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A B S T R A C T   

Grassland models often yield more uncertain outputs than arable crop models due to more complex interactions 
and the largely undocumented sensitivity of grassland models to environmental factors. The aim of the present 
study was to assess the impact of single-factor changes in temperature, precipitation, and atmospheric [CO2] on 
simulated soil water content (SWC), actual evapotranspiration (ET), gross primary production (GPP) and yield 
biomass, and also to link the sensitivity analysis with experimental results. We employed an unprecedented 
multi-model framework consisting of seven grassland models at nine sites with different environmental char-
acteristics in Europe and Israel, with two management options at three sites. For warming/cooling and wetting/ 
drying, models showed general consistency in the direction of SWC and ET changes, but less agreement regarding 
GPP and biomass changes. The simulated responses consistently revealed an overall positive effect of CO2 
enrichment on GPP and biomass, while the direction of change differed for SWC and ET. Comparing with single- 
factor experimental manipulations, SWC simulations slightly underestimated the observed effect of warming, 
while the overall mean model sensitivity for biomass (+7.5%) closely matched the mean response observed with 
1–2 ◦C warming (+6.6%). The models exhibited lower sensitivity of SWC to wetting or drying compared to the 
experiments. The overall mean sensitivity of biomass to drying was -4.3%, contrasting with the mean experi-
mental effect size of -9.6%, which proved to be more realistic than the mean wetting effect (+3.2%, against 
+38.9% in the field trials). The simulated sensitivity of SWC to CO2 enrichment was markedly underestimated, 
while the biomass response (+12.0%) closely matched the observations (+17.5%). Although the multi-model 
averaging did not manifestly improve the realism of the simulations, it ensured a realistic response in the di-
rection of change to varying conditions. The results suggest a paradigm shift in grassland modelling meaning that 
the usual practice of model optimisation/validation needs to be complemented by a sensitivity analysis following 
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the approach presented. The results also highlight the importance of model improvements, especially in terms of 
soil hydrology representation, a key environmental driver of grassland functioning.   

1. Introduction 

Biophysical and biogeochemical agro-ecosystem models represent 
key processes such as plant photosynthesis, ecosystem respiration and 
evapotranspiration related to environmental drivers and management 
practices (e.g. grazing, cutting, fertilisation). As such, they can quantify 
the energy and matter exchanges in the ecosystem (e.g. Brilli et al., 
2017) and are widely used to quantify ecosystem services (e.g. Pokovai 
et al., 2020). In this way, the models provide an integrated system 
perspective in which vegetation, soil, weather and management factors 
interact dynamically to simulate system feedbacks and revise manage-
ment alternatives (Antle et al., 2017; Tonitto et al., 2018). These models 
are widely used to estimate nutrient and water exchanges between the 
atmosphere and the biosphere, as well as to project the potential impacts 
of climate changes while examining adaptation options by local stake-
holders and policy makers (White et al., 2011). However, a number of 
issues have been raised regarding the uncertainties (i.e. any deviation 
from the unattainable ideal of fully deterministic knowledge of a system) 
of using ecosystem models (Tubiello et al., 2007; Soussana et al., 2010). 
This is especially true in simulating climate change impacts. Climatic 
changes continue to challenge the scientific and policy-making com-
munities. Therefore, efforts to model the inherently unknown future 
behaviour of complex and inter-related systems have led to a focus on 
the uncertainties associated with framing possible future outcomes (e.g. 
Schwanitz, 2013; Butler et al., 2014). 

The sensitivity of models to changing global environmental condi-
tions (notably, temperature, precipitation and atmospheric carbon di-
oxide concentration [CO2]) is well documented for annual crops (e.g. 
Asseng et al., 2013 for wheat; Bassu et al., 2014 for maize; Li et al., 2015 
for rice), but such information is largely missing for grasslands. Grass-
land models simulate the herbage mass and take into account sward 
components, including representations of grazing processes. Several 
aspects of grassland modelling pose unique challenges, mostly stemming 
from the need to represent several interacting species, and the persis-
tence of plants over several years, forcing models to consider residual 
effects over time (Kipling et al., 2016). While most biophysical processes 
in grassland models are similar to those used in arable crop models (e.g., 
photosynthesis, growth, water and nutrient uptake from the soil), there 
are additional factors specific to grasslands (Jones et al., 2017). These 
factors include grazing or mowing practices, interactions within plant 
species, and the influence of biodiversity on ecosystem dynamics. 
Grassland models also account for the seasonal variability of forage 
availability and quality, as well as the impacts of management practices 
on vegetation dynamics. Incorporating these factors, grassland models 
provide a comprehensive understanding of the unique characteristics 
and dynamics of grassland ecosystems. 

Here, the focus is on permanent grasslands, which are semi-natural 
or have been sown since at least five years (EC, 2008), usually 
composed of several plant species. Grassland models can represent 
different environments with adequate accuracy, particularly, if the input 
information is sufficiently detailed (e.g. Graux et al., 2013). However, 
simulations of carbon (C), water and energy fluxes are inherently un-
certain because grasslands are highly complex ecosystems and their 
behaviour is affected by multifaceted interactions of climate drivers 
with water availability, nutrients, soil, vegetation and management 
conditions (Soussana et al., 2013). A thorough assessment of the varia-
tion in the response of different grassland models to climate change 
factors is thus essential to assess the provision and the continuity of 
grassland services in the future. Before projecting what the future 
achievements might be under a changing climate using coupled climate 
and impact models, it is critical to determine the extent to which 

grassland simulations may vary depending on the model used. 
To enlighten communities on the need to improve and evaluate 

grassland models, detailed grassland data were collected and syn-
thesised from alternative sources as part of the FACCE-MACSUR project 
(“Modelling European Agriculture with Climate Change for Food Secu-
rity”; https://www.faccejpi.net/en/faccejpi/actions/core-theme-1/kn 
owledge-hub-macsur.htm). In the first part of this effort (Sándor et al., 
2017), three grassland-specific models as well as three 
grassland-adapted crop models and three land biosphere models 
(describing vegetation by plant functional types including grasslands), 
were evaluated with respect to yielded biomass, soil water and tem-
perature dynamics at a variety of sites across Europe and Israel, both 
without and with calibration. Comparing model simulations with ob-
servations and contrasting model results helped to identify biophysical 
processes that are needed to be improved to better simulate grassland 
functioning. Being process-based, these models are often employed to 
simulate the effects of projected climate changes on grassland vegetation 
and soil cycles. However, these models have not been directly (or, in the 
case of some models, only to a limited extent) assessed to determine 
their sensitivity to environmental factors. Sándor et al. (2017) suggested 
to “progress in grassland modelling by investigating the sensitivity of 
models to climate and management drivers”. There is a challenge in 
ensuring robust modelling approaches under changing climate condi-
tions, as the implicit assumption that well-designed and calibrated 
models under current conditions will remain valid under future climate 
realisations (with, coincidentally, a shift in the pattern of extreme 
climate events being reported; Field et al., 2012) may be unrealistic. 

This study builds upon the work by Sándor et al. (2017), who 
documented model calibration in the same study sites. In this study, the 
primary objective was to explore how grassland models differ in simu-
lating the response to climate change factors like temperature, precipi-
tation and atmospheric CO2 concentration. Analysing the sensitivity of 
model simulations to gradients of these factors can provide insights into 
model structure and system behaviour not evident from modelling ex-
ercises performed under current climate conditions. In fact, the aim of 
this one-factor-at-a-time (single-factor) sensitivity analysis used in this 
study was to reveal the relationship between the varied factors and 
outputs, as the other factors had their baseline values. By showing these 
relationships, sensitivity analysis can help to understand model mech-
anisms (e.g. ten Broeke et al., 2016), as unexpected sensitivity (or 
insensitivity) can lead to questioning mechanistic understanding and the 
relative roles of different processes. 

In order to analyse the single-factor sensitivity of simulated dry 
matter, water and C fluxes to climate change factors, modelling sce-
narios were designed using a unique set of European and Israeli grass-
land sites, where models were run under altered weather conditions 
created by changing temperature, precipitation and atmospheric [CO2] 
inputs. To do this, we varied each climate change factor within a pre-
defined range and evaluated the resulting output. Variations of the 
drivers in the sensitivity runs were prescribed primarily to be large 
enough to identify and isolate any major differences in model responses 
(interacting with actual management), while remaining within the 
range of multi-year variability to which European and Israeli grassland 
ecosystems may be exposed. By focusing on three climate change factors 
and varying only one at a time, we deliberately narrowed the scope of 
the analysis not only to simplify the modelling work, but also, and more 
importantly, to compare the sensitivity results with experimental evi-
dence from published trials in which the same factors were varied 
(ecosystem manipulation experiments). In this way, this study links 
model sensitivity analysis with experimental results, providing evidence 
of the relevance of model responses to varying factors. 
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By executing virtual (in silico) single-factor ecosystem manipulations 
based on an exceptionally large number of target sites and grassland 
models, and focusing on four output variables, this study addresses the 
following main question: (1) Is there consistency amongst model results 
in terms of the direction and magnitude of response to climate change 
factors? (2) To what extent does model sensitivity vary across different 
sites and how does it relate to environmental conditions? (3) Are model 
results consistent with those of published single-factor climate manip-
ulation experiments? 

The study aims to diagnose the grassland models and provide an 
alternative method to benchmark them, and most importantly to pro-
vide a solid reference for future studies. Comparing the structure of the 
models and relating the differences to the findings is out of scope of the 
present study as it goes well beyond the context of the present work. 

2. Materials and methods 

2.1. Core logic of the study 

In this study, we employ a multi-model framework with distinct 
characteristics which sets it apart from studies that primarily focus on 
single-model applications (Asseng et al., 2013; Bassu et al., 2014; Li 
et al., 2015; Martre et al., 2015; Sándor et al., 2017; Wallach et al., 
2018). The key feature of this approach lies in the extensive inclusion of 
multiple models, diverse sites and varying conditions, where individual 
models are not discussed. Instead, the focus is on analysing model results 
together, emphasising the ensemble behaviour of the models. To facil-
itate this analysis, the models are treated as “black boxes” within such 
studies. They serve as tools that generate results influenced by various 
modelling practices, including overall parameterisation, consistency 
checks and validation. By treating the models in this manner, we can 
better understand and interpret their outputs in the context of the 
study’s objectives. 

To quantify the sensitivity of seven grassland models to various 
climate change factors within a multi-model framework, we adopt a 
large ensemble approach to comprehensively explore how these models 
simulate and respond to changes in environmental conditions. 
Furthermore, a significant aspect of this study is the thorough compar-
ison of model sensitivity with observation data collected from field ex-
periments. By incorporating observational data, we enhance the 
robustness of our analysis and provide a basis for validating and refining 
the models’ representation of real-world conditions. 

2.2. Study sites 

Nine long-term grassland sites across Europe and Israel were selected 
for this study, spanning data from five to 31 years (Fig. 1, Table 1). 

These sites exhibit a wide range of climatic conditions (Table S1 in 
Supplementary material) and soil properties (Table S2 in Supplementary 
material), making them ideal candidates for evaluating the models’ 
behaviour. Four of them – Laqueuille (LAQ), Monte Bondone (MBO), 
Grillenburg (GRI), Oensingen (OEN) – are long-established semi-natural 
grasslands with vegetation types representative of the zone, equipped 
with flux-tower measuring systems where the volumetric soil water 
content (SWC), evapotranspiration (ET) and gross primary production 
(GPP) were recorded with half-hourly or hourly resolution amongst 
others. 

Five yield-specific experimental sites are focused on the harvested 
aboveground biomass production. At some sites (LAQ, KEM, ROT), data 
from two management options were available. The French flux-tower 
site of Laqueuille was grazed with two intensities of management 
using two levels of nitrogen (N) fertilisation (LAQ1: intensive; LAQ2: 
extensive). At the German site of Kempten, grassland biomass was 
harvested at two cutting intensities (KEM1: two cuts per year; KEM2: 
four cuts per year). In Rothamsted (United Kingdom), the same amount 
of N was applied in two forms (ROT1: NO3-N; ROT2: NH4-N). Hereafter, 

Fig. 1. Geographical location of the grassland sites used in the study.  
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the term “site” identifies either a physical location or a location- 
management combination. 

The range of climatic conditions represented by each site is given by 
indicators of aridity and heat wave frequency (Supplementary material, 
Fig. S1). 

2.3. Grassland models 

Sensitivity simulations were performed at each location using seven 
models that had undergone a full assessment in a previous study 
(Sándor et al., 2017). At the four flux-tower sites, the models were 
assessed against detailed soil temperature and water flux datasets, while 
the evaluation was limited to considering harvested biomass data at the 
other sites. A brief description of the models follows, while details of the 
processes and parameter settings that distinguish each of them are 
provided in Supplementary material of Sándor et al. (2017). The iden-
tities of models were kept anonymous by using model codes from 1 to 7 
(as in Sándor et al., 2017). Two models – PaSim and SPACSYS – were 
originally developed to simulate grassland systems. PaSim (Ma et al., 
2015) simulates water, C and N cycles in grassland plots at sub-daily 
time step via climate, soil biology and physics, vegetation and man-
agement (including grazing animals) modules. SPACSYS (Wu et al., 
2007) is a multi-dimensional, field-scale, daily time step model of C and 
N cycles between plants, soils and microbes, with a fine representation 
of the root system. The following three models – ARMOSA, EPIC and 
STICS – are generic crop models with grassland options. ARMOSA 
(Perego et al., 2013) estimates N dynamics in the soil-crop-atmosphere 
continuum and evaluates the impact of management on shallow and 
groundwater quality via modules for energy, water, C and N balances, 
and plant development and growth. EPIC, originally developed to esti-
mate soil productivity affected by erosion (Williams et al., 2008), is 
designed to allow the simulation of a large variety of crops and grasses 
with unique parameter values. STICS (Brisson et al., 2003) is a generic, 
daily-step, patch-scale model that covers many crops and climate, soil 
and management conditions, and is configured to simulate either sown 
or established mown grasslands. Two vegetation models – 
Biome-BGCMuSo and CARAIB – include grasslands as a biome type. 
Biome-BGCMuSo (Hidy et al., 2016) implements a multilayer soil 
module, improved grassland phenology and management routines in 
Biome-BGC, originally developed to simulate undisturbed ecosystems, 
with allometric relationships used to initialize C and N pools. CARAIB 
(Warnant et al., 1994), a vegetation model based on C assimilation 
processes in the biosphere, uses a range of plant functional types, 
including C3 and C4 grasses. 

2.4. Simulation study design 

The above models were chosen for their suitability in exploring the 
responses to climate change factors and their relevance to grassland 
ecosystems. We performed simulations for each site, varying three 
global change factors: temperature (T), precipitation (PREC) and at-
mospheric CO2 concentration ([CO2]). The conceptual framework of the 
approach is presented in the Supplementary Material. 

Standardised manipulation scenarios were applied to each factor to 
ensure comparability of the simulation results for the following output 
variables: soil water content, evapotranspiration, GPP and harvested 
aboveground biomass (HAB; referred to here as yield biomass or simply 
biomass and used as a generic proxy for aboveground biomass). To 
understand the responses and behaviour of the models, a single-factor 
(T, PREC or [CO2]) approach was designed. 

At each site, the baseline weather series (including [CO2]=380 
ppmv, that is the molar fraction of CO2 in dry air expressed in parts per 
million volume or µmol mol-1) were modified by changing (after Sándor 
et al., 2016): 1) temperatures by -25%, -10%, -5%, +5%, +10%, +25% 
of the observed standard deviation; 2) precipitations by -25%, -10%, 
-5%, +5%, +10%, +25% of the observed standard deviation (calcula-
tions made on rainy hours or days); atmospheric [CO2] by +5%, +10%, 
+15%, +25%, +50%, +100%. A single standard deviation (SD) value 
was calculated for each variable at each site for the whole period of 
available temperature and precipitation observations (Table 2), based 
on the hourly weather reports available at the flux sites and the daily 
data available at the other sites. 

The construction of thermal and pluviometric gradients calculated 
from percentage values of SD is meant to take into account local vari-
ability, reflecting a larger gradient for sites with higher SD. In this way, 
the individual sensitivity runs were not intended to be modelling sce-
nario studies, which can be defined as using synoptic and physically 
consistent changes or variations in all drivers. We did not attempt to link 
changes in a certain driver (e.g. atmospheric [CO2]) to changes in a 
potentially related driver (e.g. surface air temperature). Results ob-
tained by using climate scenarios or purely climatological configura-
tions are instead reported in companion global studies (as in the frame of 
AgMIP, http://www.agmip.org; e.g. Franke et al., 2021). For this study, 
variations in single drivers were prescribed primarily to be large enough 
(Table 2) to identify and isolate any major differences in model re-
sponses (interacting with actual management), while remaining within 
the range of multi-year variability to which European and Israeli 
grassland ecosystems may be exposed. 

The model simulations were performed by each modelling team (as 
described in Sándor et al., 2017). The simulation results were collected 

Table 1 
Grassland sites used in this study.   

Flux-tower (FT) sites Non-flux-tower (NFT) sites 

Site (Country) / 
Characteristics 

Laqueuille 
(France) 

Monte 
Bondone 
(Italy) 

Grillenburg 
(Germany) 

Oensingen 
(Switzerland) 

Kempten 
(Germany) 

Lelystad (The 
Netherlands) 

Matta 
(Israel) 

Rothamsted 
(United 
Kingdom) 

Sassari 
(Italy) 

Acronym LAQ MBO GRI OEN KEM LEL MAT ROT SAS 
Latitude 45◦38′ N 46◦00′ N 50◦57′ N 47◦17′ N 47◦43′ N 52◦30′ N 31◦42′ N 51◦48′ N 40◦39′ N 
Longitude 02◦44′ E 11◦02′ E 13◦30′ E 07◦44′ E 10◦20′ E 05◦28′ E 35◦03′ E 00◦21′ E 08◦21′ E 
Elevation (m a.s. 

l.) 
1040 1500 380 450 730 -4 620 128 68 

Grassland 
utilisation 

Grazing Mowing Mowing Mowing Mowing1 Mowing Mowing Mowing Mowing 

N fertilisation (kg 
N ha-1 yr-1) 

210 (LAQ1), 
0 (LAQ2) 

– – 214 – – – 482 90 

Years of 
simulation 

2004–2010 2003–2010 2004–2008 2002–2008 2004–2009 1994–1998 2007–2011 1981–2001 1993–1998 

Reference Klumpp 
et al. (2011) 

Wohlfahrt 
et al. (2008) 

Prescher 
et al. (2010) 

Ammann et al. 
(2007) 

Schröpel and 
Diepolder 
(2003) 

Schils and 
Snijders 
(2004) 

Golodets 
et al. (2013) 

Silvertown 
et al. (2006) 

Cavallero 
et al. (1992)  

1 Two treatments: intensive (KEM1) and extensive (KEM2) cutting. 2 Two treatments: NH4-N (ROT1) and NO3-N (ROT2) fertilisers. 
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and pre-processed centrally before evaluation. The quality control 
included consistency check of the daily model results (see Supplemen-
tary material for more details). 

The sensitivity of the individual models at each site, for the three 
global change factors and for the four output variables, was calculated. 
Our definition of sensitivity is the percent change (S) in an output var-
iable (O) that results from a change in a given factor (R). We calculated S 
based on the mean annual output variables (O) relative to the reference 
(i.e. the calibrated run from Sándor et al., 2017) at each site (Ob): 

S = 100⋅
O − Ob

Ob
(1) 

This definition allowed us to directly compare the simulation results 
with experimental evidence from a variety of sites worldwide. Experi-
menters typically report the results of single-factor climate change ex-
periments as effect size (Leuzinger et al., 2011; Andresen et al., 2018), 
which is in fact defined in the same way as S in our case. In this study, 
the sensitivity of the models to global change factors is also expressed as 
the slope of the linear function fitted to the individual S values (see 
below) as function of the relative change of the factor studied. In this 
sense, the slope provides generalised information on the sensitivity of 
the model where the linear relationship approximates S as a function of 
the unit change of the given factor. To provide unambiguous informa-
tion about sensitivity measures, we use the term ‘effect size’ when dis-
cussing individual responses. In other occasions, the text defines the 
meaning of the sensitivity measure. 

SWC was typically simulated at all sites by the models and has 
proven straightforward to use. SWC refers to the topsoil (0–10 cm depth) 
for all models (Sándor et al., 2017). For ET and GPP, some modelling 
groups simulated those variables only at the eddy covariance sites, but 
some groups also provided them for the biomass sites. We used all 
simulations of ET and GPP when available. 

Yield biomass was simulated as HAB at sites with mowing (all sites 
except Laqueuille; Table 1) and was extracted from simulated data at the 
day of cutting. At Laqueuille, only grazing is present, but HAB obser-
vations made in specific days with destructive sampling were available 
for model calibration/evaluation (see Sándor et al., 2017). For our 
analysis, HAB was set equal to the modelled aboveground biomass data 

at sampling days in each year, for both intensive and extensive sites. The 
constructed yield dataset represents the overall productivity (and eco-
nomic value of the grasslands) and is the production indicator at each 
site (although it is not identical to net primary production). 

In order to compare the response of the different models for the four 
output variables at the 12 study sites, a linear approximation was first 
used (Cure and Acock, 1986). A linear regression was performed (using 
R’s inbuild lm() function;R Core Team, 2023) to approximate the slope 
of the effect size as a function of change in the given environmental 
variable (T, PREC or [CO2] in physical units). In order to determine if the 
slope of the regression was significantly different from zero (the null 
hypothesis posited a slope of zero, indicating no significant effect of the 
environmental variable), a t-statistic test was conducted using the lm() 
function. In some cases, the sensitivity (effect size) showed a non-linear 
response to the climate change factors. In these cases, the slope of the 
linear regression still holds information on the sensitivity, but logically 
the shape of the response function is also a property of the given model, 
mentioned in the Results section. Note that for T and PREC, 
non-linearity did not typically mean curvature in the results within the 
range of the simulations, but rather that it was represented by some 
noise with an overall linear response. In the case of [CO2], for some 
model-site combinations, there was a clear curvature (asymptotic 
behaviour indicating saturation) in sensitivity. In these cases, the slope 
of the linear regression still captures the overall response. In this study, 
the slopes are reported in the form of heat maps to check the consistency 
of the results per site and per model. 

According to the core logic of the study (Section 2.1) the multi-model 
mean was also calculated for each site separately. For the temperature 
and precipitation manipulations, most of the results indicated a linear 
response (at least in the ranges studied), but it was associated with 
asymmetry in some cases (i.e. a different response for warming and 
cooling, as well as a different response for wetting and drying). To deal 
with asymmetry, two separate lines were fitted to the data (i.e. a 
piecewise linear regression was performed) such that the linear function 
was forced to pass through the origin, [0,0], corresponding to reference 
climate. One line was fitted to the sensitivity belonging to the positive T/ 
PREC scenarios, and another to the negative scenarios. As both lines 
were forced through the origin (zero T/ PREC change), the two lines are 

Table 2 
[CO2], temperature (T) and precipitation (PREC) scenarios for sensitivity analysis at each site (SD=standard deviation).  

Site Atmospheric [CO2] (ppmv) 

baseline þ5% þ10% þ15% þ25% þ50% þ100% 
380 399 418 437 475 570 760  

Mean annual air temperature ( ◦C) 

-25%⋅SD -10%⋅SD -5%⋅SD baseline þ5%⋅SD þ10%⋅SD þ25%⋅SD 

LAQ (SD=7.29) 5.90 6.62 7.35 7.71 8.08 8.81 9.54 
MBO (SD=7.59) 3.33 4.09 4.85 5.23 5.61 6.37 7.13 
GRI (SD=8.21) 6.50 7.32 8.14 8.55 8.96 9.78 10.61 
OEN (SD=8.34) 7.22 8.05 8.89 9.30 9.72 10.56 11.39 
KEM (SD=7.94) 6.36 6.93 7.39 7.64 7.88 8.33 8.79 
LEL (SD=6.49) 8.08 8.73 9.38 9.71 10.03 10.68 11.33 
MAT (SD=8.10) 21.40 22.21 23.04 23.42 23.93 24.65 25.45 
ROT (SD=5.52) 8.53 9.12 9.55 9.87 10.13 10.72 11.31 
SAS (SD=5.98) 14.82 15.42 16.02 16.31 16.62 17.21 17.81   

Mean annual precipitation total (mm) 

-25%⋅SD -10%⋅SD -5%⋅SD baseline þ5%⋅SD þ10%⋅SD þ25%⋅SD 

LAQ (SD=1.6) 734 850 998 1085 1166 1334 1502 
MBO (SD=2.2) 705 796 916 1003 1092 1269 1445 
GRI (SD=1.5) 635 730 860 946 1033 1207 1382 
OEN (SD=7.4) 843 954 1102 1197 1293 1485 1676 
KEM (SD=7.5) 832 922 1027 1089 1161 1302 1443 
LEL (SD=5.4) 614 682 761 813 876 999 1123 
MAT (SD=11.6) 334 366 405 432 472 549 627 
ROT (SD=5.0) 534 593 664 710 760 858 956 
SAS (SD=7.6) 408 453 507 538 571 637 703  
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still connected and represent the cooling/warming effect (in the case of 
T), and wetting/drying (in the case of PREC). We report the slopes as the 
result of the sensitivity of the multi-model ensemble for each particular 
site. For [CO2], the response (S plotted against increasing [CO2]) was 
non-linear is some cases, so here the ensemble sensitivity was expressed 
as the effect size belonging to the 760 ppmv scenario (i.e. doubled [CO2] 
concentration; see Table 2). Note that the linear regression forced 
through the reference gave similar results. In the case of [CO2], the 
change is unidirectional (only [CO2] increase is simulated), so the 
sensitivity is expressed as a single number instead of two as in case of T 
and PREC. 

We note that the linear approximation is only valid within the ranges 
defined by the extent of the manipulations (Table 2), thus extrapolation 
outside the bounds of the ranges is not proposed. Any deviation from the 
linear approximation may be due to missing data in some cases, which 
are difficult to separate from the modelled (causal) responses. In this 
sense, although some multi-model responses show a small curvature also 
for T and PREC, it does not affect the robustness of the results. The slope 
of the regression lines should be interpreted as an approximation to the 
actual sensitivity function (effect size versus the extent of the 
manipulation). 

2.5. Data collection on experimental data 

To assess the realism of the individual simulations, as well as the 
realism of the multi-model ensemble mean, we conducted a literature 
review in which we collected published data from single-factor 
ecosystem manipulation experiments focusing on the four studied 
output variables (SWC, ET, GPP and HAB). Google Scholar was used 
primarily for literature searches. We also used some of the data collected 
in the study by Piseddu et al. (2021). 

Due to the diversity of climatic conditions, experimental designs and 
technologies applied for climate manipulation, some decisions were 
made prior to data processing. For better comparability, sites with 
extremely cold (tundra) or hot (deserts) conditions were excluded from 
the analysis. Experiments performed under waterlogged conditions (e.g. 
bogs) were also excluded. In field experiments, several technologies are 
used to achieve the required change in environmental conditions. For 
each type of experiment, we have highlighted the method most com-
parable to the single-factor modelling exercise we performed. 

In single-factor warming experiments open top chambers (OTC; 
Marion et al., 1997), infrared heaters (IR; Kimball, 2005; Aronson and 
McNulty, 2009), soil heating (by cables), closed chambers and soil 
transplantation techniques are typically used in the field (see Wang 
et al., 2019 for a summary). In many cases, the warming was not 
continuous, and in some cases the warming was asymmetric between 
day and night. In addition, open-top chambers are known to affect not 
only temperature, but also wind speed and radiation (and probably 
other factors; see Dabros et al., 2010), so the use of experimental data 
from OTCs is subject to uncertainties. We excluded sites where soil 
heating (via wires) was done instead of overall ecosystem heating (our 
design handled atmospheric heating through virtually manipulated air 
temperature). Soil transplant experiments and results obtained in closed 
chambers were also excluded. A comparison of experimental data and 
simulated sensitivities was done for the OTC and IR heating experi-
ments. As OTC-based experiments cannot be considered as single-factor 
climate manipulations, we used IR heating results as another bench-
marking option to evaluate model results, as IR heating is considered the 
closest method to single-factor ecosystem warming conditions (Aronson 
and McNulty, 2009). 

Precipitation experiments manipulate either the amount or distri-
bution of rainfall, or both. They may apply rain addition or rain exclu-
sion to different extents. All types of experiments were included in the 
present study. For rain exclusion experiments, those that only manipu-
lated the extent of rainfall but not its distribution were handled sepa-
rately. In this type of experiments, a shelter with a fixed location 

throughout the year or growing season, with a roof made of pitched 
bands of different widths, is typically used (Yahdjian and Sala, 2002). In 
this way, a specific precipitation rate can be excluded, while the rainfall 
distribution remains unchanged. This type of design corresponds to the 
model simulations we have applied in the present work. The other set of 
experiments changed both the amount and distribution of precipitation 
by excluding rainfall during a specific period of the growing season, 
while there was no exclusion during the other periods. For these ex-
periments, fixed roofs with close to 100% exclusion (Köchy and Wilson, 
2004), or rain sensor-activated curtains were used to cover the plots 
when it rained and removed when it stopped raining (Beier et al., 2004). 
Rainfall addition experiments also used different amounts and distri-
butions, typically with water collected during natural rainfall events. In 
this study, experiments with an unchanged precipitation distribution are 
distinguished, as they are considered more comparable with our simu-
lation design. 

In compiling the data from elevated CO2 trials, only the results from 
free-air CO2 enrichment (FACE) experiments and open-top chambers 
were considered, as they represent the responses of plants and ecosys-
tems to elevated atmospheric [CO2] in a natural environment, mostly 
avoiding the influence of other conditions. Experiments in closed 
chambers or greenhouses were not used because of possible uncertain 
effects on other environmental factors, plant size or growth issues 
caused by constraints imposed by the enclosures. Due to the known is-
sues with OTCs, the FACE technology was considered in this study as the 
most comparable to the single-factor modelling exercise we performed. 

After the literature review, the collected data were checked and 
critically filtered. All experimental data with missing information on the 
magnitude/characteristics of the manipulation or climatic conditions 
were removed. Experience showed that a relatively large number of 
publications used data from the same experimental sites with a wide 
temporal coverage. Particular attention was paid to exclude duplicate 
sites and to use the longest available datasets. Only annually or multi- 
yearly interpretable data were retained (i.e. results from short-term 
experiments were ignored). In many cases, data collection consisted of 
scanning and digitising the graphs presented in journal articles, using 
customised software written in IDL 6.3 (NV5 Geospatial Solutions, Inc.; 
formerly distributed by Research Systems, Inc.). 

Considering observed SWC in the field trials we extracted data that is 
comparable to the simulations that refer to the 0–10 cm depth (observed 
SWC was typically representative to the topsoil 0–5 cm, 0–10 cm, 0–15 
cm, 5–10 cm, 0–20 cm depths, or it was measured at 5 or 10 cm depth). 

In all cases, the mean effect size was calculated over multiple years. 
Site properties (mean annual temperature and precipitation sum, lati-
tude and longitude) were retrieved from the published studies and used 
in the analysis presented. Supplementary material contains the list of 
publications used in the study. 

2.6. Core logic for the presentation of the results 

Given the complexity and high dimensionality of the study, which 
includes nine target sites, seven grassland models, four output variables 
and three in silico global change experiments with seven scenarios 
(including the reference run; Table 2), the presentation of the results had 
to be carefully designed. Our intention was to be informative and to 
avoid redundancy and repetition. The presented results are organized 
according to the type of the manipulation, which means that warming, 
wetting/drying and [CO2] manipulation are presented separately. The 
sensitivity of the four output variables from seven calibrated models is 
illustrated with respect to six alternative scenarios at different sites, 
using yearly averaged (SWC) or aggregated (ET, GPP, biomass) simu-
lation results. 

First, the consistency and robustness of the model results are ana-
lysed, with a focus on the overall direction and magnitude of the re-
sponses. The consistency check is visualized in the form of easily 
interpretable heatmaps. In these heatmaps, a positive response (e.g. an 
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increase in the simulated variable due to heating/wetting and a decrease 
due to cooling/drying) is indicated by red shades, while a negative 
response is visualised by blue shades. 

Second, the overall multi-model mean was used to represent a robust 
estimate of responses. In our previous study (Sándor et al., 2017), the 
multi-model median (MMM) was used as a metric of the multi-model 
ensemble performance. The arithmetic mean (per climate change vari-
able and per magnitude of change) was used here for practical reasons, 
due to the high degree of imbalance in the data used, as some modelling 
teams did not provide data for some sites and/or output variables. 
Calculating the mean rather than the median is likely to be less biased, as 
selecting the median value could lead to discontinuities in the responses, 
whereas using the mean of the responses reduces the risk of abrupt 
changes along the gradients of factor changes. 

Third, the model responses are compared with those obtained from 
the field experiments. The individual model responses and the multi- 
model mean are also presented and evaluated against field evidence. 
Model grouping is also employed for a more comprehensive analysis. 
Model grouping, in this context, means that the seven models are cate-
gorized into three groups according to the model type (see Section 2.3). 
Consequently, the two grassland models, the three crop models and the 
two generic vegetation models are grouped together, and the resulting 
three groups are analysed as mini-ensembles. To construct these mini- 
ensembles, a simple averaging is used based on the available model 
responses at the site level. 

3. Results 

3.1. Sensitivity to air temperature 

3.1.1. Overall sensitivity of SWC, ET, GPP and biomass to temperature 
Fig. 2 shows the sensitivity of the models to temperature changes at 

each site, aggregated by output variable. According to the plots, SWC 
and ET are somewhat less sensitive to temperature change than GPP and 
biomass. In some cases, non-linearity is present but is not discussed in 
detail here. As mentioned in Section 2.4, non-linear response indicates 
variability (noise) but not curvature in the data. 

The overall mean sensitivity (multi-model and multi-site; i.e. aver-
aged for all models across all sites) of SWC to T is -0.7% ◦C-1, indicating 
drying with increasing temperature. There is remarkable consistency 
amongst the models in the direction of SWC change, indicated by the 
predominance of blue colours in Fig. 2a, with only one model at one site 
that shows a positive response to increasing temperature (model 2 at 
MBO). The strongest negative response is associated with model 4 at site 
LAQ1. Averaged across all sites, model 4 has the strongest negative 
response, with a large site-to-site variability (SD is 1.1% ◦C-1, but results 
are missing for some sites), while the smallest responsiveness is associ-
ated with model 6. The standard deviation of the model-specific results 
is fairly proportional to the magnitude of the response. Looking at the 
model results for the different sites, the spread of sensitivity (expressed 
here as the SD of the slopes) is highest at ROT1 and lowest at MAT 
(again, data are not available for some sites). 

Considering ET, the overall sensitivity is 3.5% ◦C-1. Fig. 2b shows 
that, in general, the models agree on the direction of change (indicated 

Fig. 2. Sensitivity of simulated SWC (a), ET (b), GPP (c) and yield biomass (d) to temperature change for the seven models (vertically arranged and numbered 1 to 7) 
at all sites (horizontally arranged). Sensitivity is expressed as the slope of the linear regression describing the dependence of the effect size on temperature change and 
has the unit of% ◦C - 1. The asterisk indicates that the response is slightly non-linear. NA indicates that the model result was not available. The slopes that are not 
significantly different from zero (p>0.05) are marked with underlines. 
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by the red shading) with one exception (again, model 2 at MBO). When 
averaged across all sites, model 4 is the most sensitive to temperature 
change, while model 6 is the least sensitive (the slopes are 6.1%◦C-1 and 
1.5%◦C-1, respectively). Focusing on the site-specific results, MBO has 
the highest variability (SD=3.5%◦C-1) while the spread of slopes is the 
smallest at MAT. Again, the missing simulations are a source of 
uncertainty. 

The simulated sensitivity of GPP to temperature change is somewhat 
less consistent across sites and models (Fig. 2c). Of the 50 calculated 
slopes, six are negative (indicating a decrease in GPP with increasing T) 
while 44 are positive. The overall mean sensitivity is 4.6%◦C-1 (SD is 
4.3%◦C-1). When averaged across all available sites, model 6 shows the 
highest positive responsiveness, while model 2 shows only low sensi-
tivity (models 1 and 4 did not provide usable data for GPP). The vari-
ability of the model results across sites is not related to the model- 
specific means. Focusing on the site-specific sensitivity, the results are 
consistent at eight sites in terms of the direction of change (i.e. most of 
the colours in the red gradient in Fig. 2c), but for others the results are 
inconsistent (GRI, LEL, MAT, SAS). The largest uncertainty (SD of the 
slopes) is associated with KEM1 (4.9%◦C-1), while the smallest was 
estimated for LAQ2. 

Focusing on the most relevant output variable from the economic 
point of view (biomass), the result of the sensitivity analysis is the least 
consistent. According to Fig. 2d, 17 model-site combinations had a 
negative sensitivity to warming, while 52 slopes were positive. The 
overall mean sensitivity is 4.6%◦C-1, while the SD is 7.8%◦C-1. Model 4 is 
associated with the highest sensitivity (13.8%◦C-1, with no missing 
data), while model 2 has an overall slope of -0.5%◦C-1 for the sites (some 
sites are missing). Model 7 shows negligible sensitivity. Focusing on the 
individual sites, a lack of consistency was observed in some cases. At 
sites LAQ1, LAQ2 and MBO, the models agreed on the positive sensi-
tivity of biomass to T, but missing data could interfere with this 
conclusion. The spread of slopes is highest at LAQ2 (SD is 14.0% C-1; 
slopes range from 0.8 to 29.8%◦C-1; again, some modellers did not 
provide data) and lowest at OEN (SD is 3.8%◦C-1). 

3.1.2. Multi-model sensitivity 
Using sensitivity measures (i.e. effect size as in Eq. (1)) quantified 

based on annually aggregated data, multi-model mean responses were 
calculated for each altered T scenarios for each site separately, using the 
available model results. As in the results presented above, in some cases 
simulation outputs were missing, which inevitably affected the results. 

The multi-model sensitivity was calculated using a piecewise linear 
regression. Fig. 3 shows illustrative results for biomass based on the T 
scenarios using data from the coolest (Monte Bondone) and the warmest 

(Matta) site. At Matta, the overall effect is negative, meaning that 
warming leads to a decline in biomass (and cooling to an increase). Some 
models suggest the opposite effect, as shown in Fig. 2. The magnitude of 
the sensitivity to cooling (-1.7%◦C-1) is smaller than that of warming 
(-2.9%◦C-1). At Monte Bondone, the models agree on the direction of 
change and the overall sensitivity is slightly larger (13.7%◦C-1) to 
cooling than to warming (11.0%◦C-1). Supplementary material contains 
the multi-model sensitivity for all sites and the four output variables 
studied (Figs. S3-S6). 

Table 3 summarises the multi-model mean sensitivity measures 
expressed as the slope of the piecewise linear regression models. 

The slopes distinctly vary by site, and asymmetry is observed for 
some of the variable-site combinations (see also Fig. 3 and Supple-
mentary material). As cooling is not a plausible scenario under global 
warming, we focus here on the warming outcome. In the case of SWC, 
the robust multi-model responses agree on the direction (negative effect) 
with a mean sensitivity of -0.6%◦C-1. For ET, the sign is the same for all 
sites with an overall multi-site mean sensitivity of 3.2%◦C-1. For GPP, 
the effect of warming is negative at the two hottest and driest sites 
(Matta and Sassari) but positive at the other sites. The multi-site mean is 
3.8% ◦C-1. For biomass, the multi-model sensitivity is negative at three 
sites (the two Rothamsted sites and Matta) and positive at the others. 
The highest sensitivity is associated with Kempten1 and Monte Bon-
done. The multi-site mean sensitivity is 4% ◦C-1. 

Focusing on biomass as the most relevant output variable, site- 
specific, multi-model sensitivity was correlated with basic climatic 
conditions (Tm: mean annual temperature; Pm: mean annual precipi-
tation) and site elevation. The strongest (non-linear) relationship was 
found between the multi-model mean sensitivity and Tm (sensitivity =

-8.72 ⋅ ln(Tm) + 23.59, R2=0.54; Fig. S7 in Supplementary material). 
If the sites with two treatments were merged and a mean sensitivity was 
calculated for both treatments (Kempten, Laqueuille and Rothamsted), 
the relationship became even stronger (R2=0.67, not shown here). For 
the other two output variables (GPP and ET), the relationship was 
approximately linear (R2=0.44 for Pm and R2=0.53 for elevation). 

3.1.3. Comparison with experimental data 
Single-factor climate manipulation experiments (in this context, 

experimental warming) provide an opportunity to evaluate the realism 
of the presented model-based results. Based on an extensive data 
collection effort on the response of SWC, ET, GPP and biomass to 
experimental warming worldwide, a comparison was made with simu-
lated sensitivities. The climate manipulation experiments are rarely 
associated with an artificial warming of less than 1 ◦C. It is thus not 
straightforward to evaluate the results of this study, which is simulated 

Fig. 3. Mean multi-model sensitivity of simulated biomass to temperature change at the warmest (Matta) and the coldest (Monte Bondone) sites. The black symbols 
represent the individual models, while the red dots show the mean multi-model effect size calculated for each T manipulation. The slopes of the piecewise linear 
regression fits are taken as the mean multi-model sensitivity across all sites. Note that the difference between the two slopes is small for both sites, which mean that 
the piecewise nature of the fit is hardly visible. 
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with a lower warming. 
The climatic conditions of the experimental sites mostly differ from 

the European and Israeli grassland sites included in the present study 
(see Supplementary material, Fig. S8). Nevertheless, the magnitude and 
direction of the observed effects are indicative and provide real-world 
information on grassland response (without explicitly taking into ac-
count essential information such as species composition, which is 
beyond the scope of this study). 

For SWC, the simulations tend to underestimate the magnitude of the 
observed effect (Fig. 4). Between 1 and 2 ◦C warming, S of the individual 
models (averaged across sites) vary between -2.8% and -0.2%. The mean 
S of all models is -1.0% (SD is 1.2%), while it is almost the same for the 
mean multi-model S (-0.98%; SD is 0.5%). Considering the mini- 
ensembles, the mean S is -2% for the crop models (with a SD of 1.4%), 
-0.8% for the grassland models (SD=0.47%) and -0.6% for the generic 
vegetation models (SD=0.4%) (refer to Supplementary material, 
Fig. S9). In contrast, the mean S from the observations is -5.8% (SD is 
-4.7%; n = 10). Focusing only on IR heaters, the mean S is -6.5% (SD is 
-5.4%; n = 7). With few observations available for ET and GPP (Figs. S10 
and S11), the overall impression is that models tend to underestimate 
the magnitude of S. 

Focusing on biomass (Fig. 5), between 1 and 2 ◦C of warming, the 
simulated individual S-values vary between about -14 and 60%, while 

the multi-model means vary between -3.8% and 22.3%. For the same 
temperature range, the experiment-based effect sizes vary between -12 
and 39.5%. If we only use the data from the IR-heated sites, the effect 
sizes vary between -3.6 and 38.8%. Averaging all available data between 
1 and 2 ◦C, S of the individual models vary between -2.3% and 24.0% 
(the latter is associated with model 4). The mean S from all individual 
models and sites is 6.6% (SD=13.2%), while it is 7.1% (SD=7.1%) based 
on the multi-model means. Considering the model-type-based grouping, 
the mean S is 13.7% for the crop models (with SD of 1.2%), 0.47 for the 
grassland models (SD=8.2%), and 4.3% for the generic vegetation 
models (SD=5.5%) (Supplementary material Fig. S12). Using the 
experimental data between 1 and 2 ◦C of warming, the overall mean is 
7.5% (SD is 16%; n = 15). If only sites with IR heating are considered, 
the mean S is 8.8% (SD is 14%; n = 9). Consistency between simulated 
and observed data is considerable, especially for the multi-model means, 
although the climate and site characteristics of the study sites (in silico 
climate manipulations) and the real sites differ. 

Fig. S13 (Supplementary material) shows the relationship between 
Tm and sensitivity slopes calculated from field experiments for sites 
using IR heating (assuming a linear response with warming magnitude). 
Comparing Figs. S7 and S13, it is difficult to find consistency between 
the patterns. Sensitivity (expressed here as% ◦C-1) can reach negative 
values for both field trials and model results, but the overall decrease of 

Table 3 
Mean multi-model sensitivity for the studied output variables at all sites to temperature, expressed as the slopes of the piecewise linear regression models for both 
directions (warming and cooling) relative to the reference climate. The unit of slopes is% ◦C-1 in all cases. The slopes are significantly different from zero (p<0.05) in 
most of the cases (exceptions are marked with underlines).  

Site SWC ET GPP biomass 

cooling warming cooling warming cooling warming cooling warming 

Grillenburg  -0.54  -0.51  4.6  4.1  5.1  3.3  6.8  3.5 
Kempten1  -0.47  -0.48  4.5  5.1  8.1  8.3  11.9  10.8 
Kempten2  -0.46  -0.52  4.4  4.4  7.8  7.3  6.4  2.8 
Laqueuille1  -1.37  -1.15  4.9  4.6  7.1  6.2  7.8  7.1 
Laqueuille2  -1.23  -0.99  4.9  4.8  6.1  4.8  8.4  9.6 
Lelystad  -0.26  -0.29  1.8  1.9  3.2  1.8  4.7  2.1 
Matta  -0.06  -0.06  1.2  1.1  -0.3  -1.5  -1.7  -2.9 
Monte Bondone  -0.68  -0.71  4.4  3.9  10.6  9.9  13.7  11.0 
Oensingen  -0.78  -0.50  3.4  3.4  4.1  2.8  4.1  1.8 
Rothamsted1  -1.03  -0.98  2.3  2.0  2.9  1.7  0.4  -0.4 
Rothamsted2  -0.91  -0.86  2.8  2.4  3.1  2.0  1.1  -0.3 
Sassari  -0.57  -0.51  1.2  1.1  -0.9  -1.2  4.0  2.6  

Fig. 4. Comparison of the simulated and observed sensitivities of SWC (expressed here as S, that is identical to effect size;%) to temperature manipulation. grey 
symbols: S values as function of the magnitude of warming ( ◦C) calculated from all models for each site and for each temperature scenario. Black triangles: mean 
multi-model effect size for all sites and scenarios. Red squares: S values based on the literature review using all collected data. The dotted red squares indicate data 
from experimental sites using infrared heating technology, which is considered the closest method to the true single-factor experiments. 
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sensitivity with increasing Tm is not detectable in the experiments. At 
cooler sites associated with Tm between 5 and 10 ◦C the responses are 
broadly similar. As mentioned above, the climate of the warming ex-
periments and the MACSUR sites is different and, due to the scarcity of 
data, it is difficult to draw solid conclusions. 

3.2. Sensitivity to precipitation 

3.2.1. Overall sensitivity of SWC, ET, GPP and biomass to precipitation 
Fig. 6 shows the sensitivity of the models to PREC changes. Ac-

cording to the plots, SWC and GPP are somewhat less sensitive to PREC 
change than ET and HAB. In some cases, non-linearity is present for 
some model-site combinations but is not discussed here. In a few cases a 

Fig. 5. Same as Fig. 4 but for biomass.  

Fig. 6. Sensitivity of the simulated SWC (a), ET (b), GPP (c) and yield biomass (d) to precipitation change for the seven models (arranged vertically and numbered 
1–7) across all sites (arranged horizontally). Sensitivity is expressed as the slope of the linear regression describing the dependence of effect size on precipitation 
change and has the unit of% 100 mm-1. The asterisk indicates that the response is slightly non-linear. NA indicates that the model result was not available. The slopes 
that are not significantly different from zero (p>0.05) are marked with underlines. 
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strongly non-linear response (with curvature) was depicted by some 
models (e.g. model 3 GPP at GRI, model 5 GPP at LAQ2). These cases do 
not affect the overall results, but provide an interesting insight into the 
behaviour of the given model. 

According to Fig. 6a, for SWC there is a general consistency amongst 
the models regarding the direction of change by PREC (the exception is 
model 3 at two sites). The overall sensitivity is 1.7% 100 mm-1, while the 
strongest mean response is associated with model 7 (with a slope of 
3.0% 100 mm-1). Considering the overall aggregate response by site, the 
largest variability is associated with SAS (SD=2.5% 100 mm-1, but here 
the results of only 4 models were available). 

Considering ET, the consistency of the models is remarkable (the 
only exception is model 4 at MBO; Fig. 6b). The overall sensitivity of ET 
to PREC change is 3.6% 100 mm-1. The strongest positive response is 
associated with models 3 and 5, but it is interesting to note that this 
above-average response is mostly caused by the large responses at MAT 
and SAS (the driest sites) for both models. At MAT, model 6 predicts 
21.5% 100 mm-1 sensitivity. This behaviour is also clear from the 
aggregate sensitivity per site, where MAT and SAS have the largest 
responsiveness with the largest spread (SD=10.9% 100 mm-1 at MAT 
and 4.1% at SAS 100 mm-1, but data are missing). 

Fig. 6c indicates that the results are inconsistent for GPP. Out of the 
50 individual slopes, 20 are negative (although typically small, -0.4% 
100 mm-1 on average), while the others are positive. The overall sensi-
tivity is 1.3% 100 mm-1. Model 3 is associated with the largest responses, 
up to 16.3% 100 mm-1 at MAT. Considering the individual models, the 
mean slope across the sites is positive for all but model 2 (but some 
models did not provide any GPP data). The mean slope is the largest for 
model 3 (3.6% 100 mm-1). At the individual site level, the results are not 
consistent in terms of the direction of change (there is no site where the 
direction of change is uniform). MAT and SAS are associated with the 
largest uncertainty (SD) of slopes at site-specific aggregation level. 

Similarly to the T scenarios, the results are not consistent in terms of 
the sensitivity of the simulated biomass to PREC change (Fig. 6d). Out of 
the 66 simulated slopes, one third are negative, while the others are 
positive. The overall mean sensitivity is 3.0% 100 mm-1 (SD is 5.9% 100 
mm-1). Models 1 and 3 provided the largest sensitivities (6.8 and 6.7 
100 mm-1 for model 1 and model 3, respectively). Model 2 depicts a 
negative sensitivity for all but one site, with an overall slope of -0.9% 
100 mm1. At the site-level aggregation, there is no consistency in the 
simulated direction of the change. The uncertainty of the slopes is the 
largest at MAT and SAS (SD is larger than 10% 100 mm-1), but is also 
quite large at LEL (7.7% 100 mm-1). The uncertainty is the smallest at 
LAQ1. 

3.2.2. Multi-model sensitivity 
Fig. 7 shows excerpts from the full multi-model sensitivity analysis of 

the biomass simulations based on the PREC scenarios using data from 
the driest (MAT) and the wettest (OEN) site. 

The overall effect is positive at both sites, which means a decline in 
biomass due to the decrease and the increase due to additional PREC. At 
Matta the response is asymmetric and strong, while at Oensingen the 
PREC addition leads to a smaller response. Supplementary material 
contains the multi-model sensitivity for all sites and for all four output 
variables (Figs. S14-S17). 

Table 4 presents the multi-model sensitivity slopes (separately for 
wetting and drying), which can be interpreted as the best estimate for 
sensitivity to increasing (wetting) and decreasing (drying) PREC at the 
sites. In some cases, curvature can be detected in the multi-model mean 
responses, but in-depth analysis and presentation of the analytical 
function of the possible non-linear fit was beyond the scope of this study. 
The curvature can be real, but in some cases missing data or extreme 
model responses can cause this non-linear pattern. We point out here 
that, within the ranges defined by the PREC scenarios, we use a linear 
model that approximates the real response with some error. 

For SWC, sensitivity slopes are positive at all sites. The overall mean 
response is 1.7% 100 mm-1. For ET, a consistency in slopes is observed 
with a relatively large response at Matta. The overall slope is 4.1% 100 
mm-1. In the case of GPP, mean slopes are slightly below zero at some 
sites, while they are positive at the other sites. The two driest sites (MAT 
and SAS) are associated with the highest sensitivity. The grand ensemble 
response is 1.6% 100 mm-1. For biomass, the results are similar to those 
calculated for GPP. The negative slopes are small while the positive 
slopes are somewhat larger. MAT and SAS are the most responsive sites. 
The mean multi-model slope is 3.2% 100 mm-1. An interesting feature of 
Table 4 is the fact that for drying the responses tend to be larger than for 
wetting. 

Considering the site-specific sensitivity slopes for biomass, site con-
ditions were used as predictors both for drying and wetting separately. 
For drying, the strongest linear relationship was found between the 
multi-model mean sensitivity and Pm (sensitivity = -0.02 ⋅ Pm + 21.47, 
R2=0.85; Fig. S18 in Supplementary material). In the case of Tm, the 
relationship was non-linear with R2=0.78. Pm was the best predictor of 
wetting (sensitivity = -0.01⋅ Pm + 11.23, R2=0.78; Fig. S19 in Supple-
mentary material), but the predictive value of Tm is also considerable 
(variance explained was 67%, non-linear in shape). Site elevation was 
not a satisfactory predictor in any of the cases. 

3.2.3. Comparison with experimental data 
The published results from the precipitation manipulation experi-

ments were used to benchmark the sensitivity of the presented models in 

Fig. 7. Mean multi-model sensitivity of simulated biomass to precipitation change at the driest (Matta) and the wettest (Oensingen) sites. The black symbols 
represent the individual models, while the red dots show the multi-model mean effect size calculated for each PREC manipulation. The slopes of the piecewise linear 
regression fits are considered as the mean multi-model sensitivity in the two sites. 
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terms of wetting (i.e. water addition similar to irrigation) and drying 
(precipitation exclusion). We highlighted the experimental results 
associated with the manipulation that does not affect the distribution (i. 
e. timing) of precipitation events, as they are likely to be more compa-
rable to the simulation results presented. 

The climate of the field experiments and that of the studied sites are 
presented together in Supplementary material (Fig. S20). As in the case 
of the warming trials, the climatic conditions are rather diverse and the 
thermo-pluviometric conditions differ between the sites studied and the 
experimental sites. 

The sensitivity of SWC to wetting or drying is lower in the models 
than in real-world experiments, both for individual models and for the 
mean multi-model response (Fig. 8; see also Fig. S21 in the Supple-
mentary material, where the precipitation change is expressed in terms 
of percentage of the mean annual precipitation). This statement holds 
valid even if we only consider experiments with the precipitation dis-
tribution unaltered (dotted red squares). 

For drying, the S values of the individual models (averaged across 
sites) vary between -5.4% and -2.0%. The mean S value of the individual 
models is -2.8% (SD=2.7%), which is very close to the multi-model 
mean S values (-2.7% on average; SD=1.8%). The mean S value is 
-4.4% for the mini-ensemble of crop models (SD=3.3%), -2.1% for the 
grassland models (SD=1.6%) and -2.4% for the vegetation models 
(SD=1.6%) (Fig. S22). In contrast, in the field trials, the overall mean is 
-24.3% (SD=9%; one value with 600 mm manipulation was removed 
from the observations). If we consider only observations with an unal-
tered precipitation distribution, the mean S value is even larger (-28.6%; 
SD=13.5%). For wetting, the situation is similar, with model-specific S 
values (averaged across sites) varying between 1.5% and 5.3%, with 
overall mean S values of 2.8% (SD=4%) for the individual models and 
2.7% (SD=2%) for the mean multi-model responses. Interestingly, these 
values are exactly the same magnitude as for drying. Model grouping 
leads to mean S values of 4.4% (SD=4.2%), 1.9% (SD=1.6%) and 2.3% 
(SD=1.5%) for the crop, grassland and vegetation models, respectively 

Fig. 8. Comparison of the simulated and observed sensitivities of SWC (expressed here as S, that is identical to effect size;%) to precipitation manipulation. grey 
symbols: S values as function of the magnitude of precipitation change (mm) calculated from all models for each site and for each temperature scenario. Black 
triangles: mean multi-model effect size for all sites and scenarios. Red squares: S values based on the literature review using all collected data. The dotted red squares 
represent experiments using precipitation manipulation without altering the distribution of precipitation (comparable to the modelling approach presented in 
the study). 

Table 4 
Mean multi-model sensitivity for the studied output variables at all sites, expressed as the slopes of the piecewise linear regression models for both directions (drying 
and wetting) relative to the reference climate. The unit of slopes is% 100 mm-1 in all cases. The slopes are significantly different from zero (p<0.05) in most of the cases 
(exceptions are marked with underlines).   

SWC ET GPP biomass 

Site drying wetting drying wetting drying wetting drying wetting 

Grillenburg  1.07  0.68  1.58  0.87  0.49  -0.10  -0.16  -0.83 
Kempten1  1.87  1.02  2.18  1.40  -0.43  -0.45  0.23  -0.34 
Kempten2  1.32  0.89  2.03  1.17  -0.02  -0.27  0.45  0.01 
Laqueuille1  1.63  0.93  2.20  1.36  0.31  -0.02  -0.32  -0.17 
Laqueuille2  1.26  0.84  2.69  1.67  0.32  -0.03  -0.07  0.01 
Lelystad  1.85  1.23  4.70  3.72  2.87  1.16  7.61  4.82 
Matta  0.96  0.94  11.47  13.01  5.24  2.63  14.09  6.52 
Monte Bondone  1.43  0.75  2.50  1.53  0.15  -0.03  1.73  1.03 
Oensingen  1.37  1.87  2.68  1.73  1.02  0.26  2.19  0.75 
Rothamsted1  3.17  2.53  7.86  5.64  3.43  1.98  5.94  2.72 
Rothamsted2  3.19  2.52  7.83  5.60  3.47  1.95  5.84  2.82 
Sassari  4.40  3.91  7.41  5.66  8.60  5.24  13.19  7.64  
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(Fig. S22). For the observations, the overall S value is 29.6% 
(SD=21.9%). For the other output related to the water cycle (ET), only 
limited observational evidence is available (Fig. S23), but the models 
seem to underestimate the sensitivity. 

Considering the biomass simulations with the drying scenarios, Fig. 9 
shows that some of the individual model-site combinations provided S 
values that are consistent with the observed effect size values (see also 
Fig. S24 in the Supplementary material). The S values of the individual 
models vary between -1.3% and -0.1%. The overall mean of all models, 
sites and scenarios is -4.3% (minimum and maximum are -51.2% and 
11.1%, respectively; SD=8.9%). The mean of the mean multi-model S- 
values is -4.1% (SD=5.2%). Focusing on the mini-ensembles, the mean S 
is -5.2% for the crop models (SD=5.7%), -4.6% for the grassland models 
(SD=8.5%) and -2.6% for the vegetation models (SD=5.3%) (Fig. S25). 
The climate manipulation experiments indicate a somewhat higher 
responsiveness, with a mean S-value of -9.6% (SD=18.2%; n = 34; one 
extreme PREC manipulation was removed). If we only use the data from 
the rainfall exclusion experiments with an unaltered precipitation dis-
tribution, the mean sensitivity is -10.6% (SD=13.9%; n = 11). 

Focusing on the water addition experiments, the model-specific S 
values vary between -1.6% and 8.4%, while the mean S of all simulations 
is 3.2% (SD=7.9%). The mean of the multi-model effect sizes is 3.0% 
(SD=4.3%). Model-type specific multi-model S is 3.6% (SD=4.7%) for 
the crop models, 3.1% for the grassland models (SD=6.1%), and 2.1% 
for the vegetation models (SD=4.9%) (Fig. S25). In contrast, the mean S 
value of the field trials is 38.9% (SD=62.6%, n = 13; one data point with 
967 mm water addition was excluded). If we further exclude two re-
ported S-values above 100% (two data points from a semi-arid site in 
Mongolia), the mean S value is 14.9% (SD=15.7%). 

Using a linear approximation, the effect size values from the field 
trials were converted into sensitivity slopes (Section 2.4). Fig. S26 in 
Supplementary material shows the relationship between Pm from the 
field experiments and the derived sensitivity slopes for drying. 
Comparing Fig. S26 with Fig. S18 makes it clear that the strong 
covariation between Pm and the simulated slopes are not detectable 
from the real-world data. It is remarkable that the low Pm values are not 
represented by the in silico results, so it is not possible to draw strong 
conclusions for the dry sites. There is a better agreement between the 
simulated and observed Pm-sensitivity slope relationship for wetting 
(Figs. S19 and S27 in Supplementary material). For Pm values above 

400 mm, the sensitivity slopes (effect size per 100 mm manipulation) are 
similar (with one outlier). Again, dry sites associated with Pm below 
400 mm are not represented by the simulations, which means that there 
are no comparable results. 

3.3. Sensitivity to atmospheric [CO2] 

3.3.1. Overall sensitivity of SWC, ET, GPP and biomass to [CO2] 
Fig. 10 shows the sensitivity of the models to changes in [CO2] 

expressed simply as the effect size with a doubled [CO2] level. According 
to the plots, the responsiveness of the studied output variables to CO2 
fertilisation is rather diverse. 

Fig. 10a shows that the models differ in terms of the direction of SWC 
change. While some models show consistently positive responses 
(indicated by red shading), others simulated a negative effect. The 
overall sensitivity is 0.2% for a doubled [CO2] level (SD is 1.0%). 
Excluding model 7, which only simulated one site, model 6 shows the 
largest negative response (-0.3% for doubled [CO2] level). The largest 
positive response is associated with model 3. If individual sites are 
considered, SAS shows the highest uncertainty (SD=2.7%). There is no 
consensus on the direction of change at the individual site level. 

According to Fig. 10b, ET is also associated with lack of consistency. 
Some models show a strong negative response to a doubling of the [CO2] 
level (mostly models 2, 3 and 4), while the rest of the models depicts a 
small positive change. There is a remarkable similarity in this pattern 
with the SWC effect. The overall sensitivity of ET to the doubling of the 
[CO2] level is -3.0% (SD=6.0%). When models 1–4 are averaged across 
all sites, negative responses are simulated (the largest in absolute terms 
is model 3, with an effect size of -9.9%), while models 5–6 depict a 
positive response. However, missing data interfere with the results. If we 
scrutinise the results at the site level, the sensitivities are not consistent. 
The largest spread of sensitivities is found at MAT (SD=10.0%), while 
the smallest at MBO (SD=4.3%). 

In the case of GPP (Fig. 10c), the picture is surprisingly concordant 
and the consistency is remarkable. The overall mean effect size is 20.5% 
for the double [CO2] level (SD=16.0%). The most responsive model is 
clearly model 3 (38.7% mean sensitivity across all sites), while the least 
responsive is model 2 (4.7%). Using site-level aggregation, the spread of 
sensitivity is the smallest at GRI and the largest at SAS. 

The biomass response to the doubled [CO2] level is considerable in 

Fig. 9. Same as Fig. 8 but for biomass.  
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some cases and relatively consistent, revealing an overall positive effect 
(Fig. 10d). Out of the 68 individually simulated effect sizes, only six 
depict a small negative response. Some models suggest a fairly large 
response, up to 200% (model 3 at SAS). Four effect sizes above 100% 
and 10 above 50% were simulated. The overall mean sensitivity to the 
doubled [CO2] level is 27.8% (SD=36.3%). Model 3 is the most 
responsive (64.6% on average). Model 4 is rather insensitive to the 
doubled [CO2] level (2.1% on average for the sites). At the individual 
site level, the variability of sensitivity is large. The largest spread of the 
effect size is at SAS (SD=76.9%), while the smallest is at LAQ2 

(SD=13.1%). 

3.3.2. Multi-model sensitivity 
Due to the typical nonlinear response to elevated [CO2], the mean 

multi-model sensitivity is quantified by the effect size pertaining to the 
720 ppmv manipulation (doubled [CO2] level). Fig. 11 shows the multi- 
model sensitivity for biomass at two sites with a contrasting response. 

At LAQ2, the multi-model response is close to linear and relatively 
small. However, the result is not protected from bias, as models 1 and 6, 
which are typically associated with larger responses, did not provide 

Fig. 10. Sensitivity of simulated SWC (a), ET (b), GPP (c) and yield biomass (d) to changes in [CO2] for the seven models (arranged vertically and numbered 1 to 7) 
at all sites (arranged horizontally). Sensitivity is expressed as the effect size for the doubled [CO2] level (760 ppmv in this study). The asterisk indicates that the 
response is slightly non-linear. NA indicates that the model result was not available. 

Fig. 11. Mean multi-model sensitivity of simulated biomass to [CO2] at two sites with contrasting response (LAQ2 and SAS). The black symbols represent the in-
dividual models, while the red dots show the multi-model mean effect size calculated for each [CO2] manipulation. The mean effect size for the 760 ppmv 
manipulation represents the mean multi-model sensitivity. 
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data for this site (see Fig. 10d). At SAS, the effect size is much larger, 
which is reasonable as some of the individual models proposed an effect 
size larger than 100%. Supplementary material contains the multi- 
model effect sizes for all sites and for the four output variables 
(Figs. S28-S31). 

Table 5 summarises the effect sizes of 720 ppmv for the four output 
variables by site. SWC is associated with positive responsiveness, with 
the exception of SAS, where the effect of model 7 (which only provided 
data for SAS; Fig. 10a) is clearly dominant. The overall mean effect size 
is 0.2%. For ET, there is considerable consistency in the direction of 
change (decrease in ET) with a mean responsiveness of -3.0%. The re-
sults for GPP are also consistent and range between 11.9 and 35.8% 
(mean 20.6%). The results for biomass are similar, but we again mention 
that missing data from the most responsive models may bias some re-
sults, at least for LAQ1 and LAQ2. The maximum effect size is attributed 
to SAS. The grand ensemble is 26.2%, which can be converted to a linear 
response of about 7% 100 ppmv-1 (but the response is typically non- 
linear with saturation). 

Considering the site-specific, ensemble results for biomass, a linear 
relationship was found between the multi-model mean effect size and 
Pm, but a non-linear relationship was detected between the mean effect 
size and Tm. The explained variance was 50% in both cases and the 
relationship did not improve if the two LAQ sites were removed from the 
analysis (Fig. S32 and Fig. S33 in Supplementary material, which also 
contain the fitted equations). For site elevation, the relationship was 
nonlinear with low variance explained. 

3.3.3. Comparison with experimental data 
The published results of the [CO2] manipulation experiments using 

OTC and FACE technology were used to benchmark the sensitivity of the 
presented models in terms response to elevated [CO2]. Considering the 
climatic conditions of the experimental sites, they differed mostly in the 
case of SWC, while for biomass the climate of some sites was closer to 
that of the sites included in the present study (Supplementary material, 
Fig. S34). 

The sensitivity of SWC to CO2 manipulation is obviously markedly 
lower for models than for the real-world experiments, both for the in-
dividual site-model combinations and for the mean multi-model 
response (Fig. 12). The S values of the individual models (averaged 
across sites for all [CO2] manipulations) vary between -1.0% and 0.5%. 
The mean S value of the individual models is 0.0% (SD is 0.5%), which is 
equal to the mean multi-model S values (SD is 0.1%). Considering the 
mini-ensembles constructed for the three model types, mean S is -0.2% 
for the crop models (SD=0.8%), 0.4% for the grassland models 
(SD=0.4%) and -0.2% for the vegetation models (SD=0.2%) (Fig. S35). 
In contrast, for the field trials the overall mean is 8.6% (SD=8.8%). If we 
consider only observations made within FACE experiments only 
(neglecting open top chambers), the mean S is 9.5% (SD=10.6%). 

Considering biomass, model-specific S values vary between -5.5% 

and 199.0%. Individual modelspecific S values (averaged across all 
sites) vary between 0.7% and 25.8%, while the mean S of all simulations 
is 12.0% (SD=20.4%; Fig. 13). The average of the mean multi-model 
effect sizes is 11.5% (SD=11.8%). Considering the different groups of 
models, mean S is 4.9% (SD=5.1%) for the crop models, 15.8% 
(SD=16.7%) for the grassland models and 18.9% (SD=23.6%) for the 
vegetation models (Fig. S37). Focusing on the mean S from all consid-
ered [CO2] manipulations the mean is 17.5% (SD=15.1%, n = 21). If we 
neglect the OTC-based CO2 enrichment studies the mean effect size is 
14.9% (SD=14.9%, n = 15). 

Using a linear approximation, the effect size values from the field 
trials were converted into sensitivity values (here effect size) referring to 
the doubled CO2 concentration. Fig. S38 and Fig. S39 in Supplementary 
material show the relationship between Tm and Pm from the field ex-
periments and the derived effect size values. If we compare Fig. S32 with 
Fig. S38, they are broadly consistent, meaning that at warmer temper-
atures the effect size for doubled [CO2] is usually larger. Similar con-
clusions can be drawn based on the comparison of Fig. S33 and Fig. S39, 
meaning that the effect size decreases with increasing precipitation. 

4. Discussion 

This section first discusses the simulation results by grouping the 
water balance outputs (SWC and ET in Section 4.1) and the production 
outputs (GPP and HAB in Section 4.2). The remainder discusses the 
comparison of the simulations with the results of manipulation experi-
ments in grassland ecosystems worldwide (Section 4.3) and the limita-
tions of the study (Section 4.4). 

4.1. Soil water content and evapotranspiration 

In process-based models, SWC affects stomatal conductance (which 
in turn affects photosynthesis and biomass accumulation), ET, plant 
stress and, eventually, senescence. Simulation of SWC is performed 
using a variety of methods within the models (e.g. Table B1 in Sándor 
et al., 2017). Soil water redistribution is commonly accounted for in 
models using the Richards (1931) equation, which describes the tran-
sient flow of water from initial conditions. This equation plays a crucial 
role in modelling soil hydrological processes within the rhizosphere for 
multilayer soil hydrology models. Simpler approaches such as the 
tipping-bucket method (Ritchie, 1981) are also used in vegetation 
models. ET is calculated by diverse methods like the well-established 
Penman-Monteith equation or, with less data requirements, the 
Priestley-Taylor equation (Sándor et al., 2017). The methodologies used 
by the seven models in this study can be considered representative of 
state-of-the-art models. However, these different representations of SWC 
and ET may limit the actual comparison of the models, as this variable is 
defined according to each model’s own scheme. Construction of the 
model-type specific mini-ensembles shed some light on the conse-
quences of the diverging model structures, though the number of models 
was low for more robust findings. 

Based on Figs. 2, 6 and 10, and also Figs. S3, S4, S14, S15, S28 and 
S29 in Supplementary material, the temperature, precipitation and 
[CO2] scenarios had a varying effect on the simulated SWC and ET 
changes (in line with the conceptual scheme of Fig. S2 in the Supple-
ment). In general, as air temperature increases, SWC decreases in par-
allel with the increase in ET. The response of the models to precipitation 
changes also matched what was expected (i.e. wetting causes an increase 
in SWC and ET, while drying has the opposite effect). The models were 
mostly consistent in terms of these changes for temperature and water 
supply changes. In contrast, for increasing [CO2] the SWC and ET re-
sponses were inconsistent indicating possible issues with the simulated 
effect of [CO2] on stomatal aperture (e.g. increasing [CO2] usually re-
duces stomatal conductance to water vapour). The results revealed that 
the models responded differently to changes in environmental condi-
tions due to variations in how they calculate the movement of SWC 

Table 5 
Mean multi-model sensitivity for the output variables studied at all sites, 
expressed as the mean effect size for a doubling of [CO2] relative to the reference 
climate. The unit is%.  

Site SWC ET GPP biomass 

Grillenburg  0.29  -3.3  20.8  22.8 
Kempten1  0.16  -2.6  17.0  25.2 
Kempten2  0.14  -3.1  15.8  22.0 
Laqueuille1  0.21  -3.5  24.2  9.2 
Laqueuille2  0.52  -5.3  11.9  5.2 
Lelystad  0.24  -1.7  21.6  43.7 
Matta  0.13  -3.4  35.8  42.4 
Monte Bondone  0.17  -2.3  16.2  17.2 
Oensingen  0.32  -3.5  19.6  20.2 
Rothamsted1  0.21  -3.3  14.7  16.9 
Rothamsted2  0.25  -2.9  18.5  24.1 
Sassari  -0.65  -1.4  31.1  66.1  
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along the soil profile and the ET calculation algorithm. 
In addition to affecting grassland functioning, SWC is also known to 

be closely linked to weather patterns. For example, it was shown that 
during heatwaves, SWC depletion can increase the severity and duration 
of drought episodes (e.g. Seneviratne et al., 2006, 2012), leading to a 
decrease in ET and a parallel increase in sensible heat flux that enhances 
land-atmosphere coupling with consequences for plant functioning and 
C balance (Ciais et al., 2005). Teuling et al. (2010) showed that the 
response of grasslands to drought is different from that of forests, mainly 
due to their shallower rooting depth, with grasslands having a stronger 
impact on the soil temperature increase during heatwaves than forests in 
the prolonged phase of the event. 

Due to the well-recognised importance of SWC for atmospheric 
processes, climate research currently focuses on estimating soil moisture 
variability (Seneviratne et al., 2006; Diodato et al., 2014; Wu et al., 
2015; Fu et al., 2022; Li et al., 2022). Simulation of SWC with acceptable 
quality is thus a prerequisite for the application of state-of-the-art Earth 

System Models (ESMs; Ciais et al., 2013). Analogous to numerical 
weather and climate prediction models, ESMs estimate SWC using ap-
proaches originally developed for ecosystem models (e.g. Balsamo et al., 
2009; Chen and Dudhia, 2001a, b). In particular, the functioning of 
grassland systems cannot be represented without an explicit simulation 
of the soil water balance due to the role of water limitations (or, in some 
cases, excess SWC leading to root stress or asphyxia) in several biological 
processes in plants (Nagy et al., 2010; Hidy et al., 2012). Evaluating the 
quality of SWC simulation results under different environmental and 
management conditions is thus crucial to clarify their applicability, as 
the results may point to the need for further developments and adjust-
ments. As SWC directly affects ET, improving the representation of soil 
hydrology could improve the quality of ET simulations, reducing the 
issue of obtaining satisfactory simulation results for wrong reasons 
(Martre et al., 2015). 

Fig. 12. Comparison of the simulated and observed sensitivities of SWC (expressed here as S, that is identical to effect size;%) to [CO2] manipulation. grey symbols: S 
values as function of the change of CO2 concentration (difference between elevated and reference concentration expressed in ppmv) calculated from all models for 
each site and for each scenario. Black triangles: mean multi-model effect size for all sites and scenarios. Red squares: S values based on the literature review using all 
collected data. Dotted red squares indicate data from the experimental sites using FACE technology (that is more comparable to the modelling approach presented in 
the study). 

Fig. 13. Same as Fig. 12 but for biomass.  
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4.2. Gross primary production and yield biomass 

Across all sites and simulations, GPP (Fig. S30) and yield biomass 
were observed to respond positively to increasing atmospheric [CO2] 
(Fig. 13), with substantial consistency amongst models (Fig. 10c and d, 
respectively). Although the different models were observed to be 
differently sensitive to changes in T (Fig. 2c, d) and PREC (Fig. 6c, d), the 
mean values (Figs. 3 and 7, respectively) are consistent with the ex-
pected dynamics. This suggests that the construction of multi-model 
means is useful to ensure a realistic response in terms of direction of 
change to varying environmental conditions. 

Differences in mechanistic representations of gross photosynthesis 
and biomass allocation could explain the varying and sometimes 
divergent responses amongst the models. For instance, models based on 
the approach of Farquhar et al. (1980) rely on the dependence of 
photosynthesis on the maximum rate of carboxylation of ribulose 
bisphosphate carboxylase and the maximum rate of photosynthetic 
electron transport (Wullschleger, 1993), which in turn depend on the 
response of assimilation rate to sub-stomatal CO2 concentration and 
further modulated by temperature. In contrast, models based on light 
use efficiency (LUE) have a different logic and functional representation 
(e.g. in the case of STICS), and may be difficult to parameterise due to 
uncertainties in the LUE term, which is typically estimated using look-up 
tables of maximum LUE for a given vegetation type and then adjusting 
these values downwards, depending on meteorological variables and 
environmental stressors (e.g. Sims et al., 2006). 

Some observed mechanisms that are relevant in real-world grass-
lands may not be present in models. For example, under warming con-
ditions a higher C accumulation in the root system is expected, reflecting 
the physiology of root respiration. Increased root weight (i.e. decreased 
root respiration rate and/or increased C requirements as a fraction of C 
fixed in photosynthesis) may be due to more rapid depletion of nutrients 
in the root environment as a consequence of increased growth at higher 
temperatures, but these effects are likely to be smaller in systems where 
nutrient supply is higher (e.g. intensively-managed systems), and to 
increase with decreasing soil fertility (e.g. Lambers et al., 1996). When 
the production of new structures is the process most affected by nutrient 
shortages, a decrease in the shoot:root ratio is to be expected, according 
to the concept of C-N equilibrium (e.g. Thornley, 1972). Mediated by 
plant biomass inputs through their effects on available C in the rooting 
zone, warming has the effect of increasing the mineralisation of soil 
organic matter (e.g. Carrillo et al., 2010): more nutrients are released 
and, with more roots, plants can take up this excess nutrient. In addition, 
moderate drought can lead to a shortage of water supply, which favours 
C partitioning to roots (Pilon et al., 2013). Under these conditions, low 
management intensity can alleviate N limitation by stimulating N min-
eralisation and uptake (Dangal et al., 2016). Water stress is likely to 
reduce root respiration rates per unit root mass, but increase the fraction 
of total assimilates required for root respiration, due to a higher allo-
cation of biomass to roots. Rising temperatures and low soil moisture 
affect both photosynthesis and plant respiration. Moreover, as changes 
in seasonal water availability have pronounced effects on individual 
species, adaptation and functional biodiversity would buffer the effect of 
climate extremes on C cycling, but the basis for biological adaptation 
and the role of biodiversity remain unclear (Reichstein et al., 2013). The 
resolution of this study did not allow us to examine the limitations of 
different modelling solutions to deal with these complex patterns. It 
would require further study, as they may lead to an over- or underesti-
mation of biomass with cascading effects related to the nature of 
multi-species ecosystems that remain on the same soil for a long time. 

Unlike annual crops (requiring replanting every year), permanent 
grasslands are characterised by production from the same vegetation 
cover, generally as mixtures of plant species with a high dissimilarity of 
traits. Source-sink relationships in grasslands are highly dynamic and 
vary according to plant growth stage, fertiliser application, grazing and 
mowing intensity and timing. Under these conditions, it is difficult to 

define some of the plant parameters or management-related settings in 
the models. For example, the relationship between aboveground pro-
duction and standing biomass after cutting or grazing can only be 
approximated. This means that plant regrowth after cutting cannot be 
readily estimated from the standing biomass, which inevitably affects 
the quality of the simulations. In addition, the relationship between 
aboveground biomass and plant residues is driven by the senescence 
process of the various plant organs, which are strongly influenced by the 
stage of development at which they are removed. Plant residues added 
to the soil during plant growth can trigger high N release (e.g. Oelmann 
et al., 2011), while stimulating soil microbial decomposition processes 
(with feedback on biomass growth). In most cases, modellers have little 
or no control over senescence processes and litterfall, and departure of 
estimated yields from observations can be ascribed to suboptimal esti-
mation of related parameters. 

4.3. Comparison with manipulation experiments 

Ecosystem manipulation experiments provide an opportunity to 
understand the response of the plant-soil system to changing environ-
mental conditions (Norby and Luo, 2004; Ainsworth and Long, 2005; 
Soussana and Lüscher, 2007; De Boeck et al., 2008; Norby and Zak, 
2011; Song et al., 2019; Ainsworth and Long, 2020; Pan et al., 2022). 
However, despite major advances in the understanding of processes and 
the availability of a wide array of experimental data, uncertainties 
remain large. Focusing specifically on grasslands, species distribution, 
disturbance regimes, climatic conditions including extremes, soil con-
ditions and management all contribute to uncertainty and a wide di-
versity of responses to changing environmental conditions (Song et al., 
2019). Additional uncertainty arises from the diversity of technologies 
used for manipulation (Wang et al., 2019; Section 2.5). Since a 
single-factor change in temperature, precipitation or [CO2] already 
triggers a cascade of events in the ecosystem, the usability of 
multi-factor experiments for understanding processes and supporting 
model development is limited. For this reason, and also because the 
literature is limited for such modelling exercises, we focused here 
exclusively on single-factor climate manipulation experiments. 

This study was not intended to provide a comprehensive review of 
the results of single-factor manipulation experiments. It means that the 
data collection based on the literature search was not done in a sys-
tematic ways that is used e.g. in meta-analyses (Rustad et al., 2001; Lin 
et al., 2010; Wu et al., 2011; Dieleman et al., 2012; Wang et al., 2019; Lu 
et al., 2013; Xu et al., 2013; Fu et al., 2015; Unger and Jongen, 2015; 
Wilcox et al., 2017; Chen et al., 2020; Piseddu et al., 2021; Shao et al., 
2022). Instead, we used strict data selection criteria to include experi-
ments that could be considered comparable to the modelling exercise. 
This limited the availability of the data. Nevertheless, careful checking 
of data quality, removal of duplicates and rejection of problematic 
experimental results ensured a solid basis for comparison. 

Studies focusing on the spatial variability of the observed responses 
are scarce (e.g. Wilcox et al., 2017). In this study, we used site conditions 
to identify patterns in biomass responses (using a simple linear 
approach) as an additional benchmark for the sensitivity analysis. The 
results indicated that for some manipulations (drying and [CO2] 
enrichment), the overall relationship between site conditions and model 
sensitivity was consistent with observations, but for other manipulations 
(warming and wetting), there was a lack of consistency. Given our 
expectation to capture spatial and temporal variability of grassland 
functioning through modelling, the results highlight potential issues that 
need to be addressed through model development and repeated 
benchmarking. At larger spatial scales, model results should be inter-
preted with caution, as responses (reflecting different site and climatic 
conditions) could be problematic, especially in the case of warming and 
drying. 

The study highlighted that the response of SWC and ET to global 
change factors is not fully realistic within the spread of simulated 
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responses obtained with the models studied (although limited observed 
data were available for ET). It is generally accepted that major issues 
exist regarding the CO2 fertilisation effect in ecosystem models and 
ESMs (Smith et al., 2016), but less emphasis is placed on the problems 
associated with SWC dynamics. According to Li et al. (2022), SWC is 
highly relevant worldwide, thus improving the representation of soil 
hydrology is a key step, especially for grasslands, which are more sen-
sitive to water availability than other ecosystems. 

Challenges are also posed by the fact that most models cannot ac-
count for the long-term acclimation of photosynthetic activity to 
elevated [CO2], the so-called down-regulation of photosynthesis, which 
is related to N availability (Ainsworth and Rogers, 2007). A 
down-regulation strategy seems necessary to limit the effect of increased 
[CO2] on plant growth, also considering that the beneficial effects of 
higher [CO2] on C assimilation may be outweighed or downplayed by 
concomitant changes in other environmental factors (Rosenzweig and 
Parry, 1994). In contrast, as pointed out by Saban et al. (2019) based on 
data collected in the proximity of natural CO2 springs, the response of 
plants to elevated [CO2] could remain large and consistent with FACE 
experiments over longer time periods. In any case, the joint application 
of experimental data and model simulations are the only way to advance 
our understanding of grassland response to climate change factors 
(either single or in combination). 

Elevated [CO2] and warming are known to have fundamentally 
different effects on C storage and cycling in terrestrial ecosystems 
(Schimel et al., 2014), meaning that the dominant mechanism might 
differ depending on climate. Dieleman et al. (2012) proposed to 
benchmark the models against elevated [CO2] experiments rather than 
with warming experiments, given the expected larger effect. Based on 
our results, we recommend testing the models against single-factor ex-
periments that include warming, precipitation addition/removal and 
elevated [CO2] to get a more complete picture of the mechanistic re-
sponses of grassland models. 

4.4. Limitations of the study 

This work extends previous research on grassland modelling (e.g. 
Sándor et al., 2017) and is intended to be useful as preliminary inves-
tigation prior to large-scale studies. This study did not aim to project 
expected scenario-based impacts of climate change on European grass-
lands. Rather, the single-factor sensitivity of a set of grassland models to 
changes in temperature, precipitation and [CO2] was analysed. 

A first limitation of the study is that no combination of changes in 
temperature, precipitation and [CO2] was investigated, and the altered 
scenarios as designed are not equivalent to climate change projections, 
as they do not fully account for changes in seasonality, the occurrence of 
extreme events and changes in other climatic variables. In this respect, 
the changes designed in this study may not cover specific future climate 
conditions. 

Secondly, adaptation of grassland systems to climate change may 
drastically modify the actual response of grassland production to altered 
conditions. Adaptation may be due to the inherent ecological capacity of 
grasslands to evolve to a new state, e.g. through a modification in spe-
cies composition or through long-term acclimation of existing species (e. 
g. Way and Yamori, 2014; Noguchi et al., 2015). This could be translated 
into models by adapting plant parameter values. In this respect, exper-
imental evidence confirms that the response of grasslands to drought 
varies according to site characteristics (Knapp et al., 2015). In addition, 
management options can be adapted to altered conditions, e.g. by 
modifying mowing frequency or grazing pressure to cope with drought 
(Luna et al., 2023). 

Another limitation is that the models were calibrated using only eddy 
covariance and production data from observational sites, and the cali-
brated parameters are considered sufficiently representative of Euro-
pean grasslands. Thus, vegetation was modelled as a single group at all 
grassland sites considered in the study, without accounting for site-to- 

site variability of vegetation parameters. In this way, model sensitivity 
was based on the same loose assumptions that are set down and used to 
model grassland ecosystem responses in large-scale studies (e.g. Ma 
et al., 2015). However, a proper calibration at more arid sites would 
improve model parameterisation and responses to temperature and 
water constraints typical of these sites. Consideration of biodiversity 
would be a logical additional step in the future to improve the models 
(van Oijen et al., 2020). 

Another aspect that needs further investigation is the duration of 
climate manipulation experiments, as during long-term climate manip-
ulation trials the initial larger effect might diminish over time (e.g. 
Leuzinger et al., 2011; Wang et al., 2012) and uncertainty is large in this 
aspect due to the scarcity of long-term experiments. In any case, an 
abrupt change in environmental conditions has different implications 
from the gradual alteration that characteristics climate change. 

The length of the growing season could interfere with the results, 
which was not explicitly studied. It is necessary to mention that current 
models have issues with estimating the timing of intensive spring growth 
and autumn senescence (Piao et al., 2019). This means that changing 
environmental conditions and the length of the growing season interact 
in a way that is difficult to quantify. Error compensation or even error 
amplification could occur within the models due to issues related to 
phenological patterns. 

5. Concluding remarks 

This study has shed light on critical aspects of grassland modelling 
and underscores the paramount importance of rigorous model evalua-
tion. While the existing common practice of model evaluation and 
optimisation has its merits, our findings call for a paradigm shift, with a 
proposed benchmarking approach standing out as a more robust, critical 
and forward-looking alternative. Through a detailed sensitivity analysis 
focusing on key climate change factors – namely, temperature, precip-
itation and CO2 concentration –, we have unveiled the intricate interplay 
between these factors and grassland model responses. The inherent 
variability observed in our simulations mirrors similar challenges 
encountered in crop modelling (e.g. Asseng et al., 2013; Bassu et al., 
2014; Wallach et al., 2018). These uncertainties highlight the need for 
structural enhancements in grassland models. One promising avenue for 
addressing these uncertainties is the adoption of ensembles, a technique 
that can mitigate the limitations of the individual models. The impli-
cations of this study extend beyond the realm of grassland modelling. It 
serves as a valuable resource for both model users and the broader 
modelling community engaged in simulation experiments within this 
domain. By comparing the results of our selected models with the sen-
sitivities of alternative models, researchers can gain valuable insights 
that drive innovation and improvement in the field. 

In conclusion, our research charts a distinct and actionable course for 
the refinement of grassland modelling. As we work towards the attain-
ment of accuracy and reliability in agroecosystem modelling, the 
ongoing journey in this pursuit may yield tangible results, such as 
informing more sustainable grazing practices. For example, our frame-
work’s application may serve to enhance the predictive power of 
grassland models regarding the impact of changing rainfall patterns on 
the standing biomass available for livestock and, consequently, on 
grazing habits. 

The collective engagement and expertise within the grassland 
modelling community are indispensable, as evidenced by the collabo-
rative projects that have supported this research. Moreover, the mod-
eller community is supposed to approach the experimentalist and 
initiate joint projects. This includes the dissemination of the observed 
data by the experimentalist so that the modelling community can easily 
get access and exploit the results. These collaborative endeavours will 
undoubtedly continue to shape a future where grasslands are a corner-
stone of sustainable agricultural practices and ecological balance. 
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