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Interactions between proteins underlie all aspects of complex biological mechanisms.
Therefore, methodologies based on complex network analyses can facilitate
identification of promising candidate genes involved in phenotypes of interest and
put this information into appropriate contexts. To facilitate discovery and gain
additional insights into globally important pathogenic fungi, we have reconstructed
computationally inferred interactomes using an interolog and domain-based approach
for 15 diverse Ascomycete fungal species, across nine orders, specifically Aspergillus
fumigatus, Bipolaris sorokiniana, Blumeria graminis f. sp. hordei, Botrytis cinerea,
Colletotrichum gloeosporioides, Colletotrichum graminicola, Fusarium graminearum,
Fusarium oxysporum f. sp. lycopersici, Fusarium verticillioides, Leptosphaeria maculans,
Magnaporthe oryzae, Saccharomyces cerevisiae, Sclerotinia sclerotiorum, Verticillium
dahliae, and Zymoseptoria tritici. Network cartography analysis was associated with
functional patterns of annotated genes linked to the disease-causing ability of each
pathogen. In addition, for the best annotated organism, namely F. graminearum,
the distribution of annotated genes with respect to network structure was profiled
using a random walk with restart algorithm, which suggested possible co-location of
virulence-related genes in the protein–protein interaction network. In a second ‘use
case’ study involving two networks, namely B. cinerea and F. graminearum, previously
identified small silencing plant RNAs were mapped to their targets. The F. graminearum
phenotypic network analysis implicates eight B. cinerea targets and 35 F. graminearum
predicted interacting proteins as prime candidate virulence genes for further testing. All
15 networks have been made accessible for download at www.phi-base.org providing
a rich resource for major crop plant pathogens.

Keywords: biological networks, pathogenic fungi, interactome inference, small interfering RNA, PHI-base, gene
function inference
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INTRODUCTION

Global food security is threatened by numerous plant disease-
causing fungal pathogens, which infect agricultural and
horticultural crops. New control mechanisms are urgently
needed as pathogens (i) evolve resistance to the ever-narrowing
range of available site specific and broad-spectrum fungicides,
and (ii) regularly overcome the various disease resistance genes
introduced by plant breeders. Due to their economic and societal
importance, plant pathogens are intensively studied using
molecular biology and molecular genetic research tools and
approaches. In addition, over the past 15 years, whole genome
information has become available for the most problematic plant
pathogenic species and more recently such datasets have been
augmented with genomes from additional individual strains
possessing a range of different biological properties. The ‘Top
10’ fungal pathogens identified based on their scientific and
economic importance include fungi with a wide diversity of
lifestyles (Dean et al., 2012). For example, the necrotrophic
Botrytis cinerea kills infected plant cells outright, whereas
hemibiotrophic fungi such as Magnaporthe oryzae, Fusarium
graminearum, Fusarium oxysporum, Colletotrichum spp., and
Zymoseptoria tritici invade initially living host tissue until host
cell death occurs. Biotrophic fungi, such as Blumeria graminis,
keep host plants alive throughout the disease formation process.
In addition, some pathogens (Colletotrichum spp.) can either
infect a wide range of crop species or are specialists that infect
just a single crop species (B. graminis f. sp. hordei). Differences in
gene content of filamentous fungal pathogens can be attributed
to the action of repetitive elements, transposons, and genome
rearrangements in several lineages (Raffaele and Kamoun, 2012).

Development of effective and resilient control strategies
for infectious diseases caused by pathogenic fungi relies
on an in-depth understanding of the underlying biological
processes (BPs) and knowledge of potential points where these
processes can be disrupted. This type of data is commonly
collected experimentally using targeted gene modification
and/or gene-silencing experiments, where observed phenotypes
relate specifically to changes in key points during virulence
and pathogenicity. One of the resources curating phenotypic
disease outcomes of gene modification experiments with a
particular emphasis on plant pathogenic fungi of agricultural
and horticultural significance is the Pathogen–Host Interactions
database (PHI-base1) (Urban et al., 2017). Importantly,
PHI-base collects data from both positive- and negative-
experimental outcomes. However, to understand the underlying
mechanisms of observed phenotypes, and to identify proteins
contributing to virulence it is important to consider them
in the context of networks of molecular interactions, where
proteins of unknown function can be targeted. Even in the
well-studied, non-pathogenic filamentous fungal model species
Neurospora crassa, only ∼60% of proteins are annotated
(Ellison et al., 2014). Therefore, scope exists for knowledge
transfer from model species to less studied species, where
extensive molecular interaction information is available (such

1www.PHI-base.org

as the yeasts Saccharomyces cerevisiae and Schizosaccharomyces
pombe, the worm C. elegans, fruit-fly D. melanogaster, and the
mouse M. musculus).

The potential to use protein–protein interaction network
analysis to decipher pathogenicity and virulence mechanisms
as well as identify candidate genes has been a topic of active
research during the last decade (reviewed in Cairns et al., 2016).
In these applications, a biological network is usually constructed
by linking together biological entities that either interact
physically (e.g., protein–protein interaction, enzyme binding a
substrate) or are shown to be associated with a more abstract
experimentally derived common property (e.g., co-expression
or co-localization). When insufficient experimental data is
available to construct a network, inference from other related
data types may be used instead. Two common computational
methods to infer protein–protein interaction (PPI) networks
are (i) the interolog approach relying on sequence similarity
between proteins from different species and (ii) the domain-
based approach with a focus on conserved Pfam domains
(Li and Zhang, 2016).

The approaches for identifying promising candidates in
pathogenic fungi using biological networks so far have primarily
focused on exploiting the ‘guilt-by-association’ principle,
most often by employing either a ‘direct neighborhood’
or a community structure detection strategy. The direct
neighborhood approach considers a set of nodes directly
connected to each potential target and prioritization is based
on a score related to the number of known annotations among
them. This score may be further adjusted by applying a weight
to incorporate additional factors like confidence in links
or expression patterns. In a community structure detection
approach the network is partitioned into distinct communities,
modules or clusters according to its pairwise links that define the
network topological structure. Then, distribution of annotated
nodes in those modules is explored further by methods of
enrichment analysis and prioritization of genes is based on
module membership and overall score of the module.

For filamentous fungi, predicted protein–protein interactions
were previously explored for several non-pathogenic and
pathogenic species. Networks exist for Neurospora crassa (Wang
et al., 2011) and human-infecting fungi Candida albicans,
Aspergillus fumigatus, and Cryptococcus neoformans (Kim H.
et al., 2015; Remmele et al., 2015). Additional networks
are available for a few plant pathogenic species including
Magnaporthe grisea (He et al., 2008), Phomopsis longicolla (Li
et al., 2018), Rhizoctonia solani (Lei et al., 2014), Fusarium
verticillioides (Kim M. et al., 2015), and F. graminearum (Zhao
et al., 2009; Liu et al., 2010; Bennett et al., 2012; Lysenko et al.,
2013). However, the approaches used differed across studies and
do not allow comparative network investigation. In addition,
early genome assemblies were used, i.e., F. graminearum, that
now require rebuilding of the underlying interactomes.

Studies during the last decade on plant–pathogen interactions
identified a novel host defense-mechanism in animals and
plants, called cross-kingdom/organism RNA interference (RNAi)
(Weiberg et al., 2013; Weiberg and Jin, 2015; Cai et al.,
2018). Mobile small silencing RNAs (siRNAs) produced by

Frontiers in Microbiology | www.frontiersin.org 2 December 2019 | Volume 10 | Article 2721

http://www.PHI-base.org
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02721 December 4, 2019 Time: 19:44 # 3

Janowska-Sejda et al. Phytopathogen Fungal Protein Interaction Networks

the hosts are transferred to the pathogen during the invasion
process and attenuate virulence. For the Arabidopsis-B. cinerea
pathosystem, 42 Arabidopsis siRNAs were detected in B. cinerea
protoplasts generated from infected Arabidopsis plants. These
siRNAs implicated 21 putative targets in B. cinerea targeting
several global BPs including vesicle transport, transcription and
signal transduction. However, most of the putative targets have
no associated phenotype, and their function and potential protein
interaction partners are unknown due to the lack of published
functional gene tests in B. cinerea. In contrast, for F. graminearum
which causes disease on many cereal species, a wealth of
phenotype information exists. Here initial studies suggest that
wheat plants also utilize host RNAi suppression of genes within
the attacking pathogen (Chen et al., 2016; Jiao and Peng, 2018).

To further advance mechanistic understanding of fungal
virulence and pathogenicity for plants, increasingly comparative
analyses are performed using selected groups of pathogenic
species with similar or contrasting lifestyle strategies or host
ranges. For network-based analyses to become an effective part
of these comparative studies, the availability of networks for
multiple species built in the same way is urgently required.
Similarly, since the recent identification of two-way cross-
kingdom siRNA trafficking as a potential new route for
communication and manipulation in host–fungal interactions,
the sequences targeted by siRNA also need to be formally
recognized and displayed within these networks.

The main aims of this study were therefore three-fold.
Firstly, we built a series of protein domain–domain networks for
pathogenic ascomycete fungi of global importance to agriculture
and horticulture. Within each network, all phenotypic and
ontology information for the 10s to 1000+ nodes formally tested
for a role in virulence would be placed. Free access to this suite
of network datasets would permit specialists and non-specialists
alike to develop a multitude of interdisciplinary approaches to
investigate virulence and pathogenicity processes in a network
context. Second, we elucidated the relationship between the
well-studied proteins and metabolites linked to virulence and
pathogenicity, and the newly emerging field of small interfering
RNAs modulating the outcome of host–pathogen interactions.
Third, we used two exemplar species, a highly studied pathogen
and a less-studied pathogen, to illustrate how such network
resources can facilitate the identification of key interactions
and possible candidate virulence and pathogenicity genes with
hitherto minimal to no formal annotation.

MATERIALS AND METHODS

Construction of Predicted
Protein–Protein Interaction Networks
The predicted interactomes were constructed using an interolog
and domain–domain interaction (DDI) approach (Figure 1). The
interolog approach works under the assumption that if a pair of
proteins in one species are experimentally confirmed to interact,
this protein–protein interaction is also likely to be conserved
for their orthologs in another species. Therefore, this method
requires reference interactome(s) and orthologous sequences

mappings that could link them to a species of interest. We have
chosen non-pathogenic Ascomycetes S. cerevisiae and S. pombe
as two reference interactome species, because both species have
some of the best-profiled, experimentally verified interactomes.
Our data for these two species was taken from the EBI IntAct
database (May 2016 release) (Orchard et al., 2014) and was
combined with orthologs retrieved from Ensembl Fungi (May
2016 release) (Kersey et al., 2016), which were originally derived
using Ensembl Compara pipeline (Herrero et al., 2016).

The DDI approach operates under the premise that some of
the interactions are mediated by specific protein domains and
can therefore be assumed to also occur between proteins that
possess these domain pairs. Several public databases identify
such interacting domain pairs using protein 3D structure analysis
and statistical approaches. To obtain the most complete set we
have integrated the data from three DDI databases: KBDOCK
(Ghoorah et al., 2014), DOMINE (Yellaboina et al., 2011), and
3did (Stein et al., 2005). Computational scripts were made
available at https://github.com/PHI-base/phi-nets/.

Complete genomes for the 15 fungi explored in this study
were obtained from Ensembl Fungi version 312 (Supplementary
Table S1). The domain repertoire for each species proteome
was identified using the HMMER algorithm which is based on
biosequence analysis using profile hidden Markov models (Eddy,
2009), implemented on TimeLogic R© HMM (Hidden Markov
Models) version 8.7 and domain models from Pfam database
(version 29.0) (Finn et al., 2016). For each of the 15 proteomes,
additional processing of the raw HMMER output was performed
using a custom python script to resolve overlapping domain
issues. The general rule for solving the domain overlapping
problem was adopted from previous work (Seidl et al., 2011) as
follows: for non-overlapping domains in the given protein the
score of−1 was assigned and the domain remained in the protein.
In complex situations where multiple domains overlapped, the
set of overlapping domains was represented as an adjacency
matrix, where the scores were assigned as per application of
the rules. Specifically, a score of 1 was assigned to the row of
predicted domain if the rules pointed toward this domain as
better, compared to the domain in the column, and a 0 if the
situation was the other way around. The domain with the score
equal to 1 remained in the protein, whereas the domain with
the score equal to 0 was removed from the protein sequence.
Although, this approach resolved the overlap in most cases, there
were proteins where the overlaps had to be resolved manually
(Supplementary Information S1). This non-redundant dataset
was then used to infer interactions for each pair of proteins
containing interacting domains included in at least one of the
three DDI databases.

Quality Evaluation of Predicted
Interactomes
To verify the quality of predicted interactions we have calculated
summary statistics for the number of predicted interacting
partners found in the same cellular compartment and functional
similarity according to the Gene Ontology (GO) annotation in

2ftp://ftp.ensemblgenomes.org/pub/fungi/
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FIGURE 1 | Construction of computationally-inferred interactomes.

biological process (GO-BP) and molecular function (GO-MF)
(Ashburner et al., 2000) (release May 2016). In all these
cases we have used gene-level annotation from the Ensembl
Fungi BioMarts (Kinsella et al., 2011). These annotations were
compared to two reference sets: random control where the
same number of random annotated gene pairs were created
for each of the 15 species, and an experimentally verified set
of interactions for S. cerevisiae. The estimated correctness of
inferred interactions was evaluated using two metrics: major
cellular compartment co-localization and similarity of BP
annotations. For the former, a pair of proteins was considered
co-localized if both predicted proteins were annotated with
one of the following eight major compartment terms (or its
subclass descendants): ‘extracellular region,’ ‘cytoplasm,’ ‘nucleus,’
‘mitochondrion,’ ‘endoplasmic reticulum,’ ‘Golgi apparatus,’
‘fungal-type vacuole,’ and ‘fungal-type cell wall’. For the latter,
the similarity of GO annotations was measured using a semantic
similarity approach, which uses mutual information content of
the most informative common ancestor GO annotation term
(Lord et al., 2003).

Integration of PHI-Base Annotation
Pathogen–host interactions database is a unique resource that
focuses on genes involved in pathogen–host interactions, and
gene functions that are experimentally verified. Annotations are
supported by strong experimental evidence (gene disruption,
gene silencing, or other alteration experiments). PHI-base
version 4.6 (November 2018 release) was used to annotate
the predicted proteins in the 15 Ascomycete networks.
In general, nine high level phenotyping terms are used to
describe the phenotype outcome for one interaction in PHI-
base: loss of pathogenicity, reduced virulence, unaffected
pathogenicity, increased virulence, effector gene (plant
avirulence determinant), lethal, enhanced antagonism,
resistant to chemical, sensitive to chemical (Urban et al.,
2015). In our analysis we summarized these terms in

three groups of phenotyping terms, namely ‘pathogenicity-
related,’ ‘pathogenicity-unrelated,’ and ‘mixed outcome.’
The ‘pathogenicity-related’ annotation consists of ‘loss of
pathogenicity,’ ‘reduced virulence,’ and ‘increased virulence’
phenotyping terms, whereas ‘unaffected pathogenicity’
phenotype represents a pathogenicity-unrelated set. In
PHI-base one or more interactions with a host species can
be assigned to a given gene. This creates situations where a
gene is linked to several contrasting phenotypic outcomes. In
this study we classified such phenotype as ‘mixed outcome.’
Other PHI-base phenotyping terms were not useful in our
analysis. The term ‘lethal’ is not supported with experimental
evidence in PHI-base.

Topological Proximity to Proteins With
Characterized Phenotypes
We have used a random walk with restart (RWR) (Köhler
et al., 2008) method to identify likely candidate genes within
the ‘pathogenicity related’ group. Random walk with restart
calculates the probability of a node in the network being visited
by a random walker which starts with equal probability from
any of the nodes in a seed set. At each step the walker also
has a defined probability of restarting the walk from one of
the seed nodes. This method has been demonstrated to be
very successful for prioritization of disease-associated genes in
human protein–protein interaction networks. However, to the
best of our knowledge this is the first time it has been used
to predict a pathogenicity phenotype in pathogenic fungi. The
advantage of this method is that it can be used to produce a score
for protein nodes without direct connections to proteins with
characterized phenotypes. The method also considers a wider
neighborhood of a node, like overall distribution of nodes in
the neighborhood, as well as degrees and edge densities of the
surrounding nodes. For this study we have calculated an exact
solution, e.g., the set of probabilities to which it will converge
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to after an infinite number of iterations, calculated according
to the formula from (Smedley et al., 2014). In each case, two
sets of RWR scores were computed, using either genes in the
known pathogenicity-related/unrelated categories as the seeds.
The inference potential of these results was evaluated using
standard area under the receiver-operator curve (ROC-AUC).
Briefly, the ROC-AUC analysis is used in machine learning to
evaluate the performance of a binary classifier, its ability to
correctly order ‘true’ and ‘false’ results with some score (e.g.,
a probability returned by classifier for an instance to be of
‘true’ class). The ROC-AUC value of 0.5 would indicate that the
prediction quality is the same as random chance, whereas 1.0
would mean a perfect prediction.

Modularity and Functional Cartography
Analysis
The modular structure of all networks was profiled using the
Louvain graph clustering algorithm (Blondel et al., 2008). As
biological networks are known to be organized into communities
that may also exhibit hierarchical structure, cluster assignments
at different levels of granularity are potentially informative. To
explore and optimize cluster granularity, we have applied the
Louvain algorithm recursively to further break down larger
clusters above a certain size threshold and which are not fully
connected cliques. To optimize this threshold, we have performed
a scan across a 5–200 size range and examined the trade-
off between purity (defined as proportion of nodes with the
same annotation with respect to virulence) and the Shannon
entropy of the resulting modules (relative to splitting of each
virulence annotation category into smaller subsets) with respect
to pathogenicity-related genes of the 15 species. According to this
analysis, the size of 50 was found to be at the best trade-off point
between these two metrics.

The functional cartography analysis characterizes nodes
according to their roles in a given community (Guimera and
Nunes Amaral, 2005). Here, the analysis was performed for
the largest connected component of each network. Prior to the
cartography analysis, the Louvain clustering algorithm was used
to detect communities within the largest connected component
of the given network. The cartography analysis primarily
considered the following two properties: within-module
connectivity (z-normalized within module degree) and
participation coefficient (proportion of links a node has to
members of other modules). Based on the region in a parameter
space of z-score and participation coefficient, nodes were
categorized as hubs and non-hubs and the seven following
categories were identified within each of the networks in this
study: R1 – ultra-peripheral node, R2 – peripheral node, R3 –
non-hub connector node, R4 – non-hub kinless node, R5 –
provincial hub, R6 – connector hub and R7 – global kinless
hub (Supplementary Information S2). The role of the nodes
was determined using GIANT version 1.0 plugin for Cytoscape
version 3.7.1. Following the identification of the nodes’ role
within the first connected component of each network, the
association of the node role (position) with fungi lifestyle was
tested with the aid of a chi-square test.

Analysis of B. cinerea RNA Silencing
Targets in F. graminearum and B. cinerea
Networks Using Cytoscape
Web-based BLAST provided by Ensembl Fungi3 was used to
map the 33 siRNA target genes identified in B. cinerea strain
B05.10 (Cai et al., 2018) to the latest B. cinerea genome
assembly GCA_00143535.4. Orthologs between B. cinerea and
F. graminearum strain PH-1 were identified using BioMart
(Kersey et al., 2018). B. cinerea and F. graminearum networks
were additionally annotated using phenotypes provided by PHI-
base release version 4.6. For F. graminearum, gene names for
the subnetworks were taken from FusariumMutantDb (Baldwin
et al., 2018). Complexity in B. cinerea and F. graminearum
networks was reduced by dividing them first into Louvain
modules. Next, genes of interest (B. cinerea targets/orthologs and
genes with PHI-base annotation) and their first-neighbors were
selected using list-selection in Cytoscape.

RESULTS

Inferred Interactomes of Pathogenic
Fungi
In total 15 globally important Ascomycete fungal species across
nine taxonomic orders were selected for network analysis. Of
these, 13 are serious plant pathogenic species with different
in planta lifestyles and host ranges, one is a serious human
pathogen with a prominent saprophytic phase in multiple
environments and the last is the model species S. cerevisiae
(Table 1). For each species the percentage of proteins in
the predicted proteomes with one or multiple domains was
predicted (Table 2). The protein–protein interactions were
inferred using DDI and interolog approaches. The sets of DDIs
were taken from KBDOCK, DOMINE, and 3did interacting
domains databases. The interologs where inferred by taking
experimentally established interacting orthologous protein pairs
in S. cerevisiae and S. pombe and combining them with
experimental interaction data from the IntAct database (Orchard
et al., 2014). The overall number of edges inferred from each of
these resources is shown in Table 3. Across all 15 species explored,
the DDI-inferred interactions had the highest overall coverage
(from ∼70 to 100%), with contributions from KBDOCK and
3did being particularly prominent (Table 4). The coverage by the
interolog-inferred interactions was considerably lower within the
range 7.92–32.59% of all predicted interactions.

There was considerable variation in the sizes of the
reconstructed networks (Table 3, Raw data in Supplementary
Table S2). The largest reconstructed network was for
F. oxysporum f. sp. lycopersici (8,292 nodes and 45,2631
edges), which reflects the far larger number of genes predicted
for this species as well as the 2nd largest number of proteins with
at least one domain predicted (Table 2). At the other extreme
the two smallest reconstructed networks were for Sclerotinia
sclerotiorum (3,803 nodes and 118,987 edges) and B. graminis f.

3http://fungi.ensembl.org
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TABLE 1 | Lifestyle, host range, and PHI-base network annotations for the 15 selected fungal species.

Order Species NCBI
taxonomy
identifier

Lifestyle Host species
types (natural)

No of plant hosts;
Vast – well over 100

host species,
Many – up to 100
host species, A

few – up to 20 host
species, One – a

single host species

No of different
host

interactions
recorded in

the literature
3, 4

PHI-base
annotations in

network

Eurotiales Aspergillus fumigatus 746128 Lung infections
and invasive
aspergillosis
(IA)1

Human,
domesticated and
wild animal and bird
species1

Many Footnote 2 114

Pleosporales Bipolaris sorokiniana 45130 Hemibiotroph Cereal Monocot Vast 374 2

Erysiphales Blumeria graminis f. sp.
hordei

62688 Obligate
biotroph

Cereal Monocot One 1 1

Helotiales Botrytis cinerea 40559 Hemibiotroph –
necrotroph

Cereal Monocot –
Non-Cereal
Monocot – Dicot

Vast 1367 50

Glomerellales Colletotrichum
fructicola 6

690256 Hemibiotroph –
necrotroph

Non-Cereal
Monocot – Dicot

Vast 1911 5 2

Glomerellales Colletotrichum
graminicola

31870 Hemibiotroph Cereal Monocot
and Dicot

Vast 342 8

Hypocreales Fusarium graminearum 5518 Hemibiotroph –
necrotroph

Cereal Monocot –
Non-Cereal
Monocot – Dicot

Vast 216 789

Hypocreales Fusarium oxysporum f.
sp. lycopersici

59765 Necrotroph Dicot A few 15 26

Hypocreales Fusarium verticillioides 117187 Hemibiotroph –
necrotroph

Cereal Monocot –
Non-Cereal
Monocot – Dicot

Many 124 24

Pleosporales Leptosphaeria
maculans

5022 Hemibiotroph –
necrotroph

Dicot Vast 110 2

Magnaporthales Magnaporthe oryzae 318829 Hemibiotroph Cereal Monocot Many 46 389

Saccharomycetales Saccharomyces
cerevisiae

4932 Saprotroph None Zero 0 13

Helotiales Sclerotinia sclerotiorum 5180 Necrotroph Non-Cereal
Monocot – Dicot

Vast 684 3

Glomerellales Verticillium dahliae 27337 Necrotroph Dicot Vast 395 25

Capnodiales Zymoseptoria tritici 1047171 Hemibiotroph Cereal Monocot A few 33 13

1 IA disease only in human and animal hosts with severe immunodeficiency; 2Aspergillus and aspergilloses in wild and domestic animals: a global health
concern with parallels to human disease (Seyedmousavi et al., 2015); 3https://nt.ars-grin.gov/fungaldatabases/fungushost/fungushost.cfm; 4http://www.plantwise.org/
KnowledgeBank; 5Host species noted for Colletotrichum gloeosporioides in database 3, 6Colletotrichum fructicola previously known as Colletotrichum gloeosporioides.

sp. hordei (3,816 nodes and 154,218 edges). S. sclerotiorum had
the lowest percentage of the exome with a predicted domain
(∼45%), whereas the obligate biotroph B. graminis f. sp. hordei is
known to have a very restricted exome compared to numerous
non-biotrophic plant pathogenic species (Spanu et al., 2010). The
remaining species corresponded to networks of a broadly similar
size. The brassica-infecting L. maculans and S. sclerotiorum had
a low percentage of the exome with a predicted domain in the
reconstructed network (Table 2), as well as a low number of
proteins with at least one domain predicted.

To explore the locations of the PHI-base genes in each of the
networks, the total gene list downloaded from PHI-base 4.6 with
the original curator annotation was partitioned into three logical
categories, namely (a) pathogenicity/virulence required, termed
‘pathogenicity – related’ (b) pathogenicity/virulence not required,

termed ‘pathogenicity-unrelated’ and (c) pathogenicity context
dependent, i.e., only required for the infection of certain plant
host species and/or tissue types, termed ‘mixed outcome.’ As
expected, the number of PHI-base annotated proteins found in
each of the 15 reconstructed networks was generally proportional
to the number of original annotations available for that species
(Table 1). In total, of the 1,461 PHI-base annotated genes
with phenotypes, 1,362 (93%) were included in one or more
of the 15 inferred interactome networks, of which 569 were
required for pathogenicity/virulence, 726 were not required
for pathogenicity/virulence and 67 had a pathogenicity context
specific phenotype. For 6 species (A. fumigatus, B. cinerea, F.
graminearum, F. oxysporum, F. verticillioides, and M. oryzae)
context-specific pathogenicity nodes were present within the
network. For the other networks, only a single type of bioassay
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TABLE 2 | Summary of protein domain annotation statistics for the genome versions used in this study.

Species Genome version1 Predicted
proteins count

Count of proteins
with a domain

% exome with
a domain

% exome with
multiple domain

% exome in the DDI
network2

Aspergillus fumigatus CADRE.31 9630 6989 72.58 21.50 52.56 (33.33/19.23)

Bipolaris sorokiniana nd90pr.Cocsa1.31 12214 7416 60.72 17.70 44.12 (28.20/15.92)

Blumeria graminis f.
sp. hordei

EF1.31 6470 4337 67.03 21.42 46.24 (27.73/18.52)

Botrytis cinerea ASM15095v2.31 12103 7691 63.55 18.49 46.00 (29.57/16.43)

Colletotrichum
fructicola3

GCA_000319635.1.31 15381 9838 63.96 16.60 46.93 (31.86/15.07)

Colletotrichum
graminicola

GCA_000149035.1.31 12020 7816 65.02 18.59 46.97 (30.27/16.71)

Fusarium
graminearum

RR.26 14164 8488 59.93 17.22 43.79 (28.30/15.49)

Fusarium oxysporum
f. sp. lycopersici

FO2.31 17696 9805 55.41 14.08 41.10 (28.55/12.55)

Fusarium
verticillioides

ASM14955v1.31 14185 8286 58.41 15.54 43.26 (29.18/14.08)

Leptosphaeria
maculans

ASM23037v1.31 12469 6234 50.00 15.16 35.94 (22.51/13.43)

Magnaporthe oryzae MG8.31 12755 7242 56.78 16.47 40.98 (26.21/14.77)

Saccharomyces
cerevisiae

R64-1-1.31 6705 4837 72.14 23.15 50.16 (30.08/20.07)

Sclerotinia
sclerotiorum

ASM14694v1.31 10175 4568 44.89 13.53 30.50 (19.27/11.22)

Verticillium dahliae GCA_000150675.1.31 10535 6867 65.18 18.35 46.39 (30.19/16.20)

Zymoseptoria tritici MG2.31 10931 6597 60.35 17.23 43.77 (28.64/15.12)

1All genomes were obtained from Ensembl Fungi v.31; 2The percentages in brackets refer to single/multiple domain sub-counts respectively; 3Colletotrichum fructicola
previously known as Colletotrichum gloeosporioides.

had been used by the international community, for example
only a wheat leaf bioassay is used to explore Z. tritici virulence
requirements, or that the gene sequence involved lacked either
a domain or a domain interaction. The four most populated
inferred interactome networks, in decreasing order of abundance,
were F. graminearum, M. oryzae, A. fumigatus, and B. cinerea.
These four species have the highest PHI-base annotation of the
15 species selected, again in decreasing order of abundance.

Quality Evaluation of Predicted
Interactomes
To evaluate the quality of the different sources of inferred
interactions, we have explored the numbers of co-localized
interaction partners and the semantic similarity of their
functional annotations in BP and molecular function (MF)
aspects of the Gene Ontology (GO). This analysis was performed
on all the 15 reconstructed networks and used respective GO
annotation for each of the species from Ensembl Fungi database
(Kersey et al., 2018). The expected pattern is that true positive
interactors would be found in the same compartment and
be functionally similar. The distributions of edges from each
source were compared to the set of randomly drawn pairs
and experimentally confirmed interactions from S. cerevisiae
(Figure 2). As expected, the random control had on average
substantially lower semantic similarity and the lowest proportion
of co-localized interaction partners. The subsets generated from

the three DDI resources were quite similar in terms of semantic
similarity for both BP and MF aspects. Interestingly, these
subsets had a much higher proportion of co-localized interactors
and MF similarity compared to experimental interactions from
S. cerevisiae. This is likely due to the substantial number
of high-throughput interaction studies included in the latter
experimental data set, which may yield substantial numbers of
false-positive interactions. The S. cerevisiae orthology-inferred
subset of interactions appears to follow the same pattern as
the experimental one, though S. pombe-inferred subsets appear
to score much higher with respect to both co-localization and
BP semantic similarity. The quality of interaction networks
can therefore be validated by comparing an average functional
similarity score of predicted links to an average of a randomly
drawn set of a similar size.

Random Walk With Restart Analysis
Previous studies have shown that network propagation
approaches can be highly promising for prioritization of
human disease (genetic disorder) genes (Köhler et al., 2008)
and profiling of cancer mutation patterns (Leiserson et al.,
2015). However, until now applications of these methods were
focused in biomedical domains and potential applications for
pathogenic species of agricultural interest has not been widely
explored. In this study we have investigated the performance of
the random walk with restart (RWR) algorithm for prioritization
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TABLE 3 | Network statistics.

Species Nodes Edges Average
clustering
coefficient

Average
degree

centrality

Modularity
of the

network

Number
of CCs

Nodes
in the

largest
CC

Edges
in the

largest
CC

Communities
in the largest
CC (Louvain)

Modularity
of the

largest CC

Aspergillus fumigatus 5925 277441 0.631 93 0.4998 117 5498 276432 34 0.4974

Bipolaris sorokiniana 5389 264403 0.784 98 0.5117 258 4302 260418 32 0.5093

Blumeria graminis f.
sp. hordei

3816 154218 0.477 80 0.3571 35 3709 153965 16 0.3363

Botrytis cinerea 6416 344586 0.651 107 0.5087 130 5910 342596 30 0.5064

Colletotrichum
fructicola1

8161 444775 0.699 109 0.6430 137 7343 439356 47 0.6321

Colletotrichum
graminicola

6514 297282 0.649 91 0.5482 128 5946 294921 38 0.5442

Fusarium graminearum 7062 381518 0.663 108 0.5748 130 6494 379470 38 0.5689

Fusarium oxysporum f.
sp. lycopersici

8292 452631 0.699 85 0.6224 146 7571 449448 43 0.6177

Fusarium verticillioides 7094 334015 0.675 94 0.5636 141 6472 331647 42 0.5707

Leptosphaeria
maculans

5327 221687 0.600 83 0.4423 97 4951 220656 27 0.4388

Magnaporthe oryzae 6071 287159 0.632 94 0.5065 119 5574 285379 32 0.5021

Saccharomyces
cerevisiae

6024 235631 0.389 78 0.3502 3 6020 235629 11 0.3420

Sclerotinia
sclerotiorum

3803 118987 0.616 62 0.4486 86 3531 118393 26 0.4351

Verticillium dahliae 5801 247581 0.637 85 0.4968 113 5282 245569 34 0.4763

Zymoseptoria tritici 5609 251215 0.621 88 0.4495 104 5202 250084 31 0.4485

CC, connected component; CCs, connected components; 1Colletotrichum fructicola previously known as Colletotrichum gloeosporioides.

of genes likely to produce a pathogenicity-related phenotype
in gene deletion or gene silencing experiments. Only the most
populated inferred interactome network with a total of 676
PHI-base gene entries was selected for this type of analysis,
namely F. graminearum. With regards to the predictive power
of the method, the receiver-operator curve (ROC) showed an
area under the curve (AUC) of 0.76 (Figure 3), which indicates
acceptable prediction. This metric can be compared to other
similar RWR studies, for example in the human disease gene
prediction study (Köhler et al., 2008) a ROC-AUC score of
0.981 was obtained using the RWR method, whilst the cancer
mutation study successfully identified significant clusters
of somatic mutations using a variant of the heat diffusion

TABLE 4 | Summary of edges generated from each of the data sources across all
15 predicted interactome networks.

Inferred interaction source Number of edges Min/max proportion in
individual networks

DOMINE 2,652,834 58.56–73.88%

3did 2,072,939 31.38–65.21%

KBDOCK 755,866 10.11–30.10%

Overall (DDI): 3,579,922 69.68–100.00%

From S. cerevisiae 542,595 0.0–32.45%

From S. pombe 9,086 0.0–0.65%

Overall (interolog): 548,750 7.92–32.59%

For combined counts and proportions, the numbers were done on non-redundant
edge sets of those super-types.

approach. The obtained result indicates that there may be some
evidence of co-location of pathogenicity-related proteins in the
PPI networks. However, we have also found that substantial
experiment-specific biases were a very prominent factor
affecting the distribution of gene annotations in the network.
Therefore, we conclude that many more gene annotations will
be needed before this or similar approaches can reliably suggest
candidates without the need of substantial expert input and
follow-up curation. Out of the top 10 genes highlighted as
likely important for pathogenicity using RWR approach, eight
at present have not been adequately annotated. However, the
remaining two genes have been annotated as an aspartokinase
(FGRAMPH1_01T24779, top 4th prediction) and acetolactate
synthase (FGRAMPH1_01T02707, top 6th prediction). Both
genes have been previously identified as promising targets for
antifungal agents in two earlier studies (Richie et al., 2013;
Kaltdorf et al., 2016), respectively.

Functional Cartography and Annotated
PHI-Base Phenotypes
In an effort to describe the topological nature of the nodes
that lie within the community structure detected in the first
connected component of each network, a node classification
scheme proposed by Guimera and Nunes Amaral (2005) has
been employed. Here, we concentrate only on the first connected
component of each network because it comprises the majority
of the nodes of a given network and PHI-base annotated nodes
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FIGURE 2 | Quality evaluation of the 15 predicted protein–protein interaction
networks for pathogenic fungi. (A) Functional similarity was quantified using
the information content for the most informative common ancestor Gene
Ontology term for the linked proteins in the biological process (BP).
(B) Molecular function (MF) aspects of the gene ontology. (A,B) Shows the

(Continued)

FIGURE 2 | Continued
overall functional similarity for interacting pairs. Data are presented using a
Tukey style box-an- whisker plot indicating the median as a horizontal line.
(C) Proportions of all interaction pairs co-localized to the same compartment.
Edge evidence sources are indicated by colors: Gray = inferred from domain
pairs known to interact, black = experimentally-determined, blue = inferred
from interacting ortholog pairs, red = baseline made up from randomly picked
pairs of proteins of the same species.

FIGURE 3 | Receiver operating characteristic curve (ROC) used for Random
walk with restart (RWR) from known pathogenicity-related and
pathogenicity-unrelated seeds combined using random forest algorithm. The
model was trained on the dataset of the four most well-annotated species and
evaluated using 5-fold cross validation. AUC – area under curve.

mainly lie in the largest connected component of each network.
The distribution of the node role types is recorded in Table 5.
Overall, the majority of nodes within the community structure,
calculated for the first connected component, are defined as non-
hub peripheral nodes (R2) with most links within the community.
Exception here is Bipolaris sorokiniana for which ultra-peripheral
nodes (R1) account for the higher number within detected
communities. On the other hand, hub-nodes (R5, R6, and R7)
represent a very small percentage of the nodes across all networks.

Whilst comparing the node associated phenotype to the node
role, we identified 539 pathogenicity-related, 700 pathogenicity-
unrelated and 67 with pathogenicity context specific phenotype
nodes across first connected components of all networks
(Figure 4). Pathogenicity-related nodes appeared to be highly
represented by non-hub nodes, mainly peripheral nodes
(R2) with the most links within the community. Although
we observed connector hub nodes only associated with
pathogenicity-related phenotype, the number is too small (2
nodes: FGRAMPH1_01T04861 and Sc YPL240C) to associate
the R6 type nodes with pathogenicity. Unfortunately, the PHI-
base annotation is not available for any of the global kinless
hub nodes (R7). In total 28 nodes of this type were detected
within the largest connected component of 13 PPI networks,
whereas in B. sorokiniana and S. cerevisiae networks R7 nodes
were not identified.
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TABLE 5 | Functional cartography-specific node role distributions across all inferred interactomes.

Species R1 [%] R2 [%] R3 [%] R4 [%] R5 [%] R6 [%] R7 [%]

Aspergillus fumigatus 29.411 49.218 16.806 4.092 0.255 0.182 0.036

Bipolaris sorokiniana 46.908 41.097 9.693 2.255 0.046 0.000 0.000

Blumeria graminis f. sp. hordei 19.439 55.514 17.444 7.280 0.000 0.243 0.081

Botrytis cinerea 28.511 54.924 13.063 2.944 0.355 0.169 0.034

Colletotrichum fructicola1 36.674 51.532 9.152 2.410 0.041 0.150 0.041

Colletotrichum graminicola 29.617 53.145 10.545 5.869 0.656 0.135 0.034

Fusarium graminearum 35.741 50.092 11.349 2.418 0.231 0.139 0.031

Fusarium oxysporum f. sp. lycopersici 36.930 50.812 8.995 3.117 0.000 0.119 0.026

Fusarium verticillioides 32.046 49.660 13.968 4.172 0.015 0.108 0.031

Leptosphaeria maculans 23.086 51.747 19.087 5.676 0.222 0.121 0.061

Magnaporthe oryzae 28.382 53.283 14.263 3.624 0.287 0.126 0.036

Saccharomyces cerevisiae 19.153 61.927 12.027 6.595 0.000 0.299 0.000

Sclerotinia sclerotiorum 30.926 51.742 13.141 3.993 0.000 0.170 0.028

Verticillium dahliae 29.440 55.017 10.678 4.676 0.000 0.170 0.019

Zymoseptoria tritici 25.356 49.904 19.377 5.190 0.000 0.115 0.058

R1 – ultra-peripheral node (all links within the cluster), R2 – peripheral node (most links within the cluster), R3 – non-hub connector node (many links to other clusters),
R4 – non-hub kinless node (links homogeneously spread among all clusters), R5 – provincial hub (hub node with majority links within its cluster), R6 – connector hub
(hub with many links to other clusters), R7 – global kinless hub (hub with links homogeneously spread among all clusters); 1Colletotrichum fructicola previously known as
Colletotrichum gloeosporioides.

FIGURE 4 | Node roles distribution according to PHI-base annotation. The numbers in brackets indicate the total number of annotated PHI-base phenotypes per
largest connected component for 15 networks. R1 – ultra-peripheral node (all links within the cluster), R2 – peripheral node (most links within the cluster), R3 –
non-hub connector node (many links to other clusters), R4 – non-hub kinless node (links homogeneously spread among all clusters), R5 – provincial hub (hub node
with majority links within its cluster), R6 – connector hub (hub with many links to other clusters).

Furthermore, chi-square test of association confirmed initial
findings that pathogenicity-related nodes are located outside the
dense core of the network. The null hypothesis stating that there

is no association between the node position in the network and
its effect on the pathogenic lifestyle was rejected (χ2 = 127.97,
critical value = 9.49, p-value = 1.0556E-26). Inspection of the
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frequency table (Supplementary Information S2) reveals that
there is a positive correlation between node types R2, R3, and
R4 and pathogenicity-related phenotypes. On the other hand,
a significant positive correlation was observed between ultra-
peripheral (R1) and pathogenicity-unrelated nodes.

Taken together, hub node genes were found in the majority
to be unrelated to pathogenicity, while pathogenicity genes
were overrepresented outside the core communities. In these
peripheral regions the pathogenicity related genes link to one
or more other communities. We also noted that pathogenicity
related genes were not found in ultra-peripheral positions.
Collectively these unexpected findings suggest that pathogenicity
nodes join protein communities with diverse functions.

Analysis of Small Interfering RNA Targets
in Networks for Botrytis cinerea and
Fusarium graminearum
To obtain additional information about the targeted proteins,
protein complexes, and metabolic pathways and to determine the
effectiveness of using the guilt-by-association principle (Petsko,
2009) in identifying associated candidate virulence genes, we
investigated the protein–protein interaction neighbors of the
42 published siRNA target sites (Cai et al., 2018) identified
in B. cinerea through wet biology/next generation sequencing
analysis of the in planta interaction.

Both B. cinerea and F. graminearum are fungal Ascomycetes
and many conserved orthologous genes exist in both species
important for virulence on their respective hosts (Van De Wouw
and Howlett, 2011). For F. graminearum a rich dataset of genes
with phenotypic annotation exists, while for B. cinerea only a
comparatively small number of genes have been formally tested
in gene modification experiments and phenotypically assayed
(Urban et al., 2017; Li et al., 2018). We reasoned that by surveying
the predicted interactome of the siRNA target orthologs in
F. graminearum additional information could be obtained to
pinpoint siRNA targets to more specific protein complexes
and metabolic networks, to provide further annotation to the
interacting partners and to identify novel candidate genes with
a potential function in virulence.

We first mapped the siRNA targets identified in B. cinerea
(Cai et al., 2018) to the B. cinerea and F. graminearum genomes
using BLAST. This approach identified a total of 33 targets in
the most recent B. cinerea genome assembly and 17 orthologs
in F. graminearum (Supplementary Table S3). The siRNA target
genes, the predicted interacting proteins and the phenotype
annotation provided by PHI-base were then investigated using
Cytoscape. Subnetworks of siRNA target genes and their first
neighbors were created and visually inspected. In an attempt
to keep functional annotation and the number of predicted
candidate virulence genes small and meaningful, we set a
stringent cut-off criterion requiring at least 1 in 10 genes to have a
virulence associated annotation in the PHI-base database. Due to
the lack of B. cinerea genes tested in gene function experiments,
no B. cinerea target subnetwork fulfilled this stringent criterion.
However, a B. cinerea subnetwork with one PHI-base virulence
annotation in 13 genes exists and this is targeted by the small
RNA TaAS1c-siR483 (Figure 5). The associated F. graminearum
gene FG_22771 encodes the end-binding protein 1 (FgEb1)
regulating microtubule dynamics. A deletion mutant of this
gene shows increased hyphal branching and highly reduced
sesquiterpene deoxynivalenol (DON) mycotoxin biosynthesis
(Liu et al., 2017).

In contrast, eight subnetworks in F. graminearum were
identified that fulfilled the stringent cut-off criterion. The
identified subnetworks have 4 to 89 node genes. We further
excluded the largest subnetwork with 89 genes as this subnetwork
includes many of the well-studied MAP kinase signaling related
genes, i.e., GPMK1, HOG1, MGV1 required for the virulence
of F. graminearum and other fungal pathogens (Zhao et al.,
2007). Subnetworks sharing first-neighbor genes were merged
further (Supplementary Information S3). The candidate gene
list includes seven B. cinerea target gene orthologs: FG_10451
is linked to Cdc42 implicated in cell division (Zhang et al.,
2013); FG_03955 and FG_23275 are both linked to Hsp90
and Mgv1 with functions in heat shock and cell-wall integrity
(Hou et al., 2002; Bui et al., 2016); FG_01625 is linked to
the Top1 topoisomerase gene important for DNA unwinding
and transcriptional regulation (Baldwin et al., 2010); FG_23313
is linked to two ATP driven efflux pumps Abc1 and Abc3

FIGURE 5 | Comparative network analysis in B. cinerea and F. graminearum. (A) First-neighbor subnetwork of B. cinerea siRNA target BC1G_10508. Rectangular
boxes depict nodes/gene identifiers. Colors indicate: orange – B. cinerea target, white – untested phenotype, pink – pathogenicity related phenotype in
F. graminearum. (B) Comparative subnetwork from F. graminearum. The B. cinerea target ortholog is indicated in orange. FG_22771 encodes a pathogenicity related
gene called FgEB1 (PHI:7124).
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implicated in secretion of xenobiotics or to protect the fungus
from host-derived defense compounds (Abou Ammar et al.,
2013; Gardiner et al., 2013); FG_21253 and FG_21113 are
linked to cytochrome P450 genes including cyp51 genes essential
for ergosterol production required to maintain fungal plasma
membrane integrity (Fan et al., 2013) and three cytochrome
P450 monooxygenases involved in trichothecene mycotoxin
production (Tri1, Tri4, Tri11) (Chen et al., 2019). An expected
result was the linking of siRNA target homologs to genes
involved in microtubule organization, stress adaptation, cell-
wall integrity, DNA replication, and ATP driven efflux pumps
because pathogens need to adapt to the many potentially
hostile environments encountered during successful entry,
colonization, and reproduction whilst exposed to the host’s
defense responses. However, the identification of an additional
subnetwork that included three ergosterol biosynthesis pathway
genes (CYP51) as well as the secondary metabolism genes
required for trichothecene mycotoxin production (TRI1, TRI4,
TRI11) (Figure 6) was not expected. In various pathway
databases, for example KEGG and MetaCyc, these pathways are
displayed separately. This merged subnetwork included three
target orthologs as first-neighbors and an additional single wheat
siRNA target named FG_12063 reported to have an unknown MF,
that was recently shown to be required for virulence (Jiao and
Peng, 2018). For the subnetworks there are between one to six
Pfam domains present in each protein forming the interactions.
For example, the cytochrome P450 monooxygenase Tri1 has only
one Pfam domain PF00067, whereas the polyketide synthase Pks1
has eight unique Pfam domains.

In summary for F. graminearum, the seven subnetworks
obtained using this novel approach are formed by 69
genes, of which 36 have annotations provided by PHI-base
or FusariumMutantDb. Thirty-five genes have not been
experimentally analyzed previously in F. graminearum and
have now been implicated as potential virulence factors. Our
analysis suggests that many of these F. graminearum genes
are involved in promoting stress adaptation, and that the
corresponding B. cinerea genes may be involved in related

metabolic functions. The potential link between the ergosterol
biosynthesis pathway essential for fungal membrane formation
and the secondary metabolism genes required for trichothecene
mycotoxin production is a novel and unexpected finding.

Network Availability
To facilitate access to these 15 interactomes, which we have
called PHI-Nets, we have made them all available for download4.
The use case example networks for Fusarium graminearum
and B. cinerea were also uploaded to NDEx5 with accession
numbers https://doi.org/10.18119/N9259J and https://doi.org/
10.18119/N9XG68, respectively. Subnetworks can be found on
NDEx using search term: PHI-Nets.

DISCUSSION

To fully understand biological mechanisms underlying complex
processes such as fungal virulence and host invasion, functions of
individual genes need to be considered in an appropriate context
that can capture both their relationships to other biological
entities and relevant system states. Biological networks have
emerged as an important tool that enables large volumes of
available information to be integrated and mined for such
patterns. In this study we have created high-quality reconstructed
interactomes for 14 species of pathogenic fungi and one
model saprotroph across nine taxonomic orders within the
Ascomycetes. Then by focusing on two exemplar species, we have
illustrated how such resources can facilitate the identification of
key interactions, reveal unexpected relationships in subnetworks
annotated with PHI-base phenotype information and pinpoint
possible candidate virulence genes with hitherto minimal to no
formal annotation.

Unlike previous similar studies (Szklarczyk et al., 2019), a
substantial component of our predicted networks was derived

4www.PHI-base.org
5www.ndexbio.org

FIGURE 6 | F. graminearum subnetwork containing three B. cinerea siRNA target homologs. (A) Three overlapping first-neighbor subnetworks contain three siRNA
B. cinerea target gene orthologs (orange) and are connected to FG_12063 (yellow), independently identified as a wheat RNAi target. Nodes are colored to indicate
target and phenotypes: orange (B. cinerea targets ortholog in F. graminearum), pink (pathogenicity related), magenta (mixed outcome where pathogen virulence is
affected in some interactions but not others), gray (pathogenicity unrelated), white (unknown phenotype). (B) Same subnetwork displaying gene names taken from
PHI-base instead of gene identifiers. Essential CYP51 genes (magenta) and mycotoxin biosynthesis (pale blue) genes are identified within the network. Nps2 is a
B. cinerea siRNA target ortholog and was shown to be pathogenicity related in some interactions.
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using DDI data, which can potentially allow the prediction of
interactions even in cases where direct homology to known
interacting proteins in other species cannot be established.
Therefore, this approach may potentially offer more insights
specifically for pathogenic fungal species where at present there
are still very few experimentally confirmed interactions. The
closest model organisms with well-profiled interactomes are the
budding and fission yeasts (S. cerevisiae and S. pombe), which
are not principally pathogenic and therefore are expected to be
lacking many of the key genes and processes linked to virulence.
Our evaluation of the interactome quality with respect to Gene
Ontology function and cellular compartment annotations has
shown that DDI-predicted edges are of comparable quality to
interolog ones, and, likewise, are substantially better than random
predictions. It should be noted that only 50% or less of the
predicted exome can be captured within the protein–protein
interaction network. Therefore, it was necessary to include
interolog data to provide the more complete networks used
in these analyses.

Notably, due to the differences in protein domain composition
of the exomes some of the networks have considerable size
differences despite having similar numbers of proteins. Though
at present differences in the quality of the genome annotation
cannot be fully discounted as a contributing factor, this may
also hint at possible differences in organizational complexity
of these organisms, as a greater number of interactions can
accommodate a much larger range of emergent behaviors.
Previous work has shown that the number of genes by itself
does not correlate with an organism’s complexity, a phenomenon
commonly referred to as ‘G-value paradox’ (Hahn and Wray,
2002). On the contrary, interactome size was shown to be one
of the important determinants (Schad et al., 2011). Although this
observation has not been further analyzed in detail in this study,
the created resources may allow for future investigation of these
patterns in pathogenic fungi. Similarly, although in each network
the annotation for each node includes the predicted eight major
cellular compartments, this information has not been explored
beyond confirming co-localization of interacting partners.

We have investigated cartography analysis as a topological
property in the network in the context of pathogenicity related
and unrelated gene sets in 15 different fungal species. This
analysis showed that genes important for pathogenicity appear to
be located at the periphery of the densely connected network core,
and in a relatively sparse area (lower within-community degree)
compared to pathogenicity-unrelated genes. At the same time,
genes important for pathogenicity were found to have higher
participation coefficients. These two results were unexpected
but are of considerable interest. These findings suggest their
importance in mediating information flow through the network.
In addition, 2 out of 10 genes highlighted in RWR analysis
as ‘likely required for pathogenicity’ were found in peripheral
region (R2) of the F. graminearum network indicating their
non-hub like properties and links to other communities. Both
genes were previously found to be required for virulence in
a plant and a human pathogen and have been suggested as
possible antifungal targets (Richie et al., 2013; Kaltdorf et al.,
2016). Collectively, this outcome also suggests that as more

phenotyping annotations become available via the PHI-base
route, the knowledge available for these peripheral connected
parts of the network, i.e., nodes located outside the dense core
of the network, may disproportionately increase. Overtime this
should reduce the length of candidate gene lists selected for
follow-up functional analyses.

The main measurements of the topological properties of a
network are node degree, betweenness centrality, average shortest
path length and clustering coefficient. Studying these properties
has been postponed until the PHI-annotations in the networks
increase. Instead we have focused on node position in the
network. In the protein–protein interaction network there is a
topology where nodes with low degree (node with small number
of edges connected to it) coexist with nodes with large degree
(node with large number of edges connected to it). This also
applies to the edge distributions in PPI networks where the
density of edges within particular groups of nodes is higher than
the average edge density in the whole network. Such groups
of nodes with a high density of edges within them are defined
as community structures (also known as modules or clusters).
Each community consists of nodes that share similar properties
or play a similar function in the graph. Thus, in protein–
protein interaction networks, proteins that are within the same
community are likely to share the same specific role within the
cell (Fortunato, 2010). In our study, we identified pathogenicity-
related nodes as non-hub peripheral nodes that have more links
within the community (modules) they are part of. This indicates
they share similar functions or even a similar pathogenic BP.
However, these nodes also have some link to other functional
modules (communities) which makes them important nodes in
the network in mediating the information flow between different
functional communities within the network. Thus, pathogenicity
genes appear not to act alone but as a part of synergistic
connections with other functional communities.

In contrast to the results by Liu et al. (2010) that
compared pathogenicity-related genes to the rest of the network,
our comparison was done with an experimentally confirmed
pathogenicity-unrelated control gene set. The lower degree and
location outside the dense core of the network are consistent
with the expectation created by the currently adopted definition
of pathogenicity-related genes (Idnurm and Howlett, 2001) as
the ones that are only present in pathogenic species. Specifically,
the core of the network would be composed of evolutionary
older genes common to a much wider range of different species
(Hahn and Wray, 2002). Additionally, gene deletion of vital core
and high-degree genes are likely to be lethal to the organism
and therefore would not produce an observable pathogenicity-
related phenotype.

Although we have shown that properties of genes identified
in this work appear to be predictive and therefore can be
used to identify promising pathogenicity-related genes in diverse
fungal species, limitations to this approach exist, in particular,
the current availability of experimental phenotype data. As our
approach relies on analysis of PPI networks to estimate the
likely importance of genes both coverage and quality of such
networks can be a limiting factor. At present and consistent with
many previous studies our networks cover about half of all the
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genes in each species. Some important classes of infection-related
proteins like effectors are unlikely to form interactions within the
fungal cell. However, a further important factor is likely to be the
current lack of experimentally determined interactions specific to
pathogenic fungi. We estimate that once ∼33% of all genes for
a single pathogenic species have been functionally characterized
this will provide the ‘tipping point’ for this type of in-depth
analysis via topological properties. Other potentially informative
data sources we have not considered here are transcriptomics
data and metabolic pathway networks. Transcriptomics has
already been demonstrated to be informative in several previous
studies but is often not available in sufficient quantities for
some of the key fungal phytopathogenic species. In terms of
the metabolic pathway networks, although they are unlikely
to substantially improve coverage (as relatively few genes are
enzymes), metabolic links between pathogen and host are of
great importance and understanding these processes can help to
identify promising candidate genes (Scharf et al., 2014; Dühring
et al., 2015). Similarly, modeling of cross-species interactions
between other types of host and pathogen networks is becoming
an area of active research (Remmele et al., 2015; Guthke et al.,
2016) that is likely to yield yet more insights to complement the
inter-species interactomes constructed for this study. And lastly,
as pathogenicity-related processes are highly context-specific, we
expect that our results would be primarily useful in prioritization
of promising candidates in combination with other gene lists
that can provide appropriate context (for example, differential
expression gene lists or relevant functional gene groups or
chromosomal position).

Cross kingdom RNAi interference is an evolutionary
conserved pathway in eukaryotes and plants. It can be utilized
in crop protection strategies such as host-induced gene silencing
and external small RNA applications to silence pathogen
genes during infection (Majumdar et al., 2017; Mitter et al.,
2017; Machado et al., 2018). In the two globally import
pathosystems B. cinerea-tomato and Fusarium-wheat several
studies demonstrated that both pathogen and host utilize
RNA interference as part of pathogen virulence and host
resistance mechanisms (Cai et al., 2018; Jiao and Peng, 2018).
The presence of host-induced silencing mechanisms in wheat
was previously demonstrated by expressing RNAi constructs
targeting F. graminearum that resulted in attenuated virulence
of the attacking Fusarium species (Chen et al., 2016). We used
the 21 siRNA B. cinerea target genes published by Cai et al.
(2018) to demonstrate that the PPI networks presented in this
study can add further annotation to the targeted genes. The
predicted direct protein interaction partners are more likely
to have a function in virulence themselves and are therefore
elevated to virulence gene candidate status. Due to the large
numbers of proteins in the network, we focused our analysis
on subnetworks in F. graminearum with a higher presence
of PHI-base phenotypes to speculate on a potential role in
virulence. A caveat to this approach is that using phenotype
annotation from PHI-base is likely to introduce a bias as
proteins with known annotation were preferentially selected
to generate subnetworks. However, our approach identified 35
candidate virulence genes, including eight siRNA target gene

orthologs themselves, that were mapped to RAS signaling,
heat shock response, cell-wall integrity, ergosterol biosynthesis,
trichothecene mycotoxin biosynthesis, DNA replication, and
ATP driven export. The potential link found between ergosterol
biosynthesis and trichothecene mycotoxin biosynthesis due
to their co-occurrence within the same subnetwork is both
intriguing and unexpected. Overall, these findings add further
annotation to the siRNA targets previously identified (Cai et al.,
2018), their unannotated potential interactors and map the
B. cinerea siRNA targets to proteins targeted by azole fungicides
in the wheat head blight pathogen F. graminearum (Fan et al.,
2013). While B. cinerea is not a pathogen of wheat but of tomato
and many other dicotyledonous hosts (Table 1), we suggest that
the orthologous B. cinerea siRNA target genes in F. graminearum
have a conserved function and may also likely be virulence genes
in this species. While Cai et al. (2018) identified siRNAs from
tomato, similar analysis are now underway in wheat. Recently
FG_12063 encoding a protein with unknown function was
suggested as the target of a small wheat RNA called Tae-miR1023
(Jiao and Peng, 2018). The deletion of FG_12063 reduced the
pathogen’s ability to cause disease. The finding that FG_12063 is
predicted to interact with the B. cinerea siRNA target homolog
Nps2 identified in our F. graminearum subnetwork raises the
possibility that siRNAs are also produced in wheat during defense
against pathogen attack. Gene deletions of the prioritized genes
presented in this work will be the focus of future investigations.

The projecting of the B. cinerea annotations arising from
the RNA silenced targets onto the F. graminearum network
yielded several unexpected results, that could not have been
acquired solely through a straightforward pathway analysis. This
is because in KEGG/MetaCyc pathways mostly enzymes are
represented, whereas regulatory genes including kinases and
transcription factors are not. In addition, pathway information
is highly fragmented for filamentous pathogens. For instance,
out of 13,447 F. graminearum proteins in the KEGG reference
genome, 9,356 (70%) are currently not linked to any annotation
or pathway. By using the network approach this allows
researchers to overlay the pathways on the wider PPI network
to permit the exploration of known pathways within a far
richer context. For example, the cyp51 pathway is within
the generic sterol biosynthesis pathway but through this PPI
network analysis is also now linked by unknown mechanisms
to additional genes not previously associated with sterol
biosynthesis (including FG_12063, FG_21113, FG_21253) (as
shown in Figure 6) and some of the genes responsible
for trichothecence mycotoxin biosynthesis. In the original
Botrytis study, the predicted siRNA target site had not been
associated with sterol biosynthesis. Finally, for yeast model
organisms excellent databases covering pathways, signaling and
transcription factors annotations do exist; however, a different
problem confronts their predictive use by molecular plant
pathology/bioinformatics researchers. The overall size of the
yeast proteome is considerably smaller (∼6,500) than for most
filamentous pathogenic species (10,000–16,000). Therefore, large
parts of PPI networks generated for filamentous pathogens do not
correspond to any part of the PPI networks generated for these
model non-pathogenic organisms.
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This is the first study to explore the targets of small
silencing RNAs delivered from host plants in the context of PPI
networks for pathogenic species. This is also the first comparative
study to explore whether new information on siRNA targeting
obtained from one host–pathogen interaction can be used to
provide novel insights for a second host–pathogen interaction
which has already been extensively explored using traditional
forward and reverse genetic approaches as well as through PPI
network analysis.

The 15 PHI-Nets have been placed within the PHI-
base resource. This will enable researchers to integrate novel
phenotypes in a timely fashion to the networks/subnetworks
of greatest interest. PHI-base entries are updated and extended
2–4 times a year. Also > 98% of PHI-base annotated proteins
are mapped to Ensembl Genomes (Howe et al., 2019) and
FungiDB browsers (Basenko et al., 2018), where RNA-seq
data, variation data, and pathway maps for PHI-base proteins
are available. This immediately provides researchers with an
exciting and novel research environment within which to
inter-connect and explore protein–protein relationships and
pathways. In FungiDB release 46, subnetworks of interest
for 8 of the 15 PHI-Net pathogen species (A. fumigatus, B.
cinerea, F. graminearum, F. oxysporum f. sp. lycopersici, F.
verticillioides, M. oryzae, S. cerevisiae, S. sclerotiorum) can
also be mapped within FungiDB to KEGG and MetaCycDB
pathways. In addition, Supplementary Table S2 (Col C-‘UniProt
Id’ and Col E- ‘PHI-base mutant phenotype’) directly provides
phenotypic annotation for proteins present in the 15 Ascomycete
networks taken from PHI-base version 4.6. Here a corpus of
UniProt Ids is provided rather than gene Ids. This information
will directly assist researchers using a comparative genomics
approach to identify species specific as well as conserved
virulence functions across species and taxa. By using the data
in this table researchers can more easily merge information
provided by UniProtKB (GO information, subcellular location,
enzymatic activity) with the in-host phenotypes provided by
PHI-base. Finally, PHI-base already provides detailed biological
lifestyle information for PHI-base species to allow non-specialist
researchers easy access to pathogen information to enable
comparative studies (obligate biotrophs, heterotrophic and
necrotrophic lifestyles) (Table 1) and published previously
(Urban et al., 2015). The use case example networks and
subnetworks for F. graminearum and B. cinerea were further
uploaded to NDEx (see footnote 5) to increase visibility of this
study for wet lab molecular biologists and bioinformaticians
alike. NDEx provides a rich infrastructure for network access
and is closely linked to Cytoscape and promotes re-use of
research findings (Pratt et al., 2015; Pillich et al., 2017). NDEx
also enables programmatic access via APIs and can be used to
embed subnetworks directly into webpages (Pratt et al., 2015;
Pillich et al., 2017).

CONCLUSION

We provide predicted protein–protein interaction networks of
globally important filamentous plant pathogens for download

and interactively accessible online versions at the network
repository PHI-Nets6 and NDEx (see footnote 5). We have
also identified a set of features that can be effectively used
to identify candidate virulence and pathogenicity genes in
pathogenic fungi. Exemplar networks for B. cinerea and
F. graminearum were used to enrich annotation for several
B. cinerea genes targeted by small interfering RNAs produced by
the Arabidopsis host during disease interaction. Several directly
interacting proteins of the target genes were identified and
are novel candidate virulence genes in both B. cinerea and
F. graminearum.We predict that as more genomes are sequenced,
and more pathogen genes are functionally characterized this
will result in a data increase in interactome databases. Thus,
networks will need to be rebuilt over time to take these
latest developments into consideration when exploring strain-to-
strain differences in pangenome and/or genome wide association
studies. We also predict that once more protein–protein
interactions are experimentally verified for pathogenic species,
these can be used to increase the robustness and extend of
DDI networks, permit topological properties of a network to
be explored in detail and thereby increase their overall utility
to comparative analyses when exploring host–pathogen and
pathogen–pathogen interactions.
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