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Introduction

Proteases, especially alkaline, constitute 60–65% of the

global industrial enzyme market (Banerjee et al. 1999;

Genckal and Tari 2006). In fact, it was reported that the

global proteolytic enzyme demand will increase dramati-

cally to 22 billon US dollars by 2009 (Turk 2006) because

of their application potential in several industrial sectors

especially food, meat tenderization, peptide synthesis,

infant food preparations, baking and brewing, pharma-

ceuticals and medical diagnosis, detergent industry (addi-

tive), as well as in textiles and dehairing (Joo et al. 2003).
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Abstract

Aim: Modelling and optimization of fermentation factors and evaluation for

enhanced alkaline protease production by Bacillus circulans.

Methods and Results: A hybrid system of feed-forward neural network (FFNN)

and genetic algorithm (GA) was used to optimize the fermentation conditions

to enhance the alkaline protease production by B. circulans. Different microbial

metabolism regulating fermentation factors (incubation temperature, medium

pH, inoculum level, medium volume, carbon and nitrogen sources) were used

to construct a ‘6-13-1’ topology of the FFNN for identifying the nonlinear

relationship between fermentation factors and enzyme yield. FFNN predicted

values were further optimized for alkaline protease production using GA. The

overall mean absolute predictive error and the mean square errors were

observed to be 0Æ0048, 27Æ9, 0Æ001128 and 22Æ45 U ml)1 for training and

testing, respectively. The goodness of the neural network prediction (coefficient

of R2) was found to be 0Æ9993.

Conclusions: Four different optimum fermentation conditions revealed maxi-

mum enzyme production out of 500 simulated data. Concentration-dependent

carbon and nitrogen sources, showed major impact on bacterial metabolism

mediated alkaline protease production. Improved enzyme yield could be

achieved by this microbial strain in wide nutrient concentration range and each

selected factor concentration depends on rest of the factors concentration. The

usage of FFNN–GA hybrid methodology has resulted in a significant improve-

ment (>2Æ5-fold) in the alkaline protease yield.

Significance and Impact of the Study: The present study helps to optimize

enzyme production and its regulation pattern by combinatorial influence of

different fermentation factors. Further, the information obtained in this study

signifies its importance during scale-up studies.
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The application web of these enzymes is increasing in

production of high nutritional value fish hydrolysate

using Bacillus subtilis protease (Rebecca et al. 1991; Turk

2006), upgrading of lean meat waste to edible products

(O’Meara and Munro 1984) and in the enzymatic modifi-

cation of zein to produce a nonbitter peptide fraction

with high Fischer ratio for patients with hepatic encepha-

lopathy (Tanimoto et al. 1991).

Among all protease-producing microbial systems,

microbes belonging to Bacillus genus gained importance

because of extracellular enzyme production under sub-

merged fermentation conditions (Kumar and Takagi

1999; Prakasham et al. 2006). Isolation of novel proteases

producing species with specific characteristics will be of

great value to the enzyme industry for different applica-

tions. It was well documented that each microbial strain

differs in its product production character, which mainly

depends on their fermentation, nutritional, physiological

and genetic nature (Gupta et al. 2002; Prakasham et al.

2005; Rao et al. 2006). Exploration and exploitation of

such characteristics would offer a competitive advantage

over existing products. Hence, use of appropriate fermen-

tation parameters was of critical importance as medium

composition, product concentration, yield, and volumet-

ric productivity influences the product productivity

(Akhnazarova and Kafarov 1982; Prakasham et al. 1999;

Sreenivas Rao et al. 2006). Hence, it is essential that the

isolated strain should be characterized for its growth and

optimal protease production. The commonly used con-

ventional optimization method is ‘one at a time’ method

(Prakasham et al. 2006), which ignores interactions

among the different components even after performing of

a large number of experiments. To overcome these prob-

lems, statistical methods such as response surface meth-

odology (RSM) (Himabindu et al. 2006), Taguchi

methodology (Rao et al. 2004; Prakasham et al. 2007a),

etc were used. RSM provides polynomial models with

universal approximation properties for any number of

input and output variables with desired accuracy. In prac-

tice, only two or three levels are applied, given by LN (N

factor at L levels). The level of orthogonal array design or

uniform design is also limited by this factor (Fang et al.

2003); hence, artificial neural networks (ANN) and

genetic algorithms (GAs) are employed.

The ANN has a similarity like human decision-making

process and used to solve the nonlinear problems in vari-

ous fields, such as fermentation, optimization, and pat-

tern recognition in biotechnology and pharmaceutical

technology as well as in the bioreactor controlling and

online optimization (Montague and Morris 1994; Ka-

mimura et al. 1996; Subramanian et al. 2004; Arulsudar

et al. 2005). Many authors compared the ANN with the

statistical design and showed that the ANN results are

much better than the statistical ones (Liu et al. 1999;

Nagata and Chu 2003; Kulkarni et al. 2004; Subramanian

et al. 2004; Arulsudar et al. 2005).

GAs are based on unorthodox search and optimization

algorithms, which help in searching for a solution to the

problem by mimicking some of the process of natural

evolution. GA performs direct random searches through a

given set of alternatives with the aim of finding the best

alternative with respect to the given criteria of goodness

of fit, which is expressed in terms of an objective function

(also referred to fitness function). Freyer et al. (1992),

Weuster-Botz and Wandrey (1995) and Zuzek et al.

(1996) optimized 12–14 variables at a time using GA.

Presently, hybrid GA–ANN is becoming popular for

fermentation parameter optimization. Hanai et al.

(1999) optimized 21 variables for koji fermentation pro-

cess while Hongwen et al. (2005) optimized 1,3 pro-

panediol production with total 29 experiments, whereas

Fang et al. (2003) optimized the xylitol production

using GA-coupled neural networks. Nagata and Chu

(2003) analysed RSM data [presented by Achary et al.

(1997)] using neural network and GA to predict opti-

mum conditions and reported that feed-forward neural

network and GA (FFNN–GA) is the better optimization

method. In the present study, authors used FFNN for

modelling alkaline protease production experiments and

output FFNN data variables were further optimized

using the GA.

Materials and methods

Micro-organism and culture conditions

A laboratory bacterial isolate Bacillus circulans (MTCC

6811) was used in this study. This microbial strain was

grown in 250-ml conical flasks containing 100 ml of

medium consisting of yeast extract 7Æ5, peptone 7Æ5 and

glucose 10 (in g l)1) at pH 9Æ0 by incubating at 33�C and

at 150 rpm in an orbital shaker (LabTech LSI – 3016 R;

Daihan Labtech Co., Ltd, Namyangju-city, Kyonggi-Do,

Korea) for 24 h unless otherwise stated. Cell-free broth

was collected after centrifugation at 10,000 rpm at 4�C

for 10 min and used as enzyme source. The organism was

maintained on the above agar (20 g l)1) based medium

slants by subculturing at monthly intervals and stored at

4�C till further use. Six different fermentation parameters

mentioned in Table 1 were selected in this study.

Measurement of enzyme activity

Alkaline protease activity was determined using modified

Auson–Hagihara method (Hagihara et al. 1958) in the

24-h grown cell-free broth samples. In this, 1 ml of the
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diluted clear fermentation broth was added to 1 ml casein

solution (1%, w ⁄ v casein solution prepared in

50 mmol l)1 glycine–NaOH buffer, pH 11Æ0) and incu-

bated at 70�C for 20 min. Two millilitres of 10% trichlo-

roacetic acid were added to terminate the reaction and

the contents were filtered through a Whatman No. 1 filter

paper. The absorbance of the filtrate was read at 280 nm

using UV–Visible spectrophotometer (Perkin-Elmer k25;

Perkin-Elmer, Shelton, CT) and the protease activity was

calculated using tyrosine standard curve. One unit of

alkaline protease activity was defined as 1 lg of tyrosine

liberated per millilitre under the assay conditions. All

experiments and each enzyme assay performed in tripli-

cate and the average values were reported in this study.

Modelling and optimization of enzyme production

An FFNN together with the backpropagation is used as

FFNN paradigm for nonlinear modelling in this study to

reduce the experimental error and subsequent optimiza-

tion of enzyme production using GA. Various steps

involved in this study were represented schematically in

flowchart (Fig. 1). FFNN consists of three layers namely

input, hidden and output consisting of processing nodes

(neurons). The network also contains an additional node,

known as the bias, in the input and hidden layers. All

nodes present in each layer are connected to subsequent

layer nodes. The connection between each layer is termed

as weight. The tan sigmoid activation function for hidden

layer and linear transfer function for output nodes were

used in the present study. The input data vectors were

scaled to code values as )1 to +1 according to Zhu et al.

(1996) and Coleman et al. (2003).

The FFNN is a nonlinear function-mapping device that

determines the N-dimensional nonlinear function vector,

f, where f: X fi Y, where X is a set of ‘n’ number of

input vectors (i.e. X = {xn}; n = 1,2,…,N and

x = [x1,x2,…,xn]T) and Y is a set of the corresponding

output vector (protease production) (i.e. Y = {yn};

n = 1,2,…,N and y = [y1, y2,…, yN].

In the present study, six microbial growth and metabo-

lism related fermentation factors such as glucose, soya

bean meal concentrations, incubation temperature,

medium pH, medium volume (ml) in 250-ml flask and

inoculum size (Table 1) were selected based on prelimin-

ary experimental results and used.

The precise form of f is determined by:

i Network topology

ii Choice of the activation function used for computing

the outputs of the hidden and output nodes and

iii Network weight matrices (weightH and weightO) and

bias (biasI and biasH) (where weightH is weight on con-

nections between input and hidden nodes; weightO is

weight on connections between hidden and output nodes;

biasI is input bias; biasH is hidden layer bias).

The following equation is the outcome of the neural

network training relating the input to the output variable,

given in terms of weights and biases.

Table 1 Selected factors and their minimum and maximum concen-

tration used for alkaline protease production by isolated Bacillus circu-

lans under submerged fermentation

Coded

variable Variable Lower Upper

x1 Glucose, (gram per100 ml) 0Æ25 2Æ5

x2 Soya bean meal, (gram per 100 ml 0Æ25 2Æ5

x3 Temperature (�C) 27 39

x4 pH 8 12

x5 Volume (ml) 25 125

x6 Inoculum size (ml) 1 5

ANN

Modeling

Satisfactory
No

GA

Experimenting or
Predicting

E

Predicting

Yes

Yes

No

No

Satisfactory

Stop Satisfactory

Experimenting

P

Yes

Optimize the
media

composition

Figure 1 Schematic representation of a hybrid feed-forward neural

network (FFNN)–genetic algorithm (GA).
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Youtput ¼ WeightsO

� 2

1þ eð�2�weightsH � input vectorþ input biasðb1ÞÞ � 1

� �

þ Hidden layer biasðbHÞ

The hidden neurons were increased step by step till the

best correlation was achieved (limited to 13 in the present

study, because increase in the number of hidden neurons

usually results in a better learning performance, although

there is a practical upper limit because too many hidden

neurons may result in problems such as including the

process noise, which is also known as overlearning). In

total, 34 experimental runs were performed in this study,

28 runs (approx. 80%) were selected for training and

remaining 6 runs (approx. 20%; the data shown in bold

letters in Table 2) were used for testing. The goodness of

fit was determined by the coefficient R2, which describes

the extent of variance in the modelled variables. The error

was calculated based on the difference between experi-

mental and predicted values. Mean absolute percentage

error (MAPE) and mean square error (MSE) were com-

puted using simulated and experimental data according

to Zhang and Fang (2006). The percent contribution of

each selected parameter was calculated using factor fitness

scores, which were generated during training of the net-

work and the contribution of each factor was calculated

by using the below formula.

Percentage contribution of each factor

¼ Factor fitness score

Total factors score
� 100

GA optimization

GAs are employed to search and optimize the maximum

of a function over some domain space. Points in the

domain space of the search (usually real numbers) are

encoded as bit strings, called chromosomes. Each bit

position in the string is called a gene and each starting

solution (here selected fermentation parameter) is known

as population. Every population is evaluated for their fit-

ness while solving the problem. From the initial popula-

tion of chromosomes, a new population is generated

using three genetic operations: reproduction (generation

of new population), crossover (exchange of bits in a pair

of chromosome) and mutation (flipping of bits in off-

spring).

GA optimization was performed using FFNN output

values (weights and bias) using same fitness function.

Each GA output simulation was used to search in differ-

ent subspace and to locate the global maximum on the

objective function surface. The underlying optimization

objective is to find the L-dimensional optimal decision

variables by fixing the lower and upper bounds (Table 1)

(xl
L < xl < xl

U l = 1, 2, 3,…, L). x denotes the fermenta-

tion operating conditions (L = 6) and xl
L and xl

U repre-

sent the lower and upper bounds on xl. In this study,

different parameters of GA optimization such as chromo-

some length (lchr) as 60, population size (Npop) as 60,

crossover probability as 0Æ9 and mutation probability

(Pmut) as 0Æ01 were assumed based on literature reports

(Fang et al. 2003). Optimum conditions were selected

after evaluation of GA for 500 generations (Ng
max = 500)

to achieve fine-tuned fermentation conditions in the

given range of input parameters. Neural networks and

GA toolboxes of MATLAB 7.0 (The Mathworks, Inc.,

Natick, MA, USA) were used in modelling studies.

Table 2 Alkaline protease production experimental set up, protease

activity (experimental and predicted) and error predicted

S.No x1 x2 x3 x4 x5 x6 Activity

Simulated

values Error

1 0Æ5 0Æ5 30 9 50 2 1560 1566Æ3 -6Æ3

2 1Æ5 0Æ5 30 9 100 2 5236 5229Æ7 6Æ3

3 0Æ5 1Æ5 30 9 100 4 5500 5498 2

4 1Æ5 1Æ5 30 9 50 4 5586 5586 0

5 0Æ5 0Æ5 36 9 100 4 4948 4945Æ3 2Æ7

6 1Æ5 0Æ5 36 9 50 4 5750 5749Æ9 0Æ1

7 0Æ5 1Æ5 36 9 50 2 4600 4592Æ3 7Æ7

8 1Æ5 1Æ5 36 9 100 2 5318 5318 0

9 0Æ5 0Æ5 30 11 50 4 5500 5495Æ2 4Æ8

10 1Æ5 0Æ5 30 11 100 4 5660 5588Æ8 71Æ2

11 0Æ5 1Æ5 30 11 100 2 4527 4527 0

12 1Æ5 1Æ5 30 11 50 2 4200 4200Æ1 -0Æ1

13 0Æ5 0Æ5 36 11 100 2 4682 4681Æ9 0Æ1

14 1Æ5 0Æ5 36 11 50 2 5460 5460 0

15 0Æ5 1Æ5 36 11 50 4 5500 5500 0

16 1Æ5 1Æ5 36 11 100 4 2757 2757 0

17 0Æ25 1Æ5 33 10 75 3 5265 5265 0

18 2Æ5 1Æ5 33 10 75 3 6100 6097Æ5 2Æ5

19 1 0Æ25 33 10 75 3 4950 4950 0

20 1 2Æ5 33 10 75 3 5600 5599Æ9 0Æ1

21 1 1Æ5 27 10 75 3 4970 4970 0

22 1 1Æ5 39 10 75 3 3428 3428Æ3 )0Æ3

23 1 1Æ5 33 8 75 3 5027 4926Æ3 100Æ7

24 1 1Æ5 33 12 75 3 3900 3900 0

25 1 1Æ5 33 10 25 3 6500 6493Æ8 6Æ2

26 1 1Æ5 33 10 125 3 4797 4796Æ6 0Æ4

27 1 1Æ5 33 10 75 1 4423 4423Æ1 )0Æ1

28 1 1Æ5 33 10 75 5 6547 6547 0

29 1 1Æ5 33 10 75 3 6760 6827Æ5 )67Æ5

30 1 1Æ5 33 10 75 3 6901 6827Æ5 73Æ5

31 1 1Æ5 33 10 75 3 6890 6827Æ5 62Æ5

32 1 1Æ5 33 10 75 3 6802 6827Æ5 )25Æ5

33 1 1Æ5 33 10 75 3 6790 6827Æ5 )37Æ5

34 1 1Æ5 33 10 75 3 6896 6827Æ5 68Æ5
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Results

Alkaline protease production by any microbial strain

depends on various fermentation, environmental and

growth conditions. Our preliminary studies indicated that

the enzyme production by isolated B. circulans is greatly

regulated by carbon (glucose 1%) and nitrogen (soya

bean meal 1%) sources in addition to incubation temper-

ature (33�C), pH of the medium (pH 10Æ0), initial inocu-

lum concentration (3Æ0% of 24 h grown 0Æ8 absorbance

culture at 600 nm) and aeration (75 ml medium in 250-

ml conical flask) (results not shown). Maximum enzyme

production of 3245 U ml)1 was observed under the above

conditions. Hence, further experiments were carried to

evaluate the impact of each above parameter and its con-

centration on alkaline protease production. Each selected

parameter’s range at which enzyme production was

noticed was considered to determine the lower and upper

limit (Table 1) and further each parameter was divided

into different levels by taking the consensus of research

team. Experimental lay out was prepared using modified

fractional factorial central composite design (MATLAB

7.0) and the data were analysed using FFNN (Table 2).

Desai et al. (2006) reported similar experimental study

for production of exopolysaccharide (EPS) using Lactoba-

cillus plantarum.

The protease production values were varied depending

on the experimental conditions (Table 2). The FFNN pro-

gram was initially tested using Levenberg–Marquardt

backpropagation (Rumelhart et al. 1986), Bayesian regu-

larization backpropagation (MacKay 1992; Foresee and

Hagan 1997), Conjugate gradient backpropagation with

Powell–Beale restarts (Powell 1977) and scaled conjugate

gradient backpropagation (Moller 1993). Among all these,

Levenberg–Marquardt backpropagation showed a better

correlation between experimental (1560–6896 Units) and

simulated values (1566–6826 Units). Initially, weight and

bias values were taken randomly during network training

and were further optimized to minimize the error. The

final optimized weight and bias values were presented in

Table 3. The average error (average difference between

software predicted and experimental value) was observed

to be approx. 0Æ95% (Table 2).

At optimum correlated conditions, 13 neurons were

observed in the hidden layer suggesting ‘6-13-1’ FFNN

topology for this experiment (Fig. 2). Figure 3 depicted

the quality of the network for all data points of training

and testing. The simulated data showed the excellent cor-

relation with the observed data. The overall MAPE and

MSEs were observed to be 0Æ0048, 27Æ9, 0Æ001128 and

22Æ45 enzyme activity (U ml)1) for training and testing,

respectively. The smallest value of MSE suggested that the

FFNN possesses good approximation and generalization

characteristics for production of alkaline protease by this

bacterial strain. The goodness of the neural network pre-

diction was analysed by calculating the coefficient of R2,

which was found to be 0Æ9993. Figure 3 also shows that

the predictions were concentrated near the diagonal line

on the graph and almost no scattering points were found.

The FFNN output enzyme production data were fur-

ther optimized to get the best fermentation parameters

using GA. Because, in general, all algorithms give a local

optimized solution for the nonlinear problems, whereas

the GA gives a global solution. Table 4 depicts the best

Table 3 The weight and bias values of nonlinear function at optimum conditions

Weight on connection between input and hidden nodes

Bias I Bias Hx1 x2 x3 x4 x5 x6

1Æ8613 0Æ0712 )0Æ1622 )0Æ0509 )0Æ1703 1Æ6471 )4Æ6664 466Æ4825

2Æ7218 1Æ2877 6Æ0177 5Æ6588 0Æ7556 1Æ7617 )3Æ8032

)9Æ4915 )15Æ1343 12Æ9777 6Æ82 2Æ1501 )7Æ6765 )9Æ1134

)1Æ8613 )0Æ0712 0Æ1622 0Æ0509 0Æ1703 )1Æ6471 4Æ6664

3Æ3253 6Æ4304 5Æ8927 5Æ5338 0Æ7056 1Æ5218 )4Æ0408

4Æ058 6Æ4796 5Æ9829 0Æ1389 5Æ2076 1Æ4019 )3Æ8612

)0Æ833 )1Æ3201 7Æ2998 6Æ7578 6Æ1707 10Æ73 11Æ3593

)2Æ7218 )1Æ2877 )6Æ0177 )5Æ6588 )0Æ7556 )1Æ7617 3Æ8032

)7Æ9977 )5Æ8886 -0Æ7707 )12Æ241 7Æ1586 1Æ7331 )6Æ1434

)1Æ8613 )0Æ0712 0Æ1622 0Æ051 0Æ1704 )1Æ6471 4Æ6664

)1Æ6485 )2Æ6794 )8Æ9557 11Æ2918 7Æ8368 3Æ0848 )3Æ3074

1Æ8613 0Æ0712 -0Æ1622 )0Æ051 )0Æ1704 1Æ6471 )4Æ6664

)3Æ3034 )0Æ4969 )4Æ7561 )0Æ279 )3Æ4922 )16Æ0113 )13Æ7485

)1Æ8613 )0Æ0712 0Æ1622 0Æ051 0Æ1704 )1Æ6471 4Æ6664

Weight on connection between hidden and output nodes

)527Æ72 466Æ4774 527Æ7182 )466Æ477 527Æ6857 466Æ5878 527Æ6328 466Æ4774 )466Æ581 527Æ603 )466Æ567 )466Æ584 )466Æ735
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possible optimal conditions obtained after performing

various GA trails and only the best four conditions

among all were selected for further verification. From

the given experimental data, it could be seen that the

maximum protease yield was 6896 U ml)1 before and

increased to 8320 U ml)1 after the FFNN–GA hybrid

optimization indicating an increase of approximately

20%. These results were in accordance with Dutta et al.

(2004), where an increase of protease yield from 56 to

58Æ5 U ml)1 was reported by optimizing the pH, tempera-

ture and inoculum size with RSM and ANN models while

Desai et al. (2006) showed increased EPS yield with the

help of PB–ANN–GA methods.

Based on the above experimental results, surface con-

tours were generated to understand the impact of one

factor on the other using fitness function with the help

of MATLAB 7.0. Maximum production surfaces

observed are symmetric and flat near the optimum envi-

ronment (Fig. 4). The protease production varied with

variation of glucose and soya bean meal concentration

ratio in the fermentation medium (Fig. 4a). For exam-

ple, maximum enzyme production can be possible in

any given carbon source range of 0Æ3–2Æ5% (w ⁄ v) by

altering the nitrogen source (soya bean meal) concentra-

tion in the range of 0Æ25–2Æ5% (w ⁄ v) in the medium

(Fig. 4a) indicating the carbon and nitrogen source ratio

regulate the protease production in this bacterial strain.

Analysis of glucose interaction with incubation tempera-

ture (Fig. 4b) indicated that optimal protease production

could be possible in the incubation temperature range

of 28�–38�C with the supplementation of glucose in the

range of 0Æ5–1Æ8% (w ⁄ v) in fermentation medium. Fur-

ther increase in glucose concentration caused reduced

enzyme production (Fig. 4b). Similar trend was noticed

with volume of the medium (Fig. 4f). Selected glucose

concentration range also showed positive effect on alka-

line protease production at lower level of medium pH

(7–10 pH range; Fig. 4c). Comparative evaluation

between incubation temperature and inoculum level sug-

gested that 2–4% (ml) inoculum was effective for maxi-

mum enzyme production in the temperature range of

28�–37�C (Fig. 4h). Similar enzyme production trend

was observed with incubation temperature vs medium

volume (Fig. 4e). It was interesting to note that 33�C

was effective for optimum enzyme production with 2–

4% inoculum range and 50–100 ml of volume in 250-ml

conical flask (Fig. 4e,h).

Figure 5 represents the each fermentation factor contri-

bution on the overall alkaline protease production by this

B. circulans. Maximum impact was observed with glucose

Hidden layer

WeightH

biasH

biasI

Input layer

Output layer

Protease yield

Glucose

Soyabean Meal

pH

Temperature

Inoculum Size

Tan-sigmoid
transfer function

Linear
transfer function

Volume

WeightO

Figure 2 Feed-forward neural network architecture used for alkaline

protease production fermentation factors optimization.
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Figure 3 Correlation chart for experimental and FFNN predicted alka-

line protease production data. (s) Data points; (____) Best line fit;

(……) E = P.

Table 4 The best possible selected

fermentation conditions predicted and verified

enzyme yieldsS.No Glucose

Soya bean

meal Temperature pH Volume

Inoculum

size

GA-optimized

yield

Experimental

yield

1 1Æ12 1Æ21 34Æ5 9Æ5 85 4Æ5 8210 8228

2 1Æ2 1Æ21 34Æ58 9Æ65 86 5Æ1 8283 8320

3 1Æ22 1Æ12 34Æ6 9Æ66 86 5Æ3 8308 8240

4 1Æ23 1Æ08 34Æ7 9Æ66 87 5Æ8 8236 8256
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Figure 4 Effect of selected fermentation factors interactions on alkaline protease production by isolated Bacillus circulans. (a) Glucose vs Soya

bean meal (b) Glucose vs temperature (c) Glucose vs pH (d) Soya bean meal vs temperature (e) Temperature vs volume of the medium (f) Glucose

vs volume of the medium (g) Glucose vs inoculum level (h) Temperature vs inoculum level. [Note: In all the above figures, only two factors men-

tioned on x and y axes were varied and other four factors values were as follows: Glucose: 12Æ0 (g l)1, w ⁄ v), Soya bean meal: 12Æ1 (g l)1, w ⁄ v),

Temperature: 34Æ6�C, pH: 9Æ65, Volume: 86 ml per 250-ml flask (v ⁄ v) and Inoculum level: 51 (ml l)1, v ⁄ v)].
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(24%) followed by pH of the medium (19%) and the

least was noticed with incubation temperature (13%)

under FFNN–GA optimized environment.

Discussion

In this study, six different bacterial growth-associated fac-

tors were studied in terms of their individual influence

on alkaline protease production. Table 2 clearly indicates

the influence of above selected fermentation factors on

alkaline protease production by this microbial strain,

where minimum and maximum enzyme production was

noticed to be 1560 and 6900 U ml)1 depending on the

fermentation factors’ concentrations ⁄ values, respectively.

Validation of FFNN–GA results revealed an increase in

enzyme production from 3245 to 8320 denoting >2Æ5-fold

increase in enzyme yield with the medium (pH 9Æ65) con-

sisting of glucose 12Æ0 and soya bean meal 12Æ1 (g l)1) at

34Æ58�C using 86 ml of fermentation medium in 250-ml

conical flask with inoculum level of 5Æ1 ml (Table 4).

Such optimization mediated enzyme yield improvement

was also reported with bacterial and fungal strains (Prak-

asham et al. 2007a,b). These results suggest that fermenta-

tion parameters greatly influence the extracellular

production of proteases in this microbial strain and their

interaction plays an important role in the synthesis of this

enzyme because of their regulatory role in the induction

or repression of the enzyme production. A similar cata-

bolic control mechanism for extracellular enzyme produc-

tion has been described for Pseudomonas maltophilia

(Boethling 1975), Yersinia ruckeri (Secades and Guijarro

1999) and Pseudoalteromonas sp. SM9913 (Li et al. 2004).

The enzyme production was regulated by carbon and

nitrogen sources ratio. An effective protease production

could be achieved by varying one of these two sources by

keeping the other nutrient concentration constant

(Fig. 4). One percent glucose supplementation was effec-

tive for optimum protease production in the studied soya

bean meal concentration range of 0Æ25–2Æ5% (g, w ⁄ v), at

a temperature range of 28–39�C, at varied medium pH of

8–12, at different inoculum levels (1Æ0–5Æ0% (ml, v ⁄ v)

and in different volumes (25–125 ml in 250-ml conical

flask; Fig. 4) indicating among all the factors, glucose had

the maximum influence followed by pH of the medium

(Fig. 5) on bacterial metabolism in alkaline protease pro-

duction. Though the influence of increased inoculum on

enhanced enzyme production was well reported in the lit-

erature (Kumar and Takagi 1999; Prakasham et al. 2006);

however, soya bean meal concentration regulated produc-

tivity of protease as observed in this study was not docu-

mented.

Interactive influence of selected fermentation factors

was analysed using three-dimensional surface plots simu-

lated by network output. Each contour curve represents

an infinite number of combinations of two test variables

with the other maintained at their respective optimized

levels. These surface contours revealed symmetric and flat

surface near the optimum environment (Fig. 4) unlike

other RSM contours reported in the literature (Himabin-

du et al. 2006) suggesting that the optimum protease pro-

duction by this microbial strain could be achieved in

wide concentration ranges. The above data further sup-

ported that interaction among fermentation parameters

was one of the important aspects in achieving optimum

productivity of any metabolite and further improvement

in enzyme production is possible with regulation of inter-

active influences between selected fermentation para-

meters. This data helps in simulation of economic

fermentation medium especially, with respect to selection

of carbon and nitrogen source concentrations in scale-up

studies to produce maximum alkaline protease produc-

tion using this B. circulans.

Overall, alkaline protease production by B. circulans

was optimized using hybrid of FFNN–GA, selecting the

physical parameters and medium composition. The FFNN

model was constructed on the basis of data from 34 fer-

mentation experiments. This FFNN model showed excel-

lent prediction accuracy and generalization ability. The

alkaline protease yield obtained in the validation experi-

ments was 8320 Units, which were in close agreement

with the GA, optimized yield of 8283 Units. It can, thus,

be seen that the usage of FFNN–GA hybrid methodology

has resulted in a significant improvement in the alkaline

protease yield (>2Æ5-fold). The approach presented in

this paper is sufficiently general and thus can also be

Inoculum size
16%

Glucose
24%

Soyabean meal
14%

Temperature
13%

pH
19%

Volume
14%

Figure 5 Contribution of each fermentation factor on alkaline prote-

ase production by Bacillus circulans.
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employed for modelling and optimization of other bio-

processes.
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