilize soil phosphorus, it is a good option for green fertilizer. The high productivity
of this plant, combined with its adaptability to various environmental conditions, makes
it easy to grow and spread. Consequently, it is often considered an invasive species
in both agricultural and non-agricultural lands, being commonly observed in marginal
areas along roads or crop fields, not requiring great soil fertility and demonstrating good
tolerance to acidic soils and short periods of drought, the later due to its longer roots
compared to grass forages, allowing it to explore deeper soil profiles in search for water
and nutrients [38,83–85].

A significant number of studies in the literature using different T. diversifolia sources
reported CP levels varying around 200 g/kg DM, illustrating the agronomic potential of T.
diversifolia (Table 1).

Table 1. Nutritional composition of Tithonia diversifolia in different studies. Except for dry matter
(DM), all values are presented as g/kg on DM basis.

References DM CP 1 NDF ADF Obs.

Argüello-Rangel et al. [86] 190 252 337 145
Calsavara et al. [14] 200 165 476 333 Whole plant
Calsavara et al. [14] 195 225 410 261 Leaves
Chin and Hue [87] 146 239 384 n/a
Durango et al. [88] 212 185 462 343
Guatusmal-Gelpud et al. [89] n/a 267 331 150
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Table 1. Cont.

References DM CP 1 NDF ADF Obs.

Lezcano et al. [90] 101 219 n/a n/a Rainy season
Lezcano et al. [90] 127 190 n/a n/a Dry season
Londoño et al. [91] 185 273 268 169 No fertilization
Mahecha and Rosales [79] 172 242 253 304
Mahecha et al. [92] n/a 223 359 181
Naranjo and Cuartas [93] 191 241 386 345
Van Sao et al. [77] 146 239 384 n/a
Verdecia et al. [94] 198 289 436 276 Rainy season
Verdecia et al. [94] 182 275 404 241 Dry season

1 CP—crude protein; NDF—neutral detergent fiber; ADF—acid detergent fiber; n/a—information not avail-
able on papers; Obs.—Observation, reflecting extra information on forage samples when made available by
referred authors.

Krüger et al. [12] also observed CP levels around 200 g/kg DM during the dry season
in southeastern Brazil. Moreover, Pérez-Márquez et al. [81], working with an in vitro
fermentation system with inclusion levels of T. diversifolia on a 60:40 forage:concentrate
ratio substrates, observed higher iso-valerate, iso-butyrate, as well as microbial biomass
production in the first 24 h of incubation. Both iso-valerate and iso-butyrate are branched-
chain fatty acids that originate from the degradation of branched-chain amino acids and
rumen microbes utilize them for microbial protein synthesis [95]. Cellulolytic bacteria
might benefit from using these fatty acids for their growth, potentially leading to increased
fiber degradability [96]. In addition, increased branched-chain fatty acid production can
be indicative of good protein degradability [34], which, if combined with the potential
positive impact on microbial protein synthesis, makes it evident that T. diversifolia can be
an excellent feeding resource to increase protein supply for animal in grazing tropical
production systems, especially in the dry season. In this period, tropical grasses may show
CP levels lower than 70 g/kg DM, which can be critical for the ruminal ecosystem [97,98].
Panadero and Montaña [38] also emphasized the potential of this plant for recovering
degraded soil areas, a scenario often observed in the tropics.

In terms of CH4 production, a review of the literature reveals how the inclusion of
T. diversifolia affects this variable (Table 2). Despite the lack of a consistent pattern across
studies, there are several examples where the inclusion of T. diversifolia has led to reduced
CH4 production. In most of these cases, authors attributed the reduction to a direct action
on methanogenic microorganisms due to the presence of polyphenols in T. diversifolia (such
as tannins) or to a reduction in the acetate:propionate (A:P) ratio [16,76,99,100]. The lack of
consistency among studies demonstrates that the effect of T. diversifolia on CH4 production
is closely associated with the quality and type of substrate in which T. diversifolia is included.
As observed by Akanmu et al. [100], the inclusion of T. diversifolia was more pronounced in
fibrous substrates.

Despite Terry et al. [80] observing that the T. diversifolia inclusion led to increased CH4
production, this increased methanogenesis was accompanied by higher acetate production,
which can lead to improved animal performance in production systems. Elevated acetate
production can be essential, especially to dairy production systems, as this fatty acid is
an important precursor of milk fat, which in turn is an indicator of milk quality [101,102],
allowing farmers to potentially have additional incomes from their product. On the other
hand, Rivera et al. [103] observed that when including around 150 g/kg (fresh material) of
T. diversifolia in a grass-based diet of cows, the presence of this shrub reduced their CH4
emissions when expressed on a daily basis, per unit of DM intake, and per unit of degraded
DM intake as well. The authors attributed this reduction to several factors, such as the
decreased fiber content of T. diversifolia, accompanied by its increased CP, digestibility, and
the presence of plant secondary compounds, reinforcing the multiple positive aspects of
this plant as a feeding resource for ruminants.
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Table 2. In vitro methane (CH4) production, fiber content, and results found in the literature of
Tithonia diversifolia (TD) in association with different substrates.

Treatments

CH4
Production Unit

NDF
(%)

ADF
(%)

A:P Ratio
Authors’ Discussion Reference

TRT 1 CON TRT CON

10% TD with Lolium perenne 29.3
30.5 mL/gDM

53.8 27.1 2.00
2.06

No differences in CH4 and
A:P ratio.

[103]
20% TD with Lolium perenne 25.9 52.1 28.9 1.95 Decreased CH4 due to the

presence of tannins.

33% TD with Pennisetum
purpureum 1.5 2.4 mmol/g 69.1 52.1 2.16 2.06 No differences in CH4 and

A:P ratio. [104]

75% TD with Pennisetum
purpureum 8.6 18.9 mL/gDOM 59.1 49.6 3.27 2.63 Decreased CH4. Similar acetate

and decreased propionate.
[105]

75% TD with Cynodon dactylon 4 7.3 mL/gDOM 61.3 48.3 3.41 3.04
No differences in CH4.
Similar propionate and
increased acetate.

TD extract with Commercial
Concentrate (TMR) 25.3 42.9

mL/kgDOM

30.1 21.4 1.39 1.99
Decreased CH4 due to the
presence of tannins. Similar
propionate and decreased acetate.

[100]TD extract with lucerne hay 18.2 36.8 40.6 32.1 1.71 2.16
Decreased CH4 due to the
presence of tannins. Similar
propionate and decreased acetate.

TD extract with Eragostis curvula 5.8 47.7 78.4 49.2 1.63 2.48
Decreased CH4 due to the
presence of tannins. Increased
propionate and decreased acetate.

6.9% TD with sugarcane
and concentrate 0.7

0.5 mL/gIDM

29.4 - 0.90

0.71

TD inclusion produced more
CH4 due to increased A:P ratio.
Increased acetate and
decreased propionate.

[80]
15.2% TD with sugarcane
and concentrate 1.2 30.7 - 1.09

29.2% TD with sugarcane
and concentrate 3.3 34.5 - 1.55

25% TD with Urochloa brizantha ~22.9 26.2 mg/gIDM ~55.5 ~38.3 2.37 3.56
Decreased CH4 due to decreased
A:P ratio. Decreased acetate
and increased propionate.

[76]

30% TD with Cynodon
nlemfuensis 0.9 6.5 mL/100 mL - - - - Decreased CH4 due to the

presence of tannins. [16]

30% TD with Cynodon
nlemfuensis 9.2

65.2 uL/gDM

33.4 29.5 - - Decreased CH4 due to the
presence of tannins.

[106]
30% de TD with Cynodon
nlemfuensis 47.2 35.3 30.4 - - Decreased CH4.

100% TD 15.7 43.4

mL/gDDM

39 27.2 - - Decreased CH4 due to the
presence of tannins.

[99]
5% TD with Cechrus
clandestinum 34.8 43.4 - - 4.01 4.52

Decreased CH4 due to the
presence of tannins. Decreased
acetate and increased propionate.

3% TD with Cechrus
clandestinum, concentrate and fat 41 60.3 - - 3.97 4.80

Decreased CH4 due to the
presence of tannins. Similar
acetate and increased propionate.

1 TRT—Treatment group; CON—Controls; NDF—neutral detergent fiber; ADF—acid detergent fiber;
A:P—acetate:propionate ratio; DM—dry matter; IDM—incubated dry matter; DDM—degraded dry matter;
DOM—degraded organic matter.

Additionally, T. diversifolia is a source of a wide range of secondary compounds [15]. In
a study to characterize the phytochemical composition of this forage, Olayinka et al. [107]
prepared aqueous and ethanol extracts with stems, leaves, and root of this plant. In both
cases, extracts tested positive for alkaloids, flavonoids, saponins, terpenoids, tannins, and
other phenolic compounds. Tagne et al. [15] analyzed more than 160 scientific articles,
and identified more than 100 secondary metabolites isolated from different T. diversifolia
extracts. Thanks to that extensive diversity of compounds, several properties, activities, and
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effects of interest for human medicine, such as anti-inflammatory activity, anti-protozoal
effect, repellent against insects, antidiabetic effect, antibacterial and antifungal activities,
antiviral, antioxidant, antiproliferative (i.e., against cancer cells), and even effects against
gastrointestinal disorders, have been listed by the authors and attributed to the use of
this plant.

For ruminant nutrition, a group of secondary compounds that for decades has been
eliciting interest from the scientific community are the tannins, due to the beneficial effects
of these extensively studied molecules [34,71,108] for the metabolism of ruminants as de-
scribed in the previous section of this paper. Concerning the tannins found in T. diversifolia,
Delgado et al. [16] reported moderate concentrations of these compounds. They observed
reduced CH4 concentrations in total in vitro gas production, along with a decreased pro-
tozoa population compared to other plants tested in their experiment. Such effects were
attributed to the presence of tannins in T. diversifolia. Additionally, other authors in different
studies who observed the reduction of CH4 production due to the inclusion of T. diversifolia
also pointed out that these results were due to the presence of tannins (Table 2). However, it
is consolidated that the gold standard method to evaluate the biological effects of a certain
tannin source on the metabolism of ruminants is doing in vitro or even in vivo trials using
a tannin-neutralizing agent such as polyethylene glycol [109,110]. Therefore, studies using
T. diversifolia with this experimental design are still warranted in order to provide a more
accurate understanding about the tannins of this plant.

Nitrous oxide (N2O) emissions data from operations using T. diversifolia in the diet of
ruminants are still scarce in the literature. However, several researchers have assessed the
impact of T. diversifolia inclusion on the animal’s nitrogen balance (Table 3), which directly
impacts the amount of N excreted and the subsequent conversion of N into N2O since
N balance and N excretion means (i.e., urine or feces) have significant influence on the
potential of N2O emissions from soils [70,71].

As observed for CH4 production, it seems evident that the plant’s influence on N
balance is also dependent on associated diets’ characteristics (Table 3). Associations with
fibrous diets show more pronounced results than those with concentrated ones, as noted
by Yousuf et al. [111], Ribeiro et al. [11], and Chacón Góngora [112], who used T. diversifolia
in concentrated diets and found no significant differences in N retention compared to diets
without T. diversifolia, while Ramírez-Rivera et al. [113], Castañeda Serrano et al. [114], Fa-
jemisin et al. [115], and Durango et al. [88], associating T. diversifolia with exclusively forage
diets, reported an increase in N retention compared to diets without T. diversifolia. Recently,
Rivera et al. [116] evaluated soil N2O emissions from grazing sites using cross-bred dairy
cows in the Colombian Amazon by employing static closed chambers and reported that the
silvopastoral system using T. diversifolia have led to lower N2O emissions than the conven-
tional grazing systems, which was composed by partially degraded Brachiaria humidicola
areas. Therefore, silvopastoral systems with T. diversifolia arise as a sustainable production
alternative for pasture-based systems, playing a crucial role in minimizing environmental
footprint and promoting ecosystem services, which are becoming progressively vital and
sought after in the current landscape of climate change.

Table 3. Nitrogen (N) balance of diets including Tithonia diversifolia (TD) in the literature.

Treatments DMI 1

g/Day
NI

g/Day
NF

% NI
NU

% NI
NR

% NI Authors’ Discussion Reference

0% TD extract + Cassava + concentrate 378 6.98 39 39.8 21.2 80% TD resulted in decreased fecal N excretion
and higher urinary N excretion. N retention
was similar in all treatments except at 80%.

[111]
20% TD extract + Cassava + concentrate 374 6.92 31.4 46.7 22
40% TD extract + Cassava + concentrate 371 6.87 29.7 46.4 23.9
80% TD extract + Cassava + concentrate 318 5.88 25.9 56.3 17.9

0% TD + Dichanthium aristatum 410 9.78 24.9 12.9 62.1 TD inclusion resulted in decreased N excretion
in feces and urine. N retention was higher
with TD inclusion.

[114]
25% TD + Dichanthium aristatum 704 68.93 6.8 7.3 85.9
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Table 3. Cont.

Treatments DMI 1

g/Day
NI

g/Day
NF

% NI
NU

% NI
NR

% NI Authors’ Discussion Reference

0% TD + Brachiaria decumbens 652 63.23 48 35 16 TD inclusion resulted in higher N excretion in
feces and urine. N retention was higher with
TD inclusion.

[88]
35% TD + Brachiaria decumbens 840 113.48 34 26 39

0% TD + Panicum maximum 312 7.59 31.5 14.5 54 No difference in fecal N excretion. Inclusions
of 20% and 30% resulted in decreased urine N
excretion. N retention was reduced by 20%
and 30% TD diets.

[117]
10% TD + Panicum maximum 311 6.84 31.9 14.8 53.4
20% TD + Panicum maximum 306 5.83 37 11.3 51.6
30% TD + Panicum maximum 305 5.76 42 6.3 51.7

TD 0% + sugarcane + concentrate 1860 563 34.5 11 54.6 No significant effects of TD inclusion on N
excretion and nitrogen balance. [11]TD 6.5% + sugarcane + concentrate 1890 564.1 35.6 10 54.4

TD 15.4% + sugarcane + concentrate 1870 557.2 35.5 11.4 53.1

0% TD + Pennisetum purpureum
+ sugarcane 1050 13.05 50.73 39.2 9

TD inclusion increased N excretion in feces
and urine. Only at 20% inclusion was there
positive N retention. Other inclusions were
not significant.

[113]

20% TD + Pennisetum purpureum
+ sugarcane 1510 19.93 47.22 30 23.3

35% TD + Pennisetum purpureum
+ sugarcane 1550 25.51 47.75 34.1 18.7

50% TD + Pennisetum purpureum
+ sugarcane 1520 30.11 47.23 37.6 15.6

0% TD + Brachiaria + concentrate 1471 66.4 25.1 55.4 19.5 No effect of TD inclusion on fecal N excretion.
Urinary N excretion was Decreased with 12%
TD inclusion.

[112]6% TD + Brachiaria + concentrate 1432 66.4 24.9 54.4 20.7
12% TD + Brachiaria + concentrate 1452 66 27.1 43.7 29.2

0% TD + Panicum maximum 1580 30.5 - - 76

TD inclusions led to increased N retention. [115]
25% TD + Panicum maximum 1970 56.6 - - 71.9
50% TD + Panicum maximum 2070 64.4 - - 75
75% TD + Panicum maximum 2130 72.8 - - 76.7

1 DMI—dry matter intake; NI—N intake; NF—N in feces; NU—N in urine; NR—N retention; For easier compari-
son across studies, N values in feces, urine, and retained were expressed as a percentage of N intake.

5. Conclusions

With the mounting pressure from a scenario marked by a growing human population,
higher demand for animal-derived food production, and increasing concerns about climate
change, sustainable food production seems an inevitable requirement for humanity in
the next few years. Tropical grasslands, abundant in Latin America, could be crucial in
addressing these challenges. They offer rich biodiversity and have management practices
that can improve food production, particularly protein, while reducing adverse impacts
and promoting sustainability of the production system. Silvopastoral systems, while not
yet widely adopted, seem to be one of the most promising practices, as evidenced by the
literature gathered in this review, showing that these systems can preserve and recover
natural resources such as soil and groundwater, while providing benefits to animals such as
abundant nutrient sources, improved welfare, and offering cultural and ecosystem services
for communities and populations reliant on these systems. Our research also showed
that T. diversifolia is a shrub excellently suited for tropical silvopastoral systems, boasting
significant potential for exploration. Its high-quality nutritional composition, agronomic
adaptability to various tropical conditions, and potential to enhance animal performance
while reducing GHG emissions intensity all underscore its importance. The information
compiled in our review makes it clear that silvopastoral systems, as well as T. diversifolia
should be mandatory topics in future discussions on sustainable ruminant production
grazing systems in tropical environments. However, more thorough studies are still
warranted to accurately characterize its impacts on animal performance and metabolism,
while the scientific community should dedicate especial attention to its secondary bioactive
metabolites and their direct impacts on GHG production, information not well enough
detailed and clarified in the literature, making it an area of expertise to be further explored.
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