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Time-Series Transcriptomics Reveals ThatAGAMOUS-LIKE22
Affects Primary Metabolism and Developmental Processes in
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In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought
avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that
govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with
detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A
total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincidedwith
a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory
networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of
differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF
GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that
AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates
a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses.

INTRODUCTION

Water limitation in agriculture is poised to intensify in the coming
decades due to urbanization, industrialization, depletion of aquifers,
and increasingly erratic rainfall patterns exacerbated by climate

change (Easterlinget al., 2000;Christensenet al., 2007;Seager et al.,
2007; Famiglietti and Rodell, 2013). Reducedwater availability leads
to drought stress, which is a major constraint on the physiology,
growth, development, and productivity of plants (Boyer, 1970, 1982;
Lobell and Field, 2007; Roberts and Schlenker, 2009; Skirycz et al.,
2010; Lobell et al., 2011; Verelst et al., 2013). Therefore, un-
derstanding the mechanisms of drought response in plants is es-
sential for the improvementofplantperformanceunderwater-limiting
conditions and has been the subject of many investigations over the
years (Shinozaki and Yamaguchi-Shinozaki, 1997, 2007; Chaves
et al., 2009; Nakashima et al., 2009; Pinheiro and Chaves, 2011).
Water deficit responses are complex and require stress sensing and
signaling to adjust plant growth, maintain water status through os-
moregulation, prevent water loss through decreases in stomatal
conductance, and activate detoxification processes (Passioura,
1996; Chaves et al., 2003; Pinheiro andChaves, 2011). An important
consideration is that even a slight reduction in water availability can
elicit stomatal closure and a reduction in CO2 assimilation and in
combinationwith the diversion of resources toward drought defense
mechanisms will affect plant productivity (Chaves et al., 2003).
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Plants have adopted different strategies to respond to water
limitation, such as drought escape through early flowering and re-
ducing the size of plants to increase water use efficiency or drought
avoidance through enhanced soil moisture capture or reduced
transpiration (Ludlow, 1989; Blum, 2005; Aguirrezabal et al., 2006;
Franks, 2011). In this context, the influence of drought on plant
development and growth through its effects on developmental
processes such as germination, seedling growth, and leaf de-
velopment has been studied extensively in the past decade (van der
Weele et al., 2000; Finkelstein et al., 2002; Xiong et al., 2006; Yaish
et al., 2011). Optimal timing of flowering and inflorescence de-
velopment are important traits essential in determining plant yield,
and these can vary greatly in response to water limitation (Eckhart
et al., 2004; Franke et al., 2006; Su et al., 2013; Ma et al., 2014).

At the cellular level, plants respond to drought with changes in
gene expression andprotein andmetabolite abundances (Charlton
et al., 2008; Harb et al., 2010;Wilkins et al., 2010; Baerenfaller et al.,
2012), which are part of defense mechanisms and detoxification
processes (Shinozaki and Yamaguchi-Shinozaki, 2007; Begcy
et al., 2011; Ozfidan et al., 2012). Recent progress in genomics,
transcriptomics, and bioinformatics has paved the way for
dissecting drought-response mechanisms and has enabled the
targeted manipulation of drought-responsive genes in plants. For
example, the overexpression of a number of genes that code for
transcription factors (TFs) leads to drought resistance (Sakuma
etal., 2006;Nelsonetal., 2007;Chenetal., 2008;Quanetal., 2010;
Tang et al., 2012).

In many studies to identify genes important in the regulation of
drought responses, the effects of water limitation at the tran-
scriptional level have been analyzed by exposing plants to severe
dehydration. This involves treatments such as cutting and air
drying leaves and/or roots or induction of osmotic shock through
the application of highly concentrated osmotica such as poly-
ethylene glycol or mannitol (Kreps et al., 2002; Seki et al., 2002;
Kawaguchi et al., 2004; Kilian et al., 2007; Weston et al., 2008;
Fujita et al., 2009; Abdeen et al., 2010; Deyholos, 2010;Mizoguchi
et al., 2010). These experiments have substantially increased our
knowledge of molecular responses under severe drought stress,
but they do not always reflect physiological conditions experi-
enced by drought-stressed soil-grown plants (Bechtold et al.,
2010, 2013; Harb et al., 2010; Wilkins et al., 2010; Lawlor, 2013;
Zhang et al., 2014). Physiological responses such as stomatal
conductance, photosynthetic performance, and metabolic
changes are usually not measured during the progression of the
drought stress, and the varied nature of the stress induction
treatments makes comparative analysis between experiments
problematic. Slow developing soil water deficits have different
physiological consequences than those induced by rapid tissue
dehydration and therefore possibly utilize different gene networks
(Chaves et al., 2003, 2009; Pinheiro and Chaves, 2011).

This inconsistency among experiments was first noted in ameta-
analysis ofmicroarray experiments comparing air drying, soil drying,
and mannitol treatments (Bray, 2004). This analysis found very few
differentially expressed genes (DEGs) common to all treatments
(Bray, 2004). Consequently, recent experiments have focused on
soil-grownplants (Harb et al., 2010;Wilkins et al., 2010; Zhang et al.,
2014). From these studies, an overall integrative picture of the
temporal responses todrought isemergingslowly, and it isclear that

useof a singleor a small number of timepoints anddifferent typesof
experimental conditions lead to very different outcomes. One
consequenceof this is that very little is knownabout the early events
in the perception of drought stress signals (Ueguchi et al., 2001;
Wohlbach et al., 2008; Pinheiro and Chaves, 2011).
To address the above issues, we set out to gain detailed in-

formationontheprocessesthatoccurduringthetransitionfromwell-
watered to drought conditions, in which the intensity of the stress
becomes gradually greater. We monitored the physiological and
metabolicstatusofplants throughaprogressivedroughtexperiment
and mapped onto these data the temporal responses of the tran-
scriptome. Our intention was to use the highly resolved transcrip-
tional profiling data to construct gene regulatory networks (GRNs)
usingdynamicBayesiannetworkmodeling (Beal et al., 2005;Breeze
et al., 2011; Penfold and Wild, 2011) with the aim of identifying
regulatorygenesfunctionalduringdroughtperceptionandsignaling.
The goal was to link early physiological and metabolic drought
avoidance responses with later drought escape and/or tolerance
responses (Claeys and Inzé, 2013). This initially required testing of
thenetworkmodeling toevaluate thecapabilityof theseapproaches
to identify genes important in the regulation of drought responses.
This was achieved by selecting a highly connected candidate gene,
AGAMOUS-LIKE22 (AGL22; also known as SHORT VEGETATIVE
PROTEIN), from the GRNs. AGL22 has an established function in
plantdevelopment (Gregisetal.,2013;Méndez-Vigoetal.,2013),but
in this study, it was shown to play a thus far undiscovered role in the
critical early stages of theplant’s response to drought. These results
demonstrated the potential value of experimental strategies that
combinetime-seriestranscriptomicsdatawithdynamicmodelingas
a means of identifying stress-responsive genes.

RESULTS

Time-series experiments were performed analyzing physiological,
metabolic, and transcriptional changes in Arabidopsis thaliana to
reveal the chronology of plant responses to drought stress. A pro-
gressive slow-drying experiment starting at 95% relative gravimetric
soil water content (rSWC) and drying down to 17% rSWC was per-
formedon5-week-oldArabidopsis plants (Figure1). Todetermine the
severityof thestress,dailymeasurementsof relative leafwatercontent
(RWC;Figure1A) and leafwater potentialwere alsoperformed (Figure
1B). During the experiment, the average rSWC loss was ;10% per
day, but RWC was maintained throughout the progressive drying
period until the point of wilting at 17% rSWC (Figure 1A).

Maximum Photosynthetic Capacity Responds Similarly in
Well-Watered and Drought-Stressed Plants during
a Progressive Drought Experiment

Stomatal conductance (gs) and photosynthetic carbon assimilation
(A) were measured daily on well-watered and drought-stressed
plants through the progressive drought treatment (Figures 1C and
1D). Stomatal conductance declined at;60% rSWC (day 5; Figure
1C),whichwas followedbyadecline incarbonassimilationat;45%
rSWC(day7), indicating that stomatal diffusional limitationsaffected
carbon assimilation (Figure 1D). Plant growth evaluated as rosette
freshweightand rosetteareaceasedat;40%rSWC(Supplemental
Figures 1A to 1C).
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The light andCO2-saturatedmaximumphotosynthetic rate (Amax),
maximum rate of carboxylation (VCmax), and the rate of ribulose-1,5-
bisphosphate (RuBP) regeneration (Jmax) showed no difference
between well-watered and drought-stressed plants (Figure 2A). In
addition,maximumandoperatingefficienciesofphotosystemII (Fv/Fm,
Fv9/Fm9, and Fq9/Fm9; Baker, 2008) showed no change during the
drought period (Figure 2B; Supplemental Figure 1D), suggesting
that the overall primary metabolic capacity was maintained as
drought conditions progressed. The sequential changes in photo-
synthetic physiology, relative water content, and leaf water poten-
tial suggest that theseconditionsallowedus tocapture the transition
between early physiological changes and later stress responses.

Metabolite Profiling Indicates the Stable Nature of Primary
Metabolism during Drought Stress

The decline in stomatal conductance and carbon assimilation led us
to perform metabolite analysis to evaluate changes in primary and
secondarymetabolism (Figure 3). Untargeted liquid chromatography-
mass spectrometry metabolite profiling was performed on

samples harvested at early (day 2,;80% rSWC),mid (day 7,;45%
rSWC), and late (day 13, 17% rSWC) stages of the drought stress.
This analysis showed that the majority of the metabolome was
unchanged throughout most of the drought treatment, and distinct
clustering between well-watered and drought-stressed samples
emerged only by the final day of drought stress (17% rSWC) (Figure
3A). Leaf development was amajor factor for sample separation, with
days clustered more closely together than treatments (Figure 3A).
Targeted metabolite analysis was performed to determine the

foliar levels of 102 stress-associated compounds (Supplemental
Data Sets 1 to 3), which also revealed a mainly late response for
many of these stress-associatedmetabolites (Supplemental Data
Sets 1 to 3). Often these changes were limited to the last two to
three time points (between ;30 and 17% rSWC; Supplemental
Figures 2 and 3). For example, metabolites indicative of drought
stress increased only during the late stages of the dehydration
period (Figures 3B and 3C). There was a significant increase in
abscisic acid (ABA) levels during the last four time points (Xiong
et al., 2002; Figure 3B), while proline, a drought stress-responsive
compatible solute in vascular plants (Sperdouli and Moustakas,

Figure 1. Plant Responses during a Progressive Drought Experiment.

(A) RWC (open triangles) and rSWC (closed triangles) during a 13-d drying period. The data represent the mean (n = 6; 6SE).
(B) Leafwater potential inwell-watered (open circles) anddrought-stressed (closed circles) plants during a 13-d drying period. The data represent themean
(n = 5; 6SE).
(C) Stomatal conductance of well-watered (open circles) and drought-stressed (closed circles) plants, measured at the prevailing growth conditions (see
Methods). The data represent the mean (n = 6; 6SE).
(D) Carbon assimilation of well-watered (open circles) and drought-stressed (closed circles) plants, measured at the prevailing growth conditions (see
Methods). The data represent the mean (n = 6; 6SE).
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2012), accumulated to significant levels only during the last two
time points (Figure 3B). Additionally, the accumulation of sec-
ondary metabolites commonly associated with stress responses
such as anthocyanins and flavonols were altered during the late
stages of the drought response (Sperdouli andMoustakas, 2012;
Supplemental Data Sets 1 and 3 and Supplemental Figure 3).
Oligosaccharides/disaccharides associated with osmotic pro-
tection during drought and osmotic stresses (galactinol and raf-
finose; Taji et al., 2002) significantly accumulated during the last 4
days of the drought response (Figure 3C; Supplemental Data
Set 1). In conclusion, leaf metabolism remained largely stable
during the first 9 d of the experiment, while changes previously

associatedwith drought stress (Taji et al., 2002; Xiong et al., 2002;
Sperdouli and Moustakas, 2012) only became evident during the
last three to four time points.

Transcriptomics Analysis on a Single Leaf Identifies 1815
DEGs during Progressive Drought Stress

Transcriptome profiling was performed on leaf 7 to integrate the
complex physiological and metabolic responses with changes at
the gene expression level. Leaf 7 was fully expanded at the time of
the experiment (Supplemental Figure 1C) and was chosen because
a detailed temporal transcriptome analysis of leaf development was

Figure 2. Potential Photosynthesis in Response to Drought.

(A)A/Ci curveswereperformedunder saturating light conditionsof 1000µmolm22 s21at six selected timepoints throughout thedryingperiod, andpotential
photosynthesis was calculated, including light and [CO2]-saturated net CO2 assimilation (Amax), maximum rate of RuBP regeneration (Jmax), and maximum
rate of carboxylation (VCmax).
(B) Maximum and operating quantum efficiencies of photosystem II (Fv/Fm, Fq9/Fm9, and Fv9/Fm9). The data represent the mean (n = 3; 6SE).
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available (Breezeetal.,2011).Single leaf7samplesfor transcriptome
analysiswere takeneachdayat themidpointof the light period.RNA
from four leaf samples per treatment and time point was hybridized
on CATMA v4 arrays (Sclep et al., 2007; see Methods). An adapted
MAANOVA (microarray analysis of variance) method was used to
analyze the data for each comparison (Wu et al., 2003; Churchill,
2004; Breeze et al., 2011; Windram et al., 2012). This generated
a single normalized expression value for each gene. A Gaussian
process two-sample test (GP2S; Stegle et al., 2010) was used to
identify DEGs. Choosing a Bayes factor value (likelihood of
differential expression) of >6 resulted in a total of 1815 DEGs
(Supplemental DataSet 4). The upregulatedgroupof genes showed
on overrepresentation of Gene Ontology (GO) terms related to
carbohydrate biosynthesis, flavonoid, and secondary metabolic
processes, while downregulated genes were enriched in protein
translation, cell wall-associated processes, pigment biosynthesis,
and chloroplast associated processes (Supplemental Data Set 5).

GO terms related to stress, dehydration, and hormonal regu-
lation, including ABA, were not enriched in the complete data set.
This result suggested that the overall progressive drought ex-
periment was not a severe dehydration stress response, as in-
dicated by themaintenance of primarymetabolic capacity (Figure
2) as well as the late responses of stress-associated metabolites
(Figure 3). Leaf water potential has been used as ameasure of the
progression and effect of drought stress on plants (Zhang et al.,
2014).We estimated the cumulative number of DEGs at each time
point by determining the time of first differential expression for

each gene (Supplemental Data Set 6; Figure 4A). In our experi-
ment, leaf water potential correlated significantly with rSWC
(Figure 4B) aswell as the number of DEGs (Figure 4C) and showed
a weaker correlation with carbon assimilation (Figure 4D). The
biggest drop in leaf water potential occurred between 40% (day 8)
and ;30% (day 9) rSWC, which coincided with the biggest in-
crease in DEGs (Figures 4A and 4C), potentially indicating a shift
from mild to severe drought stress.
To evaluate the transcriptome data set in the context of other

drought experiments, we also compared our data set to two soil-
based drought studies in Arabidopsis. The first experiment per-
formed by Harb et al. (2010) comprised amicroarray comparison of
leaf samples under moderate drought stress (maintaining soil water
content at 30% of field capacity) and progressive drought stress at
the prewilting (;15% field capacity) and wilting (;10% field ca-
pacity) stages. In the progressive drought stress treatment, 3005
genes responded>2- and<0.5-fold, in comparison to 441genes for
the moderate drought treatments (Supplemental Data Set 7). The
second study analyzed samples at a loss of 25% soil water of field
capacity measured at 6-h intervals across a 24-h period (Wilkins
et al., 2010) and identified 570 genes that responded across a 24-h
interval (hereafter called diel; Supplemental Data Set 7). A general
overview of overlapping genes between the different experiments
showed that only 30 geneswere common to all 4 treatments (Figure
5A). Among the overlapping genes were known stress-responsive,
ABA-responsive, and secondary metabolism genes, which pre-
dominantly responded during the latter half of the drought

Figure 3. Metabolite Levels during Progressive Drought.

(A) Liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry metabolite profiling of Arabidopsis leaves under well-
watered (W) and progressive soil drought (D) conditions. Leaf extracts were analyzed in negative and positive ionization modes. The heat maps show the
normalized abundances of all detected chemical features. Samples and chemical features were clustered using a Pearson distancemeasure and theWard
clustering algorithm (Supplemental Data Set 18).
(B) Relative concentrations of ABA (black bars) and proline (gray bars).
(C) Relative concentrations of galactinol (black bars) and raffinose (gray bars). The data represent the mean of the ratio (n = 4;6SE; *P < 0.05 or **P < 0.01).
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experiment (Supplemental Data Set 8). While there were common
elements in all four treatments, 63% of the DEGs in our data set
were unique to the time series (Figure 5A) and were potentially
related to the adjustments to early and moderate drought stress.

Slow Soil Drying Induces a Senescence Response in Leaf 7

To assess developmental changes in leaf 7 during drought stress, we
comparedthedroughttimeseriestoanArabidopsis leaf7senescence
time-series data set (Breeze et al., 2011; Supplemental Data Set 7). In
all, 842 genes overlapped with the senescence data set (p-hyper,
4.4E-135;Figure5B),ofwhich83%respondedbetweendays8and13
(40 to 17% rSWC; Supplemental Data Set 9). The overlap contained
genes associated with oxidation/reduction-related processes, pig-
ment biosynthesis, and primary metabolism, which were pre-
dominantly downregulatedduringdrought stress (Figures 5Cand5D;
Supplemental Data Set 10). The induction of senescence-related
processes during drought stress is a known phenomenon (Munné-
Bosch and Alegre, 2004) and was further confirmed by a significant
overlapofgenesbetweenthepublisheddroughtandsenescencedata
sets (Supplemental Data Set 7 and Supplemental Figure 4A).

Inaddition, changes in theexpressionof secondarymetabolism
genes were observed in the drought time series (Figure 5E),

including CHALCONE SYNTHASE, FLAVONOL SYNTHASE1,
LEUCOANTHOCYANIDIN DIOXYGENASE, PRODUCTION
OF ANTHOCYANIN PIGMENT1, and ANTHOCYANINLESS2
(Supplemental Figure 5 and Supplemental Data Set 9). This co-
incided with increased accumulation of flavonol and anthocyanin
(from day 11; Supplemental Data Set 1 and Supplemental Figure 3)
and suggested that the plants had entered a severe stress phase
(Vanderauwera et al., 2005). Therefore, it was concluded that slow
soildrying inducessenescence in leaf7butonlyat thepointofsevere
drought stress. By contrast, early responses to soil drying (days 1 to
7)weremostlyunique to thedrought timeseries. Importantly for later
considerations, the induction of leaf senescence in response to
drought did not affect flowering time (Supplemental Figure 4B).

Temporal Clustering Reveals Coregulated Groups of Genes,
but Does Not Reveal Specific Regulatory Mechanisms

The cumulative number of DEGs at each timepoint (Supplemental
Data Set 6) confirmed that major gene expression changes oc-
curred late during the drought experiment as the number of genes
that showed first differential expression at each time point was
highest between days 8 and 11 (Figure 4A). A total of 336 genes
respondedduring thefirst half of theexperiment,while themajority

Figure 4. The Relationship between Stress Severity and Differential Gene Expression.

(A) Number of genes for which the first differential expression was observed at each time point, indicating a late transcriptional response.
(B) Correlation between leaf water potential and rSWC.
(C) Correlation between leaf water potential and number of differentially expressed genes.
(D) Correlation between carbon assimilation and leaf water potential. Line represents the linear regression; r2 and P values are given.
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of genes (1479) showed first differential expression during the
latter half of the experiment. A Euclidean distance matrix of the
averageexpressionvaluesof the fourbiological replicates foreach
data set was generated and used in hierarchical cluster analysis.
The resulting dendrogram showed that samples clustered in re-
lation to treatmentsandwithin thedrought treatment intoearlyand
late stage responses (Figure 6A). Dividing the data set into early
(days 1 to 7,;95 to 45% rSWC) and late responses (days 8 to 13,
;40 to 17% rSWC) also revealed functional groups of genes

responding at different times throughout the progressive drought.
Early upregulated genes were associated with carbohydrate and
glycoside biosynthetic processes, general carbohydrate metabolic
processes, and inorganic cation transporter activities (Table 1). The
late upregulated genes encompassed flavonoid and secondary
metabolite biosynthesis, while the late downregulated genes were
involved in translation, pigment biosynthesis, photosynthesis-
related processes, and oxidation/reduction processes (Table 1). To
gain insight into the molecular factors underlying this temporal

Figure 5. Comparative Meta-Analysis with Publicly Available Data Sets andMapMan Analysis (Thimm et al., 2004) of Primary and SecondaryMetabolism
Pathways.

(A)Comparative meta-analysis of the 1815 DEGs with publicly available drought data sets. The Venn diagram shows the overlap of time series DEGs with
those responsive to moderate (mDr; Harb et al., 2010) or progressive drought (pDr; Harb et al., 2010) and amoderate drought at different times of day (diel;
Wilkins et al., 2010).
(B) Comparative meta-analysis of the 1815 DEGs with a publicly available leaf 7 senescence time-series data set (Breeze et al., 2011). The Venn diagram
shows the overlap of drought and senescence DEGs.
(C) Overview of antioxidant, photosynthesis. and photorespiration-related gene expression at two different time points (95% rSWC and 17% rSWC).
(D) Overview of oxidation/reduction-related gene expression at two different time points (95% rSWC and 17% rSWC).
(E)Overview of secondarymetabolism-related gene expression at two different time points (95% rSWCand17% rSWC). All MapMan diagrams showgene
expression data in leaf 7, where blue indicates increased and yellow indicates decreased gene expression according to the scale. Each square represents
a single gene within the pathways.
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separationof samples, hierarchical cluster analysis of theDEGswas
performed using SplineCluster (Heard et al., 2005) on the basis of
gene expression patterns in the drought stressed leaf only. Using
a prior precision value of 0.01, the 1815 genes were divided into 28
clusters (Figures 6B and 7; Supplemental Data Set 11). The first 14
clusters showed an overall upregulation and contained 1149 genes,
while the last 14 downregulated clusters contained 667 genes
(Figure 7; Supplemental Data Set 11). The 28 clusters were hy-
pothesized to represent groupsof genes that are coregulatedduring
the drought experiment. To explore potential regulatory mecha-
nismsofgenesclustered inspecifictemporalexpressionprofiles,we
analyzedeach individualcluster forover-andunderrepresentationof
GO terms in the Biological Process and Molecular Function and for
overrepresentation of known TF binding motifs in promoters
(Supplemental Data Sets 12 and 13 and Supplemental Figure 6). A
few clusters showed enrichment of expectedGO terms in response
todrought,suchasflavonoidbiosynthesis,photosynthesis,pigment
biosynthesis, and response to stress (Supplemental Data Set 12;
Figure 7). However, most clusters did not show any enrichment or
underrepresentationofGO terms (SupplementalDataSet 12; Figure
7),andonly twoclusters (cluster1and9)containedtheABREbinding
motif, known toperceiveABA-mediateddroughtandosmotic stress
signals (Supplemental Figure 6 and Supplemental Data Set 13; Kim
et al., 2011).

Bayesian State Space Modeling Identifies Genes That Link
Drought Responses to Plant Development through
Regulating Transcriptional Networks

Thedatapresentedso fardidnotallowus todrawconclusionsabout
a specific regulatory mechanism across the whole time series but
suggested that early and late responses to a decline in soil water
content are regulated differently. Large-scale transcriptional
reprogramming and metabolic adjustment did not play a dominant
role during the early phases of the dehydration response. Never-
theless, among the 337 DEGs responding between 95 and 40%
rSWC were 33 TF genes (Supplemental Data Set 14), of which
25% had a functional annotation of development (GO:0032502;
SupplementalDataSet 14). This suggested that a reprogrammingof
developmental processesduringdrought stressmayhaveoccurred
in response to the observed early physiological changes (closure of
stomata and reduction in leaf water potential). We reasoned that the
expression of early TF genes must therefore play a role in orches-
trating this acclimation to drought stress.

Metropolis Variational Bayesian State Space Modeling
(M-VBSSM; Penfold, University of Warwick; Supplemental
Methods) was initially performed on 176 differentially expressed
TFs in the data set (Supplemental Data Set 14). This approach
selects subsets of TFs to generate a network, which is continually
updated by probabilistic replacement of TFs to generate a series
of networks and provides a consensus model based on the
marginal likelihood (SupplementalMethods). From theconsensus
model, we could calculate the occurrence of each TF (the number
of times a particular TF appeared over all models) and a count of
the number of downstream connections each TF had across all
models at a particular z-score, in this case indicating a 95%
confidence threshold (Supplemental DataSet 15). TFs that scored
well in both rankings were deemed highly connected hubs with

many significant edges. TheM-VBSSMconsensusmodel indicated
that developmental genes played an important role in the regulation
of drought, as four out of the top 10 highly connected TFs were
associated with the regulation of plant development (Supplemental
DataSet15). Inaddition, twoof the top10TFswereamongthegroup
of early responding TFs (Supplemental Data Sets 14 and 15). While
theconsensusmodelwasuseful for the initial rankingof genes, it did
not represent a causal model, instead representing a type of aver-
agingofmanydifferentnetworkmodels.For this reason,weopted to
modelasmaller selectionofgenes,whichwasadvantageous for two
reasons.First, thefinalmodelwassmallerandsparser, and therefore
more interpretable, and second, the resultant interactions could be
interpreted causally.
Therefore, the top 10 “hub” TFs with the highest frequency of

occurrence and 90 random transcription factors were chosen for
analysiswith theVBSSMpackage (Beal et al., 2005;Supplemental
Data Set 16). As part of this selection, we also chose early and late
respondingTFs. In total, 19early respondingTFs (days1 to7)were
included in the model to establish a potential transcriptional link
between early and late responses (Supplemental Data Set 16).
The resultant model placed the early-responding TF gene

AGL22 at the center of a 25-TF gene network (Figure 8A). AGL22
was differentially expressed in the drought experiment beginning
at day 5 (Supplemental Figure 7A). Fifteen TF genes that were part
of theGRNwere initially analyzedbyqPCR to check for differential
expression under drought in wild-type plants (20% rSWC). All
genesweredifferentially expressed in linewith the levelsobserved
in the microarray experiment, except for PACLOBUTRAZOL
RESISTANCE1, BASIC HELIX-LOOP-HELIX038, and AUXIN
RESPONSE FACTOR1 (Figure 8B; Supplemental Figure 7B).
AGL22 is known to affect flowering time and plant development

(Supplemental Figure 7C; Gregis et al., 2013; Méndez-Vigo et al.,
2013); however, it was not regulated during leaf senescence
(Supplemental Data Set 9), suggesting that AGL22 uniquely
regulated a transcriptional network during drought stress. This
was furtherexploredbyperformingVBSSMusing thecontrol time-
series data set of the same transcription factor genes. If AGL22
was ahubgene in the control time series, it would suggest a role in
developmental reprogramming over the 13-d experimental period
regardless of drought stress. The Bayesian modeling resulted in
a number of fragmented connections of a small number of genes
(Supplemental Figure8A), suggesting thesegeneswerenotpartof
a gene regulatory network under well-watered conditions. The
highly connected genes in the drought model, AGL22 and
RAP2.12, did not feature, not even as peripheral genes
(Supplemental Figure 8A).
Therefore, the early responding TF AGL22 was chosen for

further analysis to establish how far an unbiased modeling ap-
proach can be used to identify genes capable of influencing plant
drought phenotypes and downstream network connections. Two
independent T-DNA insertion lines were isolated (see Methods),
both of which were confirmed knockout mutants for AGL22
(Figure 8C; Supplemental Figure 8B). The mutants were sub-
sequently analyzed for their effect on the AGL22-centered net-
work interactions after drought stress. Eight out of 15 TF genes
differentially expressed under drought conditions exhibited al-
tered gene expression in at least one of the agl22 mutants
comparedwith thewild type (Figure8D). This implied that;50%of

352 The Plant Cell

http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1


the network connections were regulated at least partially through
AGL22, but also suggested the possibility of redundancy within
the network (Figures 8A and 8D). Four late TFs (WRKY20, GIS,
DREB1A, and FBH3) were substantially downregulated in both
agl22 mutants after drought, suggesting that these TFs were
primarily regulated through AGL22 (Figure 8D).

Both agl22 Mutants Had Early-Flowering, Fast-Drying
Drought Escape Phenotypes

It is important to note that due to the early-flowering phenotype of
the agl22 mutants (Supplemental Figure 7C), drought stress was
begun at day 22 after sowing, when there was no visible differ-
ences in rosette leaf number (Supplemental Figures 9A to 9C), but
with a significant increase in rosette area (Figure 9A).

We observed an increased drying rate in both agl22 mutants,
suggesting increased water use (Figure 9B). To determine if this
was due to developmental or metabolic changes, we performed
light response curve measurements of photosynthesis at specific
times throughout the drying period (Supplemental Figure 9D). Due to
the small leaf and rosette size, light curves were measured in whole

plant chambers at 90, 74, and 25% rSWC (see Methods). The in-
creased water loss was primarily driven by a greater rosette area
(Figure 9A), despite a significant reduction in stomatal conductance
(Figure9C).Accordingly, lightsaturatedcarbonassimilation (Asat)was
significantly reducedthroughoutthedryingperiodalreadyunderwell-
watered conditions (Figure 9D), leading to a significant reduction in
total aboveground biomass (Supplemental Figure 10A). Flowering
time remained constant between well-watered and drought treat-
ments in both agl22 mutants, indicating that drought stress con-
ditions did not affect flowering time in the agl22mutants (Figure 9E).

DISCUSSION

Chronology of the Drought Response Suggests Early
Adjustments in Stomatal Conductance and Carbon
Assimilation Are Followed by Changes in ABA and
Transcriptional Reprogramming

Responses to drought are complex and depend on the type and
strength of the drought stress imposed (Harb et al., 2010; Wilkins

Figure 6. Temporal Clustering of 1815 Differentially Expressed Genes.

(A)Dendrogram of the hierarchical clustering using a Euclidian distance divides the data set into early and late responses for both the control (white circles)
and drought (gray circles) samples.
(B) Heat map of the SplineCluster analysis of the 1815 DEGs on differentially expressed genes (drought samples only) across the time series using
normalized and averaged data (Supplemental Data Set 11). The heat map demonstrates expression profiles for genes in each cluster with red representing
high expression and green representing low expression.
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et al., 2010; Zhang et al., 2014). The slow steady drought experiment
performed in this study allowed us to investigate the full range of
temporal physiological, transcriptional, and metabolic responses in
a single fully expanded Arabidopsis leaf. Additionally, by measuring
leafwater potential (Figure 1B) andRWC (Figure 1A),wewere able to
monitor the progression and degree of drought stress in relation to
the physiological, transcriptome, and metabolome changes. The
decline incarbonassimilationat;45%rSWCwasprimarilydrivenby
reducedstomatal conductance limitingCO2diffusion. Therewereno
underlying metabolic constraints, as photosynthetic capacity was
unaffected by the drought treatment (Figure 2; Supplemental Figure
1D), andmetabolite profiles remained unchanged throughout the ma-
jority of the drying period (Figure 3A; Supplemental Figures 2 and 3),
suggesting that Arabidopsis Col-0 is a drought-tolerant ecotype.

Stomatal limitation as the primary factor in reducing photosyn-
thesis under mild drought conditions has been observed in other
studies; however, severe dehydration stress is believed to lead to
metabolic constraints, associatedwithRuBPavailability (Flexas and
Medrano, 2002). We did not observe a reduction in the maximum
capacity for carbon assimilation (Amax), Rubisco carboxylation
(VCmax), and RuBP regeneration (Jmax; Figure 2A). In addition, max-
imum and operating efficiencies of photosystem II photochemistry
(Figure 2B), photochemical and nonphotochemical quenching
(Supplemental Figure 1D), were maintained throughout the drying
period despite a decline in carbon assimilation (Figures 1D), in-
dicating very little stress on photosystem II. This suggested that an
alternative electron sink, most likely photorespiration (reviewed in
Chaves et al., 2003; Lawson et al., 2014), must have been operating
under drought stress, and increased gene expression in the pho-
torespiratory pathway supports this notion (Figure 5C).

In general, two distinct phases in response to progressive soil
drying could be discerned (Figures 6 and 7). Early responseswere

predominantly adjustments to stomatal conductance leading to
restricted CO2 diffusion for photosynthetic carbon assimilation
(Boyer, 1970; Passioura, 1996; Figure 1C) with some associated
transcriptional changes accounting for 17% of the 1815 DEGs
(Supplemental Data Sets 1 to 12; Table 1). By contrast, late re-
sponses (from 40% rSWC) encompassed hormonal (ABA), tran-
scriptional, and major metabolic changes associated with
senescence (Supplemental DataSets 1 to 12; Table 1). These later
responses corresponded with the many different phenological
and physiological changes observed in other studies, including
impaired photosynthesis, increased solute accumulation, and
growth arrest (Boyer, 1970; Passioura, 1996). At the cellular level,
soluble sugars, oligosaccharides, antioxidants, and proline ac-
cumulation are known to enhance the tolerance to drought stress
by acting asosmolytes or as reactive oxygen species scavengers,
especially hydroxyl radicals (Smirnoff and Cumbes, 1989; Cuin
and Shabala, 2007). The accumulation of these compounds
during the latter stages of the drought period (Figures 3B and 3C),
together with the increase in secondary metabolites, such as
flavonoids (Supplemental Data Set 1 and Supplemental Figures 3
and 4), suggests a role in the defense against severe drought
stress (Tattini et al., 2004; Lei et al., 2006;Xiaoet al., 2007;Xuet al.,
2008; Harb et al., 2010; Fini et al., 2011; Page et al., 2012). In
conclusion, this time series covers all phasesduring aprogressive
drought stress and therefore provides the opportunity to study
different stagesof stress responses ingreater detail thanhasbeen
previously possible (Supplemental Figure 10B).

Transcriptional Regulation of Drought Stress Responses

At the gene expression level, a slowly developing soil water deficit
is different from rapid tissue dehydration. From this study and in

Table 1. Functional Categorization of Early (95 to 45% rSWC) and Late (40 to 17% rSWC) Responsive Genes

Category GO Term Biological Process/Molecular Function Fold P Value

Early upregulated GO:0034637 Cellular carbohydrate biosynthetic process 6.9 0.003
Early upregulated GO:0006812 Cation transport 4.3 0.014
Early upregulated GO:0044262 Cellular carbohydrate metabolic process 3.7 0.018
Early upregulated GO:0022890 Inorganic cation transmembrane transporter activity 5.1 0.0432
Late upregulated GO:0009812 Flavonoid metabolic process 7.1 1.74E-05
Late upregulated GO:0009813 Flavonoid biosynthetic process 7.1 5.82E-05
Late upregulated GO:0019748 Secondary metabolic process 2.3 0.004
Late upregulated GO:0009699 Phenylpropanoid biosynthetic process 3.8 0.006
Late upregulated GO:0016051 Carbohydrate biosynthetic process 2.7 0.011
Late upregulated GO:0006519 Cellular amino acid and derivative metabolic process 2.0 0.011
Late upregulated GO:0019438 Aromatic compound biosynthetic process 2.9 0.021
Late upregulated GO:0042398 Cellular amino acid derivative biosynthetic process 2.9 0.044
Late downregulated GO:0006412 Translation 2.1 4.96E-05
Late downregulated GO:0015995 Chlorophyll biosynthetic process 11.4 6.50E-04
Late downregulated GO:0044085 Cellular component biogenesis 2.4 0.002
Late downregulated GO:0042254 Ribosome biogenesis 3.6 0.003
Late downregulated GO:0006334 Nucleosome assembly 6.9 0.003
Late downregulated GO:0015979 Photosynthesis 3.9 0.011
Late downregulated GO:0033014 Tetrapyrrole biosynthetic process 7.7 0.014
Late downregulated GO:0055114 Oxidation reduction 1.8 0.02

P value was adjusted using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). “Category” indicates the timing and direction of change
in gene expression across the time series. “Fold” indicates the fold enrichment.
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comparison with two other drought experiments (Harb et al., 2010;
Wilkinsetal.,2010), it isclear thatdifferentgenesresponddepending
on the nature of the drought stress applied (Figure 5A). Only few
genesoverlapped,with themajority of genes, responding in the final
4 d of the experiment (Supplemental Data Set 8).

Previous studies have often focused on the identification of
genes coding for TF classes responding to terminal or severe
drought stress, including BASIC LEUCINE ZIPPER (bZIPs, e.g.,
ABA-responsive element binding protein/ABRE binding factor),
AP2/EREBP (e.g., DREB/CBF), NAC transcription factors (NAM,

Figure 7. Descriptions of the 28 Clusters Derived from SplineCluster.

Theblue line indicates themeanexpressionprofile for eachof the28clusters. Individual genespresent in eachcluster areavailable inSupplementalDataSet
11.The red line indicates theswitch fromearly (95 to45%rSW;days1 to7) to late (40 to17%rSWC;days8 to13).SelectedenrichedGOterms (Supplemental
Data Set 12) are indicated on each cluster.

Temporal Drought Dynamics in Arabidopsis 355

http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1


ATAF1-2, CUP-SHAPED COTYLEDON2), CCAAT binding (e.g.,
NUCLEAR FACTOR Y), and ZINC-FINGER (e.g., C2H2 zinc finger
protein) families (Umezawa et al., 2004; Bartels and Sukar, 2005;
Karabaet al., 2007; Li et al., 2008; Licausi et al., 2010; Jensenet al.,
2013). The majority of TF genes in our study also responded
relatively late in the drought period (from 40% rSWC), especially
those associated with ABA, dehydration, and oxidative stress

responses (Supplemental Data Set 14). Similar classes of TF
genes have also been shown to respond to drought stress in
Medicago truncatula where 8% of the responding genes coding
for TFs responded late throughout the drying period (Zhang et al.,
2014). By contrast, among the early-responding TF genes (95 to
45% rSWC; Supplemental Data Set 14), ;25% were linked to
plant development, indicating that early physiological changes

Figure 8. Constructing and Evaluating a TF Regulatory Network.

(A) Gene regulatory network generated using VBSSM with the drought time-series data (threshold z-score = 1.65). The nodes highlighted in red were
upregulated during drought stress including the central hub gene, AGL22. Nodes highlighted in green were genes downregulated during drought stress.
Bluenodes signify genes thatwerenot regulatedbyAGL22 aspredicted from themodel (see [D]). All red, green, andbluenodeswere selected for evaluation
after drought stress;
(B)Relativegeneexpressionof selectedgenesunderdroughtconditions (17%rSWC).GeneexpressionwasanalyzedbyqPCR.Thenumbersareexpressed
as foldchangesofdroughtovercontrol (n=56 SE).Significanceof the foldchangesare indicatedbyeither *P<0.05or **P<0.01.Forgeneandprimer list, see
Supplemental Data Set 16 and Supplemental Table 1.
(C) Relative expression levels of AGL22 in two knockout lines, agl22-3 and agl22-4, compared with the wild type determined by qPCR. Significance of the
fold changes are indicated **P < 0.01.
(D) Relative gene expression profiles of 16 genes predicted to be regulated by AGL22 under drought stress in agl22-3 (black bars) and agl22-4 (gray bars)
compared with the wild type. The data represent the mean (n = 7;6SE), and significance of the fold changes are indicated by either *P < 0.05 or **P < 0.01.
Asterisks located centrally indicate bothmutants are significantly different to thewild type, while asterisks located over onemutant indicate significance for
the specific mutant.
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Figure 9. Stress and Plant Growth Phenotypes of agl22 Mutants.

Due to the early-flowering phenotype of both agl22 mutant alleles, drought stress was begun at 22 d after sowing.
(A) Rosette area (cm2) of Col-0 (light gray), agl22-3 (black), and agl22-4 (dark gray) plants at different soil water contents (n = 5). The asterisk indicates
significant difference compared with the wild type at P < 0.05.
(B) Rate of water loss in agl22-3 and agl22-4 plants compared with the wild type averaged over 13 d of water withdrawal (n = 10). The asterisk indicates
significant difference compared with the wild type at P < 0.05.
(C) Stomatal conductance (Gs) at different soil water contents in Co-0 (light gray), agl22-3 (black), and agl22-4 (dark gray) (n = 5). The asterisk indicates
significant difference compared with the wild type at P < 0.05.
(D) Light-saturated carbon assimilation (Asat) at different soil water contents in Col-0 (light gray), agl22-3 (black), and agl22-4 (dark gray; n= 5). The asterisk
indicates significant difference compared with the wild type at P < 0.05.
(E)Days to flowering inwell-watered (light gray) and drought-stressed (black) plants (n = 10). Plantswere grown under short-day conditions as described in
Methods. At 5 weeks, plants were subjected to progressive drought stress. When 17% rSWCwas reached, plants were rewatered and flowering time was
recorded as days after sowing. Control plantsweremaintainedwell watered. The asterisk indicates significant difference comparedwith thewild type at P<
0.05.
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may influence lifetime traits before the initiation of acute stress
defense and senescence responses, highlighting the balancing
act between the need to grow and to induce effective stress
tolerance mechanisms (Claeys and Inzé, 2013).

Dynamic Bayesian Network Modeling Identifies Genes That
Regulate Plant Development

Analysis of promoter binding sites (Supplemental Data Set 13 and
Supplemental Figure 6) did not indicate specific regulatory net-
works or mechanisms during the early events. We therefore as-
sessed the use of a high-throughput gene expression approach
coupled with dynamic Bayesian network modeling to identify
genes associated with the regulation of early drought responses.
To make sense of large high-throughput data sets, network in-
ference algorithms were developed, which are capable of es-
tablishing regulatory interactions among genes (Bansal et al.,
2007). A number of different inference algorithms were used to
successfully reconstruct known gene regulatory networks to
validate theseapproaches (Cantoneetal., 2009;PenfoldandWild,
2011). VBSSM is such an algorithm developed specifically for
highly resolved temporal gene expression data sets, with the aim
of identifying genes that are the key regulators in a given system
(Beal et al., 2005). A recent comparison of modeling algorithms
used to infer GRNs has shown that VBSSM is competitive with
network reconstructions based on experimental data (Penfold and
Wild, 2011;Windramet al., 2014;Penfold andBuchanan-Wollaston,
2014). Due to the limited number of experimental observations
compared with themuch greater number of differentially expressed
genes, the system is inherently underdetermined (Penfold and
Buchanan-Wollaston, 2014), and previous experience suggested
that for these kinds of data sets VBSSM can model around 100
genes (Breeze et al., 2011). However, this type of approach can
introduce a bias during the process of gene selection, while the
M-VBSSM approach (see Methods) generally avoids this gene
selection bias (Supplemental Methods). We therefore opted to use
both M-VBSSM and VBSSM to identify key drought-regulatory
genes and drought phenotypes associated with those genes.

The initial emergence of several development-associated
transcription factors from theM-VBSSMapproach (Supplemental
Data Set 15) and the subsequent selection of developmental and
nondevelopmental TFs for VBSSM (Supplemental Data Set 16)
confirmed the flowering time regulatorAGL22 as a hubgene in the
drought response. Importantly, we did not observe any in-
volvement ofAGL22 in leaf senescence (Supplemental Data Set 9
and Supplemental Figure 8A), suggesting that the gene plays
a unique role in drought stress responses.

The connection between flowering time and drought in Arabi-
dopsishasbeenestablished independently inanumberofstudies, in
which carbon isotope discrimination (Farquhar et al., 1982, 1989)
quantitative trait locicolocatedwithknowndevelopmental/flowering
time loci (Hausmann et al., 2005; Masle et al., 2005; Juenger et al.,
2005;McKay et al., 2008). The identification of a flowering timegene
and subsequent verification of its influence on plant water use,
photosynthesis, and phenology (discussed below) suggest that this
type of dynamic modeling can provide an important means of
discovering genes that will produce phenotypes associated with
lifetime water use and plant development. However, unlike

quantitative trait locusmapping, VBSSMalsomanaged to establish
some valid network interactions from time-series transcriptomics
data,potentiallyallowing fora temporal reconstructionofeventsand
biological processes occurring during progressive drought stress.

A Flowering Time Gene Influences Water Use and
Photosynthesis under Well-Watered and Drought
Stress Conditions

Both agl22 mutants exhibited elevated water loss and rapid de-
velopment already under nonstress conditions (Figures 9A and
9B). This could imply a trade-off between drought avoidance and
escape in environments where drought shortens the growing
season (Franks, 2011). Selecting for early flowering may be
beneficial for plant survival but not necessarily for achieving high
biomass (Supplemental Figure 10A), which suggests that drought
survival and theability tomaintainbiomassundersustainedwater-
limitingconditionsdependondifferentmechanisms (Skiryczet al.,
2011).
The agl22 mutants exhibited 36 and 46% reductions in the

steady state light-saturated photosynthetic rate under well-
watered conditions (Figure 9D), which appeared to be partly as-
sociatedwith reduced stomatal conductance (Figure 9C).However,
during drought stress, the photosynthetic rate in both agl22
mutants was reduced by only 11 and 13%, suggesting that both
agl22 mutants were able to maintain substantial photosynthetic
rates (Figure 9D). This is supported by the fact that agl22mutants
also maintained rosette growth throughout the drying period in
comparison to wild-type plants (Figure 9A), and although total
aboveground biomass was significantly reduced in both mutant
alleles (Supplemental Figure 10A), biomass distribution shifted
from vegetative growth to reproductive growth (Supplemental
Figure 10C). The complex links between plant growth, primary
metabolism, and flowering time in Arabidopsis are highlighted in
a recent article where increased plant growth was positively as-
sociated with early-flowering phenotypes (El-Lithy et al., 2010),
which may explain the larger rosette area observed prior to
flowering in 30-d-old agl22mutant plants compared with the wild
type (Figure 9A; Supplemental Figure 9B). In addition, starch/
carbohydrate status and metabolite levels have been linked to
rosette growth (Meyer et al., 2007; Sulpice et al., 2009), as well as
development and flowering time (Zhou et al., 1998; Moore et al.,
2003; Funck et al., 2012). Both photosynthesis and flowering are
regulated by the light environment and are clearly linked via the
carbohydrate status (Zhou et al., 1998; Moore et al., 2003; Funck
etal., 2012), connectingprimarymetabolismwithplantgrowthand
development. However, little is known about the link between
photosynthetic performance and flowering time especially in
flowering timemutants, andat thispoint, it is unclearwhy theagl22
mutants exhibited a substantial reduction in photosynthesis al-
ready under well-watered conditions.
Furthermore, the observations regardingAGL22 reinforces that

water use in relation tooverall plantproductivity requiresabalance
of developmental and physiological processes to successfully
complete a lifecycle in the prevailing climatic conditions. AGL22
was identified from moderately drought-stressed plants, which
also suggests that not all drought-responsive genes may work in
all water deficit scenarios. This may especially be the case for
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those genes that have been selected under terminal or severe
drought conditions (Hu et al., 2006; Nelson et al., 2007; Xiao et al.,
2009). It is important to note that none of the TF genes selected as
key regulators of the drought response in earlier studies (Hu et al.,
2006;Nelsonetal., 2007;Xiaoetal., 2009)wasahub in theTFGRN
(Figure 8A), although many of these TF genes were differentially
expressedduring drought stress (Supplemental DataSet 14). This
is supported by the notion thatmany genes identifiedwith a role in
stress tolerance under severe stress conditions seem to have little
effect on plant growth in mild drought conditions (Skirycz et al.,
2011).

Interestingly, two targets of AGL22,DREB1A and FBH3 (Figure
8D), havepreviouslybeenshown tobe involved in the regulationof
abiotic stress responses. Overexpression of DREB1A leads to
drought, salt, and freezing tolerance (Kasuga et al., 1999, 2004),
while FBH3 has been shown to regulate stomatal opening
(Takahashi et al., 2013) and functions inABAsignaling in response
to osmotic stress (Yoshida et al., 2015). Both genes were late-
responding targets with few network connections (Figure 8A;
Supplemental Data Set 15). The model therefore may allow us to
predict the role of AGL22 during drought stress and provide
a potential link between mild/moderate and severe drought re-
sponses.

This study demonstrates that network inference incorporating
highly resolved time-series transcriptomics data is able to predict
TF networks and identify geneswith regulatory importance during
drought stress. Moreover, by focusing on the transition from early
physiological changes to drought stress responses, wewere able
to identify AGL22 as a gene associated with lifetime water use.
Consequently, VBSSM as a gene discovery tool promotes the
selection of unknown, yet highly connected genes for further
phenotypic evaluation.

METHODS

Plant Material, Plant Growth, and Drought Stress

Arabidopsis thaliana plants (Col-0, agl22-3 [SALK_141674], and agl22-4
[SAIL_583_C08]) were obtained from the European Arabidopsis Stock
Centre and were grown under a 8:16-h light:dark cycle at 23°C, 60%
relative humidity, and light intensity of 150µmolm22 s21, using amixture of
cold andwarmwhite fluorescent tubes. Arabidopsis seedwas stratified for
3 d in 0.1% agarose at 4°C before individual seeds were sown onto a soil
mix (Scotts Levington’s F2+S compost:fine grade vermiculite in a ratio of
6:1). For thedrought time-courseexperiment,pots (73739cm)werefilled
with the same amount of soil mix. Control pots, to determine 100 and 0%
soil water content, were set up at the same time. Plants were transferred
into individual pots 2 weeks after the sowing date and were kept well
watered until the beginning of the drying episode at 5 weeks after sowing.
Half the plants were maintained under well-watered conditions, while for
the remaining half, water was withdrawn and pot weight was determined
daily. Relative soilwater contentwascalculated for eachdayandpotswere
left to dry until 17% rSWC was reached. Five-week-old plants were sat-
urated in water to reach 95% rSWC, and watering was stopped in the
treatment plants until ;17% rSWC was reached. The control plants were
maintained under well-watered conditions at ;95% rSWC. Due to the
early-flowering phenotype of both agl22 mutant alleles, drought experi-
ments were performed on 22-d-old plants to ensure the experiments were
performed at similar rosette developmental stages andprior to the onset of
flowering, as indicated in Supplemental Figures 9B and 9C. The drying rate

was determined as the slope of the decline in relative soil water content,
measured daily throughout the drying period.

RNA Extractions, Labeling, Microarray Hybridization, and Analysis

Total RNA was extracted, labeled, and hybridized to CATMA v4 arrays
(Sclep et al., 2007) as previously described (Breeze et al., 2011; Windram
et al., 2012). The experimental design for the drought time-series hy-
bridization is shown in Supplemental Figure 11.

Arrayswerehybridizedandwashedasdescribed (Windramet al., 2012).
Arrayswerescannedona428Affymetrix scanneratwavelengthsof532nm
for Cy3 and 635 nm for Cy5. Cy3 and Cy5 scans for each slide were
combined and processed in ImaGene version 8.0 (BioDiscovery) to extract
raw intensity and background corrected data values for each spot on the
array. The data have been deposited in the Gene Expression Omnibus
under accession number GSE65046.

An adaptation of the MAANOVA package (Wu et al., 2003) was used to
analyze the extracted microarray data as described by Breeze et al. (2011)
and Windram et al. (2012), using a mixed-model analysis. The MAANOVA
fitted model considered dye and array slide as random variables, and time
point, treatment, and biological replicate as fixed variables. The model
allowed assessment of themain effect of treatment, themain effect of time
point, the interaction between these factors, and the nested effect of bi-
ological replicate. Predicted means were calculated for each gene in each
of the 112 combinations of treatment, time point, and biological replicate
and for each of the 28 combinations of treatment and time point, averaged
across biological replicates.

Differential Gene Expression Analysis

Genes were ranked based on their Gaussian process two-sample (GP2S)
Bayes factor differentially expressed score, a cutoff of $6 gave 2496
differentially expressed genes. Genes identified in the F-test as being
differentially expressed that were not in the GP2S list of 2496 genes were
addedmanually. The expression profiles of the genes ranked 1800 to 3150
were then plotted and assigned visually as differentially expressed or not.
This resulted ina falsepositive rateof23.3%for thisgroup,andafinal cutoff
of 6 for the GP2Swas chosen, duplicates were removed, and a list of 1934
differentially expressed genes was produced. Removal of probes and
genes with no annotation in TAIR9 left a list of 1815 unique differentially
expressed genes. The time at which genes first became differentially
expressed (TOFDE) was subsequently determined using the GP2S time-
local method (Stegle et al., 2010).

Promoter Analysis

Publically available position-specific scoring matrices (PSSMs) were
collected from the PLACE and JASPAR databases (Higo et al., 1999;
Sandelin et al., 2004). PSSMs were clustered by similarity, and a repre-
sentative of each cluster was chosen for screening. Promoter regions
corresponding to 200 bp upstream of the transcription start site were
retrieved from theEnsembl Plants sequencedatabase (release 50). For any
given PSSM and promoter, we scanned the sequence and computed
amatrix similarity score (Kel et al., 2003) at eachposition onboth strands. P
values for each scorewere computed fromascore distributionobtained by
applying the PSSM to randomly generated sequences. We took the top k
nonoverlapping hits and performed the binomial test (pbinom function in R
Stats package) for the occurrence of k sites with observed P values within
a sequence of length 200 bp. The parameter k is optimizedwithin the range
1 to 5 for minimum binomial P value to allow detection of binding sites
without a fixed threshold per binding site. To determine the presence or
absence of a PSSM in a promoter, in each case the promoters were sorted
bybinomialPvalue, andweappliedacutoff to select the top2000.For each
PSSM, its frequency in promoters of each cluster was compared with its
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occurrence in all promoters in the genome. Motif enrichment was calcu-
lated using the hypergeometric distribution (see statistical analysis). For
motif enrichment analyses P values# 1e-5 were considered significant, to
allow for multiple testing.

RT-PCR and qPCR

Leaves were harvested and frozen in liquid nitrogen. Total RNA was
extracted from a pool of three plants using Tri-reagent (Sigma-Aldrich)
according to themanufacturer’s instructions. A minimum of five replicates
of whole plants from separate experiments was performed for mutant
analysis and drought treatments. For cDNA synthesis for real-time qPCR
and RT-PCR, 1 µg total RNAwas treated with RNase-free DNase (Ambion)
according to the manufacturer’s instructions and reverse transcribed as
previously described (Ball et al., 2004). qPCR-PCR was performed using
a SYBR green fluorescence-based assay as described previously
(Bechtold et al., 2010, 2013). Gene-specific cDNA amounts were calcu-
lated from threshold cycle (Ct) values and expressed relative to controls
andnormalizedwith respect toACTINandCYCLOPHILINcDNAaccording
to Gruber et al. (2001). RT-PCR was performed to amplify the full-length
AGL22 gene on both agl22mutant alleles. The primers used for qPCR and
RT-PCR are given in Supplemental Table 1.

Physiological Measurements

Relative Water Content

Whole rosettes of five plants were harvested each day throughout the
drying period. The RWCof the leaf was calculated using the formula: rLWC
(%) = (FW2DW)/(SW2DW)3 100, where FW is the actual rosette weight
at thedayof harvest, SW is the fully saturated rosetteweight, andDW is the
dry weight of the rosette.

Leaf Water Potential

The leaf water potential was measured via the Scholander pressure bomb
technique (Scholander et al., 1964) using a SKPM1400 plant moisture
system (Skye Instruments). Leaf water potential was measured daily
throughout the drying period on both control and drought-stressed plants
according to the manufacturer’s instructions.

Plant Development and Biomass Measurements

Arabidopsis development was assessed using the scale developed by
Boyes et al. (2001). Once the final flower had opened,wateringwas ceased
andplantswerebaggedand left to dryout before harvesting. At harvesting,
rosettes, stalks, and seeds were separated. The seed weight and dry
weight of rosettes andstalks/podsweredetermined (Bechtold et al., 2010).
At least 10 plants per line and watering regime were measured.

Photosynthesis Measurements

Photosynthetic Rate (Snapshot Measurements)

Instantaneous measurements of net CO2 uptake rate (A) and stomatal
conductance to water (gs) were made on leaf 7, using an open gas ex-
changesystem (PPSystems). Leaveswereplaced in thecuvetteatambient
CO2 concentration (Ca) of 400 µmol mol21, leaf temperature was main-
tained at 226 2°C, vapor pressure deficit was;1 kPa, and irradiance was
set togrowth conditions (150µmolm22 s21). A readingwas recorded every
3 min when the IRGA conditions had stabilized (;1.5 min), but before the
leaf had a response to the new environment (Parsons et al., 1997).

A/Ci Curves (Maximum Photosynthetic Rates)

Five weeks after emergence, (A) and (gs) were measured on leaf 7, using an
infraredgas exchange system (PPSystems). The responseofA to changes in
the intercellularCO2concentration (Ci) wasmeasuredunder a saturatingPFD,
provided by a combination of red and white LEDs (PP Systems). In addition,
the response of A to changes in PFD from saturating to subsaturating levels
was measured using the same light source at the current atmospheric CO2

concentration (390 µmol mol21). All gas analysis was made at a leaf tem-
peratureof 20 (61)°Candavaporpressuredeficitof 1 (60.2) kPa.Plantswere
sampled between 1 and 4 h after the beginning of the photoperiod. For each
leaf, steadystate ratesofAandgs at currentatmospheric [CO2]were recorded
at thebeginningofeachmeasurement. TheA/Ci parameters,VCmax (maximum
RuBP-saturated rate of carboxylation in vivo), Amax (light and CO2 saturated
rate of carbon assimilation in vivo), and Jmax (maximum in vivo rate of electron
transport contributing to RuBP regeneration) were calculated by fitting
equations described by Farquhar et al. (1980) with subsequent modifications
described by McMurtrie and Wang (1993).

Chlorophyll Fluorescence Imaging

Plants were analyzed at various stages of the progressive drought stress
using the dark (Fv/Fm)- and light (Fv9/Fm9, Fq9/Fm9, and Fq9/Fv9)-adapted
chlorophyll a fluorescence parameters, using a chlorophyll fluorescence
imaging instrument (Fluorimager; Barbagallo et al., 2003).

Light Response Curves Using Whole-Plant Chambers

A/Qresponsecurvesweremeasuredusingwhole-plantgasexchangesystem
developed at the University of Essex, with a heliospectra LED light source
(Heliospectra). Input air wasmaintained at a relative humidity of 50 to 60%, air
temperature of 22°C, and CO2 concentration of 400 mmol mol21, matching
that of the growth conditions. Plants were initially stabilized for 30 min at
saturating irradiance800µmolm22s21, afterwhichPPFDwasreduced innine
steps (Supplemental Figure 9D), with assimilation (A) and stomatal conduc-
tance (gs) being recorded at each new PPFD level.

Metabolite and Hormone Analysis

During the experimental period, two leaves per plant were harvested every
day, for a total of six plants per treatment. Samples were frozen in liquid ni-
trogen, freeze-dried overnight, and stored at room temperature in darkness
until extraction. Primary metabolites were extracted from frozen tissue with
chloroform-methanol as described by Lunn et al. (2006). T6P, other phos-
phorylated intermediates, and organic acids were measured by high-
performance anion-exchange chromatography coupled to tandem mass
spectrometry as described by Lunn et al. (2006). Trehalose was measured
enzymatically with fluorometric detection as described byCarillo et al. (2013).

Forsugars, aminoacids,hormones, andsecondarymetabolites, freeze-
dried leaf powder (10mg)was extracted in 0.8mLmethanol containing 1%
acetic acid. After centrifugation (10min at 16,100g, 4°C), the sampleswere
filtered through a 0.2-µmPVDF syringe filter (Chromacol). For nontargeted
Liquid chromatography quadrupole time-of-flight mass spectrometry
metabolite profiling, 5 mL extract was injected onto a Zorbax StableBond
C18 1.8 mm, 2.1 3 100 mm (QToF) reversed-phase analytical column
(Agilent Technologies). Chromatography and mass spectrometry con-
ditions were described by Page et al. (2012). Peaks were extracted and
aligned using XCMS (Smith et al., 2006), and statistical analysis and data
visualization were performed with MetaboAnalyst 2.0 (Xia et al., 2015). For
liquid chromatography-tandemmass spectrometry analysis of hormones,
10mg freeze-dried leaf powderwas extracted in0.8mL10%methanol + 1%
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acetic acid containing deuterated standards (Forcat et al., 2008).
Secondary metabolites and hormones were analyzed with an Agilent
6420B triple quadrupole (QQQ) mass spectrometer (Agilent Technologies)
coupled to a 1200 series Rapid Resolution HPLC system. Two microliters
of sample extract was loaded onto a Zorbax Eclipse Plus C18 (3.5 mm,
2.1 3 150 mm) for amino acids, sugars, and hormones, respectively. The
followinggradientwas used: 0min to 0%B; 1min to 0%B; 5min to 20%B;
20min to100%B;25min to100%B;27min to0%B;7minpost-time.QQQ
source conditionswere as follows: gas temperature 350°C, drying gas flow
rate 9 liters min21, nebulizer pressure 35 psig, and capillary voltage 4 kV.
The polarity, fragmentor voltage, and collision energies were optimized for
each compound. The multiple reaction monitoring modes used for com-
pound identification are shown in Supplemental Data Set 17, and data are
reported as peak areas. Flavonoid identification was based on previous
tandem mass spectrometry identification of flavonoids in Arabidopsis
(Tohge et al., 2005; Stobiecki et al., 2006). For sugar and polyol analysis,
5 mL of sample extract was loaded onto an XBridge amide HILIC column
(particlesize3.5µm,2.1mmi.d.3150mm;Waters)withaconstantflowrateof
0.3 mL min21 and a column temperature of 35°C for the duration. Mobile
phases comprised water:acetonitrile with 0.1% ammonia (mobile phase A
was 90% acetonitrile, and B was 10% acetonitrile with 5 mM ammonium
formate). Sugars (5 µL) were separated using the following gradient: 0 to 17
min, 0 to 54%B; 17 to 19min, 54%B; 19 to 20min, 54 to 0%B,with a 10min
reequilibration time. The QQQ was operated in negative ion mode. Electro-
spray ionization source conditions were as follows: gas temperature, 350°C;
drying gas flow rate, 9 liters min21; nebulizer pressure, 35 psig; and capillary
voltage,4kV.Datawereacquired inselected ionmonitoringmodewithadwell
timeof50ms.Thefragmentor voltagewas50V forall sugars.Thesugarswere
quantifiedby reference tostandards (SupplementalDataSet17). Aminoacids
were separatedwith a ZIC-HILIC column (15032.1 cm, 3.5-µmparticle size;
MerckSeQuant).Sample (2µL)was injected into thecolumnwithaflowrateof
0.25 mL min21. Mobile phases comprised of water:acetonitrile with 0.1%
formic acid (mobile phase A was 95% acetonitrile and Bwas 5% acetonitrile
with 5 mM ammonium acetate). Compounds were separated using the fol-
lowinggradient:0 to10min,5 to50%B,10 to15min,50-90%B,15 to20min,
90%B,20to25min,90 to5%B,withan11-min reequilibration time.TheQQQ
was operated in positive ion mode and electrospray ionization source con-
ditions were as follows: gas temperature, 350°C; drying gas flow rate, 9 liters
min21; nebulizer pressure, 35 psig; and capillary voltage, 4 kV. Data were
acquired in multiple reaction monitoring mode with a dwell time of 50 ms.
Amino acids were quantified by multiple reaction monitoring (Supplemental
DataSet 17) anddata are reported as peak areas (Supplemental DataSet 18).

Analysis of Publicly Available Microarray Data Sets

Publicly availablemicroarray data sets from different experiments in which
Arabidopsis was subjected to drought and senescence (Harb et al., 2010;
Wilkins et al., 2010; Breeze et al., 2011) were located in supplementary files
of already published articles and were compared with the drought time-
series data sets using VENNY (Oliveros, 2007). Hypergeometric dis-
tributionswerecalculated fordifferentoverlapsusing thephyper function in
R version 3.0.2. A cutoff of -p(log) of 5 was chosen as highly a significant
overlap between two or more data sets.

Analysis of GO

GO annotation analysis was performed using DAVID version 6.7 (Huang
et al., 2009),BINGO (Maereet al., 2005), andAgrigo (Duetal., 2010)with the
GO_Biological_Process category, as described by Ashburner et al. (2000).
Overrepresented GO_Biological_Process and GO_Molecular_Function
categories were identified using a hypergeometric test with a significance
threshold of 0.05 after Benjamini-Hochberg correction (Benjamini and
Hochberg, 1995) or Bonferroni correction (Holm, 1979) with the whole
annotated genome as the reference set.

VBSSM and M-VBSSM

Significant numbersof genescanbedifferentially expressed in response to
environmental stress, which, given the limited number of experimental
measurements, means that networkmodels are often unidentifiable (Penfold
andBuchanan-Wollaston,2014;Windrametal.,2014,andreferencestherein).
Furthermore, the interpretation of large, densely connected networks can
often be difficult, and any hypothesis we extract from them can therefore be
ambiguous.Onesolution is toselectamore limitednumberofgenes tomodel,
either based upon prior knowledge, heuristic approaches, or random se-
lection. The reduced number of genesmeans network inference approaches
canbeapplied suchas theVBSSMofBeal et al. (2005).Within theVBSSMthe
expression of the genes can be written in the form:

ytf½BCþ D�yt2 1;

where the term ½BCþ D�ij captures all information about how gene j reg-

ulates gene i. Rather than infer a point estimate for each interaction

½BCþ D�ij , Beal et al. (2005) infer a posterior distribution and use standard
Z-statistics to assess the statistical significance. However, the pre-

selection of genes described above may result in some bias. Here, we
chose to additionally build a network model around a particular gene of

interest, using randomselection via aMetropolis algorithm. At each step in

theMetropolis algorithm, aBayesianstate spacemodel isfitted to the time-
series gene expression profiles for the selected genes, and the marginal

likelihoodor “model evidence”usedas theselection criteria. In thisway,we

can infer small network models around each gene that we are interested in
(for full details, see Supplemental Methods and Supplemental Figure 12).

For the drought data, a total of 176 transcription factors were differ-
entially expressed (Supplemental Data Set 14). We therefore used the
Metropolis model selection to systematically build a network of 88 genes
around each of the 176 genes in turn.Within theMetropolis selection, each
of the 176 networkmodels was run for 2000 iterations in theMCMC chain,
by which point the marginal likelihood was seen to be plateau and the
algorithm was terminated. The 176 networks at step 2000 were then
combined to create a meta-network, which was used to compile summary
statistics, such as the number of times a particular genewas found in each of
those 176 network models or the number of downstream connections
a particular gene had over those 176 models. Ranked lists of genes can be
found in Supplemental Data Set 13. Of the top 10 genes with the highest
number of downstream connections, four were annotated as being de-
velopmental in nature, suggesting a link between drought response and
developmental programs. A selection of 99 random differentially expressed
transcription factors including the top 10 highly connected genes were se-
lected from the larger pool of 176 TFs that were DE during the drought stress
(SupplementalDataSet16).Both thecontrol anddrought timeseries for these
genes were normalized to have zero-mean and unit variance and sub-
sequently modeled using the VBSSM of Beal et al. (2005) using a z-score of
1.65 to select the control and drought-specific networks, and a final VBSSM
model (Beal et al., 2005) was fitted to the gene expression for AGL22.

Statistical Analysis

Statistical analyses were performed using SPSS version 19.0. Parameter
differences between the wild type and agl22 mutants were determined
using one-way ANOVA with appropriate post-hoc analysis. Tukey’s HSD
testwasused if variancesofmeanswere homogenous, andGamesHowell
test, if variances were not homogenous. The SE of the calculated ratios of
fold differences for metabolite and gene expression data and errors of in-
dividual means were combined “in quadrature” as the final ratio was
acombinationof theerrorof thetwodifferentmeansof thecontrolanddrought
stresssamples.Correlationswereestimatedamongdrying rateandflowering
time as the standard Pearson product-moment correlation between the
genotype means. Hypergeometric distributions were analyzed using the

Temporal Drought Dynamics in Arabidopsis 361

http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00910/DC1


phyper function in the R stats package. Generally, P values # 1e-5 were
considered significant to allow for multiple testing. The metabolite data were
analyzed by between subjects two-way ANOVA for time series data and
probability values with false discovery rate multiple testing correction are
tabulated. For secondary compounds, amino acids, and sugars, compounds
not detected in>50%of sampleswerediscardedand remainingmissingdata
imputed using KNN (Supplemental Data Set 3). Abundance data were nor-
malized to total signal in each sample, log2 transformed,mean-centered, and
divided by SD of each variable using Metabolonalyst 3.0 (Xia et al., 2015).

Accession Numbers

Sequence data from this article can be found in the Gene Expression
Omnibus data library under accession number GSE65046.

Supplemental Data

Supplemental Figure 1. Plant growth and chlorophyll fluorescence
during progressive drought stress.

Supplemental Figure 2. Targeted metabolite analyses of secondary
metabolites (except flavonoids), sugars, and amino acids.

Supplemental Figure 3. Targeted metabolite analyses of flavonoids
and anthocyanins.

Supplemental Figure 4. The effect of drought stress on plant
development.

Supplemental Figure 5. Temporal expression patterns of five se-
lected flavonol biosynthesis genes.

Supplemental Figure 6. Analysis of TF binding sites.

Supplemental Figure 7. Gene expression of selected drought-
responsive genes and growth analysis of agl22 mutants.

Supplemental Figure 8. Validation of the knockout phenotype in agl22
insertion mutants and the specific role of AGL22 during drought stress.

Supplemental Figure 9. Growth and photosynthetic phenotype of
Col-0 and agl22 mutants during drought stress.

Supplemental Figure 10. Biomass production in agl22 mutants
compared with the wild type and timeline of events.

Supplemental Figure 11. Schematic overview of array hybridizations
across the 13 time points and two different treatments.

Supplemental Figure 12. Validation of the M-VBSSM approach.

Supplemental Table 1. Primers for qPCR, mutant screen, and RT-
PCR analyses.

Supplemental Methods. Model comparison via a Metropolis search.

Supplemental Data Set 1. LC-MS of sugars and LC-MS/MS analysis
of secondary metabolites and amino acids.

Supplemental Data Set 2. LC-MS/MS analysis of sugar phosphates,
other phosphorylated compounds, and organic acids.

Supplemental Data Set 3. ANOVA of metabolites.

Supplemental Data Set 4. List of differentially expressed genes.

Supplemental Data Set 5. Functional categorization of 1815 DEGs.

Supplemental Data Set 6. Time of first differential expression.

Supplemental Data Set 7. Differentially expressed genes from
publicly available drought and senescence data sets.

Supplemental Data Set 8. Comparison with published drought data
sets.

Supplemental Data Set 9. Comparison with a published senescence
data set.
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