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Abstract
Amylase/trypsin inhibitors (ATIs) are widely consumed in cereal-based foods and have been implicated in adverse reactions 
to wheat exposure, such as respiratory and food allergy, and intestinal responses associated with coeliac disease and non-
coeliac wheat sensitivity. ATIs occur in multiple isoforms which differ in the amounts present in different types of wheat 
(including ancient and modern ones). Measuring ATIs and their isoforms is an analytical challenge as is their isolation 
for use in studies addressing their potential effects on the human body. ATI isoforms differ in their spectrum of bioactive 
effects in the human gastrointestinal (GI), which may include enzyme inhibition, inflammation and immune responses and 
of which much is not known. Similarly, although modifications during food processing (exposure to heat, moisture, salt, 
acid, fermentation) may affect their structure and activity as shown in vitro, it is important to relate these changes to effects 
that may present in the GI tract. Finally, much of our knowledge of their potential biological effects is based on studies in 
vitro and in animal models. Validation by human studies using processed foods as commonly consumed is warranted. We 
conclude that more detailed understanding of these factors may allow the effects of ATIs on human health to be better 
understood and when possible, to be ameliorated, for example by innovative food processing. We therefore review in short 
our current knowledge of these proteins, focusing on features which relate to their biological activity and identifying gaps 
in our knowledge and research priorities.

Keywords  Amylase/trypsin inhibitors · ATIs · Coeliac disease · Wheat allergy · Non-coeliac wheat sensitivity · Intestinal 
symptoms

Introduction: what are ATIs?

Amylase/trypsin inhibitors (ATIs) are a group of proteins 
that are present in the seeds of all cereals (including wheat, 
barley, rye, maize, millet and rice) and are the most abundant 
proteins in the water soluble (albumin) fraction of wheat. 

ATIs inhibit the activities of nutrient degrading enzymes: 
α-amylase (involved in starch degradation) and trypsin 
(involved in protein degradation) and are one of several 
groups of wheat seed proteins which contribute to the natu-
ral defence against pests and pathogens.

Wheat ATIs comprise a group of highly similar proteins 
(called isoforms), including forms which are active as mono-
mers and dimers and are named 0.19, 0.28 and 0.53 based on 
their electrophoretic mobility and as tetramers which are sol-
uble in chloroform:methanol (CM) mixtures and also called 
CM proteins. ATIs differ in their activity against amylases 
from mammals (including human salivary and pancreatic 
amylases) and from different types of insects (e.g. beetles 
and larvae of moths) but do not inhibit the endogenous amyl-
ases that are present in the wheat seeds, supporting a role in 
plant defence. A brief overview is presented in Fig. 1.
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ATIs were first studied in the 1940s [1] and have been 
recently critically reviewed [2]. They are well characterised 
as allergens, particularly in bakers’ asthma (a respiratory 
allergy to the inhalation of wheat flour) and bakers’ eczema, 
but also in food allergy to wheat [3, 4]. Recently, there has 
been renewed interest in ATIs because they have been sug-
gested to play a role in the promotion of two other wheat-
related adverse effects: coeliac disease and non-coeliac 
wheat sensitivity (NCWS, see below). Furthermore, the 
variation in the inhibitory activities of ATIs suggests that 
the activity in humans may vary between isoforms [5, 6].

We therefore summarise our current knowledge of the 
distribution and properties of ATIs in wheat in relation to 
perceived and established impacts on health and disease.

Presence and function of ATIs in grains

Most of wheat grown globally is hexaploid wheat (Triti-
cum aestivum L., also known as ‘bread wheat’, ‘common 
wheat’ or ‘soft wheat’), with about 5% being tetraploid 
durum wheat (Triticum durum, also known as ‘pasta wheat’ 
or ‘hard wheat’). Hexaploid wheat and durum wheats have 
been produced by intensive breeding, particularly over the 
last 60 years, and it has been suggested in the scientific, 
popular and social media that the emphasis of modern breed-
ing on increasing yield, improving resistances to fungal 
pathogens and improving processing quality has resulted in 
decreased nutritional quality and increased contents of natu-
ral plant protective components, including ATIs. Similarly, 
it has been suggested that older types of wheat (often called 
‘ancient’ and ‘heritage’ wheats) may be expected to contain 
lower amounts of ATIs [7].

Although there is no generally accepted definition of 
‘ancient’ wheats, the term is most often applied to three 
types of wheat which were widely cultivated in former times 
but, due to relatively low yields, are now only grown at small 
scale. These are diploid einkorn, tetraploid emmer and hexa-
ploid spelt (Fig. 2). The term ‘heritage’ is most often applied 
to older types of bread and durum wheats which were grown 
before intensive plant breeding.

A number of studies have compared the amounts and 
composition of ATIs in different types of wheat with incon-
clusive results [8–13]. The presence and composition of 
ATIs is specific for the ploidy level of wheats and can be 
used to distinguish between diploid, tetraploid and hexa-
ploid wheats [9, 11]. Isoforms called 0.19, CM1 and CM17 
are only present in hexaploid wheats, while other isoforms 
called CM2, CM3 and CM16 are more abundant in tetra-
ploid wheats and 0.19, 0.28 and 0.53 are more abundant in 
hexaploid wheats. There is also clear evidence that einkorn 
has lower total concentrations of ATIs [8–11]. Despite these 
differences, there is wide variation in the concentrations of 
ATIs within and between the different types of ancient and 
more modern wheats (Fig. 3A) [9, 11] with no evidence for 
lower concentrations of ATIs in older types of bread wheat 
compared to modern high-yielding bread wheats (Fig. 3B) 
[8, 13]. There is wide variation in the amount of ATIs in 
bread wheats [12, 13], but the genetic control is inconclusive 
being reported as high for Australian wheats [12], but low 
for European wheats [13]. The complex genetic architec-
ture of ATIs indicates that it will be very difficult to select 
for cultivars with low ATI concentration using traditional 
breeding methods. Alternatively, genome editing methods 
(e.g., CRISPR-Cas9) could potentially be more promising 

Fig. 1   Schematic depiction of 
key aspects of ATIs in grains 
and their potential biological 
effects
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techniques [14, 15], but these techniques are currently not 
accepted for food crops in the European Union.

Challenges for the analysis of ATIs

Sensitive, precise and reproducible methods are essential to 
quantify the amounts of ATIs present in plant materials. It 
is also essential that the grain samples used for comparative 
studies are well characterised, particularly with respect to 
the conditions under which the plants were grown, since 
these will influence grain composition. The first step is to 
extract the ATIs from the grain (usually flour), using meth-
ods which extract all components and are compatible with 

retaining their structures and activities. However, these 
methods may also extract other proteins and components, 
for example, other types of amylase and protease inhibitors 
that are distinct from ATIs but may interfere with the deter-
mination of amount and biological activity (in both in vitro 
and in vivo studies).

Processed foods, such as dough, bread, pasta and beer, 
are particularly challenging as they are very complex matri-
ces and the modification and denaturation of proteins may 
occur during their production. Consequently, the quantitative 
extraction of biologically active ATIs from such matrices is 
difficult and, in some cases may not be possible. This must 
be borne in mind when determining the biological activity 

Fig. 2   Ears of: A- einkorn, B- emmer, C- spelt and D- modern cultivar of T. aestivum L. Photos: S. Geisslitz

Fig. 3   Concentrations of ATIs in different types of wheats. 3A, 
comparison of modern bread wheat (Triticum aestivum L.), durum 
wheat (Triticum durum) and the older types of wheat, spelt (Triticum 
spelta), emmer (Triticum dicoccon) and einkorn (Triticum monococ-
cum) (modified from Geisslitz et al. [9]). The point in the box is the 

mean, the line in the box the median, the whiskers show the mini-
mum and maximum and the box to the 25% and 75% percentile. 3B, 
comparison of bread wheat cultivars according to the year of regis-
tration from 1850 to 2010 (red: harvested in 2017 and blue in 2018; 
modified from Call et al. [8])
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of foods as consumed versus the effects of exposure to crude 
extracts or partially pure fractions, as used in many in vitro 
and animal studies.

Effects of ATIs in adverse reactions to wheat

ATIs have been implicated in three types of adverse reaction 
to wheat (Table 1).

Wheat allergy

Classical food allergy to wheat has a low prevalence and is 
more common in children who usually grow out of it, lead-
ing to an estimated prevalence of 0.1% to 0.3% in adults [17]. 
Many proteins, including a number of isoforms of ATIs, 
have been implicated in triggering a response in challenges 
resulting in high levels of corresponding immunoglobulin E 
(IgE) [4, 5, 18, 19]. However, ATIs have not been implicated 
in the most severe allergic response to wheat (anaphylaxis) 
in which gluten proteins are the major agents [20].

An allergic response to ATIs is a significant issue when 
flour dust is inhaled and makes contact with tissues within 
the lungs [2]. This is called bakers’ asthma and is the most 
prevalent occupational allergy in many countries (affecting, 
for example, 40% of bakers in the UK). It is a typical airway 
allergy characterised by raised levels of IgE to a number of 
proteins, notably ATIs but also including gluten proteins. 
However, patients with bakers’ asthma can tolerate ingestion 
of wheat bread [21]. Nevertheless, the fact that in vitro stud-
ies indicate that ATIs can induce an innate immune response 
and may be involved in intestinal reactions (as discussed 
below) warrants further studies in humans.

Coeliac disease

Coeliac disease (CD) is the most widespread and well-char-
acterised adverse reaction to gluten consumption. CD is an 
auto-immune reaction mediated by an inflammatory T cell 
response. The identification of wheat gluten proteins as the 
major triggering substances in CD dates from the 1950s and 
since then, about 40 CD-active peptides (short sequences of 
amino acids, called “epitopes”, that are recognized by the 
immune system) have been identified in wheat gluten pro-
teins (gliadins and glutenins) and related proteins from bar-
ley and rye [22]. However, a number of other proteins which 
may play a potentiating role in CD have been identified and 
Junker et al. [23] and Zevallos et al. [7] have reported evi-
dence for a role of ATIs in the initiation of CD through the 
induction of inflammation and an innate immune response. 
Therefore, although it is clear that gluten proteins are the 
major triggers in CD, the roles of other proteins and trig-
gers (such viral infections) are less clear and require further 
research.

Non‑coeliac wheat sensitivity (NCWS)

A range of adverse effects which are not due to coeliac 
disease have been reported after the consumption of wheat 
products. These include gastrointestinal symptoms, such 
as bloating and diarrhoea/loose stools, but also wider 
symptoms, such as tiredness, headache, pain in mus-
cles and joints, depression and anxiety [24]. Although 
this syndrome was initially defined as ‘non-coeliac glu-
ten sensitivity’ (NCGS) [25], the role of gluten has not 
been established and it is now more widely referred to 
as ‘non-coeliac wheat sensitivity’ (NCWS). According to 
the Salerno criteria [26], the diagnosis for NCWS should 

Table 1   Overview of the characteristics of adverse reactions to wheat gluten and ATIs, modified from Scherf and Koehler [16]

‘Extra-intestinal’ refers to symptoms presenting outside the gastrointestinal tract. Ig immunoglobulin, ATIs amylase/trypsin inhibitors. *How-
ever, coeliac disease symptoms may remain unnoticed/undiagnosed for many years. **A recent study [12] showed that the B cells of coeliac 
disease patients produced a subclass profile of IgG antibodies (IgG1, IgG3) with a strong inflammatory potential that is linked to autoimmune 
activity and intestinal cell damage. By contrast, patients with NCWS produced IgG antibodies (IgG4, IgG2) that are associated with a more 
restrained inflammatory response

Wheat allergy Celiac disease NCWS

Prevalence 0.5–4% 1% 0.6–6%
Time until start of symptoms Minutes–hours Days–weeks* Hours
Symptoms Intra-/extra-intestinal Intra-/extra-intestinal Intra-/extra-intestinal
Triggering proteins Gluten/ ATIs/other wheat 

proteins
Gluten ATIs/gluten/other wheat proteins?

Immune response Adaptive Adaptive/Innate Innate
Antibodies IgE IgA/IgG subclasses** IgG subclasses**
Intestinal damage None Yes Probably
Intestinal barrier dysfunction None Yes Probably
Therapy Wheat-free diet Gluten-free diet Wheat- or gluten-free diet
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include a clinical response to a gluten-free diet as well as a 
response after a subsequent gluten re-challenge. However, 
the diagnosis of NCWS is difficult in practice with most 
patients being self-diagnosed, and the precise prevalence 
is therefore difficult to determine. Hence, even scientifi-
cally based estimates vary widely, from less than 1% to 
about 10% of the population [24]. Although there is wide 
overlap in symptoms, diagnostic markers present in wheat 
allergy (elevated IgE levels) or CD (adverse effects on 
the structure of the duodenum, presence of certain genetic 
markers and elevated blood levels of an enzyme involved 
in allergic reactions) cannot be detected in NCWS, show-
ing that it is a distinct adverse reaction. Some overlap also 
exists between the symptoms of NCWS and irritable bowel 
syndrome (IBS).

The mechanisms causing NCWS symptomatology are 
not completely understood but are likely to be complex, 
including a role of ATIs which have been shown to activate 
receptors in the cell membrane, inducing an innate immune 
response [27]. In addition, sugars which are poorly absorbed 
in the small intestine but fermented in the colon (referred to 
as fermentable oligosaccharides, disaccharides, monosac-
charides and polyols (FODMAPs)), have been suggested as 
causative substances [28]. However, the scientific consen-
sus is that although FODMAPs may cause intestinal distress 
due to gas formation/bloating and osmotic effects/laxation, 
which are often reported by self-diagnosed NCWS patients, 
these symptoms are not specific to wheat.

Given the complexity and no clarity of potential causes of 
NCWS, the role of ATIs is also far from clear and no direct 
evidence of the impact of ATIs on the gut has been demon-
strated with in vivo studies. However, given the impact of 
ATIs on the lung lining in bakers’ asthma and on the skin 
in bakers’ eczema, the impact of ATIs on the gut wall (‘the 
outside inside’), warrants in vivo investigations to clarify 
their role in NCWS.

Four factors need to be considered in relation to the activ-
ities of ATIs in vivo:

1.	 The total amounts of ATIs present in wheat species and 
in wheat-based foods.

2.	 The proportions of the different ATI isoforms, which dif-
fer in their biological properties (including allergenicity, 
enzyme inhibition and immune reactivity).

3.	 Whether their inhibitory activity (against amylase and 
proteases) is relevant to their activity in humans, one can 
speculate that inhibition of amylases can lead to incom-
plete degradation of starch, resulting in the passage of 
starch fragments into the colon where they are fermented 
to gas leading to bloating and abdominal discomfort in 
susceptible individuals. Similarly, the ability of protease 
inhibitors to reducing the degradation of proteins could 
enhance their allergenic potential (see below).

4.	 Other components that are present in the grain or 
extracts from grain-based foods and may be responsible 
for triggering NCWS.

Effects of processing and digestion on ATIs integrity 
and bioactivity

Proteins may be modified in various ways during process-
ing including heat-induced chemical modification, such as 
glycation in Maillard reactions and denaturation, and deg-
radation by endogenous cereal proteases and/or proteases 
secreted by microbiota during dough fermentation. Such 
modifications can result in reduced bioactivity, for exam-
ple, inactivation of enzymes or loss of allergenicity. Alter-
natively, increased bioactivity may also result, for example, 
by enhanced exposure of epitopes, which induce an allergic 
reaction. For example, whereas boiling of eggs reduces aller-
genicity [29], dry roasting of peanuts can drastically increase 
allergenicity [30]. Resistances to denaturation and digestion 
are common properties of allergenic proteins [31] (including 
ATIs) and are associated with a tightly folded protein struc-
ture stabilised by cross-links. Consequently, although the 
partial proteolysis of native ATIs may not result in complete 
loss of structure, further degradation during digestion may 
occur rapidly if the cross-links are broken during processing. 
It is therefore important to know whether food processing 
can modify the structures of ATIs and whether this reduces 
or increases their bioactivity.

Although the effects of food processing on the enzyme 
inhibitory activity of ATIs are relatively easy to measure, 
the effects of processing on the effects of ATIs in humans 
remain unclear. Whereas some studies indicate that ATIs 
are inactivated and/or degraded during bread baking and 
the cooking of pasta [32], others indicate that they survive 
these processes [33, 34]. Furthermore, while ATIs may sur-
vive these processes, chemical modification of the structure 
or changes in the conformation (shape) of the protein may 
result in loss of inhibitory activity and/or reduced allergenic 
activity. Conversely, as discussed above, partial digestion 
or changes in conformation of proteins may expose aller-
gic parts of the protein resulting in increased severity of 
reactions.

It has also been shown that specific lactobacilli present 
in sourdough bread making systems secrete enzymes which 
degrade ATIs [35–38] and, may either increase or decrease 
their bioactivity, depending on the patterns and the degree 
of the degradation.

Finally, it is important to note that some food products 
that contain wheat grain or flour have not been subjected to 
food processing for example raw cookie dough, unprocessed 
flaked wheat as used in muesli and dusting flour used to 
facilitate dough handling and for bread decoration. There 
will therefore be less impact of processing on the structure 
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or bioactivity of ATIs in these materials resulting in poten-
tially stronger health effects.

It is clear that the effects of food processing on the bio-
activity of ATIs are complex and are also likely to differ 
between isoforms of ATI. It is therefore important to deter-
mine whether some isoforms of ATIs are more sensitive to 
different processing systems than others. Because quantify-
ing ATIs in various food matrices is very challenging, it 
is also important to improve analytical procedures. This 
knowledge may allow us to tailor the processing conditions 
for specific types of wheat. It may also enable us to identify 
types of wheat with low contents of the most active ATI iso-
forms and select for low activity in future wheat breeding 
programmes.

However, above all, it is essential that the assumed 
impacts of ATIs on health are validated by data obtained 
from human studies. In vitro studies carried out with isolated 
protein fractions or animal model studies are not sufficient 
to provide evidence on in vivo effects in humans consuming 
processed wheat-based foods.

Conclusion

Wheat is one of the most important staple foods and it has 
been cultivated and consumed for millennia. The nutrient 
content and safety of wheat are therefore crucial for food 
security. Over 90% of the population can eat wheat products 
without adverse effects but small proportions suffer from 
allergy, CD or NCWS. ATIs are present in cultivated and 
wild wheat species and cereals and have well-documented 
roles in wheat allergy (bakers’ asthma and food allergy). 
In vitro studies and in vivo studies in animal models have 
shown that they also play a role in the pathogenesis of CD 
and NCWS, but many questions remain unanswered. The 
relative activities of different ATI isoforms from different 
sources, such as different types and cultivars of wheat, on 
humans including the mechanism at the molecular level are 
still not clear. Possible approaches to reduce ATIs and their 
bioactivity include food processing and plant gene editing. 
Further information on the impacts of ATIs on human health 
during the whole chain from cultivation over processing to 
consumption is required to underpin these improvements.
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