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ABSTRACT

Since 2005, the Pathogen–Host Interactions
Database (PHI-base) has manually curated ex-
perimentally verified pathogenicity, virulence and
effector genes from fungal, bacterial and protist
pathogens, which infect animal, plant, fish, insect
and/or fungal hosts. PHI-base (www.phi-base.org)
is devoted to the identification and presentation
of phenotype information on pathogenicity and
effector genes and their host interactions. Specific
gene alterations that did not alter the in host in-
teraction phenotype are also presented. PHI-base
is invaluable for comparative analyses and for the
discovery of candidate targets in medically and
agronomically important species for intervention.
Version 4.12 (September 2021) contains 4387 ref-
erences, and provides information on 8411 genes
from 279 pathogens, tested on 228 hosts in 18,
190 interactions. This provides a 24% increase in
gene content since Version 4.8 (September 2019).
Bacterial and fungal pathogens represent the ma-
jority of the interaction data, with a 54:46 split of
entries, whilst protists, protozoa, nematodes and
insects represent 3.6% of entries. Host species
consist of approximately 54% plants and 46% others
of medical, veterinary and/or environmental impor-
tance. PHI-base data is disseminated to UniProtKB,
FungiDB and Ensembl Genomes. PHI-base will
migrate to a new gene-centric version (version 5.0)
in early 2022. This major development is briefly
described.

INTRODUCTION

Infectious diseases are a major concern to the health of
plants, animals, humans and to the entire ecosystem. Lo-
cally and globally infectious diseases threaten food, feed
and fibre security, human community structures, the eco-
nomic wealth of regions, countries and continents as well
as the biodiversity of natural and human-restored aquatic
and terrestrial ecosystems (1–4). The increasing effects of
human migration and travel, the globalization of the trad-
ing of fresh goods and climate change, have resulted in
a rise in the incidence and severity of existing diseases,
alongside the emergence of many novel pathogen species,
new strain variants with enhanced disease-causing abili-
ties, and a rise in zoonotic infections (5). Climate change,
and in particular rising global temperature, is causing many
pathogenic species to migrate polewards: as a result, plant
host species are encountering unfamiliar pathogens and
novel disease outbreaks are occurring (6,7). In addition,
the range of commercial anti-infective chemicals available
to control infectious diseases effectively is gradually dimin-
ishing, either because of the emergence or re-emergence of
chemical-resistant species or strains, or through a rise in leg-
islation banning or restricting the use of previously regis-
tered chemistries (8). As a result, year on year the burden
of microbial infections is of growing concern to human, an-
imal and plant health (1,2,5).

During infectious disease formation, a series of complex
and dynamic interactions between pathogenic species and
their potential hosts occur. These interactions result in the
pathogen successfully deploying a suite of virulence fac-
tors and secreted effectors that suppress, thwart or mini-
mize the host’s ability to recognize and/or respond to the
pathogen. The host loses its ability to mount an effective
defensive response and as a result, the pathogen succeeds
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in infecting the host. For obligate biotrophic pathogens,
an extra requirement for successful infection is to ensure
the colonized host cells remain alive throughout the in-
fection process. Alternatively, during these dynamic inter-
actions, the host’s recognition and defensive mechanisms
are successfully activated, the deployed pathogen virulence
factors and effectors are ineffective, and the host remains
disease-free and healthy (9,10). In recent years, it has be-
come increasingly clear that by studying host–pathogen in-
teractions across the tree of life, new underlying biolog-
ical principles can be uncovered. For example, in plant–
pathogen interactions, similar cellular compartments (i.e.
chloroplast and nucleus) are now recognized to be tar-
geted by non-homologous small proteinaceous effectors
produced by a range of bacteria, fungal and/or protist
pathogenic species with different in vivo lifestyles (11). Also,
many animal and plant infecting pathogens are now known
to use molecular mimicry of essential host molecules, ei-
ther functionally or structurally, to gain the advantage dur-
ing infection (12,13). As precise gene function studies be-
come possible for an ever-increasing range of pathogenic
species, often involving both natural and experimental host
species, the knowledge that can be gained from compar-
ative interspecies analyses has grown rapidly. In addition,
in the post-genomics era, where the amount of genomic
data is doubling every seven months, not only are fully
sequenced, assembled and annotated genomes available
for thousands of pathogenic species and their hosts, but
also an increasing number of pathogen pan-genomes are
available for particularly problematic species and species
complexes.

With this abundance of new data and new data types,
there is growing scientific and commercial interest in
omics approaches such as comparative pathogen genomics,
comparative host–pathogen genomics, and whole genome
protein–protein interaction (PPI) predictions. These meth-
ods allow (i) predicting and identifying functionally homol-
ogous genes in pathogens and hosts, (ii) identifying species-
unique genes and pathways, and (iii) pinpointing sequence
variants and gene sequence nulls that lead to alternative in-
teraction outcomes. Collectively, this increased understand-
ing of the dynamic mechanisms and principles controlling
a wide range of interactions will contribute to what have
traditionally been the two predominant approaches avail-
able for combating infectious disease: namely, activating
the host immune system to prevent infection, and precise
use of commercial anti-infective chemicals to eliminate in-
fectious agents (14–16). These approaches have now been
joined by others, including intervention by highly special-
ized biological control agents (biopesticides) (17), and the
use of RNA interference strategies and genome editing to
remove or modify pathogen susceptibility targets in the host
(14).

In 2005, the Pathogen-Host Interactions database (PHI-
base) was established and made freely available at www.
phi-base.org. PHI-base adheres to the FAIR principles
to ensure data is Findable, Accessible, Interoperable, and
Reusable (18). In 2016, the project joined the UK node
of the European life-sciences infrastructure for biological
information (ELIXIR) project, which is focused on pro-

viding sustainable bioinformatics resources, as a supplier
of agrigenomics data (19) (https://elixiruknode.org). PHI-
base stores expertly-curated molecular and biological infor-
mation on genes proven to affect the phenotypic outcome
of pathogen–host interactions (20,21). Each PHI-base en-
try is supported by strong experimental evidence from a
peer-reviewed publication. In PHI-base, the term ‘interac-
tion’ is specifically defined as the observable function of one
gene, on one host and on one tissue type (20). PHI-base
entries include experimentally verified pathogenicity, viru-
lence, and effector genes from bacterial, fungal and protist
pathogens which infect plant, human, animal, insect and
other hosts. Also included is information on the first host
targets of pathogen effectors and the targets of commercial
anti-infective chemicals. Viruses are not included in PHI-
base, due to their extensive coverage in other databases.
To enhance PHI-base’s use for comparative studies, genes
tested but found not to affect the interaction outcome are
also curated. Nine high-level phenotypic outcome terms
have been defined to permit the comparison of interac-
tions across the entire tree of life (22). These terms are
‘loss of pathogenicity’, ‘reduced virulence’, ‘increased vir-
ulence (hypervirulence)’, ‘unaffected pathogenicity’, ‘effec-
tor’, ‘lethal’, ‘enhanced antagonism’, ‘resistance to chem-
ical’ and ‘sensitivity to chemical’. These terms are partic-
ularly useful for biologists and bioinformaticians who are
undertaking cross-discipline analyses or mega-scale data
analyses and are unfamiliar with the nuances of multi-
ple pathosystems, but who wish to include pathogens with
different host ranges, lifestyles and niche occupancies in
their comparative analyses. To further increase the util-
ity of PHI-base, particularly to biologists, a BLAST tool
(PHIB-BLAST, phi-blast.phi-base.org) is available to per-
mit BLAST queries arising from functional genomics, tran-
scriptomics, proteomics and protein–protein interaction ex-
perimentation.

Since 2011, the phenotypic data in PHI-base has been
directly connected to the individual gene entries within
the genomes of plant pathogenic species available within
Ensembl Fungi, Ensembl Bacteria and Ensembl Protists
(23,24). More recently, PHI-base phenotype annotations
have also been displayed within FungiDB (25). PHI-base
also reuses ontologies and resources provided by exter-
nal resources, including PubMed, NCBI Taxonomy (26),
UniProtKB (27), the Gene Ontology (GO) (28), ChEBI (29)
and FRAC (www.frac.info). Several complementary multi-
species databases on pathogens exist that also provide gene
function annotation (reviewed by (20,30,31)). The newest
multispecies plant pathogen database, SecretEPDB, focuses
on cataloguing knowledge on the effectors produced by
various animal or plant infecting bacteria (32). PHI-base
remains unique in describing a wide range of plant, hu-
man, animal and insect pathogen–host interactions using
the same controlled generic vocabulary consistently across
more than 270 species.

In this article, we report on a major increase in PHI-base
gene content, how pathogen strain and disease names have
been amended, links to other data resources and the release
of a new gene-centric web interface of the database, PHI-
base 5.

http://www.phi-base.org
https://elixiruknode.org
http://www.frac.info
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RESULTS AND DISCUSSION

Biological data

Version 4.12 of PHI-base (released in September 2021
and described in this article), contains 8411 genes, 18190
pathogen–host interactions (PHIs), 279 pathogens, 228
hosts and 4387 references. The number of genes manually
curated for PHIs has increased by 24% since version 4.8 (re-
ported in 2020) (21). Bacterial and fungal pathogens pro-
vide 96.4% of the PHI phenotype annotations (of which
54% involve bacterial pathogens and 46% involve fungal
pathogens), whilst protists, protozoa, nematodes and in-
sects provide 3.6% (Table 1). The Ascomycete fungi domi-
nate the fungal pathogen curation with 7102 PHI phenotype
annotations and 103 species (88% of all fungal PHI pheno-
types), followed by the Basidiomycetes with 966 PHI phe-
notypes and 11 species (12% of all fungal PHI phenotypes).
Compared to version 4.8, an additional 4391 PHI phe-
notype annotations describing experimental data for 1842
genes from 932 newly manually curated publications are in-
cluded up to March 2021.

The number of pathogenic species in PHI-base has in-
creased by 11 to total 279. New species include newly
emerging pathogens under intense investigation and species
included in comparative studies. Within PHI-base, plant
pathogens represent ∼54% of the species investigated (Ta-
ble 2). There continues to be an almost equal split between
cereal and non-cereal infecting species curated in PHI-base.
Tree and woody shrub infecting species provide 1316 plant
PHI annotations, involving 61 species (13.4% of the plant
PHIs), of which 945 PHIs are for economically important
fruit-bearing species in the genus Citrus, Malus, Prunus or
Pyrus. The three model plant species Arabidopsis thaliana,
Nicotiana benthamiana, and Nicotiana tabacum continue to
provide ∼5% of the data (961 PHIs). Over the past two
years, the number of curated PHI phenotypes for pathogens
that infect humans and their model hosts has increased to
38% of the total, while 32% of new annotations come from
agricultural crop infecting species. This change in PHI cura-
tion emphasizes the continuing recent shift to fundamental
investigations into human–pathogen and animal–pathogen
interactions using surrogate model species. Also, the in-
creasing availability of fully sequenced, assembled and well
annotated genomes for pathogens of humans and animals
has led to increased interest by a wider range of researchers
and hence increased rates of discovery and hypothesis test-
ing. New pathogen species that have been curated for the
first time include Streptococcus mutans, Orbilia oligospora
and Pseudomonas cannabina (Supplementary Table S1).

The 30 most annotated pathogen species in PHI-base
now account for 72.3% of the total PHI data, which is
provided by the curation of 6111 genes (Table 3). In-
cluded in the highly annotated species list are six plant
pathogenic fungi, five plant pathogenic bacteria, 13 animal
pathogenic bacteria, four animal pathogenic fungi, one bac-
terial species able to infect both plant and animal hosts, and
one fungal species able to infect insect hosts. As in previous
versions of PHI-base, the highest number of pathogen–host
interactions and pathogen genes recorded from the litera-
ture are from the filamentous fungal pathogens Fusarium
graminearum and Magnaporthe oryzae, which cause various

diseases on staple cereal crops, such as wheat, barley, rice
and maize. The most highly represented plant-infecting bac-
teria are: Xanthomonas oryzae, a pathogen of rice; Ralstonia
solanacearum, a pathogen of potato and other Solanaceae
species; and various pathovars of Pseudomonas syringae
which cause disease on different horticulturally important
fruit and vegetable crop species. For the animal kingdom,
the most curated pathogens include the human pathogen
Salmonella enterica, Candida albicans, Cryptococcus neofor-
mans, Escherichia coli and Aspergillus fumigatus (Table 3).
Across all species in PHI-base, the number of genes anno-
tated with a phenotype varies greatly, from 59 to 1279, and
this reflects not only the size of the research community for
the species and the funds available, but also the inherent dif-
ficulty of the experimental pathosystem(s).

The four new most curated pathogen species are all hu-
man and/or animal infecting species, namely: Acinetobacter
baumannii, an opportunistic bacterial pathogen that infects
immunocompromised humans; Toxoplasma gondii, a pro-
tozoan parasite that infects most species of warm-blooded
animals, including humans; Streptococcus suis, a major bac-
terial pathogen in the pig industry in tropical countries, that
is also able to cause a zoonotic disease; and Burkholderia
pseudomallei, an opportunistic bacterial pathogen that can
infect humans and animals. As a result, three Streptococcus
species with different host preferences are now present in
the most annotated species list.

In total, 18 new host species are present in PHI-base in
version 4.12. This includes five plant, five vertebrate and
seven insect species as either the natural host(s), or the sur-
rogate model host for testing (Supplementary Table S2).
New insect test species include the cotton bollworm (He-
licoverpa armigera), Asian malaria mosquito (Anopheles
stephensi), American cockroach (Periplaneta americana),
pea aphid (Acyrthosiphon pisum), two-spotted ladybird bee-
tle (Adalia bipunctata) and the yellow fever mosquito (Aedes
aegypti). These new host entries are mostly due to alter-
native non-vertebrate hosts being used instead of animal
models, in line with the principles of the 3Rs (replacement,
reduction, and refinement) (33). Other new hosts are cu-
rated either because of an emerging pathogenic species of in-
creasing concern––for example, Pseudomonas infections on
golden kiwifruit (Actinidia chinensis)––or because of the use
of microbial biocontrol species (biopesticides) to control
additional problematic hosts, such as the fungus Metarhiz-
ium robertsii being used to control the two mosquito species
named above (Supplementary Table S2).

The high-level phenotypes (22) annotated to all PHI-
base interaction entries permit taxonomically wide inter-
species comparisons: these phenotype annotations are sum-
marized for pathogen species in Table 1 and for host species
in Table 2. For pathogens, the ‘reduced virulence’ pheno-
type has the highest number of PHI annotations at 8667
(47.7%), whereas the ‘loss of pathogenicity’ PHI pheno-
type has only 983 (5.4%), a split in line with previous re-
leases (21). The ‘loss of pathogenicity’ phenotype is more
frequently reported for plant infecting pathogens. The num-
ber of genes with an ‘increased virulence’ PHI phenotype
when a pathogen gene is modified or deleted has more than
doubled since 2019 to 969 entries. For hosts, there has been a
55% increase in the number of interactions annotated with
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Table 1. Summary of pathogen groups, interactions and phenotypes within PHI-base version 4.12

Data type Bacterium Fungus Protist Nematode Insect Totals

Number of pathogens 141 116 14 5 2 279
Interactions in total 9516 8134 500 26 10 18 186
PHI phenotypes
Loss of pathogenicity 235 737 10 1 0 983
Reduced virulence 4738 3776 140 13 0 8667
Unaffected pathogenicity 2022 2600 68 0 0 4690
Effector (plant avirulence determinant) 1850 523 246 11 10 2640
Increased virulence (hypervirulence) 639 301 28 1 0 969
Lethal 19 156 8 0 0 183
Chemical target: resistance to chemical 7 29 0 0 0 36
Chemical target: sensitivity to chemical 6 8 0 0 0 14
Enhanced antagonism 0 4 0 0 0 4

Table 2. Summary of the number of host species and interactions within PHI-base version 4.12

Data type Plant Vertebrate Insect Nematode Others

Host species 141 38 32 3 14
Interactions in total 9845 6712 1090 363 5
PHI phenotypes†
Loss of pathogenicity 676 273 22 11 1
Reduced virulence 3738 4050 601 206 78
Unaffected pathogenicity 2734 1510 316 121 20
Effector (plant avirulence determinant) 2270 336 29 1 5
Increased virulence (hypervirulence) 295 529 120 24 1
Chemical target: resistance to chemical 27 3 0 0 0
Chemical target: sensitivity to chemical 13 1 0 0 0
Enhanced antagonism 4 0 0 0 0

† The ‘Lethal’ high-level phenotype is not included since it is not applicable for host species: this phenotype indicates that a mutation in a pathogen renders
the pathogen inviable.

the ‘increased virulence’ phenotype for pathogens that in-
fect vertebrate hosts (529 interactions). With the ‘increased
virulence’ category, 631 genes are from 28 of the most an-
notated species (Table 3). This increase emphasizes the re-
search community’s continuing efforts to identify and com-
pare the repertoire of negative regulators in different host–
pathogen systems. An ever-growing number of different
protein function classes are now associated with the ‘in-
creased virulence’ phenotype, including transcription fac-
tors, two component response regulators, various compo-
nents of mitogen activated protein kinase signaling cas-
cades, G-protein signaling components, regulators of toxin
biosynthesis, and various plasma membrane transporters
and secreted enzymes, particularly proteases and metallo-
proteases. Specifically, for bacterial pathogens, components
of the type III secretion system (plant hosts only) and quo-
rum sensing system (animal and plant hosts) are associated
with increased virulence. For filamentous pathogens infect-
ing human or animal hosts, enzymes contributing to cell
wall biogenesis or integrity, or the formation of biofilms or
capsules are associated with increased virulence (reviewed
by (9,34)). The collected set of pathogen genes associated
with increased virulence, and the accompanying sequence
variation observed in hypervirulent strains, requires contin-
ual close monitoring in efforts to control disease by limiting
their spread in severe local and regional occurring disease
outbreaks (34).

A major curation effort for PHI-base since 2016 has
been to increase coverage of pathogen effectors. An effector

is an entity derived from a pathogenic or non-pathogenic
species, that either activates or suppresses the host’s de-
fensive or other responses (11,35,36). The number of cu-
rated pathogen effector proteins interacting directly with
one or more host species has increased by 30% since ver-
sion 4.8 to 657 genes tested in 2641 interactions. Effectors
now represent 14.5% of all interaction entries in PHI-base.
Of these, 86% are from plant infecting pathogens and 14%
are from animal and/or human infecting pathogens (Ta-
ble 4). The plant pathogen data has been curated from 89
species, mostly non-cereal infecting pathogens (76 species).
These plant pathogen effector entities are dominated by
bacterial species and include Ralstonia solanacearum, which
infects dicotyledonous species (and which had a 32% in-
crease in curated effectors), various Pseudomonas species,
and both cereal and non-cereal infecting Xanthomonas
species. Although a wider range of hosts are now being
used for in planta bioassays, 25% of these bioassays still
use Nicotiana benthamiana or Nicotiana tabacum (352 inter-
actions), or Arabidopsis thaliana (207 interactions). These
three plant species are often, but not always, a non-host
species for the pathogen under investigation, meaning the
pathogen species is not able to cause disease on these host
species even under ideal environmental conditions (36). In-
creasingly, effectors are reported in studies involving ver-
tebrate hosts (primarily rodents and primates) and bacte-
rial pathogens. For pathogens of humans and/or animals,
Salmonella enterica has the highest percentage of effector
interactions curated, but high numbers of effector interac-
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Table 3. Highly annotated pathogens, interactions and proteins within PHI-base version 4.12

Pathogen Interactions Proteins*
Loss of

pathogenicity
Reduced
virulence

Increased
virulence Effector

Unaffected
pathogenicity Lethal

No. of
host

species

Fusarium graminearum† (F) 1711 1279 40 610 9 0 958 94 14
Magnaporthe oryzae† (F) 1409 643 289 594 16 84 425 1 7
Salmonella enterica‡ (B) 1022 487 9 602 71 137 203 0 15
Candida albicans# (F) 641 333 57 393 54 0 133 4 13
Cryptococcus neoformans‡

(F)
449 246 52 274 24 0 89 10 10

Escherichia coli‡ (B) 504 241 1 302 33 18 149 1 16
Pseudomonas aeruginosa‡† #

(B)
592 234 19 300 43 4 226 0 23

Aspergillus fumigatus‡ (F) 389 222 33 180 21 0 111 42 7
Xanthomonas oryzae† (B) 595 218 3 138 27 308 119 0 3
Ustilago maydis† (F) 417 206 50 217 9 17 124 0 3
Staphylococcus aureus‡ (B) 554 194 12 338 95 2 106 1 14
Pseudomonas syringae† (B) 340 172 1 79 9 198 52 1 16
Botrytis cinerea† (F) 419 131 24 248 14 4 127 0 28
Ralstonia solanacearum† (B) 879 125 16 65 1 784 12 1 12
Erwinia amylovora† (B) 506 122 34 202 55 15 200 0 6
Fusarium oxysporum‡ (F) 260 121 25 120 10 30 75 0 22
Xanthomonas campestris† (B) 198 121 11 108 4 40 33 2 8
Mycobacterium tuberculosis‡

(B)
173 116 3 86 36 1 47 0 4

Streptococcus pneumoniae‡

(B)
185 107 4 123 10 0 42 6 5

Beauveria bassiana§ (F) 132 90 0 0 0 0 0 0 11
Klebsiella pneumoniae‡ (B) 198 85 5 84 4 0 105 0 5
Vibrio cholerae‡ (B) 158 78 1 103 5 0 49 0 7
Streptococcus pyogenes‡ (B) 181 75 0 112 20 0 47 2 8
Listeria monocytogenes‡ (B) 207 72 2 149 19 3 34 0 10
Verticillium dahliae† (F) 215 72 15 95 12 26 67 0 17
Acinetobacter baumannii# (B) 191 69 0 132 6 1 52 0 6
Toxoplasma gondii‡ (P) 154 69 3 74 6 12 57 2 5
Streptococcus suis‡ (B) 155 63 2 118 5 0 26 4 6
Burkholderia pseudomallei‡

(B)
100 61 0 0 0 0 0 0 4

Candida glabrata# (F) 207 59 0 119 13 0 74 1 3
TOTALS 13141 6111 711 5965 631 1684 3742 13141

*Genes were mapped to the latest genome assembly and reference UniProtKB proteome where available. Symbols indicate: † plant pathogen, ‡ ani-
mal pathogen, ‡† pathogen of both plant and animal hosts, # opportunistic pathogen usually only able to infect immunocompromised humans, § en-
tomopathogenic fungal species used to control insect pests. Taxon indicated in parenthesis (F) fungus, (B) bacterium, (P) protozoa.

tions have also been curated for the obligate intracellular
pathogen Coxiella burnetii, which causes the zoonotic dis-
ease Q fever in humans, and Acinetobacter nosocomialis,
which causes nosocomial pneumonia in critically ill human
patients. In studies of effectors from animal/human infect-
ing pathogens, five non-vertebrate species, primarily Galle-
ria mellonella (greater wax moth) larvae, have been used for
the bioassays. For example, in in vivo studies involving A.
nosocomialis, there is now an approximate 50:50 split in the
use of G. mellonella or a rodent species for the bioassays.
This again emphasizes that the international animal and hu-
man research community is gradually adopting the princi-
ples of the 3Rs.

With ever increasing concern over climate change and
its impact on global food and feed security, the interna-
tional research community is being encouraged to investi-
gate plant–pathogen interactions in crop species. The inter-
action entries involve major food and feed crops: namely

wheat (1949), rice (1,581), maize (770), barley (522), tomato
(694), potato (143) and Brassica species (198) providing
32% of the data in PHI-base (5857 interactions) and in-
volve 89 pathogenic species (60% of plant pathogen species
in PHI-base). The cereal interaction data dominates at 4820
entries from 43 pathogenic species that are able to cause
disease on single or multiple plant tissues and organs (i.e.
leaves, flowers, panicles, seeds, stem bases, roots) on one
or more of these four crop species. Of these, 31 species of
Ascomycete fungi, seven bacteria species and five species
of Basidiomycete fungi contribute the data for 3706, 665
and 449 interactions, respectively. Cereal pathogenic species
of growing economic and scientific importance globally in-
clude Ustilaginoidea virens, which causes false smut disease
of rice; Puccinia striiformis, which causes yellow rust disease
and stripe rust disease of wheat; and Burkholderia glumae,
which causes bacterial seedling blight, sheath rot, panicle
blight and seed rot.
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Table 4. Summary of the pathogenic species providing the most informa-
tion on effectors

PLANT PATHOGENS: 58 species Interactions: 2269
Bacteria: 16 species 1473
Ralstonia solanacearum 787
Xanthamonas species 447
Pseudomonas species 204
Erwinia amylovora 15
Burkholderia glumae 15
Fungus: 21 species 421
Pyrenophora tritici-repentis 138
Magnaporthe oryzae 84
Passalora fulva 57
Fusarium oxysporum 30
Verticillium dahliae 26
Ustilago maydis 17
Ustilaginoidea virens 13
Leptosphaeria maculans 12
Obligate fungal biotrophs: 5 species 72
Melampsora species 34
Puccinia species 28
Blumeria species 10
Protist - 10 species 282
Hyaloperonospora arabidopsidis 127
Phytophthora sojae 56
Phytophthora capsici 40
Phytophthora infestans 41
Nematodes and insects: 3 species 10
HUMAN/ANIMAL PATHOGENS: 31 species Interactions: 371
Bacteria: 29 species 357
Salmonella enterica 137
Coxiella burnetii 46
Acinetobacter nosocomialis 30
Burkholderia pseudomallei 24
Legionella pneumophila 23
Yersinia species 19
Fungi: 1 species 2
Beauveria bassiana 2
Protozoan: 1 species 12
Toxoplasma gondii 12

Amending strain and disease names

A pervasive problem for the curation of hosts and
pathogens is the integration of strain names, as there are no
existing standards for most of the species and researchers
often refer to strains using varying nomenclature and ab-
breviations. To partially address this, we have manually re-
viewed and amended the pathogen and host strain names
included in PHI-base version 4.12. Strain names were
amended to remove typographical variation and variant
(or erroneous) spellings. The primary strain name was cho-
sen based on which name was most common in the litera-
ture curated by PHI-base or had the most occurrences in
the wider pathogen–host literature. Where possible, strain
names have been amended to follow the nomenclature of
the relevant authority: currently, only Mouse Genome In-
formatics (http://www.informatics.jax.org) has been used
as an authority, for strains of Mus musculus. Otherwise,
strains were cross-referenced by querying their respective
species in the Taxonomy database provided by UniProt.
Other changes include prefixing all plant cultivars with ‘cv.’
and standardizing the abbreviated forms of taxonomic pre-
fixes (e.g. ‘subsp.’). Of the 3,083 unique strain names in the
database, 1075 host strains and 566 pathogen strain names
were affected by these changes.

Disease names were amended to remove typographical
variation and variant spellings. Human diseases were cross-
referenced with the Mondo Disease Ontology (37), which
merges terms from multiple disease ontologies, including
the Human Disease Ontology (38), Human Phenotype On-
tology (39) and the NCI Thesaurus OBO Edition (40). We
were unable to locate general-purpose disease ontologies
that could be used to cross-reference animal or plant dis-
eases. Other key changes included clearly delineating dis-
ease names (where multiple diseases caused by a single
pathogen are combined in one disease name), removing
redundant mentions of ‘disease’, and using a consistent
method for indicating the relevant host for the disease: for
example, ‘rice blast’ and ‘blast disease of rice’ are both for-
matted as ‘blast (rice)’. In total, 351 of the 610 unique dis-
ease names in the database were affected by these changes.

Collaboration with Ensembl Genomes

PHI-base has an active collaboration with the Ensembl
Genomes resource (23) in which manually curated data
from PHI-base are mapped regularly onto pathogen genes.
Release 105 of Ensembl Genomes has the annotation of
302 protists, 1762 fungal and 26 837 bacterial proteins re-
garding their host interaction role(s) as obtained from PHI-
base. These annotations can be searched using PHI-base
accessions or accessed via BioMart (41). These annota-
tions, when visualized alongside their comparative analysis
data with closely related species, can help researchers form
testable hypotheses for genes in comparable pathogens.

Dissemination of PHI-base phenotypes to other databases
and resource providers

PHI-base is committed to making its data reusable, and fol-
lows the FAIR data principles (18). All data in PHI-base
are distributed under a Creative Commons license (Cre-
ative Commons Attribution 4.0 International Public Li-
cense). PHI-base source code and data are available on
GitHub repositories (see the Data Availability section).
Starting with PHI-base version 4.12, the PHI-base dataset
is also published in CSV format through Zenodo, a Euro-
pean open-access repository hosted at CERN, that auto-
matically assigns persistent DOIs to datasets. The Pathogen
Host Interaction Phenotype Ontology (PHIPO) (http://
www.obofoundry.org/ontology/phipo.html), developed for
PHI phenotype curation, is available through the OBO
Foundry (42).

As part of the European ELIXIR ‘Data for Life’ project,
PHI-base also provides data for species, genes and proteins
available in the database FungiDB (25) and the UniProt
Knowledgebase (UniProtKB) (27) for genome and protein
annotation, respectively. FungiDB release 53 (July 2021)
includes PHI-base phenotypes for 3423 proteins across 58
pathogens. In UniProtKB (release 2021 02), 5485 proteins
from 522 organisms have links to PHI phenotypes. Gene
Ontology (GO) curation is made available through submis-
sion to the GOA (28) and GO (43) databases and is also
displayed in UniProtKB, Ensembl Genomes, FungiDB and
the NCBI protein database (23,25,27,44).

http://arxiv.org/abs/http://www.informatics.jax.org
http://www.obofoundry.org/ontology/phipo.html
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PHI-base usage

Over the last three years, users of PHI-base originated from
100 countries over six continents. During this period, the
PHI-base website (www.phi-base.org) was accessed on av-
erage by 2000 users per year, with 10 searches per user. On
average, the BLAST service (PHIB-BLAST) attracts more
users than the PHI-base website (2,770 users per year). The
PHI-base database is downloaded on average 740 times per
year. To date, 550 peer reviewed publications have cited
PHI-base, and over 30% of these publications have ap-
peared since 2019. All publications citing PHI-base use are
given in the ‘About us’ section of the database. Most re-
searchers use PHI-base for the analysis of newly generated
whole genome sequences and transcriptomes, and for com-
parative transcriptomics. These studies are published in the
research areas of microbiology (26%), biotechnology (23%),
biochemistry (20%), plant sciences (16%) and other more
applied areas (15%) (data derived from Clarivate Web of
Science™, September 2021).

Novel use case studies

The discovery of novel virulence genes is an expensive
and time-consuming process. Frequently, these genes are
characterized by highly diverse sequences. Since 2005, ad-
vances in machine learning (ML) approaches and biolog-
ical understanding have enabled the development and ap-
plication of ML algorithms for the discovery of bacte-
rial virulence factors (45). The increase in PHI-base data
opened up the possibility to apply similar approaches for
eukaryotic pathogens. Most recently, PHI-base data were
included in ML approaches used for the prediction of fun-
gal and oomycete pathogen effectors, resulting in the devel-
opment of online prediction tools, such as EffectorP (http:
//effectorp.csiro.au/) (46,47). Kristianingsih and MacLean
(48) found that small ML training sets can be used to in-
form highly accurate effector gene predictions.

Molecular interactions featuring proteins in PHI-base
are another increasingly investigated topic by PHI-base
users. Discovering the functional interactions of pathogen
and host proteins is considered to be a good route to fos-
ter the discovery of novel intervention targets for control-
ling pathogens (30). Disrupting critical protein–protein in-
teractions (PPIs) can be an important approach in the de-
velopment of new anti-infectives of medical importance
(49). Similar approaches are being investigated to con-
trol plant pathogens (50). Although there are currently
only a small number of PPI datasets available for most
pathogens and their hosts, increasingly large data sets
have become available for model species such as baker’s
yeast (Saccharomyces cerevisiae), fission yeast (Schizosac-
charomyces pombe), roundworm (Caenorhabditis elegans),
fruit fly (Drosophila melanogaster), zebrafish (Danio rerio)
and the house mouse (Mus musculus) (51). These model
datasets allow construction of biological networks linking
together the biological entities that are implicated in phys-
ical interactions (e.g. PPIs, enzyme binding to a substrate),
or are shown to be associated by co-expression and/or co-
localization. For PHI-base pathogen and host species, in-
sufficient experimental data is available to construct similar
networks. Other authors have used various computational

methods to overcome a similar lack of data: these meth-
ods include an interolog approach that relies on sequence
similarity between proteins from different species; identi-
fication of conserved Pfam molecule binding domains in
PHI-base proteins to identify interactors; and generation of
network-extracted ontologies to annotate transcriptomics
data (52,53). These methods were used by three recent stud-
ies that specifically took the high-level phenotype annota-
tions assigned to PHI-base proteins to construct networks
of rice-pathogen interactions (54), to identify and build an-
notated networks for putative virulence factors for 14 As-
comycete fungal pathogens (55), and to generate ontologies,
extracted from an interaction network, that led to the iden-
tification of the PEP8 protein in the human infecting fungal
pathogen Candida albicans. PEP8 is likely involved in retro-
grade vesicle transport, with a function in hyphal develop-
ment and immune evasion (56).

Current work and future plans

We are developing a new user interface for the PHI-base
database (PHI-base 5) (phi5.phi-base.org). The PHI-base 5
website provides a gene-centric view of the data. The ag-
gregated data is presented on a single page corresponding
to the gene in a single species (Figure 1). This contrasts
with PHI-base 4, where the pathogen–host interaction is the
central concept, the gene only exists as part of the interac-
tion, and no gene-focused view is provided. Development of
PHI-base 5 was prompted by two requirements. First, PHI-
base users requested PHI phenotype information to be dis-
played in association with a gene (or its protein). Second,
a new user interface is required to display the additional
data types curated by authors using our multi-species com-
munity curation tool, PHI-Canto (21), which is based on
the Canto tool developed by PomBase (57). When using the
curation tool, the gene’s molecular function and expression
level is captured independently from the phenotype annota-
tions. PHI-Canto can be used by researchers to curate and
submit their own published pathogen–host datasets. Sub-
mitted curation will be reviewed by species experts and in-
cluded in PHI-base 5, providing an additional mechanism
for data providers to satisfy funding requirements to make
published research data electronically available. PHI-Canto
is currently used for curation by the PHI-base team, but we
plan to trial community curation with the plant and medical
research communities over the next 6–9 months.

The first online version of PHI-base 5 contains curated
data from 26 publications, covering 18 pathogens and pro-
viding 873 annotations, curated using PHI-Canto (Supple-
mentary Table S3). During the next 12 months, the plan is to
migrate all 18 190 PHI phenotypes currently only available
in PHI-base 4 to the new PHI-base 5 gene-centric display.
This data migration process will require extensive manual
review and possibly retroactive curation, since the schemas
of the two database versions are not compatible: PHI-base 5
has support for many more data types and annotation types
compared to PHI-base 4, and some data types are curated
in different ways or in different formats in PHI-base 5. After
the data is migrated, we plan to retain an archived version
of the PHI-base 4 website on the phi-base.org domain until
2026.

http://www.phi-base.org
http://effectorp.csiro.au/
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Figure 1. An example of a PHI-base 5 gene centric web page for the aggregated display of all relevant peer reviewed articles curated using the community
curation tool, PHI-Canto. (A) The PHI-base 5 home page provides search functionality with autocomplete, links to contact and other information as well
as a link to the current article centric version 4 of PHI-base. (B) Search results for the fungal plant pathogen ‘Fusarium graminearum’ retrieve 10 genes
available for this species (only two genes shown). The ‘View’ button on the far right allows users to retrieve information on specific genes, e.g. TRI5 or
pmk1. (C) Results retrieved for the TRI5 gene. The sidebar (left) allows users to jump to any of the eight specific record sections. The selected ‘Entry
Summary’ field (in bold) provides gene information including the assigned stable PHI gene identifier (PHIG:) and a link to UniProtKB. Another selected
field ‘PHI Phenotype’ lists the details of different host, pathogen, interaction, and phenotypes using terms from the PHIPO ontology. Also included in the
‘PHI Phenotype’ field is the assigned high-level phenotype ‘reduced virulence’ or ‘unaffected pathogenicity’ for the gene deletion mutant TRI5delta tested
on infected hosts wheat (T. aestivum) or Arabidopsis (A. thaliana), respectively. The ‘Publication’ field lists all references used for the curation of the gene.
Note: for users wishing to browse the entire database, add a single asterisk (*) into the search box (Panel A).
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To further improve findability on the web, we plan to in-
clude Schema.org markup (www.schema.org) on our gene-
centric PHI-base 5 pages: this markup will enable structured
data to be extracted from the gene pages by semantic search
engines, and therefore allow those search engines to under-
stand the meaning of the page. Version 13.0 of Schema.org
(released July 2021) adds terms from the Bioschemas com-
munity (https://bioschemas.org) which cover multiple con-
cepts also modelled in PHI-base records, such as genes, pro-
teins, taxonomic ranks, and molecular entities (chemical
compounds).

Knowledge graphs provide additional data tools to in-
vestigate large-scale datasets. To enhance the querying and
display of PHI-base data we plan to build multi-species
pathogen-host gene networks jointly with KnetMiner (58).
KnetMiner provides researchers with integrated data that
connect genetic, omics and phenotypic information from a
wide range of public databases. These networks will permit
querying both for pathogen and host genes, and the multi-
ple data types curated in PHI-base.

Ensembl Genomes are developing a data model to store
protein–protein interactions identified in PHI-base, linking
pathogen effectors to their first host targets. These will be
stored in a new resource to be available on the gene pages
(both for hosts and pathogens) and via direct downloads
of the data. Given the wide representation of species within
Ensembl (vertebrates to metazoa to plants) (56), this will
provide a platform that can capture relationships between
any two proteins from any two species, thus greatly expand-
ing the potential scope of this resource to many fields of
study, such as agriculture, human and animal health, and
ecology.

DATA AVAILABILITY

1. PHI-base 4: www.phi-base.org
2. PHIB-BLAST: phi-blast.phi-base.org
3. GitHub: github.com/PHI-base
4. PHI-Canto: canto.phi-base.org
5. PHI-base 5: phi5.phi-base.org
6. Ensembl Genomes: ensemblgenomes.org
7. FungiDB: fungidb.org
8. KnetMiner: knetminer.com
9. UniProtKB: www.uniprot.org

10. Zenodo: zenodo.org

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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