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Abstract 1 

To optimise trade-offs provided by future changes in grassland management, spatially and 2 

temporally explicit estimates of grassland productivity are required at the systems level. Here, we 3 

benchmark the potential national availability of grassland biomass, identify optimal strategies for its 4 

management, and investigate the relative importance of intensification over reversion (prioritising 5 

productivity versus environmental ecosystem services). Process-conservative meta-models for 6 

different grasslands were used to calculate the baseline dry matter yields (DMY) at 1 km2 resolution 7 

for the whole UK. The effects of climate change, rising atmospheric [CO2] and technological progress 8 

on baseline DMYs were used to estimate future grassland productivities (up to 2050) for low and 9 

medium CO2 emission scenarios of UKCP09. UK baseline productivities (1970-1980) of 10.5, 7.9 and 10 

2.6 t/ha were extrapolated to benchmark productivities (2010) of 12.5, 8.7 and 2.8 t/ha on 11 

temporary, permanent and rough-grazing grassland, respectively. By 2050, grassland productivities 12 

under medium emission scenario is predicted to increase to 15.5 and 9.8 t/ha on temporary and 13 

permanent grassland, respectively, but not on rough grassland. Based on surveyed grasslands areas 14 

for Great Britain in 2010 the GIS-modelled distributions of grassland productivity and total 15 

availability of biomass were shown at 1 km2 grid. Assuming that optimal N application could close 16 

existing productivity gaps of ca. 40% there are a range of management options available that could 17 

deliver additional biomass availability or spare some grasslands for provision of other ecosystem 18 

services.  19 

 20 

Key words:  21 

Grassland systems, climate change, ecosystem service, land use change, technology progress, yield 22 

gap 23 

  24 
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1 Introduction 25 

Globally, grasslands are the dominant form of agriculture by land area, primarily utilised for the 26 

provision of feed for ruminants (Prochnow et al., 2009; Gerssen-Gondelach et al., 2017). In the 27 

United Kingdom (UK), grasslands represent over two thirds of agricultural land area, broadly 28 

grouped into temporary (1.2 million ha), permanent (6.1 million ha) and rough-grazing (5.0 million 29 

ha) types (Defra, 2016a). In 2015, UK grasslands supported 9.9 and 33.3 million heads of cattle and 30 

sheep, respectively. This provided 15.2 million tonnes of cow’s milk, 0.9 and 0.3 million tonnes of 31 

beef and sheep meat for human consumption respectively (Defra, 2016a), representing a significant 32 

land resource for food. Grasslands also play an important role in supporting biodiversity (Fargione et 33 

al., 2009) and in the delivery of other benefits to society including carbon sequestration, biomass for 34 

bioenergy, and recreational opportunities (Hopkins and Wilkins, 2006; O'Mara, 2012, McEniry et al., 35 

2013). 36 

 Following the 2016 referendum, in which the UK voted to leave the European Union, options 37 

for the future of farming are being explored. At least in part, this debate seeks to balance the views 38 

of those favouring intensification of production alongside those who argue for the incorporation of 39 

wider sustainability criteria into the land use planning (Hill, 2017).  For grassland systems, these 40 

competing viewpoints were exemplified in upland regions of the country, which play a central role in 41 

the provision of regulating ecosystem services, often for beneficiaries in distant urban areas 42 

(O’Rourke et al., 2016). However, farmers in upland regions face substantial challenges to their 43 

income associated with a traditional low-input, low-output business model that supports the 44 

continued provision of these benefits to society (Reed et al., 2009). The continued decline of N-45 

fertiliser input and stocking rates (Defra, 2016b) are strong indicators for this. 46 

Against this background a key requirement to inform development of farming policy is 47 

spatially explicit knowledge of current and future grassland productivity. Benchmarking and 48 

understanding the levels of dry matter yield (DMY) and quality are important to optimize 49 
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productivity for sustainable intensification within grassland systems (O'Donovan et al., 2015). 50 

Making use of the productivity gap between or closing the yield gaps within grassland types could 51 

increase biomass production for various services and value chains, food, feed or bioenergy (Grau et 52 

al, 2013; Lusiana et al, 2012; Prochnow et al., 2009). This would provide opportunities to those areas 53 

of the country that might be considered preferential for change, given social, environmental and 54 

economic factors. At the same time, such knowledge allows policy makers to explore options for 55 

targeting agri-environment schemes to protect biodiversity (Eigenbrod et al., 2011; Phalan et al., 56 

2014; Werling et al., 2014) and important regulating services such as those associated with carbon 57 

stocks or water resources (Reed et al., 2014; Smith, 2014 ) in other regions where less significant 58 

productivity gains could be achieved with changes in grassland management practice.   59 

The net primary productivity of grasslands can be measured from its annual dry matter 60 

production per hectare. An earlier presented process-based grass model increased our 61 

understanding of past experimental DMYs of temporary, permanent and rough-grazing grasslands 62 

(Qi. et al., 2017). Key biophysical driving variables were up-scaled, building meta models to estimate 63 

productivities for each grassland type to assess future productivities. However, these estimates need 64 

to account for climate change, increased CO2 concentration and technological progress, e.g. better 65 

genetics and management (Ewert et al. 2005). The impact of past climate change on DMYs of 66 

grasslands was found to be rather small (Coleman et al., 1987; Chang et al., 2015) or undetectable in 67 

the long-term Park Grass Experiment (Jenkinson et al., 1994). However, future climate change is 68 

likely to improve productivity and quality of grasslands (Hopkins and Del Prado, 2007; Izaurralde et 69 

al., 2011), although scenarios a 2 °C temperature increase found little change in DMYs for Scotland 70 

(Cooper and McGechan, 1996). 71 

Nevertheless, the growth of typical pasture crops was stimulated by CO2 enrichment 72 

(Soussana and Luscher, 2007), similar to that observed for cereals (Jaggard et al., 2010). Plant 73 

breeding and improved agronomy are likely to continue increasing grassland productivity (Hopkins 74 
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and Wilkins, 2006). A potential annual increase of DMY in the range of 0.25 to 0.76 percent seems 75 

possible (e.g. Wilkins and Humphreys, 2003; Harmer et al., 2016). Annual on-farm grassland yield 76 

gains varied between countries and grassland types (Smit et al., 2008), they are low on permanent 77 

grassland (0.35% annually) due to less frequent reseeding (Chang et al., 2015). Semi-natural 78 

grasslands used for rough-grazing, dry matter productivity cannot be genetically improved but 79 

productivity can be influenced by changing growing conditions, e.g. influencing the hydrology or 80 

adjusting stocking density (Sozanska -Stanton et al., 2016; Worrall and Clay, 2012).  81 

The objectives of this study were (i) to estimate DMYs for all grassland types across the UK for 82 

current and future climates considering CO2 enrichment and technological progress.  (ii) to assess 83 

and map the availability of total dry matter production constrained by grassland areas surveyed in 84 

2010 across Great Britain. (iii) to determine the current benchmark DMYs for each grassland type 85 

and identify productivity gaps, particularly with respect to the current decline in below optimal N 86 

application rates, and (iv) to perform spatial analyses of the impact of conversion between grassland 87 

types and to investigate changes in total grassland biomass production in Great Britain under varying 88 

management options. 89 

 90 

2 Materials and Methods 91 

2.1 General approach  92 

The meta-models used here were derived from outputs of a process-based model calibrated 93 

using a comprehensive set of experimental DMY data measured in the 1970s and 1980s (Qi. et al., 94 

2017). These meta-models accounted for effects of weather, soil available water capacity (SAWC) 95 

and N input on DMY. When meta-models were used to calculate DMYs with baseline weather (1961-96 

1990), they were referred to as baseline dry matter yields (BL-DMY). However, since then climate 97 

has changed, atmospheric CO2 concentration increased, and pasture crops with higher growth 98 

potential and improved agronomy have been adopted, particularly in temporary and permanent 99 
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grasslands. The approach of Ewert et al. (2005) was followed to calculate the grassland DMYs from 100 

2010s to 2050s, which accounts for the effects of these three yield determining factors: change in 101 

climate (CC; fCC), carbon fertilisation effect (CFE; fCFE) due to rising atmospheric [CO2] and 102 

technological progress (TP; fTP). 103 

The DMY in 2010 was calculated using Eqn. 1: 104 

Y10s=Ybase + Ybase*(f10s, CFE+f10s, TP)   (1) 105 

where Y10s is the annual dry matter yield in 2010s, Ybase the meta-model calculated baseline dry 106 

matter yield (i.e., BL-DMY), f10s, CFE is the percentage increase of DMY due to CO2 fertilisation effect 107 

while f10s, TP is the percentage of DMY increase due to technological progress from 1980s to 2010s. 108 

Instead of projected CC, baseline actual weather data were used. 109 

DMYs in 2020 to 2050 were calculated with Eqn. 2: 110 

Yt1…4=Ybase + Ybase*(ft1…4, CC + ft1…4, CFE + ft1…4, TP)  (2) 111 

where Yt1…4 is the annual DMY from 2020s to 2050s, ft1…4, CC + ft1…4, CFE + ft1…4, TP represent the 112 

percentage of DMY changes due to predicted weather under CC, CFE and TP from 1980s to 2020s, 113 

2030s, 2040s and 2050s, respectively. The percentage of DMY change due to changed climate was 114 

calculated as the difference between the weather-governed DMY with the baseline climate and the 115 

weather-governed DMY with changed climate divided by the former. 116 

2.1.1 CO2 fertilisation effect (CFE)  117 

Most experimental evidence indicates that the growth of perennial ryegrass (Lolium 118 

perenne) was stimulated by CO2 enrichment and consequently the DMY was increased by an average 119 

0.06%/ppm [CO2] (range from 0.03 to 0.09%/ppm; Table S1a). The percent increase was multiplied 120 

with the incremental increase of CO2 concentration from the baseline (1980s) to the respective later 121 

decade.  122 
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Atmospheric [CO2] has increased from 334 ppm in the 1970/80s to the present 400ppm in 123 

2015 at a rate of approximately 2 ppm per year due to anthropogenic forcing (IPCC 2013; Myhre et 124 

al., 2013). The predicted CO2 concentrations in the atmosphere from 2020s to 2050s were taken 125 

from the projections of the BERN model under low and medium CO2 emission scenarios (Table S1b). 126 

The atmospheric [CO2] of past years were taken from the annual mean records of [CO2] at Mauna 127 

Loa, Hawaii by Earth Systems Research Laboratory (www.esrl.noaa.gov/gmd/ccgg/trends). The 128 

cumulative fertilisation effects of increased [CO2] for various decades were calculated and applied 129 

accordingly (Table S2). 130 

2.1.2 Contribution of technological progress to grassland productivity 131 

Innovations in technology to improve grassland productivity include breeding varieties with 132 

higher potential yield and improved management to better protect and fully reap the genetic 133 

potentials. Based on the results of multiple variety trials for perennial ryegrass (Aldrich, 1987; 134 

Camlin, 1997; Woodfield, 1999; Easton et al., 2002; Wilkins and Humphreys, 2003; Humphreys, 135 

2005; Smit et al., 2008; Chaves et al., 2009; Lee et al., 2012; Chang et al., 2015; Harmer et al., 2016; 136 

McDonagh et al., 2016) the annual mean genetic, potential DMY gain was set to the overall mean of 137 

0.5% (Table S3a). This agrees with the average annual on-farm yield increase suggested for 138 

temporary grassland (Smit et al., 2008) while for permanent grassland an annual yield gain of 0.35% 139 

can be assumed (Smit et al., 2008; Chang et al., 2015; Table S3a). For rough grazing grassland, which 140 

is semi-natural with little agronomic inputs, no technological improvements in dry matter 141 

productivity were applied. 142 

For temporary grassland, the DMY was augmented with a technology factor of 0.5% increase 143 

per annum above the BL-DMY for both the potential and the on-farm DMY from 1980s to 2050s 144 

assuming a full translation of potential DMY increase into on-farm DMY. For permanent grassland, 145 

the DMY was augmented with a technology factor of 0.35% increase per annum for the on-farm 146 

http://www.esrl.noaa.gov/gmd/ccgg/trends
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DMY from 1980s to 2050s. Thus, the accumulated percentage increases above the BL-DMY were 147 

calculated and applied on each of the three types of grassland from 1980s to 2050s (Table S3b).  148 

2.1.3 Impact of future weather changes  149 

The meta-models encapsulate the effects of weather variables on DMYs using inputs of 150 

changed bioclimatic variables which reflect the weather-governed DMYs for any given future 151 

decade. These variable changes fed directly into the meta-models, developed from scenario outputs 152 

generated by validated process-based growth model (Qi. et al., 2017), to calculate future grassland 153 

productivities. Inputs were soil available water capacity and bioclimatic variables of monthly 154 

temperature, precipitation, and global radiation under baseline and future climate change scenarios. 155 

The impact of climate change on grassland productivities was the percentage of DMY change which 156 

was calculated as the difference between the weather-governed DMY with the baseline climate and 157 

the weather-governed DMY with changed climate divided by the former. 158 

2.2 Climate and soil data 159 

The necessary inputs of monthly climatic variables for the baseline (1961-1990) and for 160 

decades from 2020s to 2050s were obtained from the most recent UK climate projections (UKCP09, 161 

2009). The monthly maximum and minimum temperature, precipitation and global radiation were 162 

initially available at 25km x 25km grid and they were then harmonised into 1 km x 1km grid for the 163 

whole UK (Murshed et al., 2012). Relative to the baseline climate (1961-1990), seasonal precipitation 164 

and global radiation differed little between the low and medium emission scenario during the 2020s 165 

to 2050s across the UK (Table S4). The global radiation increased most (1.6 and 3.9%) in spring, less 166 

so during summer and autumn. Overall, summer was likely to be drier while winters would be wetter 167 

in the future. Under both CO2 emission scenarios, the UK will be warmer in all seasons. Although 168 

absolute temperatures increase most in summer (e.g. 1.2 to 2.2°C until 2050s under medium 169 

scenario), the relative increase was greatest in winter and spring (Table S4). 170 
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These climatic data were used in combination with the spatially distributed soil available 171 

water content in the root zone obtained from the European Soil Database at 1 km x 1 km grid, as 172 

inputs for the meta-models to calculate the DMYs on temporary, permanent and rough-grazing 173 

grassland.  174 

2.3 Nitrogen (N) fertiliser application and DMY response to N inputs 175 

The annual survey of the overall average N applied per hectare to temporary and permanent 176 

grassland was conducted by Defra starting from 1960s. The average N applied increased steadily 177 

until mid-1990s (Rath and Peel, 2005) but declined from the late 1990s onwards on both, temporary 178 

and permanent grassland until 2008 (Figure S1; Defra, 2016b) and remained unchanged since. The 179 

overall average N use during the recent decade came to 99 and 52 kg/ha on temporary and 180 

permanent grassland, respectively. 181 

Annual DMYs were measured in N fertiliser response experiments carried out at 21 different 182 

sites (Morrison et al., 1980) with N fertiliser used up to 750 kg N/ha; DMY reached their maximum 183 

plateau mostly at an N application rate of 600 kg N/ha. The DMYs were normalised using the 184 

maximum DMY and expressed as its fraction in percentage (DMY%; see Figure 1). The four-185 

parameter rational equation proposed by Morrison et al. (1980) was applied to describe the DMY in 186 

response to N application (Eq. 3): 187 

     
    

        
    (3) 188 

The estimated coefficients were: a=22.1696, b=0.2373, c=-0.0001944, d=0.000002117 and the 189 

variance accounted for (i.e. R2) was 93.8% (n=126). This equation was used to calculate the yield gap 190 

because of reduced N fertiliser usage. 191 

2.4 Total GB grassland yields under contrasting management options  192 

Grassland area was surveyed by Defra in 2010, and is available at a 2km × 2km grid resolution 193 

(https://access.edina.ac.uk/agcensus/). For Great Britain (GB), UK without Northern Ireland (NI), 194 

https://access.edina.ac.uk/agcensus/
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grassland covered 9.9896 million ha in total, of which 1.0246, 4.5333 and 4.4317 million ha were 195 

temporary, permanent and rough-grazing, respectively. This leaves about 2.5 million hectares of 196 

grassland unaccounted for in this scenario analysis, as NI was not included in the Agricultural Census.  197 

Analysis explored five land use transition scenarios for GB covering the period 2010 – 2050 (Table 4), 198 

conducted at a 2km × 2km grid resolution for compatibility with grassland survey data. The focus of 199 

the analysis was on changes in management practices, therefore we considered that transitions 200 

occur between grassland types without increasing or decreasing overall area of grassland.  201 

The likelihood that farmers will change management practices (i.e. shift from a business model 202 

focused on production towards environment-focused management) is determined by complex social 203 

and economic drivers arising from past and current experiences that serve to limit farm 204 

development pathways (Di Falco et al., 2005; Ingram et al., 2013). To this end our analytic approach 205 

does not assume that transitions between grassland management practices will occur in a spatially 206 

optimal manner determined by factors such as monetary returns, yields, or carbon stocks. Instead 207 

the target area for conversion in hectares (ha) for GB was calculated, and a stochastic algorithm 208 

implemented in R (R Core Team, 2017) that randomly assigned conversion of grassland areas for 209 

each 2km × 2km grid cell until the target area for conversion was met. For each scenario 1000 210 

permutations were conducted and changes in average yield per 2km × 2km grid cell and for GB total 211 

dry biomass production were calculated. 212 

Although the analysis considered conversion of different grassland types, plausible limits to this 213 

conversion were identified based on a subset of constraints defined in part by Lovett et al. (2009) for 214 

energy crops. The constraints are altitude (>=250m to define upland), slope (>=15% representing a 215 

technical limit for farm machinery), and distribution of nitrate vulnerable zones (NVZ) across GB 216 

(Table S6). In determining the location of land use transitions the stochastic algorithm preferentially 217 

chose to convert grassland in areas that were consistent with the logic of the scenario based on 218 

these constraints. For example, for conversion of rough-grazing to permanent grassland, which 219 
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implies greater agricultural inputs, initially focused on areas outside NVZ and where the slope was 220 

<=15% to allow access for farm machinery. Where the target area for conversion specified within the 221 

scenario exceeded area available due to the constraints, the stochastic algorithm initially converted 222 

grassland outside the constrained areas before converting grassland within excluded 2km × 2km grid 223 

cells.    224 

The first four scenarios explored possible permutations of the transition between differing grassland 225 

types that could be achieved through changes in management practice. In the first two instances, a 226 

reduction in intensity of management was explored (i.e. Scenario A, Permanent to rough-grazing; 227 

Scenario B, Temporary to permanent) and in the second an increase in intensity of production (i.e. 228 

Scenario C, Permanent to Temporary; Scenario D Rough-grazing to Permanent). For each scenario, 229 

the stochastic algorithm considered transitions of between 0 – 100% of 2010 area in 10% increment 230 

intervals. This defines a parameter space over which possible changes to the management regime 231 

could occur, allowing examination of the implications for total GB grassland DM production.  232 

The final scenario examined a more complex set of management options informed by recent 233 

discussions focused on upland regions. In contrast to the other four scenarios, this fifth scenario 234 

(Scenario E) did not explore change in grassland yield associated with changing management 235 

practices, rather the aim was to maintain GB grassland DM production. In areas defined as upland 236 

(average altitude >=250m) permanent grassland was converted to rough-grazing and the loss of total 237 

grassland DM production calculated. Conversion of permanent to temporary grassland in lowland 238 

areas was then carried out to compensate for the lost total dry biomass production. As with 239 

scenarios A - D, scenario E examined transition of between 0 – 100% of the specific grassland area in 240 

10% increment intervals using the same stochastic approach as the other four scenarios.   241 
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3 Results 242 

3.1 Weather-governed, CO2-and technology-adjusted DMY 243 

The DMY was calculated with the meta-model at 1 km2 resolution across the UK assuming a 244 

single grassland type for all land with SAWC information (i.e. a blanket approach). The UK average 245 

blanket DMYs for the baseline and future weather (Table 1) indicate little difference between the 246 

low and medium emission scenario in the effect of future climate change (weather only) on DMYs 247 

within each grassland type. The weather-governed productivity is unlikely to be affected in the 248 

future and remained about 10.5 t/ha on temporary grassland. However, productivity of both 249 

permanent and rough-grazing, will be reduced by about 0.3 t/ha by climate change in the future. 250 

Relatively, the reduction of productivity on rough-grazing grassland could be more than 10% by 251 

2050. 252 

The spatially explicit technology- and [CO2]- adjusted DMY maps are exemplified in Figure 2 253 

for the 2010s under the medium emission scenario. The average national blanket DMYs in the UK 254 

from 2010s to 2050s show very small differences between the low and medium emission scenarios 255 

for each grassland type (Figure 3). For rough-grazing grassland the DMYs increase due to rising [CO2] 256 

cannot compensate the negative impact from changed weather variables (i.e. both reduced 257 

precipitation and increased temperature in summer) in the future, and the overall productivity of 258 

rough-grazing grassland is unlikely to change by 2050. For temporary and permanent grassland, the 259 

productivity is predicted to increase steadily at a rate determined by the additive response of 260 

technological progress and the increased atmospheric [CO2] per decade.  261 

3.2 Benchmark DMY constrained by actual grassland areas in GB 262 

Assuming no changes in management regime, the average DMYs based on the actual area of 263 

each grassland type can be calculated from 2010s to 2050s (Table 2). These average DMYs can be 264 

referred to as the benchmark productivities, which were similar for blanket approach and census 265 

areas. Taking DMYs in 2010 as representative of current grassland productivities (Figure 4), the 266 
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present benchmark productivity should be 12.5, 8.7 and 2.8 t/ha on temporary, permanent and 267 

rough-grazing grassland in GB, respectively. 268 

After overlaying the NUTS 1 regions over the grassland area and the availability of dry matter 269 

production per km2 grid (Figure 4), the total grassland area (Figure 5a) and availability of total dry 270 

matter production (Figure 5b) per region in Great Britain were calculated. Within Great Britain, the 271 

total grassland area in 2010 was partitioned 45.7, 13.4 and 40.9% into Scotland, Wales and England, 272 

respectively. In terms of grassland type, Scotland contained 41.2, 21.0 and 72.0% while England 273 

shared 48.7, 56.6 and 23.0% of temporary, permanent and rough-grazing grassland, respectively. In 274 

terms of total DM production, the share was partitioned into 40.3, 45.3 and 14.4% for Scotland, 275 

England and Wales, respectively. Within England, the largest grassland area and availability of total 276 

DM production were in South West, followed by North West and West Midland. 277 

Defra reported areas of respective grassland types in 2010 for the whole UK (Defra, 2015) and 278 

the Agricultural Census in 2010 specified these areas for GB (Table S5). The total DM availability on 279 

each grassland type can be calculated by multiplying the respective grassland area and its 280 

corresponding mean dry matter yield (Table S5). The UK national total potential availability of dry 281 

biomass can reach 82 million tonnes. Permanent grassland provided the largest proportion of this 282 

national total (63%) while temporary and rough-grazing grassland contributed equally to the 283 

remaining 37%. Without NI the annual biomass resource shrinks to 64.5 million tonnes. 284 

3.3 Grassland yield gap analysis 285 

The above calculated grassland productivity after considering the effect of climate change, 286 

increasing atmospheric [CO2] and technological progress from 2010s to2050s reflects DMYs 287 

measured in the experiments and is the attainable DMY (i.e. water limited potential yield) (van 288 

Ittersum et al., 2013). The on-farm, actual DMY is usually smaller than the attainable yield due to 289 

other limitations (Lobell et al., 2009; Sadras et al., 2015). 290 
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The DM productivity used to model temporary and permanent grassland was measured with 291 

annually applied 300 kg N/ha and 150 kg N/ha, respectively (Defra, 2010). The annual N usage on 292 

grassland had dropped in recent decade (2006 to 2015) to ca. 99 and 52 kg N/ha on the temporary 293 

and permanent grassland, respectively, much below the recommended economic optimum N:150 294 

for permanent and 300 kg N/ha for temporary grassland (Morrison et al., 1980; Hopkins et al., 1990). 295 

To estimate the productivity gaps on temporary and permanent grassland, the relative DMYs were 296 

calculated using these lower values and estimating the difference from the relative DMYs at the 297 

recommended N (Eqn. 3; see Figure 1). The current N shortage resulted in calculated on-farm DMYs 298 

about 45 and 39% yield gap (YG) below the attainable DMYs on temporary and permanent grassland, 299 

respectively, which correspond to a total actual unused productivity of about 21 million tonnes DM 300 

(Table 3).  301 

3.4 Changes in GB total grassland DM production under evolving management 302 

scenarios 303 

Out of the four scenarios describing conversion between grassland management options only 304 

Scenario A, characterising changes in yield resulting from conversion of permanent grassland to 305 

rough-grazing (Abandonment), resulted in a decrease in total DM production in GB by 2050 306 

compared to the baseline 2010 value. Even in this scenario, conversion of up to 20% of total area 307 

could be implemented while maintaining a comparable level to total DM production in 2010 (Figure 308 

6). Total GB grassland DM production in Scenario B (i.e. temporary to permanent), which represents 309 

the other reversion scenario exploring reduced management intensity, showed increases out to 310 

2050 compared to the 2010 baseline value even under the transition representing 100% area 311 

conversion.  312 

Scenarios C and D represent lowland and upland intensification of existing grassland management 313 

and describe a substantial increase from the 2010 baseline in total GB grassland DM production out 314 

to 2050. For example, unconstrained conversion of rough-grazing to permanent grassland (Scenario 315 
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D) would increase total GB grassland DM production from 63 million tonnes in 2010 to 107 million in 316 

2050. Taking into account simple constraints (e.g. NVZ, slope) to restrict the area over which 317 

increases in management intensity might practically be achieved results in 50% conversion of 318 

management intensity for Scenario C and 30% conversion for Scenario D, both yielding an additional 319 

18 million tonnes above the 2010 baseline.  320 

Scenario E explored an alternative future where overall GB DM production was maintained at 321 

current levels. In this scenario, there was a reduction in the management in intensity of permanent 322 

grassland in upland areas to the west and north of GB, accompanied by conversion of permanent to 323 

temporary grassland in lowland regions to maintain total GB grassland yield (Figure 7). Given the 324 

restriction imposed by the presence of NVZs in England, in our stochastic analyses production of 325 

grassland was focused in the north and west of GB representing a shift in management intensity 326 

from upland to lowland areas. In terms of land conversion, at the extreme cessation of management 327 

of permanent grassland in upland regions would require an increase from 1 million to 1.9 million 328 

hectares of temporary grassland to compensate for lost yield. At more realistic conversion levels of 329 

20 – 40 per cent there are options for substantial reductions in management inputs of uplands 330 

regions of GB that would require intensification of 200 – 300 thousand hectares of lowland 331 

permanent grassland to temporary grassland to make up for lost yield.  332 

4 Discussion 333 

Considering the global importance of grasslands not only as a source of feed and food, but carbon 334 

sink, ecological buffer and source or haven of biodiversity, our spatially explicit grassland yield model 335 

can provide a valuable evidence-base for policy making. The analysis considered most recent 336 

evidence about climatic and physiological control factors and assumed technological developments 337 

to be a continuation of past progress, a rather conservative assumption. The most striking features 338 

of this analysis are the opportunities that arise from the yield gap and the evaluation of possible 339 

futures for changes in grassland management practices across GB.   340 
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4.1 Impact of climate change and increased atmospheric [CO2] 341 

The impact of climate change (reduced seasonal precipitation, increased global radiation and 342 

mean temperature) on weather-governed DMYs is very small (Table 3) though slightly positive on 343 

temporary grasslands (<1%) and marginally negative on rough-grazing grasslands. The largest impact 344 

of climate change is likely to be seen on permanent grasslands, with DMY declining by about 2.5 to 345 

5% from 2020s to 2050s. This largely agrees with past findings that the impacts of past climate 346 

change on grassland DMYs was found to be small or undetectable (Coleman et al., 1987; Jenkinson 347 

et al., 1994). However, Cooper and McGechan (1996) emphasised that site differences in weather 348 

patterns will have greater effects on grass conservation and productivity than other predicted 349 

effects of climate change. 350 

The effect of rising atmospheric [CO2] on stimulating growth for C3-plant species such as 351 

perennial ryegrass (http://www.co2science.org/data/plant_growth/dry/l/loliump.php) was assumed 352 

to be more conservative than in these larger sets of experiments (0.06% vs 0.11% per ppm [CO2] 353 

increase; Table S1a). For temporary and permanent grasslands, the effect of rising [CO2] are 354 

intricately linked to technological progress, and the net effects (Table 2) are likely to be smaller than 355 

the additive gross effects (Table S2 and S3b). Only for rough-grazing grasslands one can see that 356 

rising [CO2] just about compensates the negative effects of weather (Table 2). The relative DMY 357 

increase is likely to be slightly higher under medium compared to the low emission scenario (+1.6%) 358 

due to the difference in atmospheric [CO2] which is marginally lower than the difference (2.4% 359 

between grassland types, Table S2) but much smaller than the additive effect of [CO2] and 360 

technology progress. In reality, actual percent DMY increases due to increased [CO2] depend on 361 

other interacting factors such as N fertility in the soil (Daepp et al., 2001), changes in water 362 

productivity, evapotranspiration and soil water stress (Deryng et al., 2016). 363 

http://www.co2science.org/data/plant_growth/dry/l/loliump.php
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4.2 How fast is technological progress to improve grassland productivity? 364 

As seen in the results (Table 2) the additive increase of grassland DMYs is 24% and 14% between 365 

2010s and 2050s for temporary and permanent grassland, respectively under medium emission 366 

scenario, which is somehow smaller that the theoretical progress. This is because of that the percent 367 

increase of DMY due to joint CFE and TP effects was 28.0 and 22.0% between 2010s and 2050s for 368 

temporary and permanent grassland, respectively under medium emission scenario (Tables S2 and 369 

S3). Therefore, the efficiency of permanent grassland to exploit the joint CFE and TP effects is lower 370 

than under temporary grassland (ca. 63 vs ca. 86 %). This was partly due to the larger negative 371 

impact of climate change on grassland productivity on permanent grassland. As permanent 372 

grasslands were kept under the same grass species longer (>5 years) than temporary grasslands (<5 373 

years) the introduction of new, more productive cultivars/practices is slower. Compared with the 374 

potential yield improving rate in arable crops (Jaggard et al., 2010; Fischer and Edmeades, 2010) the 375 

rate of potential yield improvement was slower in pasture grass (Hatfield and Walthall, 2015). 376 

Longer breeding cycles (15-20 years), inability to exploit heterosis in commercial pasture crop 377 

cultivars and selection in the absence of competing neighbour plants, cause a poor correlation with 378 

pasture sward performance.  379 

Agronomists will continue to improve practices that provide overall gains in grassland 380 

productivity (Stewart and Hayes, 2011; Barrett et al., 2004). The applications of genomics, marker-381 

assisted selection (MAS) and use of genetically modified grass types are likely to accelerate genetic 382 

gains of future grassland productivity. Overall, the UK is well-positioned geographically and the rate 383 

of genetic gain achieved was among the top range 4-5% per decade (Wilkins and Humphreys, 2003). 384 

These can include higher potential DMY, better quality and more resilience to biotic and abiotic 385 

stresses (Williams et al., 2007; Barrett et al., 2015). The current scenarios ignored the exploitation of 386 

other high-yielding grassland species, like Italian Ryegrass (L. multiflorum), for temporary grassland 387 

which will also allow a step change in productivity (Humphrey, 2005). 388 
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4.3 Benchmarking grassland productivity and feedstock availability  389 

As in this paper, crop growth models can be used to benchmark on-farm crop production (Lobell et 390 

al., 2009; Sadras et al., 2015), quantifying the obtainable yields (i.e. G x E x M yield) for a given 391 

variety grown under defined climatic conditions and agronomic management. Thus, benchmark 392 

yields are site- and soil type specific, vary from year to year and evolve with time due to difference in 393 

weather and technological progress. We calculated the national benchmark DMY in Great Britain by 394 

constraining the blanket grassland productivity to the surveyed grassland areas of each grassland 395 

type in 2010 (Table 2). In addition, the benchmark DMY will increase until 2050 under both, low and 396 

medium CO2 emission scenarios due to rising atmospheric [CO2] and technological progress.  397 

The UK total potential availability of biomass for the meat and dairy sectors was the sum of 398 

the product of respective benchmark DMYs and grassland areas for the main grassland types (Defra, 399 

2015). Based on the consumption of 10 kg DM per day per adult cattle (Allen et al., 2011), the total 400 

potential availability of DM could support 4.2 and 14.1 million heads of cattle in 2010 on temporary 401 

and permanent grassland, respectively. Based on the consumption of 2.5 kg dry matter per day per 402 

sheep (Allen et al., 2011), the total availability of dry biomass could support 16.3 million sheep in 403 

2010 on rough-grazing grassland. If 30% of total DM on the permanent grassland was used by sheep, 404 

the potential total herds of sheep and cattle could be 33.2 and 14.1 million, respectively. The 405 

statistics in 2010 by Defra reported 10.1 million herds of cattle and calves and 31.1 million herds of 406 

sheep and lambs (Defra, 2015). As calves and lambs consume less than adult cattle and sheep, and 407 

considering that a significant amount of processed animal compound feed is used in the UK farming 408 

systems (Guo et al., 2016), it is apparent that either there was a yield gap between the benchmark 409 

and the on-farm actual DMY or the availability of dry biomass was underutilised by the livestock 410 

supported by grassland systems.  411 
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4.4 Productivity gap on temporary and permanent grassland 412 

The on-farm actual DMY in either of the two improved grassland systems follows the law of 413 

minimum with yield-limiting factors being management, biological and abiotic factors. Here we 414 

examined the likelihood that productivity gaps are caused by insufficient amounts of N fertiliser 415 

applied to temporary and permanent grassland in recent years. The current respective yield gaps of 416 

about 45 and 39% estimated, may be overstated, especially for permanent grassland because a 417 

substantial proportion of the grassland will be grazed and wastes from the livestock would add 418 

between 60 and 80 kg N/ha to the grassland systems depending on whether the grassland is 419 

intensively or moderately intensively managed (Defra, 2010). However, these gaps represented 420 

average relative yield reduction due to suboptimal applications of N-fertiliser (Figure 1). However, 421 

the yield gaps could vary across grasslands of different natural productivities (i.e. DMY on fields at 0 422 

N fertiliser, see Figure 1) due to difference in N supplied from soil mineralisation). 423 

The data compiled from the annual statistics indicated that the total grassland area gradually 424 

declined for about 15 years from 1984, but remained steady until 2015 (Figure S2). The decline in 425 

total grassland area between 1996 (12.73 M ha) and 2015 (12.38 M ha) was minimal. However, the 426 

herd size declined between 1996 and 2015 by 17.6% (12.0 versus 9.9 M heads) and 20.8% (42.1 427 

versus 33.3 M heads) for cattle (including calves) and total sheep and lambs, respectively. The 428 

decline in animal number supported by the same grassland area shows that temporary and 429 

permanent grasslands were an under-exploited resource. This indicates that some grasslands that 430 

are not used for livestock or do not perform to their full production potential. As underperformance 431 

of improved grassland has been attributed to infrequent re-seeding and inadequate soil pH (Hopkins 432 

et al., 1994), we believe that grassland management offers considerable opportunities for 433 

improvement. Closing the yield gaps between the attainable and the on-farm actual DMY is impeded 434 

by little empirical information about on-farm DMYs associated with different grassland groups 435 

(Oenema et al., 2014). They reported that the on-farm DMY in intensively managed dairy systems 436 

ranged from 50 to 80% of the attainable DMY in Chile and from 60 to 80% in the Netherlands.  437 
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4.5 Prospects for future grassland production in GB 438 

The analyses presented in Scenarios A – D (Figure 6) demonstrates the influence of changing 439 

management patterns on GB grassland DM production and illustrates the breadth of options that 440 

are available for the development of land use policy in relation to grassland systems. Scenarios A – D 441 

provide understanding of changes in total GB grassland yield as management practices are altered 442 

over increasing area. By illustrating where constraints to conversion are likely to become an issue we 443 

provide a realistic view of changes that could be realised. For example, as demonstrated in Scenario 444 

A, a reduction in the intensity of management of 20% of permanent grasslands would have limited 445 

impact on total GB grassland DM production in 2050 compared to the 2010 baseline. This is achieved 446 

through the adoption of best practice fertiliser application, and based on technological progress and 447 

changes in climate to 2050 that are in line with the modelling assumption used in this study.  448 

Alternatively, as demonstrated in Scenarios C and D (Figure 6), increasing management intensity of 449 

areas of grassland that are likely not constrained by biophysical limits or existing policy drivers could 450 

make an additional ca. 18 million tonnes per annum of biomass resource available. This resources 451 

could be put to multiple uses depending on national priorities. For example, increasing the national 452 

herd to support food independence and increased exports, or alternatively the biomass could be 453 

used as a resource for energy production through routes such as anaerobic digestion (Prochnow et 454 

al., 2009; McEniry et al., 2013).   455 

Scenario E present a simple scenario of changes in grassland management practice across GB that 456 

considers how policy might be designed to reflect differing regional priorities. The scenario of 457 

improved grassland reversion in upland regions considers a policy focused on mechanisms to 458 

support farmers for the delivery and protection of other ecosystem services within systems that may 459 

be particularly challenging from a production perspective. These include protection of water quality 460 

and carbon stocks, and in certain regions maintenance of landscape characteristics. In scenario E, 461 

grassland production would shift to more intensively managed lowland regions to maintain total GB 462 

grassland production.  463 
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5 Conclusions 464 

DMYs were calculated using meta-models at 1 km2 grid resolution for different grassland systems in 465 

the UK and then projected to the future (2010s to 2050s) accounting for climate change, rising 466 

atmospheric [CO2] and technological progress under low and medium emission scenarios. National 467 

baseline productivities (1970s to 1980s) of 10.5, 7.8 and 2.6 t/ha adjusted to benchmark 468 

productivities (2010) of 12.5, 8.7 and 2.8 t/ha on temporary, permanent and rough-grazing 469 

grassland, respectively. Future yield increase will mainly come from technological innovation and 470 

rising atmospheric [CO2] and yield increments are likely to be larger on temporary than on 471 

permanent grassland, with little change on rough-grazing. Projected grassland DMY could reach 15.5 472 

and 9.8 t/ha on temporary and permanent grassland by 2050 under medium CO2 emission scenario, 473 

respectively. Maps display the regional concentration of grassland productivity and total biomass 474 

availability at 1 km2 grid for GB based on the 2010 survey. Recent decline of N application to sub-475 

optimal N rates has likely resulted in productivity gaps of ca. 40% on improved grassland. Closing 476 

some of these productivity gaps can either lead to additional biomass availability or spare some of 477 

these grasslands for other uses. Scenarios show that intensification of lowland grasslands can 478 

outweigh the reversion of upland grassland areas to rough grazing or low intensity permanent 479 

pastures. 480 
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Supplemental Material 490 

Tables 491 

Table S1a: The range and mean percentage of dry matter yield (DMY) increase due to CO2 492 

fertilisation effect in selected reports found on perennial ryegrass (Lolium perenne). 493 

Table S1b: The measured decadal mean atmospheric [CO2] (part per million by volume: 494 

ppm) and projected atmospheric [CO2] by the BERN carbon cycle model under low and 495 

medium CO2 emission scenarios ending in decades from 1970s to 2050s. 496 

Table S2: The applied percentage increase (fCFE) above the baseline DMY due to fertilisation 497 

effect of increased [CO2] in the atmosphere on all grasslands in1990s to 2050s in the UK. 498 

Table S3a: Estimated annual percent increases in various reports in potential and the on-499 

farm DMY in grasslands of perennial ryegrass attributed to technological progress. 500 

Table S3b: The applied percentage increase above the baseline DMY due to technological 501 

progress on all grasslands from the 1990s to 2050s in the UK, that is, fTP in Equations 1 and 502 

2. 503 

Table S4: Percent change in the future decades under low and medium CO2 emission 504 

scenarios relative to the baseline climate scenario (1961-1990) in seasonal precipitation (P), 505 

global radiation (Rg) and mean seasonal air temperatures (Tair). 506 

Table S5: Total availability of dry biomass in million tonnes (M t) in the UK based on the 507 

areas reported for temporary (TG), permanent (PG) and rough-grazing (RG) grasslands in 508 

2010 (Defra, 2015) and using the benchmark DMY calculated for the 2010s (Table 2). 509 
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Table S6: Distribution of nitrate vulnerable zones in Great Britain (GB) used in the scenario 510 

analysis of grassland intensification in cases of changing PG into TG and RG into PG 511 

Figures 512 

Figure S1: National average annual N applied amount (N kg/ha) on temporary and 513 

permanent grassland from 1992 to 2015 in Great Britain (Defra, 2016b).  514 

Figure S2: Annual trends in total grassland area, total number of cattle and calves and of 515 

sheep and lamb in the UK (https://www.gov.uk/government/statistical-data-516 

sets/agriculture-in-the-united-kingdom). Data on total number of sheep and lamb were not 517 

available before 1996. 518 

  519 
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Figure captions 520 

Figure 1: Yield gap (YG) exemplified for temporary grassland (TG) derived from the response curve of 521 

relative dry matter yield (DMY%) to variable N application. The vertical arrows show the reduction of 522 

the recommended (300 kg/ha) to the actual N application rate for TG (ca. 100 kg/ha). Response 523 

curve was derived from experimental data (Morrison et al., 1980); respective N-fertiliser data were 524 

extracted from Fertiliser Manual (Defra 2010) and National Statistics (Defra 2016). 525 

Figure 2: Spatially explicit technology- and CO2- adjusted dry matter yields (DMYs) on different 526 

grasslands at 1 km2 grid resolution in 2010 in the UK. 527 

Figure 3: The technology-and CO2-adjusted mean national dry matter (DM) yield for temporary (TG), 528 

permanent (PG) and rough-grazing (RG) grassland in the UK on the assumption that all available land 529 

had been used as single grassland type (i.e. a “blanket” approach) in 2010-2050s under medium (a) 530 

and low (b) emission scenarios. 531 

Figure 4: Spatially explicit availability of dry biomass (t/km2) for rough-grazing, permanent and 532 

temporary grassland based on the respective grassland areas surveyed in 2010 in Great Britain and 533 

the technology-and CO2-adjusted DMYs in 2010s (i.e. from Figure 2). 534 

Figure 5: Regional areas (a) and availability of total dry matter (b) at the NUTS (Nomenclature of 535 

Territorial Units for Statistics) level 1 based on the digitised areas for temporary (TG), permanent 536 

(PG) and rough-grazing (RG) grasslands surveyed in 2010 in Great Britain. 537 

Figure 6 Changes in total dry matter (TDM) production on grassland in Great Britain (tonnes per 538 

year) from 2010 to 2050 under a low CO2 emission scenario. Scenarios explore: (a) conversion of PG 539 

to RG (Abandonment); (b) conversion of TG to PG (Reversion); (c) conversion of PG to TG (Lowland 540 

Intensification); (d) conversion of RG to PG (Upland Intensification). Benchmark TDM production in 541 

Great Britain for the 2010s (●) would change with increasing conversion rates of grassland inside (x) 542 

and outside (+) of environmental constraints. 543 
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Figure 7: Changes in total areas in GB of temporary (TG), permanent (PG) and rough-grazing (RG) 544 

grasslands with increased percentage of conversion of permanent grassland to rough grazing 545 

(Abandonment) in upland regions (PG(UL) maintaining total GB grassland dry matter production (ca. 546 

71,000,000 tonnes per annum) through intensification of PG to TG in lowland areas (PG(LL)). 547 

Productivity in 2050s under low CO2 emission scenario.  548 

  549 
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Tables 550 

Table 1: The weather-governed mean national DMY (t/ha) across the UK as if all available 551 

land had been used as a single grassland type (i.e. blanket approach) under baseline and 552 

future climates. 553 

CO2 emission 
scenario 

Grassland Baseline 2020s 2030s 2040s 2050s 

Low 

Temporary 10.5 10.5 10.6 10.6 10.6 

Permanent 7.8 7.6 7.5 7.4 7.5 

Rough-grazing 2.6 2.5 2.5 2.4 2.4 

Medium 

Temporary 10.5 10.5 10.6 10.6 10.6 

Permanent 7.8 7.6 7.5 7.4 7.4 

Rough-grazing 2.6 2.5 2.4 2.4 2.3 

 554 

 555 

Table 2: The technology- and CO2-adjusted national benchmark mean DMY (t/ha) across the 556 

UK in accordance with surveyed grassland areas for each grassland type in 2010 overlaid 557 

with the meta-model calculated DMY from 2010-2050s.  558 

CO2 emission 
scenario 

Grassland 2010s 2020s 2030s 2040s 2050s 

Low 

Temporary 12.5 13.1 13.8 14.5 15.3 

Permanent 8.7 8.9 9.3 9.5 9.8 

Rough-grazing 2.8 2.7 2.7 2.7 2.7 

Medium 

Temporary 12.5 13.2 13.9 14.7 15.5 

Permanent 8.7 8.9 9.3 9.6 9.9 

Rough-grazing 2.8 2.7 2.7 2.7 2.7 
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 559 

Table 3: The current national on-farm DMY as a proportion of the attainable DMY with 560 

recommended economically optimal N application rates (kg N/ha) as calculated by the 561 

response curve of relative dry matter yield (DMY%) to N application rate (kg N/ha) (Figure 1) 562 

and the consequential yield gap on TG and PG in GB (based on total production; Table S5). 563 

Grassland Recommended 
N rate 

Actual 
N rate 

 DMY% at 
recommended 

N rate 

DMY% at 
actual N 

rate 

Fraction of  
attainable 

yield 

Yield gap 
106 t yr-1 

Temporary 300 99.1  82.46 45.62 55.3 5.71 

Permanent 150 51.6  56.72 34.57 61.0 15.40 

 564 

 565 

 566 

 567 

  568 
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Table 4: Scenarios and constraints explored in analyses of the implication of changes in grassland 569 

management for total grassland dry matter production in Great Britain.   570 

Scenario A: Conversion of PG to RG – this represents reduction of production intensity 

(Abandonment Scenario). Land use change is not constrained by any factors.  

Scenario B: Conversion of TG to PG – again this represents a reduction of production intensity 

(Reversion Scenario). Land use change is not constrained by any factors.  

Scenario C:   Conversion of PG to TG – mainly a Lowland Intensification Scenario. Constraints on 

conversion are imposed where sufficient land is available to meet conversion targets such that 

preference is given to areas where the average slope is <15% (limit for machinery) and for areas 

outside NVZs (given that intensification calls for additional fertiliser input).  

Scenario D: Conversion of RG to PG – mainly an Upland Intensification Scenario. Constraints on 

conversion are imposed where sufficient land is available to meet conversion targets such that 

preference is given to areas with an average height below 250m, where the average slope is <15% 

(limit for machinery) and for areas outside NVZs (given that intensification calls for additional N 

fertiliser input). 

Scenario E: Abandonment of the uplands – this represent both a reduction of productivity in 

upland areas (defined as those above 250m) with conversion of improved grassland (PG) to semi-

natural grassland (RG), and an intensification of lowland areas with conversion of PG to TG. Here, 

the scenario was designed to hold grassland production (tonnes per year) stationary through 

changes in land use. Constraints were altitude, slope (average of less than 15%) and in lowland 

areas avoidance of areas considered to be in NVZs. The latter constraint was applied as conversion 

from PG to TG would entail increased N fertiliser inputs.  

  571 
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