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A B S T R A C T

Water flow along or across the interfaces of contrasting materials is ubiquitous in hydrology and how to solve
them in macroscopic models derived from volumetric average of the pore-scale processes remains elusive. While
the change in the average velocity and pressure at water-sediment interface has been well established for
channel flow over porous beds, whether a volumetric average alerts the pressure continuity when water flows
across the interface of two porous materials is poorly understood despite its imperative implications in hydro-
logical modelling. The primary purpose of this paper is to provide evidences via pore-scale simulations that
volumetrically averaging the pore-scale processes indeed yields a discontinuous pressure when water flows
across a material interface. We simulated two columns numerically reconstructed by filling them with stratified
media: One is an idealised two-layer system and the other one is a 3D column filled by fine glass beads over
coarse glass beads with their pore geometry acquired using x-ray computed tomography. The pore-scale simu-
lation is to mimic the column experiment by driving fluid to flow through the void space under an externally
imposed pressure gradient. Once fluid flow reaches steady state, its velocity and pressure in all voxels are
sampled and they are then spatially averaged over each section perpendicular to the average flow direction. The
results show that the average pressure drops abruptly at the material interface no matter which direction the
fluid flows. Compared with the effective permeability estimated from the homogenization methods well es-
tablished in the literature, the emerged discontinuous pressure at the interface reduces the combined ability of
the two strata to conduct water. It is also found that under certain circumstances fluid flow is direction-de-
pendant, moving faster when flowing in the fine-coarse direction than in the coarse-to-fine direction under the
same pressure gradient. Although significant efforts are needed to incorporate these findings into practical
models, we do elicit the emergence of discontinuous pressure at material interface due to volumetric average as
well as its consequent implications in modelling of flow in heterogeneous and stratified media.

1. Introduction

Water flow over or cross the interfaces of different materials is
ubiquitous in both surface and subsurface hydrology, and how to solve
them is an issue that still attracts interest in modelling of flow in het-
erogeneous and stratified media (Strack, 2017). Physically, the micro-
scopic water pressure and velocity are continuous and there is no in-
terface between the pore spaces in different materials. In practical
models for large scales, however, the delicate pore-scale processes
cannot be explicitly resolved and they are instead volumetrically
averaged with the impact of the porous structure described by effective
parameters, such as permeability for fluid flow and dispersion coeffi-
cient for solute transport (Simunek et al., 2003). Material interfaces

emerge as a result and need to be treated explicitly when solving for the
volumetric average flow rate and pressure. While mass conservation
requires the average flow rate across the interfaces to be continuous,
there are no physical criteria for the average pressure to meet. There-
fore, it has long been speculated that a volumetric average could render
what are continuous at pore space discontinuous at macroscopic scales
(Berkowitz et al., 2009). For example, it has been found in channel flow
over porous bed that the velocity jumps at the water-sediment interface
as evidenced from experimental data that, compared to water flow over
an impermeable bed, a porous bed could greatly enhance the flow rate
(Beavers and Joseph, 1967). Beavers and Joseph (1967) derived a
formula to describe this velocity jump, which, known as Beavers-Joseph
model in the literate since (Nield, 2016), has been used to simulate
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flows involving fluid-sediment interfaces such as water flow in karst
aquifers (Hu et al., 2012). Early applications of the Beavers-Joseph
model assumed a continuous pressure around the interface (Sahraoui
and Kaviany, 1992), but recent work has revealed that this might not be
true. For example, numerical simulations showed that the pressure at
the water-sediment interface is continuous only when the sediment is
isotropic and becomes discontinuous if the sediment is anisotropic
(Carraro et al., 2013). For water infiltration into a sand bed from
channel, it was also found that the average pressure could become
discontinuous (Carraro et al., 2015).

The aforementioned efforts were for channel flow over sediment
beds with water flow in the sediments described by the Darcy law. For
heterogeneous and stratified soils and aquifers, water can move either
along or across the interfaces of different materials. How the pressure
changes across such interfaces remains elusive and is poorly docu-
mented (Nick and Matthai, 2011). A common conjecture in most
macroscopic models is that, given that the fluid pressure in void space is
continuous, a volumetric average of the pore-scale processes should not
alter this continuity (Gohardoust et al., 2017). This is the key as-
sumption used in most homogenization methods, such as the wavelet
transformation method (King, 1989; Moslehi et al., 2016), to estimate
the effective permeability of heterogeneous and stratified porous for-
mations. For example, it has been well established and routinely used
that the effective permeability of a saturated layered system equals to
the harmonic mean and arithmetic mean of the individual permeability
of each layer for flow parallel and perpendicular to the layers respec-
tively (Mualem, 1984); these were proven even applicable to estimate
effective permeability of unsaturated stratified soils if the individual
layers are not too thick (Yeh et al., 1985). It is worth pointing out that
the above conclusion is valid only if the pressure at the strata interfaces
is continuous, which has yet been proven. To the contrary, theoretical
analysis of immiscible flow suggested a discontinuous pressure at ma-
terial interface (Hassanizadeh and Gray, 1989), but evidences proving
or disapproving such a discontinuity are lack even for single-phase flow
due to the difficulty associated with measuring fluid pressure on each
side of a material interface. In the meantime, experimental and theo-
retical studies on chemical transport in stratified media have both
found a mass accumulation when solute moves across material inter-
faces, suggesting existence of a discontinuous concentration which
renders chemical transport in stratified media direction-dependant
(Berkowitz et al., 2009; Zhang et al., 2010). Efforts have been made on
how to incorporate such discontinuities into macroscopic model for
solute transport by assuming the concentration discontinuity is solely
caused by permeability difference in the strata (Zoia et al., 2010). This
is at odds with some pore-scale simulations which showed that knowing
the permeability difference alone is insufficient to quantity the con-
centration discontinuity and that it is the pore geometry of the adjacent
strata that controls how the concentration changes in the proximity of
their interface (Zhang et al., 2010).

Given the importance of pressure continuity in modelling fluid flow
in heterogeneous and stratified media and the difficulty of experi-
mentally measuring it, we investigated the pressure change across
material interface via pore-scale modelling in this paper. We considered
single phase flow, and the pore-scale simulations were to mimic column
experiment by driving the fluid to flow under an externally imposed
pressure gradient. We simulated two columns with each packed by a
fine medium and a coarse medium. The first one was an idealised
stratified column with a high porosity, and the second one was a 3D
column acquired using x-ray computed tomography. In each simula-
tion, when fluid flow was deemed to have reached steady state, we
sampled the fluid pressure and the velocity in each voxel and then
spatially averaged them cross the sections perpendicular to the average
flow direction. Considering that solute transport in two-layer system
had been found to be directionally dependant, for each column we also
simulated fluid flow in the fine-coarse direction and the coarse-fine
direction, respectively, in attempts to examine if fluid flow in the two-

layer columns was also direction-dependant.

2. Pore-scale simulations

The pore-scale modelling is to test the conjecture that the pressure is
continuous at material interfaces after a volumetric average.
Figs. 1a–3a show the two stratified systems we studied. The first one is
an idealised 2D column with high porosity, and the second one is a
column filled with fine glass beads and coarse glass beads; the fine glass
beads layer was acquired using x-ray tomography and the coarse one
was reconstructed numerically by enlarging the size of all fine glass
beads and the pores between them two times equally in all directions
(Chen et al., 2009; Chen et al., 2008).

The pore-scale simulation is to mimic column experiment by driving
fluid to flow under a pressure gradient imposed externally at the two
ends of the columns. Fluid flow in the pore geometry is assumed to be
laminar and described by the Navier-Stokes equation; it is simulated
using the multiple-relaxation time lattice Boltzmann model as follows
(d'Humieres et al., 2002):

+ + = + −−x e x x xf δt t δt f t M SM f t f t( , ) ( , ) [ ( , ) ( , )],i i i i
eq

i
1 (1)

where xf t( , )i is the particle distribution function at location x and time
tmoving at lattice velocity ei, δx is the size of the voxels in the image, δt
is time step, xf t( , )i

eq is equilibrium distribution function, M is a

(a)

(b) 

(c) 

Fig. 1. The idealised stratified column for pore-scale simulation (a); the average
pressure along the column when fluid flows from the left to the right and from
the right to the left respectively (b); average flow rate through the column
calculated directly from pore-scale simulations when fluid flows from the left to
the right and the right to the left respectively (c).
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transform matrix and S is the collision matrix. The product Mf in Eq. (1)
transforms the particle distribution functions to a moment space in
which the collision operation = −x xm SM f t f t[ ( , ) ( , )]i

eq
i is performed.

The post-collision result in the moment space is then transformed back
to particle distribution functions by M−1m. We use the D3Q19 lattice
model in this paper where the particle distribution functions move in 19
directions with 19 velocities: (0, 0, 0), ± ±δx δt δx δt( / , / , 0),

± ±δx δt δx δt(0, / , / ), ± ±δx δt δx δt( / , 0, / ) and ± ± ±δx δt δx δt δx δt( / , / , / )
(Qian et al., 1992). The collision matrix is diagonal and the terms in it
are given as follows:
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The fluid simulated by the above model has a kinematic
viscosity = −μ δx τ δt( 0.5)/62 and pressure =p ρδx δt/32 2. The equili-
brium distribution functions are defined as follows:
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where =c δx δt/ and ρ0 is a reference fluid density to ensure that the
fluid is incompressible when the flow is in steady state(Zou et al.,
1995). The bulk fluid density ρ and velocity u are updated after each
time step by

= ∑

= ∑
=
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,i i

i i i

0
18
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(4)

Implementation of the above model consists of two steps to advance
one time step. The first one is to calculate the collision in the moment
space and then transform the results back to particle distribution
functions, i.e., to calculate = + −∗ −x x xf f t M SM f t f t( , ) [ ( , ) ( , )]i i i

eq
i

1 ;
and the second step is to move the post-collision particular distribution
function ∗fi to position at +x eδt i in the time period of δt. During the
streaming step, whenever ∗fi hits a solid voxel, it is bounced back to
where it was before the streaming to give a non-slip boundary where
the bulk fluid velocity is zero. In each simulation, once flow is deemed
to have reached steady state, we sample fluid pressure and velocity at
each voxel and then average them across each y-z section as shown in
Fig. 3a as follows:
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where Nyz is the number of fluid voxels in the y-z section located at x,
p x y z( , , )i i and u x y z( , , )x i i is the pressure and velocity component at
voxel located at (x, yi, zi), respectively. We also calculate the effective
permeability of the column based on the simulated velocity field from

∑=
=

k
μ

Ng
u x y z( , , ),

i

N

x i i i
1 (6)

where k is the effective permeability; N is the number of voxels, in-
cluding all solid and void voxels; u x y z( , , )x i i i is the velocity component
in the voxel centred at (xi, yi, zi) and g is the externally imposed pressure
gradient along the column. In addition to the effective permeability of
the stratified media, we also calculate the permeability of the fine and
the coarse medium separately within each column shown in
Figs. 1a–3a.

3. Result analysis

After the above volumetric average, the pore-scale flow process in
each of the columns is simplified as a one-dimensional macroscopic
flow as illustrated in Fig. 4. The two-layer system can be further
homogenized using an effective permeability to describe their

(a) 

(b) 

Fig. 2. Stratified column with a transitional interface (a); the average pressure
along the column when fluid flows in the fine-to-coarse direction and the
coarse-to-fine direction (b).

(b) 

x
y

z

(a)

Fig. 3. The 3D stratified column acquired using x-ray tomography (a). The
average pressure distribution calculated directly from pore-scale simulation
when fluid flows in the fine-coarse and the coarse-fine directions respectively
(b).
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combined ability to conduct water. If the hydraulic conductivity of Soil
1 and Soil 2 is k1 and k2 and their thickness is L1 and L2 respectively, the
effective hydraulic conductivity k of the two soils can be estimated as
follows if the pressure at their interface is continuous (Mualem, 1984):

+ = +L L
k

L
k

L
k

.1 2 1

1

2

2 (7)

For the two examples studied in this work =L L1 2, and the effective
hydraulic conductivity is hence = +k k k k k2 /( )1 2 1 2 . We will call the
permeability calculated from Eq. (7) theoretical permeability and
compare it with those calculated directly from the pore-scale simula-
tions.

For ease of analysing the simulated results in what follows, the
space will be normalized to ′ =x x δx/ , time to ′ =t tμ δx/ 2, density to

′ =ρ ρ ρ/ w and pressure to ′ =P Pδt δx ρ/ w
2 2 , where ρw is the density of

liquid water.

3.1. The idealised 2D column

Figure 1b shows the average pressure distributions along the
column for fluid flow in the fine-coarse direction and the coarse-fine
direction, respectively. It is evident that the pressure is not continuous
but endures an abrupt drop at the interface no matter which direction
the fluid flowed. Except at the interface, the pressure is continuous and
approximately linearly distributed within each of the two strata in the
column. Fig. 1c plots the average flow rate along the column calculated
from the pore-scale simulations when the fluid flowed in the two op-
posite directions. The figure shows that under the same pressure gra-
dient, the flow rate is higher when the fluid flowed in the fine-coarse
direction than in the coarse-fine direction.

Due to the energy loss and pressure drop across the interface, the
real effective permeability of the two soils calculated from pore-scale
simulations is smaller than estimated from Eq. (7). Table 1 compares
the results. Emergence of the discontinuous pressure at the interface
reduced the effective permeability to 8.49 when the fluid flowed in the
coarse-fine direction and to 8.63 when it flowed in the fine-coarse di-
rection, compared to the theoretical 9.08 when the pressure is assumed
to be continuous.

The above example is for stratified media with a sharp-cut interface.
Stratified geological formations formed naturally usually have transi-
tion interfaces where the coarse medium in the proximity of the in-
terface might contain some small-size particles. To elucidate how
pressure changes in stratified media with such interfaces, we simulated
fluid flow in an idealized image shown in Fig. 2a. The average pressure
distribution calculated along the column is shown in Fig. 2b. Strictly
speaking, the pressure is more continuous compared to the example
shown in Fig. 1a, but it still endured a sharp change and such change
cannot be described by Eq. (7) that assumes the pressure is continuous.

3.2. The 3D column

The porosity of both the fine and the coarse strata in the 3D column
is approximately 37%, much less than the porosity of the 2D idealised
column. Fig. 3b shows the average pressure distribution along the
column when the fluid flowed in the fine-coarse and the coarse-fine
directions. Compared to the 2D columns, the pressure drop across the
interface in the 3D column is more significant no matter which direc-
tion the fluid flowed, probably because the 3D image is less porous and
the energy loss (thus the pressure drop) associated with the flow
through it is more significant than that in the 2D idealised example. The
key result in this example is that the pressure drop is approximately the
same, regardless of flow direction. The example shown in Fig. 3b is for
flow under pressure gradient of 0.0013, and the pressure drop over the
interface is 0.056. Again, because the energy loss over the interface is
almost the same when fluid flow in different directions, their associated
permeability is also comparable as shown in Table 1. Strictly speaking,
however, the permeability calculated from the pore-scale simulation for
flow in the fine-coarse direction is still higher than that in the coarse-
fine direction, consistent with the results obtained from the 2D column.

Physically, the average macroscopic pressure at the strata interface
should be continuous when fluid is stagnant, and the pressure drop at
the interface is hence solely caused by fluid flow. It is therefore natural
to examine how the pressure drop responds to flow rate. Fig. 5 shows
the change in the pressure drop as the average flow rate increases. The
pressure drop Δp increases parabolically with the average flow rate q.
Because of the pressure drop and energy loss over the interface, the
permeability calculated from the pore-scale simulations decreases as
the average flow rate increases as shown in Fig. 5.

4. Discussion and conclusions

Pore-scale simulations of water flow in idealised 2D columns and a
3D column obtained using x-ray tomography both revealed that volu-
metrically averaging the pore-scale process resulted in a macroscopic
pressure that is discontinuous at the material interface in the columns.
The emerged discontinuous pressure means extra energy loss and, as a
result, reduces the combined ability of the two strata to conduct water
compared to the prediction from the classical homogenization methods

A

A’

O

O’

B

B’

Soil 1 Soil 2

y

L2L1

Fig. 4. Schematic illustration of the one-dimensional macroscopic flow resulted
from volumetric average of the three columns in Figs. 1a–3a.

Table 1
Comparison of the effective permeability calculated directly from pore-scale
simulations with the theoretical estimates by assuming the pressure at the in-
terface is continuous for the columns shown in Figs. 1a and 3a.

2D Column 3D Column

Permeability of the fine medium k1 5.89 1.050
Permeability of the coarse medium k2 19.85 2.452
Theoretical effective permeability 9.08 1.470
Calculated effective permeability in fine-coarse

direction
8.63 1.289

Calculated effective permeability in coarse-fine
direction

8.49 1.285
Fig. 5. Change in the effective permeability and the pressure drop over the
media interface in the 3D column shown in Fig. 4a as the flow rate through it
increases.
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that assume a continuous pressure at the material interface. The mag-
nitude of the pressure drop across the interface varies with physical
properties of the materials as well as water flow rate across the column.
For the columns we simulated, the pressure drop increases parabolically
with water flow rate. Furthermore, depending on physical properties of
the strata, water flow could even become direction-dependant in that
water moved faster when flowing the fine-coarse direction than in the
coarse-fine direction. We also found that a sharp pressure drop existed
even for transitional interface in which the coarse medium near the
interface contains some small particles.

Early study on channel flow over sediment bed has shown that the
change in macroscopic pressure across the water-sediment interface
depended on the sediment, being continuous if the sediment is isotropic
and discontinuous if the sediment was anisotropic (Carraro et al., 2013;
Marciniak-Czochra and Mikelic, 2012). Our simulations suggested that
this conclusion appear to be valid only for channel flow in parallel with
sand bed and break down when water flows across the interface of two
porous materials. For water flow across material interface, the mass
conservation requires that the average flow rate calculated from Eq. (5)
must be a constant along the column. Physically, the pressure drop at
the interface is the consequence of energy loss caused by viscous fric-
tion, which increases with velocity. The viscous friction depends on the
water-wall interfacial areas, which differ in the fine and coarse media
because the specific surface area in the former is bigger than that in the
latter. For the 3D column, the porosity of the coarse and the fine
medium shown in Fig. 3a is approximately the same, and the average-
pore velocity in them is hence also the same. As such, under the same
externally imposed pressure gradient, the pressure drop in the 3D
column is independent of flow direction as shown in Fig. 3b. In con-
trast, the porosity of the two media in Figs. 1a and 2a differs slightly
and, consequently, the average pore-water velocity in them is different.
Therefore, apart from energy loss caused by viscous friction, inertial
dissipation due to the abrupt increase or decrease in pore-water velocity
might also play a role in inducing the pressure drop. Theoretically, the
relative significance of the energy loss caused by viscous friction and
inertial dissipation depends on flow rate. However, since water flow in
porous materials is viscous, in all columns we simulated, the energy loss
is dominated by viscous friction and the pressure drop is hence in-
dependent or only slightly dependant of flow direction as evidenced
from the simulated results.

Fluid flow in the proximity of material interfaces is ubiquitous in
hydrology but complicated to be described. The results presented in this
paper might improve our understanding of water flow in heterogeneous
and stratified media, but incorporating them into macroscopic models
needs substantial efforts even though numerical models capable of
dealing with discontinuous pressure at material interfaces exist (Nick
and Matthai, 2011). The challenge lies in that the pressure drop across
the interface depends not only on material properties and flow rate but
also on the flow direction. Quantifying these processes and then in-
corporating them into macroscopic models is not trivial, especially
when flow is transient (Kitanidis, 1990). Given these challenges, as-
suming a continuous pressure at the material interface is postulated to
be the dominant approach in the foreseeable future for modelling flow
in heterogeneous and stratified media because of its simplicity in im-
plementation, especially for unsaturated flow which is far more com-
plicated than saturated flow even under steady flow condition (Pruess,
2004). Notwithstanding these, this work still has an important im-
plication as it provides evidence that spatial average (or upscaling) does
result in a discontinuous pressure at material interfaces and that the
commonly used homogenization methods for estimating effective per-
meability and for calculating flow across material interfaces in het-
erogeneous and stratified porous formations could give rise to errors.
The significance of the errors depend on media property and flow rate
and direction.
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