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Insect swarms can be bound together by repulsive forces 

 

A.M. Reynolds 

Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK. 

 5 

Abstract The cohesion of insect swarms has been attributed to the fact that the resultant 

internal interactions of the swarming insects produce, on the average, a centrally attractive 

force that acts on each individual. Here it is shown how insect swarms can also be bound 

together by centrally forces that on the average are repulsive (outwardly directed from the 

swarm centres). This is predicted to arise when velocity statistics are heterogeneous (position-10 

dependent). Evidence for repulsive forces is found in laboratory swarms of Chironomus 

riparius midges. In homogeneous swarms, the net inward acceleration balances the tendency 

of diffusion (stochastic noise) to transport individuals away from the centre of the swarm. In 

heterogenous swarms, turbophoresis – the tendency for individuals to migrate in the direction 

of decreasing kinetic energy – is operating. The new finding adds to the growing realization 15 

that insect swarms are analogous to self-gravitating systems. By acting in opposition to central 

attraction (gravity), the effects of heterogeneous velocities (energies) are analogous to the 

effects of dark energy. The emergence of resultant forces from collective behaviours would 

not be possible if individual flight patterns were themselves unstable. It is shown how 

individuals reduce the potential for the loose of flight control by minimizing the influence of 20 

jerks to which they are subjected. 
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Introduction 

In contrast with bird flocks, fish schools and migratory herds, sparse swarms of flying insects 

do not possess global order but are, nonetheless, a form of collective animal behaviour [Okubo 

1986, Kelley and Ouellette 2013]. The collective behaviour is evident in their emergent 

macroscopic mechanical properties. Laboratory swarms of Chironomus riparius midges, for 35 

example, have macroscopic mechanical properties similar to solid, including a finite Young’s 

modulus and yield strength [Ni and Ouellette 2016]. The collective behaviour of these swarms 

is also evident in their response to dynamic illumination perturbations. The swarm-level 

response can be described by making an analogy with classical thermodynamics, with the 

state of the swarm moving along an isotherm in a thermodynamic phase plane [Sinhuber et 40 

al. 2019a]. Applied oscillatory visual stimuli induce a viscoelastic response as the 

perturbations are strongly dampened, both viscously and inertially [van der Vaart et al. 2019]. 

A distinctively different indicator of collective behavior lies in the composition of unperturbed 

swarms. Unperturbed laboratory swarms of Chironomus riparius midges consist of a core 

‘condensed’ phase surrounded by a dilute ‘vapour’ phase [Sinhuber and Ouellette 2017]. 45 

Although these two phases have distinct macroscopic properties, individuals move freely 

between them, suggesting that they are collective, emergent states. The collective behaviours 

of laboratory swarms of Chironomus riparius midges are predicted by stochastic trajectory 

simulation models [Reynolds et al. 2017, Reynolds 2018a, 2019a,b, van der Vaart et al. 2019, 

2020]. This and other modelling [Gorbonos et al. 2016, 2020, Reynolds 2019b] have also 50 

uncovered striking similarities between insect swarms and self-gravitating systems such as 

globular clusters, as foreseen by Okubo [1986]. Okubo [1986] noted that if the internal forces 

between individuals were like Newtonian gravitational attraction, then the resultant attraction 

on an individual within a uniform spherical swarm would be directly proportional to the distance 

from the swarm centre, as observed [Okubo 1986, Kelley and Ouellette 2013] and as predicted 55 

by the stochastic models. 

 

To date, stochastic trajectory simulation models have been formulated for homogeneous 

swarms with position-independent velocity statistics. Here models are formulated for swarms 

with heterogeneous velocity statistics.  The effects of heterogeneous velocity statistics are 60 

shown to be analogous to ‘dark energy’ causing individuals, on the average, to accelerate 

outwardly from the swarm centre. The outward accelerations need a supply of energy which 

for "active particles" like insects can be got from converting (unseen) internal energy 

into kinetic energy. Model predictions are supported by the results of numerical simulations 

and by analysis of pre-existing data for laboratory swarms of Chironomus riparius midges 65 

[Sinhuber et al. 2019b].  
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Swarm stability is contingent on the stability of individual trajectories.  Modelling and data 

analysis reveal that individuals minimize the influence of potentially destabilizing jerks 

(changes in acceleration) to which they are subjected. I show that jerks along with an analogue 70 

of the Reynolds number appear in higher-order (generalized) stochastic models. 

 

Model formulation and predictions 

Here following Okubo [1] I assume that the positions, x, and velocities, u, of individual insects 

within a swarm can be described by the stochastic differential equations  75 

𝑑𝑥 = 𝑢𝑑𝑡  

 𝑑𝑢 = 𝑎(𝑢, 𝑥, 𝑡)𝑑𝑡 + 𝑏𝑑𝑊(𝑡)                  (1) 

where ( )tdW  is an incremental Wiener process with correlation property 

( ) ( ) ( )dttdWtdW  =+ . Such 1-dimensional, individual-based models are effectively first-

order autoregressive stochastic processes in which positions and velocities are modelled as 80 

a joint Markovian process. At second-order, positions, velocities and accelerations are 

modelled collectively as a Markovian process. Physically, the hierarchy of stochastic models 

corresponds to the inclusion of a velocity autocorrelation timescale, T, at first order, and to the 

addition of an acceleration autocorrelation timescale, tA, at second order and so on [Sawford 

1991]. Continuum models of the kind pioneered by Bertozzi and Topaz [2004] and utilized, for 85 

example, by Topaz et al. [2012] are not appropriate because the Knudsen number Kn~O(1) 

[Puckett et al. 2014]. In the laboratory, Chironomus riparius midges appear somewhat 

paradoxically to be tightly bound to the swarm while at the same time weakly coupled inside 

it [Puckett et al. 2014].  

 90 

Here the deterministic term, ( )txua ,, , is determined by the requirement that the statistical 

properties of the simulated trajectories be consistent with the observations of Kelley and 

Ouellette [2013] who reported on the position and velocity statistics of individual Chironomus 

riparius midges within laboratory swarms. Mathematically these consistency conditions 

require that the joint distribution of velocity and position 𝑝(𝑢, 𝑥, 𝑡) be a solution of the Fokker-95 

Planck equation 

( )
2 2

22

p p b p
u ap

t x u u

   
+ = − +

                       (2)
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Here, in broad agreement with the observations of Kelley and Ouellette [2013], I assume that 

positions and velocities are statistically stationary and Gaussian distributed, 

𝑝(𝑢, 𝑥) =
1

2𝜋𝜎𝑥𝜎𝑢
𝑒𝑥𝑝 (−

𝑥2

2𝜎𝑥
2) 𝑒𝑥𝑝 (−

𝑢2

2𝜎𝑢
2)                          (3) 100 

where σx is the root-mean-square position (i.e., the root-mean-square swarm size), and σu is 

the position-dependent root-mean-square speed. Equation 2 implies  

( )
2

, ,
2

b p
ap x u t

u



= +


 

where for statistically stationary swarms having, 
𝜕𝑝

𝜕𝑡
= 0, the quantity ϕ is determined by 

, . .,

u
p

u i e updu
u x x




−

  
= − = −

           (4) 105 

It follows from Eqns. 2, 3 and 4 that  

2 2 22

2 2

21
1

2

u u u

x u

du u
du dt xdt dt dW

T dx T

  

 

 
= − − + + + 

 
                (5) 

when, without loss of generality and on dimensional grounds, 
T

b u

22
=

 

where T is a model 

timescale. Details of the derivation of such models can be found in Thomson [1987].   The first 

term in Eqn. 5 is a ‘memory term’ which causes velocity fluctuations to relax to their mean 110 

value. The second and third terms are a conditional mean acceleration (restorative force). The 

fourth term is the stochastic driving noise. This accounts for fluctuations in the restorative force 

which arise because of the limited number of individuals in the swarm and because of 

nonuniformity in their spatial distribution [Okubo 1986].  Utilizing the continuous Fokker Planck 

equation, Eqn. 2, to determine the functional form of the discrete models, Eqn. 1., in the above 115 

way contrasts with the continuum formulation of fully-fledged discrete models of dense swarms 

[Chuang et al. 2007]. 

 

When velocities are homogeneous (i.e., when 

2

0ud

dx


= ), the model, Eqn. 5, reduces to 

Okubo’s model [1986]. In this case, mean accelerations are directed towards the swarm centre 120 

and increase linearly with distance from the swarm centre, in accordance with observations 
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made at the cores of laboratory swarms [Okubo 1986, Kelley and Ouellette 2013]. This is 

consistent with insect swarms behaving as self-gravitating systems [Okubo 1986].  

 

More generally, the velocity-averaged mean acceleration 125 

2 2

2

u u

x

d
A x x

dx

 


= − +          (6) 

Concave mean-square-velocity profiles therefore counteract with the linear term, 

2

2

u

x

x



− , 

(more generally 2

u

d

dx


  where ρ is the aerial density profile) and if strong enough can 

overwhelm it completely so that mean accelerations are everywhere direct away rather than 

towards the swarm centre. Such swarms are therefore effectively bound together by repulsive 130 

forces. 

 

Comparisons with simulation and experimental data 

Individual trajectories were simulated by numerically integrating the stochastic model, Eqn. 1 

and 5. Statistically stationary predictions for mean accelerations, velocity variances and spatial 135 

distributions were obtained from 100,000 simulated trajectories. The results of these numerical 

simulations confirm that swarms remain localized and coherent even though individuals are, 

on the average, accelerating outwardly away from the swarm centre. This is illustrated in Fig. 

1 for the case when 
2 2/2 2

0 e xx

u

 = for 2 xx   otherwise 
2 2 4

0 eu = so that 

2

0

2

x

A x x



=  for 

2 xx  otherwise 0A x =  Cases where individuals are everywhere, on the average, 140 

repulsive are non-physical because such swarms possess infinite kinetic energy. Further 

support, for the model predictions comes from an analysis of the pre-existing data for 3-

dimensional swarms of Chironomus riparius midges [Sinhuber et al. 2019b]. Mean-square 

velocities within the cores of these swarms are position-independent and, as predicted, mean 

accelerations increase linearly with distance from the swarm centers (Fig. 2). In the outskirts 145 

of the swarms the concave shape of mean-square velocity profiles become apparent as does 

the expected associated weakening of the central attraction (due to contributions to the net 

resultant forces from repulsive forces).  
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Jerks and Reynolds numbers 150 

Male midges swarm to provide a mating target for females, making stationarity desirable. Ni 

and Ouellette [2016] were the first to show that this biological function is reflected in an 

emergent physical macroscopic property of the swarm; namely its tensile strength. van der 

Vaart et al. [2019] subsequently showed that midge swarms also strongly dampen 

perturbations, both viscously and inertially. These findings suggest that midge swarms use 155 

their collective behaviour to stabilize themselves against environmental perturbations. 

Perturbations are inevitable in natural  swarms that must contend with gusts of wind and with 

other environmental disturbances. Collective behavours can, however, only be stablizing if 

individual’s trajectories are themselves stable. To avoid losing control of their body motion, it 

is not only necessary to limit the maximum acceleration, i.e., the force, an individual can be 160 

exposed to, but also the maximum jerk strength (rate of change of acceleration, 

3

3

d x

dt
), since 

individuals need time to adjust to stress changes. Here I show that midges minimize the impact 

of jerks.  

 

Jerks arise in second-order autoregressive models for the joint evolution of an individual's 165 

position, x, velocity, v, and acceleration, A: 

( ) ( )

udtdx

Adtdu

tbdWdttxuAadA

=

=

+= ,,,

         (7) 

The formulation of such models mirrors closely that of first-order models, Eqn. 1. The position, 

velocity and accelerations of the simulated trajectories will be consistent with the observed 

form of the joint distribution of acceleration, velocity and position, ),,,( txuAP , when170 

),,,( txuAP  is a solution of the Fokker-Planck equation 

( )
2

22

2 A

Pb
aP

Au

P
A

x

P
u

t

P




+




−=




+




+





               (8)

             
 

Equation 8 implies that  

2 ln

2

b P
a

A P


= +


                  (9) 175 
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where for statistically stationary swarms having, 0=




t

P
, 

P P
u A

A x u

  
= − −

  
                 (10) 

 

The first term on the right-hand side of Eqn. 10 a memory term which causes accelerations to 

relax to their mean value, A  . The second term on the right-hand side
P


 of Eqn. 9 is the 180 

mean jerk strength J . It follows from Eqn. 10 that when accelerations, velocities are 

homogeneous (position independent) and Gaussian distributed, the mean jerk strength   

 
2

2

A

u

A
J u

x





  
= − 

 

                              (11) 

An equation for the mean acceleration – identical to Eqn. 4 - is obtained from Eqn. 10 after 

integrating over all accelerations. For swarms with Gaussian density profiles,

2

2

u

x

A x



= − . In 185 

accordance with Eqn. 11, the mean jerk strength is observed to increase linearly with velocity 

when velocities lie within the Gaussian cores of the velocity distributions (Fig. 3a). 

Discrepancies between the predicted and observed mean jerk strengths only become 

significant at higher velocities, 2 uu  , which lie within the exponential tails of the velocity 

distribution [Kelley and Ouellette 2013] and so beyond the scope of the model. Moreover, as 190 

predicted, the average observed jerk strength does not vary significantly with position in the 

swarm (Fig 3b). Model predictions for velocity-averaged jerk strengths  ( )0J u   are also 

in good agreement with data for a variety of laboratory swarms with mean sizes between 19 

and 94 individuals (Fig. 3c). The simple, 1-dimensional model is seen to consistency 

overpredict ( )0J u   by a factor of about 3/2.  195 

 

The above analysis is readily extended from 1 and 3-dimensions and to thereby account for 

velocity covariances. In this case 

2

2

i j

i j A ij

x

u u
J u  



 
 = − +
 
 

                (12) 

where the subscripts denote Cartesian coordinates and where   is the inverse of the velocity 200 

covariance matrix i ju u . The mean jerks are therefore aligned with the direction of travel, i.e., 

with the body axis, when the velocity covariances vanish. This has resonance with Reynolds 
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et al. [2016] who suggested that migratory insects use turbulence-induced jerks as an 

indication of mean wind direction when flying at altitude. The average magnitude of the jerks 

is smallest along the mean wind line (or to right of the mean wind line in Ekman spiral 205 

atmosphere in the Northern Hemisphere). Vanishing velocity covariances are not inevitable. 

Analysis of the datasets of Sinhuber et al. [2019b] of laboratory swarms of midges, for 

example, reveals that velocity covariances are non-zero but 10 to 20 times smaller than the 

velocity variances. And, as predicted, mean jerks are found to be effectively aligned with 

velocity.  210 

 

An analogue of the Reynolds number, which is determined by the ratio of T and tA, 

( )
2

Re* / AT t= , appears as a parameter at second order [Sawford 2003]. This provide a new 

way to characterise swarm behaviours. Indeed, modelling predicts a transition from under- 

and over-damped movements with increasing Reynolds number (Fig. S1). 215 

 

 

More elaborate models 

In principle the modelling could be extended to account for distributions of acceleration having 

heavy tails [Kelley and Ouellette 2013]. It should, however, be noted that the naïve approach 220 

of simply specifying non-Gaussian accelerations produces non-physical effects in stochastic 

modelling of tracer-particle trajectories in turbulence [Reynolds 2003a]. More realistic 

stochastic models of tracer-particle trajectories in turbulence are formulated in terms of 

conditional distributions of accelerations under the assumption that these are Gaussian 

[Reynolds 2003b, Reynolds et al. 2005, Lamorgese et al. 2007]. Tracer-particle accelerations 225 

have a conditional dependency on both the rate of dissipation of turbulent kinetic energy and 

velocity [Sawford et al. 2003]. Likewise, the mean accelerations of swarming insects are 

velocity dependent [Reynolds et al. 2017], as are the acceleration variances, ( )2 ,A u x  (Fig. 

4a).  The latter implies that large fluctuations in acceleration tend to be associated with large 

velocities.  The correlation between the square of the fluctuations in accelerations and square 230 

of velocity is small but not negligible (the correlation coefficient, 

( ) ( )
2 2

2 2 2 2

1/2 1/2
2 2

4 2 4 2

~ 0.1
A u

A u A u

A A u u


−

=

− −

).  Fluctuations in acceleration are, therefore, 

just as likely to reinforce the velocity as they are to oppose it. The data for ( )2 ,A u x are seen 

to be equally well represented by
2 4

0 4A a a u = +  and by 𝜎𝐴
2 = 𝑎0 + 𝑎6𝑢6 (Fig. 4a). The velocity 
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dependency of the acceleration variances may be attributed to insect trajectories occasionally 235 

rotating [Reynolds 2019b]. An insect will complete a half a rotation (of radius r) and change its 

velocity by an amount 2u u =  in a time /r u = . Consequently, acceleration variances 

2

4~
u

u


 
 
 

 when 0~u r  and 6~ u  when 1~u r− . If 1~u r−  then an insect will not rotate 

over itself: it will maintain the same orientation while circulating behaving like a passive particle 

in an irrotational produced by a vortex tube. It is interesting to note that the acceleration 240 

variances of passive tracer-particles in turbulence and those of simulated passive tracer-

particles of direct numerical simulations also have a 6u  dependency which has been attributed 

to rotations (around vortex filaments) [Mordant et al. 2004, Sawford et al. 2003]. As with the 

case of turbulence [Sawford et al. 2013], the velocity-dependent accelerations variances may 

account for distributions of acceleration having heavy tails [Kelley and Ouellette 2013] (Fig. 245 

4b) and for the collapse of the conditional distributions ( )P A u  (Fig. 4c). Following Sawford 

et al. [2013], a heuristic understanding of this relationship can be attained by assuming that 

conditional distributions of acceleration are Gaussian. For large accelerations, the 

unconditional distribution of accelerations, ( ) ( ) ( )P A P A u p u du



−

=   can be evaluated using 

the saddle point approximation. If, as observed [Kelly and Ouellette 2013], velocity 250 

distributions have long exponential tails, then the saddle point approximation gives 

( )
2

1~ exp pP A A +
 
− 
 
 

 where α is a constant. Laboratory results for the distribution 

acceleration are well represented by 

( )

2

6/7
2

exp
A

P N

A 

 
 

= − 
 +
 

 where N is a normalization 

constant and where α and β are constants (Fig.4c). This ansatz has a Gaussian core and a 

stretched exponential tail. The model exponent for the tail, ( )2 / 1 p+ , matches the empirical 255 

value, 2/7, when p=6.  It may be difficult to improve on this model. Note also that these intrinsic 

fluid-like properties of swarming midges in still air may, like other properties of swarming 

midges, be modified if the air itself is set in motion or if the swarm is perturbed in other ways 

by external perturbations [Sinhuber et al. 2019a, van der Vaart et al. 2020]; mirroring 

expectations for swarming in viscous fluids [Chuang et al. 2016]. 260 
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Discussion 

Here I reported on the first theoretical analysis of heterogeneous insect swarms with position-

dependent velocity statistics. The analysis demonstrated the utility of a model formulation 265 

which has proved to be highly effective when applied to homogeneous swarms [Reynolds et 

al. 2017, Reynolds 2018a, 2019a,b, van der Vaart 2019, 2020]. It revealed how heterogeneous 

velocity statistics 

2

ud

dx


contribute to mean accelerations, A x , countering or even 

overwhelming centrally-attractive accelerations, 

2

2

u

x

x



−  (Eqn. 5). The former was evident in 

the results of numerical simulations (Fig.1) which confirmed that individuals can be bounded 270 

to the swarm centre by a resultant force that, on the average, is repulsive; a seemingly 

paradoxical situation. Evidence for repulsive forces was uncovered in an analysis of pre-

existing experimental data (Fig. 2). The mechanism is clear. In homogeneous swarms, the net 

inward acceleration balances the tendency of diffusion (stochastic noise) to transport 

individuals away from the centre of the swarm. In heterogenous swarms, turbophoresis is 275 

operating. If, as is observed (Fig. 2),  ( )2

u x  is concave, then in statistically-stable swarms 

this tendency of individuals to move inwards towards to centres of swarms must be countered 

by net outward accelerations. Concave velocity-variance profiles together with the assumption 

that velocities are locally Gaussian also accounts for the observed presence of velocity 

distributions with long-exponential tails [Kelley and Ouellette 2013, Reynolds 2019b]. This 280 

juxtaposition also accounts for the observed occurrence of speed-dependent forces, Eqn. 5 

[Reynolds et al. 2017]. Concave velocity-variance profiles are predicted by the mechanistic 

models which attribute swarm cohesion to the sporadic and temporary formulation of bound 

pairs of individuals flying in synchrony [Reynolds 2019b], as observed by Puckett et al. [2015]. 

They may be also attributed to the influence of the ground-based visual features known as 285 

swarm markers [Puckett and Ouellette 2014] or result from interactions between swarming 

insects and faster insects outside of the swarms [Puckett and Ouellette 2014]: interactions 

that may also account for the presence of stabilizing inwards effective pressure on the surface 

of the swarms [Gorbonos et al. 2016].  

 290 

Okubo [1986] speculated that insect swarms are analogous to self-gravitating systems and 

therefore individuals are attracted to the centre of the swarm by an effective net force that 

increases linearly with distance from the swarm centre. There is now strong experimental 

support for such a net linear restoring force operating within the cores of laboratory swarms 

[Kelley and Ouellette 2013]. More recent studies have uncovered more striking analogies with 295 
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self-gravitating systems: including the occurrence of polytropic distributions (which constitute 

the simplest, physically plausible models for self-gravitating stellar systems), together with 

biological correlates of Jean’s instabilities, black hole entropies, Mach’s Principle, surface 

pressures, and dark matter [Gorbonos et al. 2016, Gorbonos and Gov 2017, Gorbonos et al. 

2020, Reynolds 2018b, 2019b, Supplementary Material]. By providing a revision to Okubo 300 

[1986] I have uncovered another biological correlate of self-gravitating systems: namely dark 

energy. In analogy with dark energy, heterogenous velocity statistics were shown to act to 

opposition to the net inward force identified by Okubo [1986]. This opposition becomes 

significant in the outskirts of swarms. The enrichening of the analogy with self-gravitating 

systems compliments ongoing attempts to establish a 'thermodynamic' understanding of 305 

swarming [Ouellette 2017, Sinhuber et al. 2019] A complete understanding of the collective 

behaviour of insect swarms may ultimately be found in both their emergent macroscopic 

mechanical and thermodynamic properties, and in their similitude with self-gravitating 

systems. The emergence of these properties is contingent on individuals not losing control of 

their trajectories. It was shown how individuals in the swarms reduce the potential for the loose 310 

of flight control by minimizing the potentially destabilizing influences of jerks; mirroring 

expectations for migratory insects [Reynolds et al. 2016]. 

 

Finally, it was shown that an analogue of the Reynolds number appears as a parameter in 

second-order stochastic models, opening up a new unexplored avenue for characterizing 315 

collective behaviours [Smith et al. 2019]. 
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 440 

Figure 1. Insect swarms are predicted to remain localized and coherent even when 

every individual is, on the average, accelerating outwardly from the swarm centre. 

Individual trajectories were simulated using the stochastic model, Eqn. 1 and 5 with 

2 2/2 2 2 2 2 4

0 0 01, e for 2 otherwise , 1xx

x u x ux e
      = =  = = and 1T =  a.u. 100,000 

individuals were simulated for a time t=5 a.u. whereupon their positions, velocities and 445 

accelerations were recorded (●). Initial positions were Gaussian distributed with mean zero 

and variance 
2

x . Initial velocities were Gaussian distributed with mean zero and variance 

( )2

u x . 

 

 450 
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Figure 2. Hallmarks of model predictions in laboratory insect swarms. Concave velocity-

variance profiles co-exist with suppressed inward accelerations (indicative of contributions 

from outward accelerations). Data are taken from Sinhuber et al. [2019b] for horizontal 

movements. Velocity variances and mean accelerations are ensemble averages over all 17 455 

dusk time swarms in the dataset. To reduce the effects of meandering centres and fluctuations 

in swarm size, position-dependent velocity variances and mean accelerations were calculated 

for 10 s long runs of data. These quantities were then ensemble-averaged. Data for vertical 

movements is not shown because laboratory swarms are distorted in that direction by the 

presence of the ground, and because individuals tend to join the swarm by flying above it 460 

[Kelley and Ouellette 2013]. Also shown is the linear dependency of mean accelerations with 

distance from the swarm centre that is expected for homogeneous swarms (dashed lines). 
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 465 

Figure 3 Comparisons of predicted and observed mean jerk strengths. An example 

comparison of the predicted and observed dependency of the mean jerk strength on a) 

velocity and b) position. Experimental data are taken from the smallest swarm (Ob17) in the 

data set of Sinhuber et al. [2019b]. In accordance with model expectations, Eqn. 11, the mean 

jerk strength increases linearly with velocity according to 
2 2

2 2

u A

x u

J u
 

 

 
= − + 

 
 and the mean jerk 470 

strength ( )
2 2

2 2

2
0 u A

u

x u

J u
 


  

 
 = + 

 
 is independent of position. c) Comparison of 

predicted and observed velocity-averaged jerk strengths ( )0J u  . Experimental data 

are taken from all 17 dusk-time swarms in the data set of Sinhuber et al. [2019b]. The dashed-

line is a least squares regression (R=0.93). Directly comparable results are obtained for the 

y- and z- (vertical) directions. Experimental data are taken from all 17 dusk-time swarms in 475 

the data set of Sinhuber et al. [2019b].  
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Figure 4 a) Acceleration variances depend on velocity. The lines are fits to 
2

0

p

A pa a u = +  480 

with p=2, 4 and 6. Experimental data are taken from all 17 dusk-time swarms in the data set 

of Sinhuber et al. [2019b]. b) Comparison of observed and predicted unconditional 

probability density functions (PDFs) of acceleration. Experimental data are taken from all 

17 dusk-time swarms in the data set of Sinhuber et al. [2019b] (black line) (one horizontal 

component of acceleration). In accordance with model expectations the PDF has a heavy 485 

tailed compared with the Gaussian (dashed line). The data are very well represented by a 

stretched exponential ( )
( )

2

6/7
2

exp
A

P A N

A 

 
 

= − 
 +
 

where N is a normalization constant 

and where the constants α and β were determined by maximizing the associated log likelihood 

function. (red line) c) Unconditional and conditional PDFs of acceleration have similar 

shapes.  The observed collapse of the conditional PDFs suggests that the stretched 490 

exponential tails and the postulated power-law of the conditional acceleration variances may 

be related.   



21 
 

Supplementary Material 

Reynolds number effects  

 495 

Figure S1. Swarms are predicted to transition from being underdamped to being 

overdamped as the effective Reynolds number increases. In the underdamped cases 

velocity autocorrelation functions are oscillatory and individual motions are pendulum-like, and 

in the overdamped case individual motions resemble a centrally biased random walk. 

Simulation data was produced by the one-dimensional, second-order stochastic models, Eqn. 500 

7-10, for swarms with positions, x, velocities, u, and accelerations, A, that are independent 

and Gaussian. Following Sawford [1991] the intensity of the stochastic noise 

( )2 2 1 1 1 12 u A Ab T t T t − − − −= + . Model predictions were obtained for swarms with 

2 22, 1, 1x u T = = = (a.u.) and with 
1/2/ Re*At T= . Predictions for Re*→ were 

obtained using the one-dimensional, first-order stochastic model, Eqn. 5 with 
2 21, 1x u = =  505 

and 1T = . In this model, 
2 1/2 2 2Re* /A u T = .  
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Confirming essential elements of a ‘dark matter halo’ theory of surface pressures 

The scalar virial theorem states that for a stable (statistically-stationary) self-gravitating system 510 

2T+W+S=0 where T is the kinetic energy, W is the potential energy and S is the surface 

pressure. Here T, W and S are specific quantities. The potential energy .W = A x  where A 

is the acceleration of an individual, and x is its position relative to the average position of the 

swarm centre. Gorbonos et al. [2016] found that laboratory swarms of the midge Chironomus 

riparius have S<0, indicating that the swarms are effectively experiencing stabilizing inward 515 

pressures on their outer surfaces. Reynolds [2018] proposed that the surface pressure is the 

result of the observed flux of individuals into and out of the swarm [Kelley and Ouellette 2012, 

Ni and Ouellette 2016, Sinhuber et al. 2019]. According to Reynolds [2018] this flux causes 

sporadic (mean zero) movements of the swarm’s centre-of-mass, x  which result in a surface 

pressure term given by
2S = − U where 

d

dt
=

x
U . In the analogy with self-gravitating 520 

systems, the predicted contributions to the swarm binding from the surrounding insects 

correspond to a ‘dark matter halo’; structures that extended well beyond the edges of stellar 

systems and those existence can be inferred through their effects on the motions of stars and 

gas within those systems. 

 525 

Here I provide the first evidence in support of the theory of Reynolds [2018] through analysis 

of the datasets of Sinhuber et al. [2019]. The number of individuals within a swarm fluctuates 

over time. To good approximation (R2=0.79) the size of these fluctuations n  increases with 

the average swarm size, n (Fig. S2a). This may be an example of Taylor’s [1961] law (known 

as fluctuation scaling in the physics literature) which posits that n =anb where b is a species-530 

specific aggregation index. Centre-of-mass movements increase with increasing n  (Fig. 

S2b). And to good approximation,
2S = − U  (Fig. S2c) in accordance with theoretical 

expectations [Reynolds 2018]. The surface pressure was calculated from the scalar virial 

theorem. By way of contrast no evidence was found for what is perhaps the simplest 

explanation for S<0; namely for the co-existence of bound individuals with 2T+W=0 (S=0) and 535 

free (unbound) individuals with T>0, W=0 (effectively corresponding S<0).  
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Figure S2.  Analysis of the laboratory swarms of the midge Chironomus riparius is 540 

consistent with the theoretical analysis of Reynolds [2018]. a) Fluctuations in swarm size 

n  increase with swarm size. b) Centre-of-mass (c.o.m.) movements increase with n . c) To 

good approximation
2S = − U , in accordance with theoretical expectations [Reynolds 2018]. 

Data are taken from Sinhuber et al. [2019]. 
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