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A B S T R A C T   

Plant growth-promoting bacteria (PGPB) can revolutionize sustainable agriculture by improving crop yields and 
resilience in the face of climate change and soil degradation. However, one of the challenges of using PGPB is 
identifying strains that can colonize and establish beneficial relationships with plant hosts and microbiomes. This 
study examined the effects of single and co-inoculations with three PGPB strains (Brevibacterium casei EB3, 
Pseudomonas oryzihabitans RL18, and Bacillus aryabhattai SP20) on the rhizosphere microbiome of the halophyte 
crop Salicornia europaea. 16S rRNA gene amplicon sequencing was used to analyze the rhizosphere bacterial 
communities' diversity, structure, and composition. PGPB inoculations significantly changed the diversity and 
structure of the bacterial communities in the rhizosphere, accounting for 74 % of the total variability. The strain 
B. casei EB3 was the most effective at colonizing the rhizosphere and establishing interactions with other 
beneficial community members. Notably, the treatments associated with higher plant yield, consistently featured 
the presence of B. casei EB3 and higher connectivity between this strain and taxa known to promote growth and 
alleviate salt stress in plants such as Marinobacterium, Pseudomonas and Vibrio. These findings are consistent with 
bacterial inoculants' direct and indirect effect in boosting bacteria-plant cooperation within the rhizosphere, 
ultimately leading to a shift towards an optimized rhizosphere and beneficial traits for plants.   

1. Introduction 

The rhizosphere, the soil zone surrounding plant roots, is a hot spot 
for microbial activity and plant-microbe interactions (Reinhold-Hurek 
et al., 2015). Root-associated bacterial communities (rhizobacteria) can 
enhance plant growth directly or indirectly by different mechanisms. 
Their strategies involve mobilizing nutrients and minerals from the soil 
(Rengel, 2015), suppressing microbial pathogens (Santhanam et al., 
2015) and herbivory (Hubbard et al., 2019), enhancing plant immunity 
and eliciting defensive responses by modulating phytohormone levels 
(Finkel et al., 2020) and increasing tolerance to abiotic stress, like 
drought (Vejan et al., 2016) and salinity (Santos et al., 2021). Collec-
tively referred to as plant growth-promoting bacteria (PGPB), these 
beneficial bacteria are a promising biotechnological approach for sus-
tainable agriculture (Chandran et al., 2021). 

Halophytes can tolerate salt concentrations that would kill 99 % of 
other plants (Flowers and Colmer, 2008) by developing physiological 

and biochemical adaptations to saline environments and establishing 
adequate symbiotic associations with microorganisms (Etesami and 
Beattie, 2018). The coastal halophyte Salicornia europaea is an excellent 
resource for PGPB (Ferreira et al., 2021). Several PGPBs isolated from 
the rhizosphere of halophytic species have demonstrated their potential 
application as bio-inoculants to promote growth and enhance the 
salinity tolerance for the sustainable crop production of non-halophyte 
and halophyte plants (Etesami and Beattie, 2018). 

Recently, special attention has been given to bacterial consortia, 
which combine multiple strains of bacteria to obtain a desirable set of 
plant growth-promoting traits. These consortia are expected to have 
greater synergies than single-strain inoculations, leading to more 
favorable outcomes (Mesa-Marín et al., 2019; Santoyo et al., 2021). The 
communities of plant microbiota are dynamic, complex, and highly 
diverse. Therefore, it has been speculated that the beneficial traits rely 
on microbial cooperation and the functions of the entire microbiome, 
not only on an individual microorganism (Vandenkoornhuyse et al., 
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2015). Supporting this hypothesis, some studies have shown that mix-
tures of microorganisms rather than individual microbial species can 
strengthen beneficial effects on crops such as drought stress attenuation 
in rice (Joshi et al., 2020), wheat growth and yield under saline condi-
tions (Nawaz et al., 2020), and nutrient uptake (Rana et al., 2012). 
Although co-inoculation seems a promising strategy for improving plant 
growth and yields, more research is needed to understand how single 
inoculations and co-inoculations affect the plant microbiome and how 
these changes can be exploited to improve crop production. 

Ferreira et al. (2023) tested different combinations of selected PGPB 
in single inoculations and co-inoculations on the growth of S. europaea in 
the laboratory and field conditions. The authors reported that plants 
inoculated with a specific combination of two PGPB strains in controlled 
laboratory conditions had the highest increase in biomass, which was 
explained by increased amino acid biosynthesis. Although the detection 
of the bacterial inoculants in the grown plants was reported, the authors 
did not investigate the impact of inoculations on the resident plant 
microbiome. As the effectiveness of PGPB inoculation depends on their 
ability to colonize the rhizosphere and interact with other microbes, we 
investigated the impact of the single and co-inoculations of PGPB strains 
on the rhizosphere of S. europaea under controlled conditions. We hy-
pothesize that inoculating different combinations of beneficial PGPB 
will alter the rhizosphere microbiome in different ways, which may 
potentiate or mask the beneficial effects of the individual bacteria on 
plant growth. Specifically, we are interested in studying key microbial 
members and their synergistic interactions. Understanding the direct 
and indirect effects of PGPB inoculation on the rhizosphere microbiome 
is essential for developing rhizosphere engineering programs that can 
reliably predict improvements in plant growth under sustainable agri-
culture practices. 

2. Materials and methods 

2.1. Inoculation with PGPB and plant growth in S. europaea 

Three bacterial inoculants from the culture collection of the Labo-
ratory of Environmental Microbiology (LMICRA) of University of Aveiro 
were selected based on their plant-growth promotion traits (Ferreira 
et al., 2021): Brevibacterium casei EB3 has nitrogen fixation activity and 
produces 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and 
indole acetic acid (IAA); Pseudomonas oryzihabitans RL18, can solubilize 
phosphate, produce siderophores, ACC deaminase and IAA; Bacillus 
aryabhattai SP20, is a prolific enzyme producer capable of solubilizing 
phosphate and producing siderophores. These bacteria were used in 
inoculation and co-inoculation essays in seeds of S. europaea. The 
experimental design and the method for the S. europaea seed inoculation 
are described in Ferreira et al. (2023). Briefly, sterilized seeds (1:1 
mixture of hydrogen peroxide and ethanol) were inoculated with single 

or combined bacterial inoculants, as follows: 1) EB3: sole inoculation 
with B. casei EB3; 2) RL18: sole inoculation with P. oryzihabitans RL18; 
3) SP20: sole inoculation with B. aryabhattai SP20; 4) EB3 + RL18: co- 
inoculation with B. casei EB3 and P. oryzihabitans RL18; 5) EB3 +
SP20: co-inoculation with B. casei EB3 and B. aryabhattai SP20; 6) RL18 
+ SP20: co-inoculation with P. oryzihabitans RL18 and B. aryabhattai 
SP20; 7) ALL: co-inoculation with B. casei EB3, P. oryzihabitans RL18 and 
B. aryabhattai SP20; 8) CONTROL: non-inoculated control (Table 1). 

Bacterial inoculants were grown separately in Tryptic Soy Broth 
(Liofilchem, 25 g L− 1 NaCl) at 150 rpm and 30 ◦C. Cells were collected, 
washed twice with sterile saline solution (9 g L− 1NaCl) and re- 
suspended in sterile saline solution to a concentration of 108 CFU 
mL− 1 (OD600 ~ 1) (Mesa-Marín et al., 2019). S. europaea seeds were 
collected from a crop cultivation facility in autumn (November 2020) 
(Horta dos Peixinhos, Aveiro, Portugal). Surface-sterilized seeds were 
inoculated by adding the appropriate bacterial suspension and incu-
bating for 2 h. For combined inoculations, equal volumes of the bacterial 
suspensions were mixed (1:1). Non-inoculated control seeds were 
exposed to a sterile saline solution. Inoculated seeds were germinated in 
1 % agar plates and then transferred to plastic pots filled with perlite 
permeabilized with 20 % Hoagland's solution. The pots were maintained 
in an outdoor greenhouse under natural sunlight. After two months, 
plants were transferred to larger pots filled with perlite and sterilized 
salt marsh sediment (1:1 ratio). Plants were watered every two days 
using 20 % Hoagland's solution containing 10 g L− 1 marine salt. Every 
15 days, the plants were re-inoculated with the same inoculation 
treatment directly on the soil. Non-inoculated controls received an 
equivalent volume of sterile water. The plants were maintained in the 
outdoor greenhouse for additional 30 days. To prevent adverse effects 
associated with premature aging and senescence, the plants were 
transferred to a climate chamber (Fitoclima D1200, Aralab, Sintra, 
Portugal) and kept under controlled conditions: 16/8 h photoperiod, 
25/20 ◦C temperature, 40 % relative humidity, and 500 μmol m− 2 s− 1 

photon flux density. The effects of the inoculation treatments on plant 
growth were determined at the end of the experiment (approximately 
five months from the inoculation of seeds until the harvesting of plants). 
In addition, further detection of the bacterial inoculants in the plants is 
summarized in Table 1. 

2.2. Rhizosphere sampling 

Three replicate individuals (plants) from each experimental condi-
tion were used to analyze rhizosphere microbial communities. To collect 
rhizosphere material, unwashed plants were hand-shaken to remove 
loosely attached bulk soil. Roots with attached soil were separated for 
the aerial part with sterile scissors and placed into sterile 50 mL conical 
tubes. Each tube received 35 mL of sterile phosphate-buffered saline 
buffer (PBS) supplemented with 0.01 % Tween 80 and was vortexed for 

Table 1 
Summary of the plant growth effect and detection of the PGPB strains inoculated in S. europaea plants in each inoculation treatment reported in Ferreira et al. (2023).  

Inoculation 
treatment 

Inoculated strain(s) Increased factor of growth stimulation in 
relation to non-inoculated control 

Presence (+) or absence (− ) of ASVs in the S. europaea rhizosphere 
matching 100 % the inoculant strain 

Brevibacterium casei 
EB3 

Pseudomonas 
oryzihabitans RL18 

Bacillus 
aryabhattai SP20 

EB3 Brevibacterium casei EB3 2,2 + − +

RL18 Pseudomonas oryzihabitans RL18 • − − −

SP20 Bacillus aryabhattai SP20 • − − +

EB3 + RL18 B. casei EB3 and P. oryzihabitans RL18 4,6 + − −

EB3 + SP20 B. casei EB3 and B. aryabhattai SP20 • + − −

RL18 + SP20 P. oryzihabitans RL18 and 
B. aryabhattai SP20 

• − − −

ALL B. casei EB3, P. oryzihabitans RL18 and 
B. aryabhattai SP20 

3,9 + − −

CONTROL Non-inoculated • − − −

• Non-significant increase plant biomass compared to control plants. 
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5 min (Barillot et al., 2013). Root material was removed and rinsed 
several times until the root surfaces were clear. The rinsing liquid was 
added to the tube. Rhizosphere material, collected by centrifugation of 
the soil suspension at 10000 g, was deep-frozen (− 80 ◦C) until DNA 
extraction. 

2.3. DNA extraction and sequencing 

DNA extraction was performed using FastDNA™ SPIN Kit for soil (MP 
Biomedicals, France). The V3-V4 hypervariable region of the 16S rDNA 
gene was amplified using primers Bakt_341F 5′–CCTACGGGNGG 
CWGCAG-3′ and Bakt_805R 5′–GACTACHVGGGTATCTAATCC-3′ (Herle-
mann et al., 2011; Klindworth et al., 2013). Negative PCR controls were 
included for all amplification procedures. PCR products were purified and 
normalized using a SequalPrep 96-well plate kit (ThermoFisher Scientific, 
Waltham, USA) (Comeau et al., 2017) and pair-end sequenced in the 
Illumina MiSeq® platform with the MiSeq reagent Kit v3 (600 cycles), 
according to manufacturer's instructions (Illumina, Sand Diego, CA, USA) 
at Genoinseq (Cantanhede, Portugal). Sequences used in this study have 
been uploaded to the NCBI Short Read Archive under the BioProject 
number: PRJNA858439. 

2.4. Bioinformatic analysis 

Raw reads were extracted from Illumina MiSeq® System in fastq 
format. Further bioinformatic analyses were processed and analyzed 
using Quantitative Insights into Microbial Ecology QIIME2 (Bolyen 
et al., 2019) package version 2020.8 and its plugins. The DADA2 plugin 
(Callahan et al., 2016) was used to trim sequences, removal of chimeras 
(consensus method) and grouping into representative sequences called 
amplicon sequence variants (ASVs). Taxonomy was assigned to ASVs 
using q2-feature-classifier plugin (Bokulich et al., 2018) against the 
Silva138 99 % OTUs reference sequence (Quast et al., 2013) (available 
at https://docs.qiime2.org/2019.4/ in June 2021). Downstream ana-
lyses were performed on R v4.0 (R Core Team, 2014) and the Phyloseq 
package (McMurdie and Holmes, 2013). All non-bacterial ASVs were 
removed. Alpha diversity indexes (observed, Shannon, Chao and 
Simpson) were calculated by normalizing the sequence number to the 
minimum sample size (21,784) by random subsampling. One-way 
ANOVA with the inoculation treatment as factor was performed using 
the R function aov(), followed by a pairwise t-test to determine which 
inoculant contributed the most to the variation of alpha diversity data 
compared to the control. For Beta diversity, amplicon sequencing data 
were normalized using DESeq2 (Love et al., 2014). Principal Coordinate 
Analysis was employed on Bray Curtis distance matrix using the “ordi-
nate” function in the Phyloseq package; significantly different clusters 
were determined using “adonis” with the “betadisper” test to check for 
equal variance in vegan package. The detection of the inoculants was 
performed as in Ferreira et al. (2023) using the 16S rRNA sequence of 
the isolates EB3, RL18 and SP20 in a blast alignment against all the ASVs 
in the dataset. Two ASVs matched 100 % with the sequence of B. casei 
EB3 and one ASV with B. aryabhattai. In contrast, any ASV in the data set 
matched 100 % the sequence of P. oryzihabitans RL18 at 100 %. Here, we 
used the most similar ASVs that matched P. oryzihabitans RL18 for 
phylogenetic analysis to confirm the identification of the sequence in 
MEGAX (Tamura et al., 2021). In addition, the number of ASVs assigned 
to the genera Pseudomonas sp., Bacillus sp. and Brevibacterium sp. were 
extracted from the datasets. Differential abundant taxa between the 
inoculation treatments and the non-inoculated control were investigated 
using DESeq2-phyloseq (Love et al., 2014). In addition, SIMPER test was 
used as an additional method to determine the ASVs that most 
contributed to the total dissimilarity in the same pairwise comparisons 
between the inoculation and the non-inoculated control. We only kept 
significant differential bacterial taxa (p < 0.001) found in abundances 
higher than 0.03 %, which showed higher than 0.2 % SIMPER contri-
bution to the total dissimilarity between pairwise comparisons. For co- 

occurrence network analysis, bacterial ASVs were filtered to remove 
those that did not occur in at least 2 of the replicates for each sample 
treatment. Then, SPIEC-EASI networks were constructed using the spiec. 
easi function of the SPIEC-EASI library (Kurtz et al., 2015). The resulting 
object (a sparse adjacency matrix) was used to build a microbiome 
network for each treatment. We identified hubs using centrality indices 
and listed network features for each treatment as described by Laye-
ghifard et al. (2018). 

3. Results 

3.1. Diversity of rhizosphere bacterial communities in inoculated and non- 
inoculated plants 

Triplicate amplicon sequences from the V3-V4 region of the 16S 
rRNA gene were obtained from the rhizosphere of plants belonging to 8 
inoculation treatments (24 samples). A total of 1,899,539 raw sequences 
(median 77,712 sequences per sample) were obtained. Filtering, 
denoising and removal of chimeras resulted in 731,040 high-quality 
sequences (SI Table S1). The number of sequences ranged from 21,784 
to 49,352 sequences per sample. After removing sequences not classified 
as bacteria (chloroplasts, mitochondria, archaea, unassigned), 2661 
different ASVs were obtained with an average of 730 ASVs per sample 
(SI Table S1). All samples were subsequently rarified to 21,784 se-
quences for alpha diversity analysis. The rarefaction curve analysis 
showed that the subsampling of sequences still yielded a sufficient res-
olution of bacterial communities (SI Fig. S1). The treatment with all the 
inoculants (ALL) accounted for the lowest number of observed ASVs, 
while the inoculation with B. casei EB3 accounted for the highest 
number of ASVs (SI Fig. S2, SI Table S2). 

Alpha diversity measures are presented in SI Table S2. The rhizo-
sphere microbiome inoculated with B. casei EB3 exhibited the highest 
observed ASVs (Fig. 1A). One-way ANOVA revealed a more substantial 
significant effect (p < 0.005) of the inoculation treatment on rhizo-
bacterial species richness (represented by observed ASVs) than on the 
Shannon index (SI Table S3-S4). However, pairwise comparisons 
showed that only the inoculation with B. casei EB3 caused a statistically 
significant increase in observed ASVs compared to the control (p <
0.005, Fig. 1A). Fig. 1B represents the beta diversity, measured by Bray 
Curtis distances for the inoculation treatments. The PCoA analysis of 
rhizobacterial communities revealed that ALL and RL18 + SP20 and 
non-inoculated (CONTROL) treatments were separated from all single- 
strain inoculations and co-inoculations EB3 + RL18 and EB3 + SP20 
along the first principal coordinate axis (35.7 % of the variability) 
(Fig. 1B). The second coordinate axis (10.2 % of the variability) differ-
entiated the single inoculation with P. oryzihabitans RL18 from all other 
experimental conditions. Rhizobacterial community structure was 
significantly influenced by inoculation, whether with single strains or 
mixtures, accounting for 74 % of the variance according to Permuta-
tional Analysis of Variance (PERMANOVA) (SI Table S5). Notably, the 
treatment RL18 + SP20 contributed the most to the variance (20 %, p =
0.001), followed by the combination of EB3 + RL18 (11 %, p = 0.001). 
Among the single inoculations, EB3 and RL18 had the most significant 
effects, accounting for 10 % and 8 % of the variance (p = 0.001), 
respectively (SI Table S5). 

3.2. Taxonomic composition of rhizobacterial communities 

Seventy-nine bacterial classes were detected, but only 18 were 
considered dominant, with abundances higher than 1 % (Fig. 2). In 
general, the rhizobacterial communities were predominantly composed 
of the following taxonomic classes and their corresponding average 
abundance Alphaproteobacteria (16 %), Gammaproteobacteria (16 %), 
Bacteroidia (16 %), Planctomycetes (9 %), Verrumicrobiae (6 %), 
Rhodothermia (5 %), Actinobacteria (3 %) and Anaerolineae (3 %). 
Some taxa were more associated with particular inoculation conditions. 
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Acidobacteriae and Cyanobacteriia showed relative abundances higher 
than 1 % in the RL18 + SP20 treatment. Parcubacteria was more rep-
resented in treatments EB3, RL18, EB3 + RL18 and EB3 + SP20. Can-
didatus Sumerlaeia was dominant (>1 %) in almost all the inoculation 
treatments except for RL18 + SP20, ALL and CONTROL. 

Considering the top 50 ASVs (log abundance) across all inoculation 
treatments (Fig. 3), the treatment involving the inoculation of ALL the 
bacterial strains and the non-inoculated CONTROL displayed a similar 
pattern. This pattern was characterized by the detection of higher abun-
dances of specific ASVs assigned to Vibrio and the absence of an ASV 
assigned to Pseudomonas. In contrast, the single inoculation with EB3 
exhibited higher frequencies of ASV belonging to Gimesiaceae and Tis-
trella, while several ASVs assigned to Vibrio, Exiguobacterium sp. and 
Oscillatoriaceae were absent. The pattern observed for the single inocu-
lation with RL18 closely resembled the pattern depicted at the inoculation 
with EB3. Notably, the inoculation with EB3 + RL18 was distinctly 
characterized by the presence of two specific ASVs assigned to Mar-
inobacterium and Vibrio sp., along with a high abundance of Pseudomonas 
and Haloferula. A higher abundance of Tistrella, Gimesiaceae, Exiguo-
bacterium and other Vibrio sps characterized all the other treatments. 

3.3. Further detection of PGPB inoculants on the rhizosphere community 

Although previously reported (Table 1), the bacterium B. casei EB3 
was detected in the inoculation treatments where it was added. The 
bacterium B. aryabhattai SP20 was detected when it was inoculated 
alone and not in the co-inoculations, plus in the EB3 treatment, where it 
was not added, although in low abundance. In contrast, P. oryzihabitans 
RL18 was not detected in any of the treatments. The most similar ASV 
(“faeda86d11b5aa509877ab3fc8a637cc”) had a 94 % similarity per-
centage. A phylogenetic tree of all the ASVs classified in the taxonomic 
family Pseudomonadaceae confirmed that the ASVs belonged to 
different species of Pseudomonas other than P. oryzihabitans (SI Fig. S3). 
The datasets were analyzed to determine the number of ASVs assigned to 
Pseudomonas, Bacillus Brevibacterium (Fig. 4). The results indicated a 
statistically significant increase (p < 0.0001) in the number of ASVs 
classified as Pseudomonas in the treatment EB3 + RL18, while Brevi-
bacterium was increased (p < 0.0001) in the ALL treatment. Addition-
ally, sequences assigned to Bacillus were higher in the treatments EB3 (p 
= 0.01) and RL18 (p < 0.0001); however, Bacillus SP20 was not inoc-
ulated in those treatments. 
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3.4. Differentially abundant taxa across inoculation treatments 

Fig. 5 shows the relative abundances of the differential ASVs iden-
tified in the three inoculation treatments that enhanced plant growth 

(EB3, EB3 + RL18 and ALL) compared to the non-inoculated control 
(Table 1). The pattern of enriched taxa in the treatments EB3 + RL18 
(Fig. 5B) and ALL (Fig. 5C) was very similar. In both inoculation treat-
ments, several ASVs identified as Marinobacterium, Vibrio and an ASV 
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P. oryzihabitans RL18 and B. aryabhattai SP20; CONTROL: non-inoculated. 
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S. europaea in each inoculation treatment. Significance code: *** p < 0.0001, * p < 0.01. 

I.N. Sierra-García et al.                                                                                                                                                                                                                       



Applied Soil Ecology 196 (2024) 105306

6

classified as Rhodobacteraceae were enriched in the rhizosphere of the 
inoculated plants compared to the non-inoculated control. Likewise, the 
co-inoculation EB3 + RL18 and the inoculation with EB3 included ASVs 
in common identified as Tistrella, Lentimonas, Cerasicoccus, Rhodo-
bacteraceae and Pseudomonadaceae. However, the rhizosphere of 
plants inoculated with EB3 + RL18 was enriched exclusively with ASVs 
identified as Pseudomonas, Salinimicrobium, and Luteolibacter. Further-
more, ASVs classified as Brevibacterium, Nitrincolaceae, Exiguobacterium 
and Hoeflea were enriched exclusively in the ALL treatment. Lastly, the 
inoculation treatment of EB3 showed higher abundances of ASVs clas-
sified as Gimesiaceae, Gimesia and Bacillus. On the other hand, the non- 
inoculated control was enriched with ASVs classified as Vibrio and 
Halomonas in all comparisons with effective inoculation treatments. 

3.5. Co-occurrence networks 

EB3 was the only strain detected in the networks after the data 
filtering and running with sparcc cut-off 0.3. The low abundance of SP20 
in treatments EB3 and SP20 (0.005 % and 0.01 %, respectively) reported 
in Ferreira et al. (2023) may have prevented the detection of this strain 
when constructing the co-occurrence networks. The summary of the 
network analysis is displayed in Table 2. Networks from bacterial 
communities inoculated with EB3 (EB3, EB3 + RL18, EB3 + SP20) had a 
higher edge-to-node ratio than the control and the other strain combi-
nations, demonstrating that EB3 is a central hub in the plant microbial 
networks. For the ASV classified as the EB3 strain, we extracted the hub 
scores value in each network and found that the number of connections 
and centrality of the strain is higher in treatments with EB3+ RL18 
(Table 2). 

4. Discussion 

Advances in DNA sequencing technologies allow a significant step 
forward in the detailed characterization of the complex cascade of ef-
fects of inoculants. In this work, we took advantage of powerful 
sequencing technologies and a factorial experimental design to investi-
gate the impact of inoculations and co-inoculations with specific PGPB 
on the rhizosphere microbiome. While many studies have shown the 
benefits of bacterial inoculants on plant growth and yields, most have 
focused on using PGPB as biostimulants compared to fertilizers (Ade-
semoye et al., 2008; Assainar et al., 2018). However, few studies have 
evaluated the effects of PGPB on both plant growth and microbiomes 
(Ambrosini et al., 2016). Here, we investigated the effects of single and 
co-inoculations of PGPB on the rhizosphere microbiome of S. europaea. 
We found that the overall bacterial taxonomic composition at the class 
level was consistent with other descriptions of S. europaea root micro-
biome, with Alphaproteobacteria and Gammaproteobacteria represent-
ing the dominant members, followed by Bacteroidia (Yamamoto et al., 
2018; Yuan et al., 2016). However, there were significant differences 
between the communities corresponding to different inoculation treat-
ments, with inoculation explaining about 74 % of the total variability. 

4.1. Overall effect of single inoculations and co-inoculations on bacterial 
communities in the rhizosphere 

As measured by observed ASVs, the richness was significantly high in 
the treatment with the single inoculation of the bacterium B. casei EB3. 
The successful establishment of relationships between this bacterium, 
the plant and other bacterial members of the communities can explain 
this increase, supported by the effective colonization and survival of 
B. casei EB3 (Table 1) and the increase in the connections with other 
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Fig. 5. Differential abundance of the ASVs that differ in abundance (P-adjusted <0.01) in each inoculation treatment, in relation to the non-inoculated control. EB3: 
Brevibacterium casei EB3; RL18: Pseudomonas oryzihabitans RL18; SP20: Bacillus aryabhattai SP20; EB3 + RL18: B. casei EB3 and P. oryzihabitans RL18; EB3 + SP20: 
B. casei EB3 and B. aryabhattai SP20; RL18 + SP20: P. oryzihabitans RL18 and B. aryabhattai SP20; ALL: B. casei EB3, P. oryzihabitans RL18 and B. aryabhattai SP20; 
CONTROL: non-inoculated. 

Table 2 
Summary network analysis.  

Network Nodes Vertices Ratio nodes/vertices EB3 neighbors EB3 Hub score 

EB3 + RL18  1137  537,825  473.02  1006  0.943 
ALL  724  217,247  300.06  616  0.924 
EB3  1211  602,479  497.51  974  0.882 
EB3 + SP20  1114  513,165  460.65  894  0.881 
RL18 + SP20  892  328,139  367.87   
RL18  963  387,549  402.44   
SP20  1069  464,140  434.18   
CONTROL  856  297,276  347.29    

I.N. Sierra-García et al.                                                                                                                                                                                                                       



Applied Soil Ecology 196 (2024) 105306

7

bacterial species (Table 2). Previous research has shown that B. casei 
strains can successfully colonize the rhizosphere soil of white mustard 
plants and alter the plant-associated microbial community (Płociniczak 
et al., 2016). Our study revealed that the structure of rhizobacterial 
communities, as assessed by 16S amplicon data, was significantly 
altered by single or co-inoculations with B. casei EB3 compared to 
control plants. These altered communities exhibited a general similarity 
pattern (treatments EB3, EB3 + RL18 and EB3 + SP20 in Fig. 1B), except 
when B. aryabhattai SP20 was also introduced in the inoculum (ALL 
treatment in Fig. 1B). In contrast, the inoculation of Pseudomonas RL18 
resulted in different community structures depending on whether it was 
single inoculated or with EB3 or SP20 (Fig. 1B). The effects of inocula-
tion with species of Pseudomonas sp. on bacterial diversity of the 
rhizosphere of plants are contradictory. For example, Jiménez et al. 
(2020) observed a decrease in overall bacterial diversity over time after 
a single inoculation with Pseudomonas fluorescens in different crops, such 
as rapeseed, corn gromwell and soybean. However, Ke et al. (2019) 
found no significant differences in diversity after inoculating maize with 
the diazotrophic Pseudomonas stutzeri and Roquigny et al. (2018) re-
ported similar results after single inoculations of potato with 
P. fluorescens. In our study, the inoculation of the strain P. oryzihabitans 
RL18, even though it was not detected at the end of the experiment, 
altered the rhizobacterial communities by decreasing the richness, 
suggesting a substantial effect on bacterial interactions (e.g., competi-
tion, antagonism). In fact, among the single inoculations, RL18 was the 
second strain that most contributed to the variation in community 
structure (after EB3). On the other hand, B. aryabhattai SP20 had the 
least effect on structure when single inoculated but a distinct effect when 
co-inoculated with one or the other two strains, especially when com-
bined with RL18. For example, the community structure of the inocu-
lation treatments EB3, SP20, or the combination of both was very 
similar, but completely different rhizobacterial communities resulted 
when SP20 was co-inoculated with RL18. 

The interaction between Pseudomonas and Bacillus strains is context- 
dependent, influenced by nutrient sources, temperature, isolation 
source, phylogeny, and secondary metabolites (Lyng and Kovács, 2023). 
Some interactions are positive, neutral, or negative (Lyng and Kovács, 
2023). When isolated from plants, Pseudomonas is often more competi-
tive than Bacillus, but antagonistic interactions from Bacillus to Pseudo-
monas have also been reported (Boopathi et al., 2022; Garbeva et al., 
2011). In our experiments, P. oryzihabitans RL18 and B. aryabhattai SP20 
did not show antagonistic activity in vitro (Ferreira et al., 2023). 
However, when co-inoculated (treatments RL18 + SP20 and All), 
neither P. oryzihabitans RL18 or B. aryabhattai SP20 were detected in the 
rhizosphere (Table 1). Furthermore, neither Bacillus nor Pseudomonas 
was significantly abundant in those treatments (Fig. 4). This suggests 
that B. aryabhattai SP20 and P. oryzihabitans RL18 may have interacted 
negatively with each other. Interestingly, the combination of both 
strains had the most significant effect on the variability of the rhizo-
sphere microbiome (20 %; Supplementary Table S6). The main differ-
ence in this treatment was the dominance of Acidobacteriae and 
Cyanobacteriia, which are common beneficial members of the rhizo-
sphere and endosphere of halophytic plants (Kielak et al., 2016; Mishra 
et al., 2021; Tian and Zhang, 2017; Yamamoto et al., 2018). However, 
this treatment failed to induce a significant plant growth enhancement, 
suggesting that other factors may have interfered with the activity of 
these bacteria. 

The comparative analysis of the 16S sequencing data revealed 
remarkably similarities between the rhizosphere bacterial communities 
of ALL treatment and CONTROL plants. This similarity is evident in both 
the overall community structure, as demonstrated by the PCoA plot 
(Fig. 2B) and the specific composition, as portrayed by the heatmap 
(Fig. 3). This aligns with the minimal impact of the co-inoculation of all 
PGBP strains on community composition, with only a 6 % change 
observed (Supplementary table S6). The generalized use of PGPB as 
biostimulants raises the concern of undesirable changes in soil microbial 

community structure and functional diversity. Ideally, biostimulants 
should enhance plant productivity with minimal disruption of the 
indigenous microbiome. Our findings indicate that the inoculation of the 
three PGPB strains may have the desired effects on plant growth without 
significantly altering the rhizosphere in S. europaea. 

4.2. Rhizobacterial composition in plants with enhanced growth 

In terms of biomass production, the most successful treatment cor-
responded to the co-inoculation with B. casei and P. oryzihabitans (EB3 
+ RL18), followed by the co-inoculation with the three strains (ALL), 
and the single inoculation with B. casei (EB3). B. casei is the common 
inoculated element, and since it was detected in the rhizosphere, it may 
suggest a direct role in regulating plant growth. Aside from the PGP 
traits that characterized this strain (nitrogen fixation, production of ACC 
deaminase and IAA), our results also evidenced that the inoculation of 
B. casei EB3 increases rhizosphere richness and network complexity, 
indicating B. casei EB3 functions as a microbial hub that recruits bene-
ficial microorganisms (Agler et al., 2016). Contrastingly, ASVs matching 
P. oryzihabitans RL18, one of the partners in the most successful treat-
ments (EB3 + RL18 and ALL), were not detected in any of the treat-
ments. Inoculation with this strain, however, was associated with an 
enrichment in other Pseudomonads. Higher densities of Pseudomonas 
strains in the rhizosphere of tomato plants have shown beneficial effects 
on plant growth in tomato plants (Hu et al., 2021). Therefore, the 
observed improvement in the growth of S. europaea with the EB3 + RL18 
and ALL treatments may be due to the synergic combination of direct 
effects of B. casei EB3 and indirect effects of P. oryzihabitans RL18, 
mediated by biotic relations, that will lead to the selective enrichment of 
other members of the community including Pseudomonads. 

The analysis of 16S gene sequences revealed that the bacterial taxa 
that exhibited significantly higher abundances in the treatment that 
most enhanced plant growth (EB3 + RL18) belonged to Mar-
inobacterium, Vibrio, and Pseudomonas (Figs. 3–5). Some of these bacteria 
have been isolated from saline-associated plants and some have been 
shown to promote plant growth and alleviate stress in other halophytic 
or non-halophytic plants. For example, Vibrio and Pseudomonas sp. iso-
lated from Salicornia brachiata have shown to alleviate salt stress and 
stimulate growth (Jha et al., 2012), the inoculation with Vibrio spartinae 
can improve the growth of another halophyte, Halimione portulacoides, 
under saline conditions (Mateos-Naranjo et al., 2020). The Mar-
inobacterium genus has been identified in the rhizosphere of Sueda 
japonica (Kim et al., 2008), and the Marinobacterium sp. isolated from the 
halophyte Psoralea corylifolia L. has been shown to increase wheat 
growth and salinity tolerance (Sorty et al., 2016). These findings suggest 
that the inoculation with B. casei EB3 and P. oryzihabitans RL18 may 
have altered the rhizosphere by favoring the development of similar 
beneficial bacterial populations of Pseudomonas, Vibrio and Marinobacter 
that potentially promote growth and mitigate salinity in S. europaea. 

Likewise, the ALL treatment, which also significantly enhanced plant 
growth compared to control, showed higher abundances of the same 
ASVs in EB3 + RL18 treatment identified as Marinobacterium sp., Exi-
guobacterium sp. and Vibrio (Figs. 3, 5) as well as Brevibacterium 
(Figs. 4–5). 

In order to investigate whether the strain B. casei EB3 has effectively 
increased the number of connections (nodes/vertices) with these genera, 
we mapped the ASVs classified as Marinobacterium, Vibrio, Bacillus, 
Brevibacterium and Pseudomonas on the networks Fig. 6 shows that EB3 
was highly connected to Marinobacterium, Vibrio, and Pseudomonas in 
the EB3 + RL18 treatment, while in the ALL treatment, EB3 was more 
highly connected to Marinobacterium and Vibrio. Single inoculation with 
EB3 resulted in higher connectivity with Bacillus, Marinobacterium, and 
Pseudomonas but less with Vibrio. 

Interestingly, the highest hub scores (Table 2) were for plants of the 
most significant enhanced growth (EB3 + RL18 and ALL). PGP benefi-
cial traits in EB3 and RL18, such as the production of ACC-deaminase, 
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can be horizontally transferred between bacteria (Nascimento et al., 
2014), and in addition, the sub-products of the conversion of ACC into 
α-ketobutyrate and ammonia can also be used by other associated mi-
croorganisms as substrates for growth (Nascimento et al., 2018). 
Therefore, establishing symbiotic or synergistic mutually beneficial re-
lationships with the inoculated PGPB might be a survival strategy for 
some microbes, contributing to the plant growth-promoting effects 
(Kong and Liu, 2022). In this study, the high number of connected nodes 
in the networks suggests a more stable community, which may have led 
to the enhanced growth of S. europaea biomass. For the other strains that 
were not detected in the rhizosphere at the end of the experiment, we 
believe that they may have been outcompeted or inhibited by other 
microbial members of the community. 

In this study, we investigated the effects of different PGPB in-
oculations and co-inoculations on the rhizosphere microbial commu-
nities and the growth of S. europaea plants. Our results based on 
barcoding analyses showed that all the inoculations and co-inoculations 
modified the rhizosphere microbial communities of S. europaea to 
different degrees. The consortia containing all the strains had the least 
disruptive effect on the indigenous microbiome compared to single or 
dual-strain inoculants. The B. casei EB3 strain was the most effective 
plant growth-promoting bacterium, evidenced by its ability to colonize 
the rhizosphere and form a complex network of interactions with other 
members of the community, either when inoculated in single or in co- 
inoculations with other strains. In the inoculations that enhanced 
plant growth (co-inoculation of EB3 + RL18 and ALL), common bacte-
rial members were found in the rhizosphere of these plants, including 
Marinobacterium, Vibrio and Pseudomonas sps. These bacterial pop-
ulations can reduce saline stress while contributing to nutrient supply. 
However, the enhanced plant growth was explained by the direct 
beneficial traits from B. casei EB3 and its synergistic associations with 
other beneficial bacteria. As pointed out by other authors (Compant 
et al., 2019), the results highlight the need for a smart and knowledge- 

driven selection of consortia and strains to develop consistent formula-
tions and predictable biostimulation outcomes. Our findings suggest 
that PGPB consortia can promote plant growth by modifying the 
rhizosphere microbiome and forming synergistic associations with other 
beneficial bacteria. 
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