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Abstract

Despite its deleterious impact on farming and agriculture, the physiology and energetics of

insect migration is poorly understood due to our inability to track their individual movements

in the field. Many insects, e.g. monarch butterflies, Danaus plexippus (L.), are facultative

migrants. Hence, it is important to establish whether specific insect populations in particular

areas migrate. The polyphagous insect, Helicoverpa armigera (Hübner), is especially inter-

esting in this regard due to its impact on a variety of crops. Here, we used a laboratory-

based flight mill assay to show that Helicoverpa armigera populations clearly demonstrate

facultative migration in South India. Based on various flight parameters, we categorized

male and female moths as long, medium or short distance fliers. A significant proportion of

moths exhibited long-distance flight behavior covering more than 10 km in a single night,

averaging about 8 flight hours constituting 61% flight time in the test period. The maximum

and average flight speeds of these long fliers were greater than in the other categories.

Flight activity across sexes also varied; male moths exhibited better performance than

female moths. Wing morphometric parameters including forewing length, wing loading, and

wing aspect ratio were key in influencing long-distance flight. Whereas forewing length posi-

tively correlated with flight distance and duration, wing loading was negatively correlated.

Introduction

Migratory insects undertake journeys ranging from a few meters to thousands of kilometers

over land and water [1]. In a wide range of insects, such as dragonflies [2, 3], grasshoppers [4],

beetles, butterflies and moths [5–7], seasonal movements and travel distance during migration

varies with species, and often involves large numbers of individuals [8]. Vast numbers of
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noctuid moths regularly migrate between their summer and winter ranges separated by thou-

sands of kilometers, undertaking nocturnal flights at altitudes of hundreds or thousands of

meters [9–12]. These migrations are either obligate (i.e. independent of environmental factors

and in habitats that support a single generation; [13]), or facultative (i.e. mainly depending on

environmental cues experienced during development; [14, 15]). Because most insects are too

small to be individually tracked during migration, knowledge about insect migration lags

behind that of vertebrates. Nevertheless, insects are readily amenable to experimental manipu-

lation and their migration can be studied using laboratory-based assays.

The study of migration and mass movement is especially important for insects that feed

extensively on crops. Of insects that threaten crops, the moth Helicoverpa armigera (Hübner) has

emerged in recent years as a key crop-pest in the old world. Helicoverpa armigera is a polypha-

gous pest with more than 300 host plants, ravaging several crops of the arid and semiarid tropics

across the globe [16–18]. In India, it is a major pest of pigeon pea, chickpea, sunflower, sorghum,

maize and tomato [19, 20]. The potential for extensive adult movements contributes greatly to

the success of heliothines (includes Helicoverpa, Heliothis, Chloridea) as pests [16, 21, 22]. In

southern India, H. armigera breeds throughout the year completing over eight generations/year

[23]. During harsh summers, these moths adopt one of three survival strategies. Some moths

undergo diapause [24] whereas others survive on non-seasonal crops [25]. The remaining popu-

lation is thought to migrate to Central and Northern India to exploit the available resources.

Under certain conditions Helicoverpa moths undertake long flights from one crop-growing area

to another [21, 22, 26, 27]. Given their agricultural impact, it is essential to establish if H. armigera
populations in India are indeed migratory. Several techniques, including mark-release-recapture

[28], visual observations and radar technology have been used to document long-distance migra-

tion of Helicoverpa in Southern India [29]. However, due to their small size and nocturnal behav-

iour, it is difficult to track that the trajectories of individual moths over long distances [30].

Moreover, for facultative migrants it is necessary to investigate both long-distance migratory

behavior, and the proportion of the population that migrates. Additionally, can morphological

flight-related characters allow us to separate migrants from non-migrants?

To study flight physiology and behaviour, researchers have used laboratory-based flight-

mill techniques in tethered insects, including Helicoverpa [31–33]. In general, tethered flight

assays on insects provide insights that are elusive in larger animals. Such assays have proved

useful in assessing flight behaviour of insects ranging from flies and true bugs to butterflies,

moths, and beetles [33]. In some noctuids [13, 34–39] including H. armigera, migratory flight

typically occurs early in adult life in the pre-reproductive period [40]. A better understanding

of migratory flight would enable tracking population movements, estimating proportion of

gene flow across migrating pathways, periods of emigration and immigration and designing

better management strategies. Hence, we investigated the migratory behavior of the South

Indian population of H. armigera using the tethered flight mill system.

Material and methods

Maintaining the adult population for flight study

To have a continuous moth population, culture in the form of fully grown larvae (preferably

sixth instar) were collected from different cropping ecosystems such as pigeonpea, okra, pearl

millet, castor, chickpea, and sunflower spread around 100 km of the study location (16.2043˚ N,

77.3345˚ E) from June 2016 to February 2017. Such collected larvae were weighed to select uni-

form sized caterpillars and reared individually in plastic vials (50 ml capacity) in an environ-

mental chamber set at 27˚C ± 1˚C with 80 percent relative humidity and L:D of 12:12 h. During

rearing, larvae were fed with the same host crop on which they were collected till pupation.
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Pupae thus formed were sexed, weighed and retained in the same vial for eclosion. The emerged

adult moths were fed with 10 percent honey solution and weighed before tethering to flight

mill. After the flight mill experiment, moths were killed to record various wing morphometrics.

Tethered flight mill assay

The flight-mill system was designed and developed by K.S.L. (Patent: [41]), and has 8 channels

(arms) allowing 8 individual moths to be flown simultaneously. Each mill consists of a light-

weight arm suspended between two magnets (Fig 1). The magnetic suspension provides an axis

with minimal resistance, allowing even relatively weak fliers to turn the mill. The moth was

attached to one end of the flight-mill arm and flew in a circular trajectory with a circumference

of 50 cm. A small banded patterned disk attached to the axis turned with the arm, while a light-

detector measured the number of turns to measure the distance flown and flight speed. The

flight-mill is interfaced with a computer to log the flight data. An embedded microcontroller

board recorded the distance flown by the insect to the nearest 10 cm and updated at five-second

intervals. A similar flight-mill system was previously used to study moth flight ability [27, 32].

One-day old (<24 hours post-eclosion) moths were collected and cold-anesthetized in a

freezer (-20˚C) for 4–5 minutes to immobilize and to protect them from physical abrasion dur-

ing tethering. The cold-anesthetized moth was placed on a plastic tethering platform held at 45˚,

with a central chamber in which the moth was held in place using perforated plastic net. The

meso- and meta-thoracic terga were descaled with a fine hairbrush, and a metal tethering pin

(3–4 cm height, 0.07 g weight) bent in a circular loop was glued to the descaled tergal plate with

Cyanoacrylate superglue (evo bond). Each tethered moth was attached to an individual flight-

mill channel. The flight mill containing eight such tethered moths (either males or females) was

oused in a controlled environment chamber and flight data was recorded from 17.00 to 07.00

(14 hours). Dead or inactive moths during observation period were excluded from the analyses.

In total 106 moths (52 males and 54 females) were subjected to flight behaviour study.

Flight performance in terms of total distance (TD), time spent in flying (TSF), per cent

flight time (PFT), average (AFS) and maximum flight speed (MFS) of individual moths was

plotted to observe the trend in the flight behaviour. Based on the flight performance 106 moths

observed were classified as ‘short fliers’ (flight range of 0–5 km), ‘medium fliers’ (5–10 km),

Fig 1. An example of a tethered flight mill for studying migratory flight under controlled conditions. (a)

Schematic diagram of an individual rotational flight mill, showing the low-friction magnetic suspension which enables

comparatively small insects to engage in sustained flight. (b) Experimental moth, Helicoverpa armigera attached with

short handle to the dorsal surface of the thorax few hours before nocturnal flight. Figure and photos courtesy of

Rothamsted Research Visual Communications Unit.

https://doi.org/10.1371/journal.pone.0245665.g001
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and ‘long fliers’ (>10 km) [27]. The above flight parameters viz., TD, TSF, AFS, MFS and PFT

of individuals in the short, medium and long flier categories were analyzed with one-way anal-

ysis of variance (ANOVA) and the means (expressed along with SE) were separated using

Tukey’s honestly significance difference test (HSD) using SPSS.16. We used the student t-test

to compare how each parameter varied between sexes for each parameter, setting the signifi-

cance level at P < 0.01.

Post-recording, the fore- and hindwing on one side (right) were detached using micro-

scissors, and total wing length, width and area of each wing measured using a stereo-zoom

binocular microscope (Nikon: SMZ 25) equipped with measurement software (NIS Elements

F 4.00.00). We calculated wing aspect ratio, wing loading, and front wing quotient using stan-

dard formulae [42].

We processed flight data of individual moths for a 14-hour flight period (from beginning of

dusk to end of dawn) using MATLAB [43]. Flight data were processed in R [44] to extract 16

flight variables (S1 Table in S1 File), of which 11 most informative variables were isolated using

Principal Components Analysis (PCA) (S2 Table in S1 File). Using Pearson correlation and

stepwise regression analysis (S3 and S4 Tables in S1 File), we established the relationship

between flight variables (extracted from PCA) and adult morphometric variables (S5 Table in S1

File). Linear regression analyses were performed to test the effect of three most important wing

morphometrics viz., forewing length, wing aspect ratio and wing loading with flight variables.

Results

Irrespective of sex, adult moths exhibited three distinct categories of flight behaviour with

respect to total distance, time spent in flying and per cent flight time (Fig 2A, 2B and 2C). Of

106 moths, 49 exhibited short-range (0–5 km), 29 medium-range (5–10 km), and 31 long-

range (> 10 km) flight. However, not much difference was observed with respect to average

and maximum flight speed among the moths tested (Fig 3A and 3B).

Regardless of sex, moths of each category differed significantly with respect to time spent

in flying, total distance, average and maximum flight speed, and percent flight duration. Mean

time spent in flying were 8.19 h (± 0.52 h), 3.42 h (± 0.28 h), and 1.02 h (± 0.14 h) for long,

medium and short fliers, respectively (Fc (2, 104) = 145.57, P< 0.01). Long-range fliers flew a

distance of 21.81 ± 1.76 km, as compared to medium-range (6.62 ± 0.34 km) and short-range

fliers (1.61 ± 0.22 km) (Fc (2, 104) = 132.99, P< 0.01). Long-range fliers attained a maximum

speed of 2.07 m/s (± 0.08 m/s), not significantly greater than medium-range fliers (1.70 ± 0.10

m/s) but significantly faster than short-range fliers (1.18 ± 0.09 m/s) (Fc (2, 104) = 24.03,

P< 0.01). Similarly, average flight speed was highest in long-range fliers (0.55 ± 0.04 m/s) fol-

lowed by medium-range (0.45 ± 0.05 m/s) and short-range (0.30 ± 0.04 m/s) flying moths (Fc (2,

104) = 9.82, P< 0.01) (Table 1). Trends across the three categories remained unchanged when

male and female moths were analyzed separately (Table 2). Time spent in flying by female long-

range fliers exceeded medium-range and short-range fliers (Fc (2, 51) = 80.93, P< 0.01). Maxi-

mum (Fc (0.05, 2, 51) = 12.54, P< 0.01) and average flight speed (Fc (2, 51) = 5.26, P< 0.01) of

long-range female fliers were on par with medium-range, but significantly greater than short-

range females. Likewise, percent flight duration of long-range fliers was greater than medium-

and short-range fliers, but on par with each other (Fc (2, 51) = 3.07, P< 0.05) (Table 2).

Greater flight duration in males was recorded in long-range fliers followed by medium-

and short-range fliers (Fc (2, 49) = 75.99, P < 0.01). Maximum flight speed in long-range fliers

was similar to medium-range fliers but significantly exceeded short-range fliers (Fc (2, 49) =

11.29, P< 0.01). Average flight speed (Fc (2, 49) = 4.35, P < 0.02) and percent flight time (Fc

(2, 49) = 12.51, P< 0.01) (Table 2) followed similar trends.
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The flight behaviour in adult moths with respect to total distance travelled, time spent in

flying and percent flight time appears to be greatly influenced by three important wing mor-

phometrics viz., forewing length (FWL), wing loading (WL) and wing aspect ratio (WAR). In

male moths, total distance travelled exhibited a strong positive relation with FWL and WL but

negative relation with WAR (Eq (1a); Fig 4a–4c). Correspondingly, time spent in flying by

adult moths recorded significant positive relation with FWL and WL but nonsignificant nega-

tive relation with WAR (Eq (1b); Fig 4d–4f). The percent flight time which is the resultant of

TSF recorded significant positive relation with FWL, positive but nonsignificant relation with

WL and nonsignificant negative relation with WAR (Eq (1c); Fig 4g–4i). However, average

flight speed though appears to be positively influenced by FWL, WL and WAR but is nonsig-

nificant (Eq (1d); Fig 4j–4l). Similarly, maximum flight speed also recorded positive but non-

significant relation with FWL and WL but negative relation with WAR (Eq (1e); Fig 4m–4o).

YTD ¼ � 116:924þ 8:719 � X1 þ 9521:283 � �X2 � 0:577X3 þ ε0 ð1aÞ

YTSF ¼ � 36:117þ 2:750 � X1 þ 3345:211 � �X2 � 0:278X3 þ ε0 ð1bÞ

YPFT ¼ � 257:976þ 19:645 � X1 þ 23894:361X2 � 1:983X3 þ ε0 ð1cÞ

Fig 2. Graph representing flight variables exhibited by male and female moths of H. armigera. A) Total distance

travelled B) Time spent in flying and C) Percent flight time.

https://doi.org/10.1371/journal.pone.0245665.g002
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YAFS ¼ � 2:070þ 0:203 � X1 þ 11:584X2 þ 0:20X3 þ ε0 ð1dÞ

YMFS ¼ � 0:727þ 0:058X1 þ 645:40 � �6X2 � 0:090X3 þ ε0 ð1eÞ

Where,

Fig 3. Graph representing flight variables exhibited by male and female moths of H. armigera. A) Average flight

speed and B) Maximum flight speed.

https://doi.org/10.1371/journal.pone.0245665.g003

Table 1. Flight performance in short, medium and long range fliers of H. armigera (both female and male moths).

Flight category No. of

moths

tested

Time spent in flying

(hr)

Total distance (km) Maximum flight speed

(m/s)

Average flight speed

(m/s)

Percent flight time

Min Max Mean ± SE Min Max Mean ± SE Min Max Mean ± SE Min Max Mean ± SE Min Max Mean ± SE

Short range

fliers (0 to 5km)

49 0 4.38 1.02±0.14a 0 4.99 1.61±0.22a 0.02 2.52 1.18 ±0.09a 0.04 1.3 0.30 ±
0.04a

0.81 100 31.75

±4.56a

Medium range

fliers (5 to 10

km)

26 1.22 6.48 3.42±0.28b 2.61 9.50 6.62±0.34b 0.84 2.54 1.70 ±0.10b 0.11 1 0.45 ±
0.05ab

10.03 74.06 33.13

±3.45a

Long range fliers

(> 10 km)

31 3.72 13.96 8.19±0.52c 10.36 40.92 21.81

±1.76c
1.46 3.45 2.07 ±

0.08b
0.23 0.94 0.55 ±

0.04b
27.46 99.85 61.36

±3.71b

Total 106 3.71±0.35 8.75± 0.99 1.57 ± 0.07 0.41±0.03 40.75±2.82

F-value 145.57�� 132.99�� 24.03�� 9.82�� 13.81��

p-value 0.000 0.000 0.000 0.000 0.000

SE-Standard error,

���p<0.0001,

��p<0.01,

�p<0.05.

The data of flight parameters are presented as mean ± SE.

Means in the same column followed by different letters are significantly different by Tukey’s HSD (P = 0.01).

https://doi.org/10.1371/journal.pone.0245665.t001
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X1- Forewing length

X2- Wing loading

X3- Wing aspect ratio

In female moths, total distance travelled recorded positive significant relation with FWL

but negative nonsignificant relation with WL and positive relation with WAR (Eq (2a); Fig 5a–

5c). Females with greater FWL, WL and WAR engaged in flight for longer time (Eq (2b); Fig

5d–5f). Similar trend was noticed with respect to percent flight time (Eq (2c); Fig 5g–5i). How-

ever, average flight speed (Eq (2d); Fig 5j–5l) and maximum flight speed (Eq (2e); Fig 5m–5o)

failed to establish any relation with FWL, WL and WAR.

YTD ¼ � 73:518þ 5:370 � X1 � 1520:153X2 þ 2:384X3 þ ε0 ð2aÞ

YTSF ¼ � 27:967þ 1:942 � X1 þ 65:650X2 þ 0:800X3 þ ε0 ð2bÞ

YPFT ¼ � 199:768þ 13:871 � X1 þ 468:925X2 þ 5:714X3 þ ε0 ð2cÞ

YAFS ¼ � 0:731þ 0:013X1 � 91:984X2 þ 0:110X3 þ ε0 ð2dÞ

YMFS ¼ 1:939 � 0:014X1 � 483:474 � X2 þ 0:151X3 þ ε0 ð2eÞ

Where,

Table 2. Flight performance in short, medium and long-range fliers of male and female H. armigera moths.

Flight category No. of

moths

tested

Time spent in flying

(hr)

Total distance (km) Maximum flight speed

(m/s)

Average flight speed

(m/s)

Percent flight time

Min Max Mean ± SE Min Max Mean ± SE Min Max Mean ± SE Min Max Mean ± SE Min Max Mean ± SE

Short range

fliers (0 to

5km)

♀ 23 0.00 2.51 0.93±0.15a 0.00 4.60 1.40±0.27a 0.10 2.42 1.25±0.13a 0.08 1.30 0.30±0.05a 2.39 100.00 32.51

±7.81a

♂ 26 0.01 4.38 1.10±0.22a 0.00 4.99 1.80±0.34a 0.02 2.52 1.12±0.14a 0.04 1.29 0.31±0.05a 0.81 100.00 31.07

±5.27a

Medium

range fliers (5

to 10 km)

♀ 17 1.22 6.31 3.29±0.35b 2.61 8.97 6.31±0.37b 0.88 2.54 1.68

±0.12ab
0.16 1.00 0.45

±0.06ab
10.03 72.57 31.04

±4.05a

♂ 9 2.04 6.48 3.64±0.48b 3.02 9.50 7.19±0.70a 0.84 2.54 1.74

±0.20ab
0.11 0.90 0.46±0.09b 16.11 74.06 37.10

±6.52a

Long range

fliers (> 10

km)

♀ 14 3.72 11.22 7.13

±0.057c
11.34 33.76 19.48

±1.94c
1.46 2.48 2.12±0.08b 0.23 0.94 0.56±0.06b 27.46 84.74 52.98

±4.22b

♂ 17 4.28 13.96 9.07±0.77c 10.36 40.92 23.74

±2.74b
1.46 3.45 2.03±0.13b 0.26 0.92 0.54±0.05b 32.89 99.85 68.26

±5.36b

Total ♀ 54 3.28±0.39 7.63±1.13 1.61±0.08 0.41±0.04 37.35±3.89

♂ 52 4.15±0.57 9.90±1.65 1.53±0.10 0.41±0.04 44.27±4.06

F-value ♀ 80.93�� 97.05�� 12.54�� 5.26�� 3.07�

♂ 75.99�� 57.11�� 11.29�� 4.35� 12.51��

p-value ♀ 0.000 0.000 0.011 0.000 0.052

♂ 0.000 0.000 0.000 0.023 0.000

SE-Standard error,

���p<0.0001,

��p<0.01,

�p<0.05

The data of flight parameters are presented as mean ± SE.

Means in the same column followed by different letters are significantly different by Tukey’s HSD (P = 0.01).

https://doi.org/10.1371/journal.pone.0245665.t002
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Fig 4. Graphs showing relationship between flight variables (dependent) with wing morphometrics (independent)

in male moths of H. armigera. A) Total distance (a-c) B) Time spent in flying (d-f) C) Percent flight time (g-i) D)

Average flight speed (j-l) and E) Maximum flight speed (m-o) as influenced by Forewing length, Wing loading and

Wing aspect ratio.

https://doi.org/10.1371/journal.pone.0245665.g004

Fig 5. Graphs showing relationship between flight variables (dependent) with wing morphometrics (independent)

in female moths of H. armigera. A) Total distance (a-c) B) Time spent in flying (d-f) C) Percent flight time (g-i) D)

Average flight speed (j-l) and E) Maximum flight speed (m-o) as influenced by Forewing length, Wing loading and

Wing aspect ratio.

https://doi.org/10.1371/journal.pone.0245665.g005
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X1- Forewing length

X2- Wing loading

X3- Wing aspect ratio

Discussion

Ability of long distance movement is one of the reasons for the successful establishment of H,

armigera in vast crop ecosystems in Old world through obligatory and facultative migration

[16, 45, 46]. The recent occurrence of this species in new world as well like in Brazil [47],

Argentina [48], Bolivia [49], Paraguay and Uruguay [50] has justified its ability to move long

distance. In India, H. armigera causes major economic loss in several agriculture/horticulture

crops. Understanding movement trajectories of migrant populations, rate of dispersal, and

their time and place of arrival helps formulate region-specific management strategies, assess

biosecurity threats, develop region specific models and estimate spread of insecticide/Bt resis-

tant populations

We used the flight-mill assay to evaluate migration activity in 1-day-old moths, based on

earlier reports that flight behavior of H. armigera depends on age and mating [40]: 1–4 day old

moths exhibited greater flight potential than older moths. Similarly, unmated females had bet-

ter flight ability than mated moths [40, 51].

Both male and female H. armigera exhibited varied flight behavior. In the test population,

31 out of 106 moths performed very long-duration and long-distance flights, suggesting that

H. armigera can migrate over great distances (as many as 40.92 km) in a single night. Moths

were also capable of continuous flight bouts, flapping for nearly 68% of the flight time. Similar

observations on long distance flight in heliothines have been observed across the globe (H
armigera; [40, 50, 52]; H. zea [53], Chloridea virescens [54], H. punctigera [52]). However, not

all moths exhibited long-range flights. Some (49) flew<5 km (mean = 1.61 km) with a maxi-

mum flight duration of 4 h (mean = 1.02 h), only 31% of their total test period. The remaining

moths (26) were medium-range fliers (between 5 to 10 km, mean = 6.62 km) with a maximum

flight duration of 6 h accounting for 33% of potential flight time. Globally, H. armigera exhibit

both facultative and obligate migration, pointing to diverse strategies adopted by H. armigera
to overcome ecological stress, including facultative diapauses [24], or surviving on alternate

hosts [25].

When comparing the sexes, H. armigera males flew for a longer distance than females. In

our study, the longest distance flown by a male was 40.92 km (with an overall average of 9.90

km), while the comparative figures for females were 33.76 km and 7.63 km. Mean maximum

flight speed was greater (1.61 m/s) in females than males (1.53 m/s), but we observed no differ-

ence in average flight speed between sexes. This indicates that males engaged in slower, longer

flights (typical of migration) more frequently than females. Male-biased flight performance

has been previously observed in H. armigera [52; see also 55] and H. punctigera. H. armigera
shows continuous variation in flight performance with individuals flying up to 40 km in a sin-

gle night [27]. Similar results were obtained in Agrotis ipsilon (Hufnagel) [56], Mythimna uni-
puncta (Haworth) [37] and Spodoptera species (S. litura (F.) and S. exigua (Hübner)) [51].

This may be because females due to their ovaries are generally heavier than males, who carry a

lighter payload [37, 57].

To study if morphological variation relates to migratory flight, we measured flight perfor-

mance relative to morphology in H. armigera females and males. Our data show correlation

between body morphometrics and flight, as also observed in other Lepidoptera [32, 58–61].

Wing length is an important correlate of flight speed and dispersal in butterflies [58, 59, 60]. In

the present study forewing length was established as the most influencing parameter for long
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distance movement and grater flight ability. The wing loading was the next best wing parame-

ter especially for male moths. In Lepidoptera, greater wing loading may allow longer and faster

flights, and lower wing loadings are associated with slower flights and hovering [62, 63].

Migrant Lepidoptera and birds tend to have greater wing aspect ratios [64–67], indicating that

high aspect ratios may impart greater dispersal ability. However, in the present study wing

aspect ration failed to establish any significant relation with the flight parameters.

Together, these results show that H. armigera populations in South India can migrate, and

that there are sex-specific and morphometry-based differences in their migration ability.

Conclusions

South Indian population of H. armigera exhibited facultative migratory behavior in the present

experimental studies, which is the first record from India. Both the sexes are equally capable of

flying for longer duration covering greater distance, though, males overtake females in these

tasks. The presented data provides ample evidence in the form of migrating individuals pos-

sessing greater forewing length, higher wing loading and wing aspect ratio over non-migratory

individuals. Understanding the migratory behavior in economically important crop pests such

as this would greatly help in tracking the movement trajectories of individuals which not only

throw light on their gene flow but also help in developing suitable, ecofriendly management

strategies.
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