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H I G H L I G H T S

• Model ensembles predict impacts of
changing grassland to arable/bioenergy.

• Changing to arable increases production
but C and N losses are likely to increase.

• Our framework provides a robust means
for combining uncertainty at different
scales.

• Ensembles allow greater combinations of
variables and processes to be explored.

• Ensemble modelling can identify weak-
nesses in system understanding.
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Agriculture is challenged to produce healthy food and to contribute to cleaner energywhilst mitigating climate change
and protecting ecosystems. To achieve this, policy-driven scenarios need to be evaluated with available data and
models to explore trade-offs with robust accounting for the uncertainty in predictions. We developed a novel model
ensemble using four complementary state-of-the-art agroecosystems models to explore the impacts of land manage-
ment change. The ensemble was used to simulate key agricultural and environmental outputs under various scenarios
for the upper River Taw observatory, UK. Scenarios assumed (i) reducing livestock production whilst simultaneously
increasing the area of arable where it is feasible to cultivate (PG2A), (ii) reducing livestock production whilst simulta-
neously increasing bioenergy production in areas of the catchment that are amenable to growing bioenergy crops
(PG2BE) and (iii) increasing both arable and bioenergy production (PG2A + BE). Our ensemble approach combined
model uncertainty using the tower property of expectation and the law of total variance. Results show considerable
uncertainty for predicted nutrient losses with different models partitioning the uncertainty into different pathways.
Bioenergy crops were predicted to produce greatest yields from Miscanthus in lowland and from SRC-willow (cv.
Endurance) in uplands. Each choice of management is associated with trade-offs; e.g. PG2A results in a significant in-
crease of edible calories (6736Mcal ha−1) but reduced soil C (−4.32 t C ha−1).Model ensembles in the agroecosystem
context are difficult to implement due to challenges of model availability and input and output alignment. Despite
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these challenges, we show that ensemble modelling is a powerful approach for applications such as ours, offering ben-
efits such as capturing structural as well as data uncertainty and allowing greater combinations of variables to be ex-
plored. Furthermore, the ensemble provides a robust means for combining uncertainty at different scales and enables
us to identify weaknesses in system understanding.

1. Introduction

Over the last century, agriculture has donemuch to keep upwith the de-
mands of a rapidly growing population; not, however, without detrimental
impacts on the environment (Foresight, 2011). The challenges associated
with increasing the production of healthy and accessible diets sustainably
are captured neatly within the Sustainable Development Goals (SDGs) pro-
posed by the United Nations (UNGeneral Assembly, 2015). Arguably, all of
the goals have links to agricultural production but of particular relevance
are those related to food security, health and wellbeing, sustainable energy
production, sustainable food production and consumption, mitigation of
climate change and the protection of terrestrial ecosystems (Goals 2, 3, 7,
12, 13, 15, respectively). The polarity of different SDGs, e.g. mitigating cli-
mate change and biodiversity loss versus the defeat of hunger (Nilsson
et al., 2016; Scharlemann et al., 2020), raises a series of fundamental ques-
tions about how best to capitalize on synergies and resolve potential con-
flicts between multiple societal needs and policy objectives.

In 2018, we held a series of combined expert and stakeholder work-
shops to “vision” the future of agriculture within the UK with the aim of
making it more sustainable in the face of the needs of a growing population
(Aarhus University, 2020). One group considered livestock systems in the
UK and came up with the somewhat extreme plan that livestock should
only be farmed where it was not possible to cultivate arable crops sustain-
ably. Our experts perceived that this would reduce the emissions associated
with agriculture whilst still maintaining or increasing the production of
food in terms of calories per ha. To achieve goals associated with sustain-
able energy production, further action is needed, and undoubtedly one of
the largest contributions agricultural land can make to sustainable energy
production is the introduction of perennial bioenergy crops (Agostini
et al., 2015; Gregory et al., 2018).We are thus facedwith complex and chal-
lenging decisions on how agricultural land should be used to support the
ambitions of the SDGs.

Decisionmaking can be informed by simulationmodels. However, to be
useful and explicit, models need to capture and acknowledge uncertainty in
the whole system to avoid unintended biases or misleading results
(Willcock et al., 2020). This is particularly true in the case of natural sys-
tems, where the complex processes that underpin dynamics and responses
are not fully understood and whereby contrasting model assumptions can
lead to divergent results. In climatemodelling, it is commonplace to use en-
sembles of models to address the challenges related to predicting complex
systems (Suarez-Gutierrez et al., 2021). These ensembles are produced by
running simulations with more than one model, model class and/or set of
model parameters and then combining the outputs. The advantage being
that the conclusions are then not dependent on a single set of assumptions
and parameters, hence capturing better the uncertainty within the system
(Willcock et al., 2020). Combining outputs from several models has im-
proved climate predictions by reducing noise or unforced variability that
may be present in each of the input models (Bradley et al., 2017; Taylor
et al., 2012; Wallach et al., 2016). It is accepted that biases exist in individ-
ual models and that some may be more appropriate for use in different
geoclimatic settings (where they were developed for example) or different
circumstances depending on their specific strengths. Nonetheless, there is
considerable value in deriving an ensemble of results to help estimate the
uncertainty in predictions of future responses and this variability in out-
comes has been used as a kind of fingerprinting technique to help attribute
cause to effect (e.g. Gedney et al., 2006). Wallach et al. (2016) describe the
application of the ensemble approach to crop modelling, highlighting both
improved predictions (see also Yin et al., 2017) and closer collaboration
within the community as key advantages.

Although climate and climate change scientists have made much use of
these techniques (e.g. Aryal and Zhu, 2020; Virkkala et al., 2021; Zhu et al.,
2013), and increasingly the method has gained attention with yield predic-
tion (Kafatos et al., 2017; Martre et al., 2015; Ruane et al., 2016; Wallach
et al., 2016) much less work has been reported with ensembles in other
areas of environmental science such as the environmental footprints ofmod-
ern intensive farming. Willcock et al. (2020) provide one notable example
which investigated an ensemble approach in relation to ecosystem services
provision in sub-Saharan Africa. They conclude that their ensemble was
more accurate than individual model predictions, and that, importantly,
the variation with the ensemble not only provides a measure of precision
but is a proxy for accuracy. Other examples relevant to agroecosystems
tend to focus on a single outcome. For example, Gaillard et al. (2018) used
an ensemble of three process-basedmodels to study nitrous oxide emissions
from agriculture, and Yin et al. (2017) used ensembles to predict grain nitro-
gen. Ehrhardt et al. (2018) go further with ensembles by considering joint
predictions of productivity and emissions. Apart from these studies, ensem-
ble modelling within the context of agroecosystems remains limited, occa-
sional comparisons have been made between models (McVoy et al., 1995;
Riggers et al., 2019; Smith et al., 1997) but, these have stopped short of
combining outputs of agroecosystemmodels to develop a robust prediction
system. There are several reasons why ensemble modelling is particularly
challenging with respect to agroecosystems. These include the availability
of sufficient data and models to form an ensemble, the need to align
model input and output variables to build a model ensemble effectively,
and the challenges associated with coercing models to a common temporal
or spatial scale (Gneiting and Raftery, 2005).

Against the above background and ongoing scientific gaps, we devel-
oped a multi-model ensemble approach by combining the outputs of four
agroecosystems models within a hierarchical statistical framework and
used this to explore the likely impacts of land management change onmul-
tiple productivity and environmental objectives. Each model is different
from the others both in terms of the processes considered and how these
are captured. Each model has its own area of specialisation and no one
model simulated all the productivity and environmental objectives we con-
sidered. The benefits of the ensemble approach in this context are therefore
two-fold: (1) we can capture a greater range of model outputs than if we
were to use just a single model, and (2) we can quantify bothwithin and be-
tween model uncertainty.

To ensure that our results were realistic we based our simulations on an
experimental observatory catchment (41.3 km2) for which we have a large
amount of data on the current state of soil, water and nutrient flows and
survey information on management practices across farming sectors. The
observatory is located in the south-west of England in an area where farm-
ing is largely characterised as amixture of livestock and arable. The specific
scenarios modelled were: (a) “business as usual” (BAU), representing cur-
rent land cover and associated farm management; (b) producing meat in
areas only where it is not possible to grow arable crops (meat-livestock re-
stricted to moorland areas and permanent grass converted to arable where
possible) (PG2A), and (c) reducing meat production whilst simultaneously
increasing bioenergy production in areas of the catchment that are amena-
ble to growingMiscanthus or short rotation coppice (PG2BE). Further, these
scenarios, were viewed on a continuum, whereby: (d) increasing, both ara-
ble and bioenergy production, whilst restricting meat production to upland
areas (PG2A + BE). Through this scenario analysis we aim to demon-
strate the utility of the ensemble as an approach for agroecosystems
modelling to capture uncertainty, to highlight weakness in systems un-
derstanding, and to explore the trade-offs incurred from different land
management options.
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2. Methodology

2.1. Study catchment

Our simulated landscapewas based on the upper River Taw observatory
(Granger et al., 2021). The River Taw catchment is located in Devon, South
West England, and in its entirety, drains an area of 914 km2 (Environment
Agency, 2020; Granger et al., 2017). The headwaters rise in the south on
the Dartmoor granite plateau ca. 550 m above sea level. The river then
flows northwards 72 km to the Taw/Torridge estuary, and the Bristol Chan-
nel. Our study focusses on part of the upper River Taw catchment (Fig. 1).
The area is approximately 15 km in length stretching from the source of
the river to just south of the town of North Tawton. Aside from the unim-
proved semi-natural grass in the uplands (>200 to 300 m asl) below the
heathlands of Dartmoor, the land use is predominantly one of improved ag-
ricultural grassland in the lowlands (<200 m asl). This supports beef, dairy
and sheep production. Cereals and fodder maize are also produced, partic-
ularly on the sandier, free-draining soils. Human settlement consists of
scattered farmsteads and small rural towns and villages.

For our modelling, we partitioned the study catchment into 44 cells of
size 1 km×1 km (Fig. 1). Grid cells 1–4 were excluded from themodelling
framework as they are organic soils and assumed to be bog. We determined
the dominant soil series for each cell using the NATMAP Vector data prod-
uct from the National Soil Resources Institute© Cranfield University (NSRI)
(see Table S1). Key soil properties (e.g. pH, organic C) needed for the
models were extracted from NATMAP. A total of seven different soil types
are present across the modelled catchment (Table S1). The topography of
each cell (elevation and slope) was derived from the Integrated Hydrologi-
cal Digital Terrain Model (CEH, 2017). Each cell in the catchment area was
allocated to one of three zones: high rainfall moorland (grid cells 1–8), low
rainfall moorland (rough grassland in the uplands, grid cells 9–18, 20) or
mixed farming in the lowlands known as a rural land register area, (RLR,
grid cells 19, 21–44) (see Table S1), which is agricultural land on which
grants and subsidies can be claimed. For the time period simulated, average

daily temperatures ranged between 9 and 10.3 °C for RLR, 7.7 and 9.4 °C for
low rainfall moorland and 7.6 to 8.2 °C for high rainfall moorland. The
mean number of ground frost days per year ranged 87.1–90.5 for RLR,
87.5–97.1 for low rainfall moorland and 92.5–96.3 for high rainfall moor-
land (see Table S2). To determine the BAU land cover in each 1 km ×
1 km grid cell (i.e., the proportion of land allocated to non-agriculture, ar-
able, improved grassland, rough grazing and woodland) we used the Land
Cover Map 2015 (Rowland et al., 2017) (see Table S3). Each individual
model used land cover information in a slightly different way (see details
below).

Arable cropping was derived from the Crop Map for England (CROME,
2019) (S.I. Tables S4 and S5). Our models run at various spatial and tempo-
ral scales and this is reflected in the weather variables that are used by each
(see descriptions below).

2.2. Models

The ensemble comprised: (i) the AGRicultural Environment MOdelling
and Systems Analysis (AGREMOSA) modelling framework, incorporating
arable, grassland and biomass crops (Cerasuolo et al., 2016; Qi et al.,
2017; Richter et al., 2006); (ii) the Rothamsted Landscape Model (RLM)
(Coleman et al., 2017, 2021); (iii) the Soil-Plant-Atmosphere Continuum
SYStem Model (SPACSYS) (Wu et al., 2007, 2015; Wu et al., 2019), and
(iv) the Catchment Systems Model (CSM) (Zhang et al., 2022). These
models were selected because they had been validated for a wide range of
conditions, including those similar to the study catchment, and we had
full access to the code and their process description. Additionally and im-
portantly, each model is different from the others, both, in terms of the pro-
cesses considered and how these are modelled (including variation in the
temporal and spatial scale of outputs). For example, the AGREMOSA frame-
work focussesmore onwater-limited production and associated biophysical
limitations, whilst RLM, SPACSYS and CSM include nutrient dynamics.
SPACSYS and AGREMOSA were developed for field-scale prediction whilst
RLM is intended to describe the dynamics of multiple linkedfields and CSM

Fig. 1. (a) The location of the upper River Taw catchment in Devon, UK; (b) the location of farms within the upper River Taw catchment, and (c) the land cover allocation of
each 1 km × 1 km cell. Acid grassland, heather grassland and calcareous grassland are allocated to “rough grazing”.
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predicts process outputs at farm to catchment scale. Eachmodel is described
in brief below.

2.2.1. AGREMOSA (AGRicultural Environment MOdelling and Systems
Analysis)

AGREMOSA is a modelling and optimization framework of process-
based models simulating water-limited production of arable and perennial
crops, which include grassland and biomass crops for bioenergy. It is based
on the STAMINAmodelling framework (Richter et al., 2006), which covers
a wide range of arable crops, following the principles of SUCROS (van Laar
et al., 1992) and was calibrated for wheat (Richter et al., 2010). It was suc-
cessively expanded implementing the sink-source interaction approach of
LINGRA (Hoglind et al., 2001; Schapendonk et al., 1998) to simulate
growth of grasslands and perennial biomass crops like tall grasses (Ni
et al., 2019; Triana et al., 2011) and short-rotation coppice (SRC)-willow
(Cerasuolo et al., 2016). All models in the AGREMOSA modelling frame-
work assume that nutrients are well managed and therefore are not limit-
ing. AGREMOSA simulates the water and energy balance at an hourly and
plant phenology and growth at a daily time-step.

The LUCASS (Light Use and Carbon Assimilation in Salix Species);
(Cerasuolo et al., 2016) is a process-based growthmodel for SRC-willow in-
cluded in the AGREMOSA framework. It simulates development and
growth of Salix spp. at the stand scale, considering phenological and mor-
phological plant development (sink formation), light interception, photo-
synthesis, and respiration (source formation). The organs of the above
ground biomass (leaves, branches, and stems) and below ground biomass
(stool and all roots) are considered as sinks, and the carbon allocation to
these sinks is phenologically controlled and balanced following the princi-
ples of the sink-source interaction model proposed for grass (Schapendonk
et al., 1998). The LUCASS model was calibrated in two locations in the UK
with and without water stress using carbon partitioning data of a 2-year ro-
tation following the year of establishment. It was validated for two succes-
sive 2-year rotations for stem, leaves and stool development and using final
harvest of 3-year rotations at Rothamsted Research and Long Ashton
(South West England) for ‘Endurance’ and ‘Tora’ cultivars by Richard
et al. (2019). The LINGRAmodel was calibrated and validated using gener-
alized phenology, photosynthesis and carbon allocation rates to account for
the effects of senescence in extensive and semi-natural grasslands in com-
parison to permanent and temporary grassland using data from across
Great Britain (Qi et al., 2017).

The weather data used to run the scenarios were derived from the met
station located at the North Wyke Farm Platform. The arable crops simu-
lated for the scenarios described in this paper were winter wheat, spring
and winter barley (see Table S6a for management dates). Three types of
grassland management systems were simulated: temporary grassland
within the arable rotation (Table S6a), permanent grassland and rough
grazing. Temporary grassland consists of frequently resown single produc-
tive species e.g. perennial ryegrasses (Lolium perenne), assuming an annual
N application of 300 kg N ha−1. Permanent grasslands consist of a mixture
of sown and indigenous grasses and legumes of intermediate productivity
receiving an annual N application of 150 kg N ha−1. Rough grazing is
low productivity semi-natural grassland containing various herbaceous spe-
cies receiving no synthetic N inputs (Defra, 2010b; Qi et al., 2017).
AGREMOSA implicitly accounts for nutrient effects on sink and source pa-
rameters (Qi et al., 2017).

As AGREMOSA does not explicitly simulate livestock to estimate bio-
mass we assume the grass is cut. In the temporary grassland system, grass
cuts are assumed to be three times a year (30th May, 20th July and 30th
September) whilst in permanent grassland and rough grazing systems, cut-
ting occurs twice a year (21st June and 30th October). Overall, combining
seven soil types with three weather zones defined nine distinct soil ×
weather combinations for AGREMOSA. These were: (i) grid cell 5, (ii)
grid cells 6–8, (iii) grid cells 9–18, (iv) grid cell 19, (v) grid cell 20, (vi)
grid cell 21, (vii) grid cells 22–27, 29–30, 33, (viii) grid cells 28, 32,
34–44 and (ix) grid cell 31. We assumed that the high rainfall moorland
cells (grid cells 5–8) are unsuitable for bioenergy crops and only the

lowlands (RLR zone; grid cells 19, 21–44) were suitable for arable and tem-
porary grassland production (see also Table S3).

2.2.2. The Catchment Systems Model
The CSM (Zhang et al., 2022) simulates the environmental footprint of

farm systems within a defined catchment based on the Robust Farm Types
(Defra, 2010a) present, and in so doing produces farm and landscape
scale outputs. The framework combines modules for the interaction be-
tween key environmental factors and farm systems, scaling from farm to
landscape, non-agricultural pollutant sources, factors generating temporal
mismatch for pollution mitigation impacts at farm and landscape scale
and life cycle assessment mid-point impacts. CSM integrates a number of
well-established process-based models and data layers used extensively for
policy support in the UK. Losses of phosphorus and sediment to water are
generated using PSYCHIC (Phosphorus and Sediment Yield CHaracterisa-
tion In Catchments; (Collins and Anthony, 2008; Collins et al., 2007,
2008, 2009, 2021; Davison et al., 2008; Stroemqvist et al., 2008). Nitrate
losses to water are simulated using NEAP-N (Lord and Anthony, 2000;
Wang et al., 2016). Soil carbon is generated as a stock (to 1-mdepth) assum-
ing soils are in equilibrium using an IPCC Tier 1 methodology (Eggleston
et al., 2006) augmentedwith information on the impact of major farmman-
agement practices on the stocks assigned to different land cover types. Ni-
trous oxide emissions use the IPCC methodology for losses from fertilizers,
excreta and managed manure. Ammonia emissions use the tools reported
by (Chadwick et al., 2005; Webb and Misselbrook, 2004). Methane losses
are generated using (Eggleston et al., 2006). Farm production is not
modelled but instead uses publicly available information on regional yields
supplemented by bespoke farm surveys in the study catchment. This infor-
mation is used in the estimation of gross margins on the basis of its moneti-
zation.

The CSM uses annual mean weather from HadUK at the 1 km × 1 km
spatial scale (Met Office, 2018). For the study catchment, farm types com-
prised cereal, general cropping, less favoured area (LFA) grazing and
mixed. Farm type is based on the Robust Farm Type typology (Defra,
2010a) which is estimated using the dominant contribution to standard
outputs. Fertilizer application rates for cereal, dairy, general cropping,
mixed and other livestock (lowland grazing livestock and LFA grazing)
farm systems were extracted from the British Survey of Fertiliser Practice
(Defra, 2019) and supplemented by some commercial farm business sur-
veys in the study catchment. Manure dressing data available in the BSFP
suggested no significant change in manure spreading practices for spring
crops, autumn crops or grassland between 2013 and 2017. Accordingly,
themanure allocation scheme of (Zhang et al., 2017)was applied. Livestock
types, counts and ages for the RLR area were sourced at holding level using
the June Agriculture Survey (Defra, 2016) supplemented by more recent
farm surveys (see Table S7). Livestock information for the moorland areas
used information in (Comber et al., 2008). Monthly livestock activity is ap-
portioned between percentage time grazing, housed and in farmyards for
each type and age category of animal. Farm system economics include the
annual capital (amortised as needed), fixed and operational costs of farm
management and operations, including best management practices taken
up as a result of regulation, incentivization and advice, as well as the mon-
etized value of farm production (e.g. grain, milk, wool, eggs, carcasses).

2.2.3. The Rothamsted Landscape Model
The Rothamsted Landscape Model (RLM); (Coleman et al., 2017) is a

process-based model that simulates soil processes (including soil organic
matter, soil nutrient and water dynamics), livestock production, crop
growth and yields (wheat, barley, and oats, oilseed rape, beans, sugar
beet, forage maize, potato, onions and grass). The model components are
based on well-established models such as RothC (Coleman and Jenkinson,
2014), LINTUL (Wolf, 2012), and Century (Parton et al., 1994) as well as
many new routines such as an updated root model, and an improved
water model, as described in Coleman et al. (2017). The model was cali-
brated and validated using data from UK arable and grassland systems as
described in Coleman et al. (2017).
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TheRLMruns on a daily time step. Separateweather data setswere used
for each of the three zones (high rainfall moorland, low rainfall moorland
and RLR). These data were based on the weather for the zone centroid.
The model used the soil and topographic variables defined above. As
slope is accounted for in the RLM each grid cell is assumed unique. Live-
stock numbers for each cell were derived from the farm level data used
by CSM and were simulated as a homogenous distribution across each of
the RLR, high and low rainfall moorland zones, giving an estimated stock-
ing density of each livestock type per cell. Lambs were assumed to be fin-
ished at 40 and 38 kg in the RLR and moorland respectively and beef
were assumed to have a finishing weight of 517.65 kg (Nix, 2020). The
RLM contains a novel crop rotations generator which, based on the crops
grown in a given area (in this case the Taw catchment between 2016 and
2019, see Tables S4 and S5) and certain agronomic rules, stochastically
generates realistic crop sequences for that area (Sharp et al., 2021). In
this way realistic rotations of crop production for a particular area can be
simulated. The timing and type of fertilizer is also important in RLM and
N was assumed to be applied as ammonium nitrate and P as Triple Super-
phosphate with the split across time based on RB209 (Defra, 2010b).
Table S6b summarises mean fertilizer N and P amounts and timings, plus
sowing and harvest dates for the RLM.

2.2.4. SPACSYS (Soil-Plant-Atmosphere Continuum SYStem)
The SPACSYS model (Liu et al., 2013; Wu et al., 2007, 2015; Wu et al.,

2019 see also S.I.) is a field scale, weather-driven dynamic simulation
model. It includes components for plant growth and development, nitrogen
cycling, carbon cycling, phosphorus cycling, soil water redistribution and
heat-energy transformation. The soil water component includes representa-
tion ofwaterflow to and throughfield drains aswell as downwards through
the soil layers. A microbial-based module on nitrification-denitrification
was included to estimate nitrogenous gas emissions from soils (Wu et al.,
2015). Recently, a component to describe livestock growth was added
(Wu et al., 2022). More details about the model are presented in S.I. The
SPACSYS model can run on a range of time steps but uses a daily time-
step in this study (Wu et al., 2021). Parameters have been calibrated and
validated near the study site as well as other sites with different climate
and soil conditions for grazing livestock (e.g. Carswell et al., 2019; Wu
et al., 2016), silage (e.g. Sándor et al., 2020) and cereal and legume crops
(e.g. Bingham andWu, 2011; Liang et al., 2019; Liu et al., 2013). A sensitiv-
ity analysis for the model was conducted with respect to changes in 61
input parameters and their influence on 27 output variables (Shan et al.,
2021).

Similar to RLM, separate weather data sets for each of the three zones
were used by SPACSYS. SPACSYS assumed a homogeneous distribution of
livestock across each of the RLR, low and high rainfall moorland zones.
For the livestock categories, the ages at the start of a simulation were set
from the data provided for use in CSM and initial liveweights were esti-
mated based on their age (HowMonk, 2022) (see S.I Table S8). It was as-
sumed that ewes give birth in late March each year. The average lamb
birth percentages are 118, 114 and 137 for RLR, high and low rainfall
moorland zones, respectively, based on the provided ewe and lamb num-
bers. Lambs are assumed to wean at 105 days after birth and finish when
they reach 45 kg/head. When beef cattle and heifers reach 550 kg/head,
they are assumed to be finished. Inputs and outputs of all components are
organised as a database in Microsoft® SQL Server. Arable cropping was de-
rived from the CROME (see Fig.1 and Tables S4 and S5). Table S6c summa-
rises fertilizer N and P amounts and timings, plus sowing and harvest dates
for SPACSYS.

2.3. Ensemble framework

Given the varying temporal and spatial resolutions of each of the com-
ponent models, our ensemble framework Combines Hierarchical Information
in a Probabilistic manner. Table 1 details the different outputs produced by
each model in this study (see S.I. Fig. S1 for details on how each model
feeds into the different productivity and environmental metrics). Each

model may define outputs slightly differently due to the contrasting
model frameworks. To achieve a level of consistency, all outputs were con-
verted to the same units and in the case of crop yield, converted to edible
kcal ha−1 year−1 accounting for expected field-gate and processing losses.
Similarly, both livestock and bioenergy systems were also converted into
calorific value (kcal ha−1 year−1) (S.I. Tables S9 and S10). Specifically
the ensembled variables are: edible calories including cereals, dairy and
livestock outputs (kcal ha−1), energy crop biomass (kg DM ha−1), soil car-
bon (t C ha−1), carbon emissions (t C ha−1) and nutrient losses as N (kg N
ha−1) and P (kg P ha−1).We note that although grass biomass is simulated,
we do not explicitly consider this in the ensemble but rather the impact on
livestock production. Similarly, predicted differences in gross margin be-
tween BAU and PG2A are also reported but because this estimate is from
only one model (CSM) it is not considered in the ensemble.

There are several alternative means of combining individual model out-
puts into an ensemble (Wallach et al., 2016;Willcock et al., 2020).Methods
of ranking and weighting are described in Knutti et al. (2010). Bayesian
model averaging is a commonly used statistical method (Aryal and Zhu,
2020; Wallach et al., 2016; Zhu et al., 2013). In this latter approach one
starts by assigning weights a priori for each model (often equal weights),
and then update the weights based on model agreement with observations.
Here, because we have the additional complexity of multiple outputs equal
weights were used throughout (committee averaging).

Individual model outputs are of interest at the scale at which they are
produced. However, in order to combine sources of model uncertainty, out-
puts are required at a common scale whilst properly accounting for the dif-
ferent sources of variability. This is done using the tower property of
expectation and the law of total variance (Eqs. (1) and (2)):

E Yð Þ ¼ E E YjXð Þð Þ (1)

Var Yð Þ ¼ E Var Y jXð Þð Þ þ Var E Y jXð Þð Þ (2)

Let Xrtl
ψ be the annual total for a particular output, from model x for

landuseψ, at location l, in year t, for simulation r. Annual totals are calculated
over the hydrological year (1st October–30th September). Then, Xtl

ψ= E(Xrtl
ψ |

R= r) is the average output at location l, in year t under land use ψ and

Table 1
Outputs produced by each of the four agroecosystems models in this study.

Output variables Units Models

RLM SPACSYS AGREMOSA CSM

Production
Crop yield Edible kcal ha−1 X X X
Milk yield Edible kcal ha−1 X
Livestock (beef and lamb)
for meat

Edible kcal ha−1 X X

Grass biomass kg ha−1 X
Energy crop biomass kg ha−1 X X
Gross margin £ ha−1 X

Carbon
Soil carbon (0–1 m depth) t C ha−1 X X X
Soil CO2 release t C ha−1 X X
Animal CO2 release t C ha−1 X
Soil CH4 emissions t C ha−1 X X
Animal CH4 emissions t C ha−1 X X

Nutrient losses
NO3 – leaching, runoff
and drainsa

kg N ha−1 X X X

NH4 – leaching, runoff kg N ha−1 X X
N2O – emissions kg N ha−1 X X X
N2 – emissions kg N ha−1 X X
NO – emissions kg N ha−1 X
NH3 – emissions kg N ha−1 X X
Pb – leaching, runoff and
drainsa

kg P ha−1 X Xb

a RLM and SPACSYS partition pathways into leaching and runoff. CSM partitions
pathways into leaching, runoff and preferential flow via field drains.

b CSM partitions P separately into dissolved and particulate P fractions.
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σtl, ψ2 = Var(Xrtl
ψ |R = r) is the associated variance due to independent

simulations.
Thus, Xl

ψ = E(Xtl
ψ|T= t) is the average output at location l, over the 14-

year simulation period (2004–2018) under each land use ψ. The associated
variance is given by,

σ2l,ψ ¼ Var Xψ
tl jT ¼ t

� � ¼ Var E Xψ
rtljR ¼ r

� �jT ¼ t
� �

þ E Var Xψ
rtljR ¼ r

� �jT ¼ t
� �

, (3)

and captures the temporal uncertainty whilst propagating through the un-
certainty due to independent simulations.

Each grid cell is assumed to be partitioned into different land uses that
will vary under the scenarios defined below. Consequently, the expected
output per grid cell is given by a weighted average:

Xl ¼ ∑
ψ
ωψX

ψ
l (4)

where ωψ is the proportion of land in location l that is in land use ψ. The as-
sociated variance is given by:

σ2l ¼ Var XtljT ¼ tð Þ ¼ ∑
ψ
ωψ

2Var Xψ
tl jT ¼ t

� �
(5)

Finally, to get the expected total output for the entire study catchment
for model x, we have X = ∑lXl with associated variance Var(X) = ∑lVar
(Xl) assuming independence of locations.

To investigate trade-offs, an ensembled output was calculated by taking
the catchment level outputs for eachmodel; via the process described above
for RLM, SPACSYS and AGREMOSA and by summing the farm scale outputs
predicted by CSM and combining these via the tower property of expecta-
tion and the law of total variance (Eqs. (1) and (2)). This ensembled output
was used to explore the BAU and PG2A scenarios (Section 3.2).

2.4. Scenarios

AGREMOSA, RLM and SPACSYS were run for each of the 40 non-bog
1 km× 1 km grid cells shown in Fig. 1. For each cell, we simulated all fea-
sible agricultural land classes (arable, improved grassland, rough grazing
and bioenergy) and combined the outputs from these in a weighted sum
to generate the estimate from each cell under each scenario.

Simulating a change in land cover and associated management from
permanent grassland to arable (PG2A), was achieved by altering the
weighted averages used in BAU. Explicitly, for all grid cells in themoorland,
permanent grassland proportionswere kept as per BAU acknowledging that
this would be an unsuitable environment for arable cultivation. The grid
cells within the RLR were gradually reweighted in intervals of 10% of the
original permanent grassland proportion in favour of arable cultivation
and disfavouring livestock systems. The overall area dedicated to agricul-
tural land use was kept constant within each grid cell (Fig. 2).

In addition to expanding arable systems,we also considered scenarios to
include cultivation of perennial crops for the bio-economy (PG2BE). These
include growing short rotation coppice willow and growing Miscanthus.
This approach followed that of PG2A where land use weights were altered
to reflect an increasing contribution of bioenergy crops. Explicitly, for all
grid cells in the high rainfall moorland, permanent grassland proportions
were kept as per BAU acknowledging that this would be an unsuitable en-
vironment for bioenergy cultivation. The grid cells within the low rainfall
moorland and RLR were gradually reweighted in favour of bioenergy culti-
vation and disfavouring livestock systems. Preferentially, rough grazing
areas were converted first before conversion of the permanent grassland.
The overall area dedicated to agricultural land usewas kept constant within
each grid cell (Fig. 2).

Thefinal scenario (PG2A+BE) explored conversion of grassland systems
to both arable and bioenergy production. This conversion assumed improved
grazing in the lowlands was preferentially converted to arable and rough
grazing in the uplands was preferentially converted to bioenergy. Bioenergy

crops were also allowed to grow in the low rainfall moorland replacing
rough grazing. As per the previous two scenarios, the overall area dedicated
to agricultural land usewas kept constantwithin each grid cell (Fig. 2). As de-
scribed above, each grid cell was converted proportionally according to the
amount of productive grassland in each cell under BAU.

For CSM, simulating a change in management from permanent grass-
land to arable (PG2A), was achieved by converting grazing farm types to ar-
able. Only LFA grazing model farms in the RLR area were considered for
conversion to cereals. For converted farms, the same proportion of grass-
land (permanent grass and improved grass) as found on existing cereal
farms was extrapolated to the farms undergoing conversion with similar
numbers of sheep and lambs per grassland area included. The insignificant
numbers of poultry birds on existing cereal farms were not included in the
scenario. For converted farms, a similar proportion of crop types and areas
to those on existing cereal farms were introduced to those farms being con-
verted, with fertilizer application rates and manure spreading practices
changed to represent those on current cereal farms in the upper River
Taw study area. No bioenergy crops are currently included in CSM.

Scenarios were run on comparable time scales using weather data from
2004 to 2018 and were set to represent the “near present”. For RLM,
SPACSYS and AGREMOSA outputs were aggregated to an annual time
scale for each cell and for CSM, which runs on longer time frames, a single
annual average across the catchment was produced for each output.

3. Results

3.1. Scenario components

3.1.1. Arable production
The simulated yields for winter wheat, winter and spring barley, field

beans, oilseed rape and maize were similar across the three process-based
models that simulated these outputs and across grid cells (Fig. 3). All cells
were in the RLR and so ran over the same weather scenarios, but soil type
varied between grid cells (Table S1). Although there was no substantial dif-
ference across the grid cells, grid cell 31 did stand out as somewhat differ-
ent from the others, producing slightly larger yields in the AGREMOSA
model and smaller within crop variation in SPACSYS. The cell is associated
with the Neath soil series which is characterised as being slightly less heavy
in texture compared with the other RLR grid cells (Table S1).

In terms of edible calories, the RLM consistently predicts a greater aver-
age level of production across the grid cells compared with AGREMOSA
and SPACSYS (Fig. 4); however, the variation associated with this model
is also far greater. This is because the RLM generates crop sequences sto-
chastically with the constraint that the steady state accords with the

Fig. 2. Illustration of how the land use changes under different scenarios for a single
grid cell assumed to have 100% of productive land in permanent grassland under
BAU.
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observed crop proportions. Thus, production varies substantially compared
with the other twomodels which usefixed proportions. The greater average
production is driven by a greater diversity in cropping with higher yielding
crops.

3.1.2. Grassland and livestock production
The temporary grassland system produced the highest amount of an-

nual biomass compared to permanent grassland or rough grazing systems.
The average annual biomass production for rough grazing was 2.8 t ha−1

whilst the average biomass production for permanent grassland and tempo-
rary grassland were 9.8 t ha−1 and 14.7 t ha−1, an increase of 2.5 and 4.3
times, respectively, compared to rough grazing. Grid 31 produced the

highest biomass because it had the highest plant available water of
174 mm in a soil depth of 1.25 m. The variation in the biomass production
across the 40 grids depends on the weather and the soil C along with the
plant available water in the soil profile. Livestock production is a linear
function of stocking rate (Table S7), and therefore simulations of produc-
tion generated using SPACSYS and RLM accord.

3.1.3. Bioenergy production
The average annual biomass production forMiscanthus across all 36 grid

cells that were deemed suitable for bioenergy production, was 10.8 t ha−1

(Fig. 5). In the uplands, grid cells 9–18 and 20 produce the least biomass but
more than rough grassland, with yields close to 8.0 t ha−1. The productivity

Fig. 3.Yields of common crops grown in the upper River Taw observatory simulated for harvest years 2006–2018 by AGREMOSA, RLM and SPACSYS for each grid cell. Note
that the scale of ordinates varies between crops.

Fig. 4. Average annual production of edible calories from arable simulations from AGREMOSA, RLM and SPACSYS over all grid cells.
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follows the temperature pattern across the study catchment, with the low-
est average temperature (in grid cells 9–18 and 20 at 7.05 °C) contributing
the least to production. The grid cells with highest yields fell in the RLR
zone which has an average temperature of 8.26 °C (grid cells 19 and
21–44). The grid cells with the highest temperature were associated with
the lowest rainfall and vice versa. Thus, it is evident that, in general, the
water stress was not a factor in the study area and that the production
was more limited by lower temperature translating to lower solar radiation
which regulates the daily biomass accumulation by the crop.

The two cultivars of willow, Endurance, a broad leaf (BL) cultivar and
Tora, a narrow leaf (NL) cultivar, are widely grown across the UK. A
three-year rotation cycle was assumed for coppicing. In the uplands, in
the uplands, the BL cultivar Endurance produced an average annual bio-
mass of 11.3 t ha−1 (ranging from 10.8 t ha−1 in grid cell 9 to 14.4 t
ha−1 in grid cell 19) which was about 18% higher than the average annual
biomass of the NL cultivar Tora, which produced 9.8 t ha−1 (ranging from
9.1 t ha−1 in grid cell 9 to 12.2 t ha−1 in grid cell 19). Like Miscanthus, in
the lowlands (for example grid cells 19 and 31) produced the highest bio-
mass for both the cultivars (Fig. 5). The overall trend for willow production
follows that ofMiscanthus production in the study catchment.

The biomass production for the BL cultivar Endurance was higher than
the economical yield in the region, which is taken as 9.0 t ha−1. The old NL
cultivar Tora is expected to produce economically viable yields (>9.0 t
ha−1) (Lovett et al., 2009) in only 25 of the 36 grid cells. Comparing the
two bioenergy crops, it appears that theMiscanthus ismore productive over-
all in the lowlands (RLR zones) of the upper River Taw observatory where
the temperature is slightly higher (19, 21–44) (see Fig. 5).

Miscanthus yields from SPACSYS were on average 2.55 t ha−1 lower
than those simulated by AGREMOSA, but the between and within cell var-
iation was similar for both models (see Fig. S2).

3.1.4. Carbon
The modelled soil carbon and carbon emissions (Fig. 6) largely accord

between SPACSYS and RLM. Note the outliers from SPACSYS which were
caused by initial high soil C and N content in G19, 20 and 21. We note
that RLM does not account for CH4 emissions from soil, whilst SPACSYS

only accounts for CH4 emissions from soil in non-arable land uses. Further,
RLM does not account for CO2 emissions from animals. Soil carbon is pre-
dicted to be largest under rough grazing and least under arable. Carbon
emissions as CO2 are substantially greater than those as methane, with larg-
est total emissions associated with grazing.

CSMpredicts catchment scale averages formethane and soil C under BAU
to be 0.05 t ha−1 and 144.1 t ha−1, respectively, with predictions under the
PG2A scenario of 0.01 t ha−1 and 142.4 t ha−1. Similar to SPACSYS and
RLM, predictions show a reduction in soil C as more land is converted to ar-
able, and a reduction in CH4 emissions with arable conversion.

3.1.5. Nutrient losses
The predicted nutrient losses (N and P annual average t ha−1) have sub-

stantial associated uncertainty. Figs. 7 and 8 show how the uncertainty in
particular pathways partitions into temporal variability, spatial variability,
various nutrient pathways, and model uncertainty. It is clear that assump-
tions about process pathways for soluble mineral N are quite different be-
tween SPACSYS and RLM whereby SPACSYS allocates losses preferentially
to leaching whereas RLM allocates losses preferentially to runoff (Fig. 7).
This is partially due to the RLM accounting explicitly for topology in its
water and nutrient flow processes and reflects the different nature of each
agroecosystems model and how the partitioning differs in the different
models. The spatial patterning of ammonium losses between the models is
somewhat similar with larger losses associatedwith grazing areas; however,
themodels do not agree on nitrate losses, withRLMpredicting greater losses
associated with arable compared to grassland and SPACSYS vice versa. This
adds greater uncertainty into the absolute predictions under the BAU sce-
nario. Despite the differences between the predicted pathways for nutrient
flows the total N losses agree well (Fig. 7). Similarly, P losses estimated by
RLM and CSM accord (Fig. 8).

3.2. Ensemble

The ensemble model predictions of production, nutrient losses, C emis-
sions and soil C, alongwith associated uncertainty (reported as standard de-
viation) are shown in Fig. 9. Production in terms of edible calories varies

Fig. 5. Annual yields for bioenergy crops simulated using AGREMOSA for grid cells not allocated to high rainfall. These are: (i) grid cells 9–18, (ii) grid cell 19, (iii) grid cell
20, (iv) grid cell 21, (v) grid cells 22–27, 29–30, 33, (vi) grid cells 28, 32, 34–44) and (vii) grid cell 31. Annual willow yields were taken to be one third of the harvest yield at
the end of the 3-year coppicing. The black dotted line shows the current economically viable yield for bioenergy crops (Lovett et al., 2009).

K.L. Hassall et al. Science of the Total Environment 824 (2022) 153824

8



substantially from 6.44 T Cal to 27.34 T Cal across the entire study catch-
ment. The range in outputs is largely driven by conversion of grassland to
arable (Fig. 9a). Associated uncertainty was greatest under PG2A (where
the possible maximum conversion to arable has been implemented) due to
the increased uncertainty in productivity within crop rotations over time.

Bioenergy productivity increases as more land is converted to Miscanthus,
which increases the associated uncertainty in production (Fig. 9).

Variation in predictions of soil C were largely related to conversion to
arable with the lowest soil carbon observed in a complete arable conversion
(0.558 Mt ± 0.036) and the highest in BAU (0.651 Mt ± 0.038).

Fig. 6.Boxplots of the annual average of each carbon component listed (soil C, methane and carbon dioxide) for each grid cell× land use combination. Estimated soil carbon
relates to the top 1 m of the soil.

Fig. 7. Partitioning of uncertainty illustrated for the N loss pathways in the a) RLM, b) SPACSYS and c) CSM under the BAU scenario. The top row shows the total N lost per
year and the second row shows the breakdown of this according to the N pathways. The third row shows how losses vary spatially and the fourth row shows temporal
variation N losses according to land use.
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Conversely, the largest C emissions are associated with BAU and this is be-
cause emissions are associated with livestock landmanagement in the form
of CO2 and CH4. There are approximately equal reductions in C emissions
due to both PG2A and PG2BE on an area basis. This, again, is directly re-
lated to the associated reduction in livestock. However, the reduction in un-
certainty is markedly higher under bioenergy conversions (standard
deviation ranges by approximately 0.042Mt C) compared to arable conver-
sions (standard deviation ranges by approximately 0.014 Mt C).

The losses of N are driven by a conversion to bioenergy production.
Along the PG2A axis, average N (across the whole study catchment) de-
creases from 240.7 t N to 177.28 t N, whilst under complete bioenergy con-
version, losses increase to 1150.36 t N. This is representative of the
modelled SPACSYS outputs which predict much greater N losses under
the bioenergy conversion particularly in the low rainfall moorland
(Fig. S3). The increase in N losses as bioenergy production increases is asso-
ciated with a marked increase in uncertainty, both temporally and spatially
(Fig. S3).

Some caution is needed when interpreting the uncertainty (Fig. 9b) as
the ensemble amalgamates different sources of variability across the sce-
nario space. For example, C emissions decrease most substantially in the
standard deviation along the increasing bioenergy axis. Thus, as more
land is converted to bioenergy, predictions of C emissions becomemore cer-
tain. However, this is confounded with the fact that as more land is con-
verted to bioenergy, contributions from multiple models decrease, with
SPACSYS having the overriding influence. Thus, for these outputs, the
bioenergy axis also represents fewer model contributions. The fact that
this coincides with a decrease in the standard deviation implies the inter-
model uncertainty is greater than intra-model uncertainty. In comparison,
the uncertainty associated with N increases as bioenergy production in-
creases. This implies the intra-model uncertainty in SPACSYS increases
along this axis and is indeed the case as the associated uncertainties with
these predictions are largest under bioenergy production and so as more
land is converted, more uncertainty is apparent. It is interesting to note
that the uncertainty in soil C follows a different pattern. As with C emis-
sions, a general trend of decreasing standard deviation can be observed

Fig. 8. Partitioning of uncertainty illustrated for the P loss pathways in the a) RLM, and b) CSM under the BAU scenario. The top row shows the total P lost per year and the
second row shows the breakdown of this according to the P pathways. The third row shows how losses vary spatially and the fourth row shows temporal variation P losses
according to land use.
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along the x-axis and is associated with less inter-model uncertainty com-
pared to intra-model. However, there is simultaneously, a changing trend
in uncertainty as arable productivity increases. RLM predicts slightly less
uncertainty in soil C under arable conversion from permanent grassland,
whilst SPACSYS predicts a greater level of uncertainty. Given the overall
uncertainty is given by the variance of the mean soil C (under each
model) and the mean of the variance of soil C (under each model), the
non-monotonic trend in uncertainty is explained by this partitioning.

The simulations produced by CSM are associated with the BAU state
(where conversion to arable and bioenergy crops is equal to zero) and the
state whereby the maximum feasible land has been converted to arable
(proportion converted to arable equals one and proportion converted to
bioenergy equals zero). The results from the ensemble of all our models
are shown in Fig. 10. Predicted differences between BAU and P2G are
given in Table 2 alongwith the standard error of the difference. Our predic-
tions show a substantial increase in calories under the PG2A scenario but
other changes in outputs for the study catchment are less distinct (with ex-
pected changes being within standard error bounds). Soil C is expected to
be lower under PG2A, yet C emissions are also smaller. This is due to
smaller CO2 emissions being associated from the arable system (Fig. 6). Al-
though not significant, nutrient losses are not substantially different be-
tween the two scenarios.

4. Discussion

4.1. Production

Across our models, production of arable crops (Fig. 3) agrees with that
published by Defra (June Agriculture Surveys) and in the farming literature
(BSPB, 2020; Cammarano et al., 2020; Nix, 2020). For wheat, spring barley,
winter barley andwinter OSR regional statistics for the period simulated re-
port yields between 5.6–8.3 t ha−1, 4.6–6.0 t ha−1, 5.6–7.9 t ha−1 and
2.6–4.4 t ha−1, respectively (see Table S11). For maize and fields beans
(where no regional statistics are available) we found our simulations com-
paredwell with national averages of drymatter of 17 t ha−1 and 4.2 t ha−1,
respectively. Similarly, the simulated grasslands biomass production in this
study accords with the biomass productions reported for temporary and
permanent grasslands in Scotland by Jones (2013) who found that a
young grazing ley, similar to temporary grassland, is capable of producing
12–14 t ha−1 dry matter per year, whilst permanent pasture can produce
9–10 t ha−1 dry matter per year. However, these levels of production can
only be sustained in soils that have adequate water, nutrient inputs and re-
serves and appropriate grazing management.

Although the biomass production of permanent grassland is less than
temporary grassland, it should be emphasized that the cost of production
is also less. It also has a denser sward and can carry more stock. In this
study, whilst simulated livestock removed biomass and contributed to nu-
trient flows and emissions, the simulated biomass did not dictate stocking
rates; rather, we used stocking rates derived directly from commercial
farm data (Nix, 2020). These data reflect the stocking capacity of various
types of grass land. However, looking at the impact of the biomass produc-
tion on livestock, every 1 t ha−1 dry matter increase in grass equates to a
potential increase in stocking rate of 1.4 ewes per hectare or 100 kg of
beef live weight gain ha−1 year−1 (Jones, 2013). This means that com-
pared to rough grazing, there could be an increase of 9.8 ewes ha−1 in
stocking rate or 700 kg of beef live weight gain ha−1 year−1 in permanent
improved grassland and an increase to 16.8 ewes ha−1 in stocking rate and
1200 kg of beef live weight ha−1 year−1 in temporary grassland.

The simulated average annualMiscanthus biomass related verywell with
reported data in the literature. Production estimates of 10.83 t ha−1 ob-
tained from AGREMOSA and 8.30 t ha−1 from SPACSYS compared well

to the average annual biomass of 8.94 t ha−1 from on-farm observations
across the UK (Richter et al., 2016). Site-specific biological yield potentials
estimated using an empirical model ranged from 5 to 15 t ha−1 with an av-
erage of 11 t ha−1 (Richter et al., 2016). Overall, our simulations ranged
from 7.87 to 14.49 t ha−1 with the lower yield from the moorland grid
cells with lower average temperatures.Miscanthus yield from 14 experimen-
tal arable sites across the UK ranged from 5 to 18 t ha−1, averaging 12.8 (±
2.9) t ha−1. Our predictions for the study catchment are well within the
range of those results and mostly well above the economic threshold of 9 t
ha−1 (Lovett et al., 2009).

The average annual willow biomass production in south west England
was reported by Richard et al. (2019) to be 11 and 10.3 t ha−1 for the Endur-
ance andTora cultivars, respectively.Whilst our resultsmatched the observed
annual biomass productionof Endurance they slightly underestimated the ob-
served annual biomass production of Tora (9.4 vs 10.3 t ha−1).We found that
the grid cells with lower temperatures (low rainfall moorland) produced
lower annual biomass. This is also reported by Richard et al. (2019) whose
simulations suggested that warmer climate increased the average productiv-
ity of willow by 0.5–2.5 t ha−1 depending on the cultivar.

Looking at the overall production it appears that the temporary grass-
lands and Miscanthus produce the highest biomass followed by willow-
SRC and arable crops (see Fig. S4). The grass biomass also has potential
for biogas production and 20 million tonnes of biomass could provide up
to 12.5% of the total gas output or 25% of the gas imports to the UK in
2017 assuming standard conversion rates from grass biomass to biogas
(Qi et al., 2018). The Miscanthus and willow could provide the energy of
19.6 MJ kg−1 and 19.2 MJ kg−1 translating to 4.68 Mcal kg−1 and 4.58
Mcal kg−1, respectively, in terms of their calorific value of combustion
(Daraban et al., 2015; Piskier, 2017). It can be observed that the biomass
production for Miscanthus and willow-SRC is lower in the uplands grid
cells with lower temperatures and higher rainfall grid cells 9–18 and 20
compared to potentially improved grassland production. This suggests
that these areas should not be converted into bioenergy crops as that
would mean overall loss in production. On the other hand, the lowlands
(RLR grid cells) with comparatively higher temperatures (even with
lower rainfall) grid 19 and grid cells 21–44, are good candidates for
converting into arable (based on edible calories produced; Fig. 10) or
bioenergy crops, preferably Miscanthus, with slight biomass losses com-
pared to temporary grassland. The economic competitiveness for BE crops
comes from low cultivation and fertilizer inputs after establishment
(McCalmont et al., 2017).

It must be emphasized that our models of production are not without
limitations. For example, they do not consider waterlogging which could
have an impact on production in the areas of higher rainfall (low and high
rainfall moorland zones) especially under changing climate (Harkness
et al., 2020; Ploschuk et al., 2018). Even the lowest rainfall in our simula-
tions is 1200 mm which could be sufficient to cause waterlogging and in
fact, most soil series across the study catchment are highly prone to seasonal
waterlogging given their clay content (Pulley and Collins, 2020). Our
models also consider that threats to crop production, such as weeds and dis-
eases, are well managed, and that either crops are non-nutrient limited (in
the case of AGREMOSA) or have fertilizer managed according to best prac-
tice recommendations (in the case of the other models). In practice, farmers
may choose to under fertilize resulting in nutrient limitations or over fertil-
ize resulting in greater nutrient losses. For example, Qi et al. (2017) re-
ported that when the annual N usage on grassland dropped to about 99
and 52 kg N ha−1 on temporary and permanent grassland, respectively,
much below the recommended respective economic optimums of 300 kg
and 150 N ha−1 (Hopkins et al., 1990; Morrison et al., 1980), it resulted
in concomitant yields of about 45 and 39% below the respective attainable
dry matter yields.

Fig. 9. Predicted nutrient losses, C emissions, soil C and productivity metrics under increasing arable and bioenergy conversion as simulated using the model ensemble.
Measurements are the combined total over the 3427.5 ha of suitable land in the study catchment. Top panel (a) shows the ensembled average, Bottom panel (b) shows
the ensembled standard deviation. Ensembled values under the changing scenarios are obtained from scaling the grid level ensemble of SPACSYS, RLM and AGREMOSA.
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4.2. Carbon

Defra (2010c) report soil C stocks in the top 15 cm of soil to be in the
region of 58–120 t ha−1 for UK arable systems, 100–150 t ha−1 for perma-
nent pasture and for rough grazing estimates are in the region of 210–230 t
ha−1. Estimates from ourmodels are associatedwith approximately the top
1 m of the soil but accord well with these numbers, with few outliers
(Fig. 6). Predicted differences in soil C as land is converted to Miscanthus
are small (Figs. 6 and 9) and this accords with the findings of Zatta et al.
(2014) who found an insignificant change in soil C when UK grassland
was converted toMiscanthus.

Predictions of methane from the models are largely driven by livestock
numbers. SPACSYS estimates animal emissions based on feed intake and
RLM uses IPCC Tier 2 models to estimate livestock emissions (Milne
et al., 2015) and so observed differences in emissions result from varying
interpretation of stocking rates.

Oertel et al. (2016)measured an average CO2 emission from cropland of
6.7 t C ha−1 year−1 from 41 studies (range 3.9–69.5 t C ha−1 year−1).
These are similar to the modelled values for arable of 5.0 and 8.0 t C
ha−1 year−1, for the RLM and SPACSYS, respectively. For grassland, an av-
erage of 8.5 t C ha−1 year−1 was observed from 47 studies (range 1.8–30.0
t C ha−1 year−1) and, again, thesewere similar to themodelled results from
the RLM (15 t C ha−1 year−1 in improved grassland, and 10 t C ha−1

year−1 in rough grazing) and from SPACSYS (17.5 t C ha−1 year−1 in im-
proved grazing and 30 t C ha−1 year–1 in rough grazing).

4.3. Nutrient losses

Predicting nutrient losses and emissions is notoriously complex and un-
certain given the partitioning between dissolved and particulate forms and
the complexities of the source-mobilisation-delivery transfer continuum
(Lloyd et al., 2019). Evidence is emerging that processes other than nitrifica-
tion and denitrification are far more important than previously assumed for
gaseous N production from soils (van Groenigen et al., 2015). Processes
such as nitrifier denitrification (Wrage et al., 2001), in situ N2O reduction
(Schlesinger, 2013), anammox (Mulder et al., 1995), Feammox (Sawayama,
2006), dissimilatory nitrate reduction to ammonium (DNRA) (Tiedje,
1988), and co-denitrification (Spott et al., 2011) are highlighted in current lit-
erature, but information on process rates and their dynamics in response to
environmental factors is scant.

All of our models have been shown to give good predictions of certain
aspects of the P and N cycles. For example SPACSYS has been validated

against measurements of N2O and crop N offtake (Wu et al., 2015) and
RLM against measurements of grain N and P, and N leached (Coleman
et al., 2017). National scale nitrous oxide and methane emissions from ag-
riculture predicted using the calculations embedded in CSM have been
found to agree strongly with the UK GHG inventory dataset (Zhang et al.,
2017).

In this study, ourmodelled losses of Pwere consistent betweenmodels. In
the case of phase partitioning, P losses are typically strongly controlled by
erosion and thereby the source-mobilisation-delivery cascade for fine-
grained sediment, meaning that models must include erosion and sediment
dynamics to simulate total P losses representatively. This accounts for the in-
clusion of PSYCHIC predictions for both sediment and P in the CSM frame-
work which have been evaluated at field scale both in the study catchment
on the North Wyke Farm Platform (Collins et al., 2021) and nationally
(Collins et al., 2008) and more strategically across England and Wales at
catchment scale (Collins and Anthony, 2008; Collins et al., 2009; Zhang
et al., 2017). Erosion processes are extremely variable both in time and
space, raising ongoing challenges formodelling this aspect of agroecosystems
(Evans et al., 2016, 2017).

Predicted total N losses were similar across the three models; however,
the predicted dominant pathway for N losses varied between models. For
example, RLM predicted the largest losses to be in the form of nitrate
whereas SPACSYS attributed most losses to be in the form of ammonium.
For RLM the dominant pathway was runoff, for SPACSYS leaching and
CSM emissions. These apparent contradictions reflect the complexity of
the processes considered, the fact that models make different assumptions
about the processes and delivery pathways involved, and that the models
were originally parameterised using data from other locations in the UK
(Coleman et al., 2017; Stromqvist et al., 2008; Wu et al., 2016). Nitrate
losses to water using the process-based representation in CSM have been
shown to agree well with national monitoring data (1980–2010) collected
at 33 monitoring stations as part of the Harmonized Monitoring Scheme,
yielding a Kling-Gupta efficiency of 0.65 (Zhang et al., 2017). Nutrient
losses depend strongly on soil physical properties. For example, estimated
losses of nitrate and ammonium from grid cell19 from SPACSYS showed
larger values than adjacent grids because soil texture for the cell 19 is
sandy loam that has lower bulk density and higher hydraulic conductivity,
which cause nutrients tomove out quickly. Under BAU, average losseswere
predicted to be 31.64 kg N ha−1 year−1, 30.98 kg N ha−1 year−1 and
15.19 kg N ha−1 year−1 from SPACSYS, RLM and CSM, respectively.
These predictions fall within the range observed from the 15 experimental
catchment flumes at the NorthWyke Farm Platform, part of which is in the
catchment, but are high compared with the observed average (6.7 kg N
ha−1 year−1 with a range of the measured data 0.0–81.9 kg N ha−1

year−1).
In relation to bioenergy, N losses were predicted to be large in compar-

ison to arable and livestock management (Fig. 9a). This was surprising as
nutrient losses are usually reported to be low from low-input biomass
crops like Miscanthus (Davis et al., 2015; Ferchaud et al., 2020) and SRC-
willow (Aronsson and Bergström, 2001; Dimitriou and Aronsson, 2004). In-
deed, due to their high nutrient uptake bioenergy crops (e.g. willow) are
used for purifying sewage water (Dimitriou et al., 2012). Wastewater or
sewage sludge applications to willow SRC in newly established fields is
practiced to achieve a more balanced fertilizer and to recirculate nutrients
contained in sewage sludge (phosphorus and nitrogen) to agricultural soils
(Dimitriou and Rosenqvist, 2011). Exploring our simulation results further
revealed that the particularly large losses are associated with the high rain-
fall moorland grid cells where the growth of Miscanthus is predicted to be
poor (Fig. 7). This would limit the potential to take up the soil nutrients
and this in combination with the higher rainfall than the RLR portion of
the study catchment are the primary reasons that nutrient losses are pre-
dicted to increase substantially. This has been reported in relation to extrac-
tion of forest biomass (de Oliveira Garcia et al., 2018; Paré and Thiffault,
2016). In practice it is likely this crop would not be grown in these areas.
In addition, our predicted increases in nutrient loss with conversion to
bioenergy are associated with large increases in uncertainty and highlight

Fig. 10. Predicted change of the catchment level outputs from BAU to PG2A using
the full model ensemble. Solid lines are the mean and dashed show ±standard
deviation. The upper bounds of each axis are given in brackets followed by units.
The lower bound is zero in all cases.
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a need for experimental evidence to parameterise the nutrient flows associ-
ated with bioenergy crops grown on moorland.

4.4. Trade-offs between objectives

The results of the ensemble modelling approach reveal well-known and
expected trade-offs. For example, by increasing the area associated with ar-
able production we increase the production of edible calories, yet the soil C
under arable conversion is predicted to be lower than under BAU. This is to
be expected because permanent grassland tends to have a larger amounts of
soil C than arable soils. The lower carbon in arable soils are due to lower C
inputs from arable systems, disturbance of soil structure and aggregates, re-
moval of the grain/seed/tubers, straw and other residues (Johnston et al.,
2009; Smith et al., 2005). As expected, reducing livestock areas, either
through conversion to arable or bioenergy, reduces C emissions. Conver-
sion to arable is predicted to slightly increase expected nutrient losses, al-
though uncertainties associated with these predictions are substantial
(Fig. 10). We note a more surprising trade-off associated with our predic-
tions related to conversion to bioenergy. This is that increasing bioenergy
results in increasing nutrient losses as discussed above. This is associated
with a marked increase in uncertainty (Figs. 9b and S4) highlighting a
need for more data relating to N losses associated with bioenergy crops in
moorland areas.

4.5. The ensemble approach

Model ensembles are now commonplace in atmospheric sciences
(Gneiting and Raftery, 2005) and climate/global change impact assessment
using crop growth models (Rodríguez et al., 2019; Wallach et al., 2018).
The widely accepted advantage of this approach is that structural uncer-
tainty, as well as input uncertainty, are accounted for explicitly. In our
studywe combined fourmodels in an ensemble to explore questions around
land management change. Input uncertainty was restricted to stochastic
combinations of weather and crop, and the various interpretations of the
available input data for the study area (see below). The ensemble approach
was not without a combination of advantages and challenges, some of
which are common to atmospheric sciences.

In our case, apart from the clear advantage of capturing uncertainty in
the understanding of complex processes, the model ensemble also allowed
us to compare a broader range of objectives than any one of the models
would permit individually. Here, for example, AGREMOSA includes
bioenergy crops whereas the crop libraries in CSM and RLM do not. For
all but one of the outputs (grossmargin; CSMonly), at least twomodels con-
tributed to the predicted outcome. A second clear advantage is that the
model ensemble allows us to identify information weak spots. This accords
with the findings of Willcock et al. (2020) who, similar to us, concluded
that ensemble variation is often a proxy for lack of accuracy and not simply
a measure of precision. Here, the largest relative uncertainties and indeed
model conflicts were related to the understanding of nitrogen losses. This
is perhaps not surprising given the complexity of the cycling, mobilisation
and delivery processes involved but certainly an advantage of our approach
is that it openly challenges scientists' model-based assumptions identifying
areas where further data should be sought. We defer to the quote by George
E.P. Box “All models are wrong, but some are useful”. During our analysis at
least two model assumptions were found to lead to counterintuitive out-
comes that required further investigation and new development. In most
cases, however, there was insufficient empirical evidence to support
changes and so differences in model predictions were attributed to struc-
tural uncertainty.

Although ensemble modelling has been widely adopted in atmospheric
science (Suarez-Gutierrez et al., 2021), and (to some extent) in crop yield
prediction (Yin et al., 2017) and soil organic carbon modelling (Farina
et al., 2021; Riggers et al., 2019; Smith et al., 1997) to the best of our knowl-
edge, this trend has notmanifested in relation to agroecosystems, and those
that do exist, tend to use ensemble predictions as inputs to the system
through predictions of climate or rainfall (Dale et al., 2017; Georgakakos
and Carpenter, 2006). Crucially, none have attempted tomake an ensemble
of predictions of scenarios for change in agroecosystems. An obvious chal-
lenge here is model availability and complexity. We had access to models
from four modelling groups, but the challenges associated with aligning
data inputs were notable. Aligning model outputs to accord on units, tem-
poral and spatial scale, and surprisingly even meaning, was not straightfor-
ward and required detailed discussions. This is demonstrated in Fig. S1,
whereby models feed into the different components of the agroecosystems
at different levels of derivation. For example, under P loss, CSM contributes
discretely through both dissolved and particulate P. For approaches such
as the one described here to be implemented more widely, model and
data availability must be improved and standardisation of terminology
would also greatly facilitate the ensemble process. Terminology is an in-
creasing issue in the data-driven sciences. As elsewhere, (Arnaud et al.,
2020) nutrient cycling would benefit from a universally accepted ontol-
ogy and dictionary of terms to ensure that all scientists mean the same
thing by the terms they use and describe results in an identical manner
or at least one where the rules for interconversion are objective and
clear.

It is the view of the authors that model variability should not be re-
stricted to the structural components or quantitative outputs from simula-
tions but, rather, should also include data integration. All four modelling
groups aligned simulations based on available input and output data from
the upper River Taw observatory. However, the ways in which input data
were implemented varied greatly. Such variation in the use of input data
has been reported previously (Silgram et al., 2009). For example, crop rota-
tions were accounted for explicitly in RLM, albeit derived from data at a
larger spatial resolution. SPACSYS and AGREMOSA accounted for rotations
in the aggregation of model outputs, although each model included differ-
ent crop types and CSM generated temporally-averaged outputs for the
mix of crops and associated best management practices on the key farm
types in the study area. Similarly, livestock stocking rates were imple-
mented differently, with SPACSYS assigning a set number of livestock to
each grid cell, RLM fixing an overall stocking rate, each with differing live-
stock categories compared to those available in the data and CSMusing cen-
sus and additional farm survey data to establish the animal population
details and stocking densities per commercial farm in the study area. Con-
sequently, each modelling group needed to make their own assumptions
on how best to align the study catchment data with their required inputs.
Perhaps more fundamental, are the differences in underlying environmen-
tal inputs, such asweather data and soil type as described in Section 2.2 and
associated supplementary tables. Such differences in data interpretation in-
hibit large simulation studies whereby a fixed set of input variables are var-
ied to then observe the change in output variables. It is our belief that input
alignment comes best from observed data allowing this flexibility in inter-
pretation. Thus, to proceed at scale, data need to be readily available for
a range of diverse study catchments.

5. Conclusion

We developed an ensemble approach for agroecosystem models of dif-
ferent complexity and used this to explore scenarios for a high rainfall

Table 2
Predicted changes from BAU to PG2A across the study catchment.

Production/Mcal ha−1 Gross margin/£ ha−1 Soil C/t C ha−1 C emissions/t C ha−1 N loss/kg N ha−1 P loss/kg N ha−1

Expected change 6735.9 76.16 −14.48 −4.32 7.21 0.14
Standard deviation 2152.8 66.24 45.11 12.06 23.53 0.13
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catchment in SW-England. Considering outputs for edible calories, biomass,
and carbon and nutrient losses we discussed sustainable options of grass-
land conversion to arable and bioenergy. In terms of productivity and im-
pacts on carbon and nutrient flows we conclude that:

• In upland areas it was viable to convert rough grassland to SRC-willow
but not toMiscanthus. In lowlands both types of bioenergy crop were via-
ble, withMiscanthus producing greater biomass. Converting grassland in
lowland areas to arable resulted in greater production of edible calories.

• Across the catchment, differences in soil organic C are likely to be small
when land is converted from grassland to Miscanthus (or SRC-willow);
losses associated with conversion to arable were large, although uncer-
tainties associated with these predictions were also large.

• Nutrient losses associated with conversion from improved grass to arable
are large, but generating trade-offs in reduced GHG emissions

Regarding output uncertainty, model complexity and data and process
limitation, we argue that:

• Model ensembles that account explicitly for inter- and intra- model vari-
ability are particularly valuable for assessing and interpreting land use
andmanagement scenarios. In general, agroecosystems models are deter-
ministic and residual background variability is often ignored.

• By combining ourmodels,we obtained independent replicate simulations
that, in part, capture such residual error. In addition, the multiple models
also capture uncertainties in the modelling frameworks.

• The model ensemble framework provides a robust mechanism for propa-
gating uncertainty at different scales and enables us to identify weak spots
in the different agroecosystem models.

Overall, model ensembles in the agroecosystem context are challenging
to implement in practice. With only a relatively small number of models
available it is an open question as to what to do when models disagree.
Here, emerging questions include: Should a more focussed attempt be
made to align model outputs? Should the individual processes be adapted?
Should the differences be accepted and interpreted as uncertainty? Here,
we have taken all three avenues at various points but note that limited em-
pirical data have been available for comprehensive validation. Future work
will have to address challenges, to extend and adapt our approach to differ-
ent agroecosystem geographies.
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