Evolution of linear triterpenoid biosynthesis within the *Euphorbia* plant genus

Czechowski et al.

Supplementary Figure 1. Genomic location and expression profile of two putative squalene synthases from *E. peplus*. (A). Location of putative squalene synthase genes on chromosome 7 of *E. peplus* genome assembly from ¹. Blue/green tracks – genes, yellow tracks – CDS (B). Expression profiling of putative squalene synthases in five *Euphorbia peplus* tissues. RPKM - Reads Per Kilobase of transcript per Million mapped reads. Error bars – SEM (n=4, where n is the number of biological replications). Source data are provided as a Source Data file.

Supplementary Figure 2. NMR-characterized structures of 2,3-oxidosqualene and peplusol. Structures presented for *N. benthamiana* - extracted and purified 2,3-oxidosqualene (A) and *E. peplus* and *E. lateriflora* - extracted and purified peplusol (B).

Supplementary Figure 3. LC- and GC-MS derived MS data for peplusol, 2,3oxidosqualene and squalene. HMRS data for samples extracted from N. benthamiana as well as NMR-verified standards for peplusol (A) and 2,3-oxidosqualene (B). GC-MS derived m/z profiles of squalene extracted from N. benthamiana and S cerevisiae samples as well as those for commercial squalene standard (C).

Supplementary Figure 4. Metabolite profiling of *E. peplus, E. lateriflora* and *E. lathyris* latex. (A) Total Ion Current (TIC) chromatograms shown for each of the three species with four major latex triterpenoids annotated: peplusol (1), lanosterol (4), cycloartenol (5) and 24-methylenecycloartenol (6). (B) Plant morphology of *E. peplus, E. lateriflora* and *E. lathyris* at the time latex was harvested. (C) HRMS data for peplusol (1) from both species together with NMR-verified structures of peplusol isolated and purified from *E. peplus* and *E. lateriflora*. (D) Quantitative analysis of four major triterpenoids presented on panel A in latex tissues of *E. peplus, E. lateriflora* and *E. lathyris*. Metabolites extracted and quantified via LC-MS as described in methods. Error bars - SEM (n=4, where n is the number of biological replications). n.d.: not detectable. Source data are provided as a Source Data file.

Supplementary Figure 5. Identification of amino acid positions involved in peplusol synthase activity and *in silico* protein structure modelling using the Alpha Fold 3 server. (A) MUSCLE alignment and of cDNA-predicted amino acid sequences and phylogenetic tree built for fifty functionally characterised squalene synthases from plant, animal and fungi with functionally characterised E. peplus and E. lateriflora peplusol synthases: EpSS-L1 and ElSS-L1. Alignment shown only for four conserved regions (highlighted in light blue) previously shown to confer squalene synthase activity 2 . Two DXXED motifs involved in the FPP substrate binding sites are highlighted in brown. Two mobile segments: the AB flap, assumed to regulate the binding of substrates (prenyl donor and acceptor) and JK loop, crucial for NADPH binding ², highlighted in black and green, respectively. Residues involved in NADPH recognition are highlighted in deep blue and the seven positions that are unique for EpSS-L1 and ElSS-L1 and conserved in squalene synthases in red. (B) cDNA-predicted amino acid sequences of EpSS-L1, EpSS-L2, ElSS-L1 and ElSS-L2 were used to model 3D protein structure using Alpha Fold 3³. Modelling confidence shown for each of the four models as: a) pLDDT a per-atom confidence estimate on a 0-100 scale where a higher value indicates higher confidence, as indicated by colours on the structure, b) PAE (predicted aligned error): estimate of the error in the relative position and orientation between two tokens in the predicted structure. Higher values indicate higher predicted error and therefore lower confidence and c) template modelling (pTM) score which measures the accuracy of the entire structure on a scale 0-1.

Supplementary Figure 6. Structural overlays of AlphaFold3 models for EpSS-L1, EpSS-L2, EISS-L1 and EISS-L2 with human Squalene Synthase protein crystal structures. cDNA-predicted amino acid sequences of EpSS-L1, EpSS-L2, ElSS-L1 and EISS-L2 were used to model 3D protein structure using Alpha Fold 3³. Highest ranked models for EpSS-L1 (magenta), EpSS-L2 (green), ElSS-L1 (brown) and ElSS-L2 (blue) were overlaid with: (A-C) PDB-deposited (3weh, red) structure human squalene synthase in complexes with presqualene pyrophosphate (PSPP, grey) and Mg2+ (green spheres) or (D-F) PDB-deposited (3weg, grey) structure human squalene synthase in complexes with farnesyl thiopyrophosphate (FsPP, a non-cleavable FPP analogue, grey) and Mg2+ (green spheres). Structural overlays were created using UCSF ChimeraX v 1.7⁴ using the 3weh (A-C) or 3weh (D-F) model as a reference, as described in methods. Flexible loop crucial for NADPH binding by human squalene synthase highlighted in red with R315 conserved for EpSS-L2, EISS-L2 (red) and P313 conserved for EpSS-L1, EISS-L1 (blue) shown as stick and wires on panels B and E. 6Å region around PSPP (C) and FsPP (F) binding site shown with amino acids identified as potentially important for peplusol synthase activity displayed as stick and wires and labelled for EpSS-L1, ElSS-L1 in red and for EpSS-L2, ElSS-L2 in black.

Supplementary Figure 7. Squalene content for *EpSS-L2* and *EpSS-L1* hexa- and heptamutants expressed in S. cerevisiae truncated HMG-CoA reductase 1 - expressing strain (+tHMG1). S. cerevisiae truncated HMG-CoA reductase 1 -expressing strain (+tHMG1) was transformed with either: Empty Vector (EV, pBEVY-L) or pBEVY-L constructs for overexpression of: E. peplus Squalene Synthase-like2 (EpSS-L2, GenBank locus tag M5689 021806), E. peplus Squalene Synthase-like2 hexaswap (EpSS-L2to-L1 6AA: F69M, T208M, N209T, T296G, C300Y and K318P), E. peplus Squalene Synthase-like2 heptaswap (EpSS-L2to-L1 7AA: F69M, T208M, N209T, T296G, C300Y, K318P and A173S), E. peplus Squalene Synthase-like1 (EpSS-L1, GenBank locus tag M5689 021805), E. peplus Squalene Synthase-likel hexaswap (EpSS-Llto-L2 6AA: M69F, M208T, T209N, G294T, Y298C, P313R) and E. peplus Squalene Synthase-likel heptaswap (EpSS-L1to-L2 7AA: M69F, M208T, T209N, G294T, Y298C, P313R and S173A). Three independent transformants were grown in liquid cultures. Squalene levels were quantified by GC-MS in cell pellets as described in methods. Error bars - SEM (n=3, where n is the number of biological replications). Statistically significant (one-sided *t*-test) differences between control (EV) and candidate genes indicated by asterisks (*: p-value <0.05, **: *p*-value <0.01). Source data are provided as a Source Data file.

	AtSS pH 6.5	P AtSS pH 7.5	C EnSS-12 pH 6.5		
				Ерээ-се, рн 7.5	
	4E0 3E6 255 4 Mg ²⁺	4E6 (2) NADPH 3E6 + Mg ²⁺	3260 (2) + Mg ²⁺	4E6- NADPH 3E6- (2) + Mg ²⁺	
	1E6 +FPP	166- +FPP	1E6+FPP	165- +FPP	
	466 NADP*	4E6 (2) NADP*	4E6 NADP* 4	IE6 NADP+	
	2E5- (2) +Mg ²⁺ 1E6- / +EPP	2E5 +Mg ²⁺	2E5- 1E6- (2) +FPP 2 +FPP 1	(2) +Mg ²⁺ (5 - (2) +EPP	
	4F6 Mg ²⁺	4F6Mq2+	4E61 Mm2+ 4	4E6Mg ²⁺	
≥	3E6 - +FPP	3E6+FPP	2E5- +FPP	466	
ensi	166 (2)	1E6 (2)		.E6	
inte	466 FPP	466 FPP	326- 325-	IE6- FPP	
io	166	2E5 (2)	1E6 1	IEG-	
69	4E6 NADPH	4E6 NADPH	4E6 NADPH	4E6 NADPH	
Z/m	2E5- 1E6- +Mg ²⁺	2E5- 1F6- +Mg ²⁺	2E5- +Mg ^{4*} 2 1E6- 1	2E5	
	4E6 (2) Squalene	4E6 (2) Squalene	4E6 (2) Squalene	4E6 (2) Squalene	
	3E6- 2E5- 0.5mM	2E5-0.5mM	2E5-0.5mM	265 0.5mM	
	1Eb (1) Dankund	4E6 (1) Peplusol	4F6 (1) Penlusol (4)	0 (1) Peplusol	
	3E6 (0.5mM	3E6 0.5mM	3E6- 2E5- 0.5mM 32	E6 0.5mM	
	166-	166-	166-0-11	E6	
	21 22 23 24	21 22 23 24	21 22 23 24	21 22 23 24	
	Time (min)	Time (min)	Time (min)	Time (min)	
F	EpSS-L1, pH 6.5	F EpSS-L1, pH 7.5	G EpSS-L1to-L2, pH 6.5	H EpSS-I 1to-I 2 pH 7.5	
	AEA-I NADPH	4E4 (1) NADPH	(2) NADPH		
	3E4- 2E4- (7) +Mg ²⁺	3E4 (7) +Mg ²⁺	4E4- 3E4- 2E4- (1) +Mg ²⁺	1E4 3E4 5E4 5E4 (2) + Mg ²⁺	
		NADR+	1E4 +FPP	iE4 (1) +FPP	
	4E4 3E4 2F4 (2) +Mg ²⁺	3E4 2E4 2E4 (T) (1) +Mg ²⁺	4E4- 3E4- +Mg ²⁺	4E4- 3E4- (2) (3) +Mo2+	
~	1E4 (7) (1) +FPP	1E4- (7)(2) +FPP	1E4 (1) +FPP	2E4 (1) 1M9 1E4 +FPP	
nsit	4E4 MIG ⁴⁻⁷ 3E4 (2) +FPP	4E4	4E4	4E4	
inte	2E4 (2) 1E4 (7) (1)	2E4 (1)	2E4 (1) 1E4 (1)	3E4 - +FPP 2E4 - (1)	
ы.	4E4 FPP	4E4- FPP	4E4- FPP 2	4E4	
69	2E4- (1)	2E4 (1) 1E4 (1)	3E4	JE4	
Z/m	4E4 NADPH	4E4-I NADPH	AFAL NADPH	AGA NADPH	
	3E4+Mg ²⁺	3E4- 2E4- +Mg ²⁺	3E4 2E4 	3E4 2E4 + Mg ²⁺	
	4E6 (2) Squalene	4F6- (2) Squalene	1E4 0 4F5 (2) Squalene	1E4 0 Squalene	
	3E6- 2E5- 0.5mM	3E6- 2E5- 0.5mM	3E6- 2E5- 0.5mM	3E6 0.5mM	
	166 (d) Deplugel	166 Decker	1E6- D Bophungi	1E6	
	465 (1) Pepiusoi 366 (0.5mM	466 (1) Peplusol 366 0.5mM	4E6 (1) Pepusoi (1) 3E6 (0.5mM 3	4E6 (1) Peplusol 3E6 (0.5mM	
	1E6-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	166	2E5 1E6	2E5 - 1E6 -	
	21 22 23 24	21 22 23 24	21 22 23 24	21 22 23 24	
	Time (min)	Time (min)	Time (min)	Time (min)	
-					
	EpSS-L2to-L1, pH 6.5	J EpSS-L2to-L1, pH 7.5	K Empty Vector, pH 6.5	L Empty Vector, pH 7.5	
:	1E4 NADPH	1E4 NADPH	SE3 NADPH S	E3 NADPH	
	6E3 (2) +Mg ²⁺ 2E3 +FPP	6E3	3E3 +Mg ^{2*} 3	163 +Mg ²⁺ 162 +FPP	
	1E4 NADP*	164 (2) NADDA	SE3- NADE	B NADP*	
	6E3 +Mg ²⁺	6E3- (2) NADP* 6E3- +Mg2*	3E3 - +Mg ²⁺ 3	163- +Mg ²⁺	
-	2E3 +FPP	2E3 +FPP	1E3 +FPP 1	Et Auchenhammen + FPP	
Sit .	1E4 Mg ²⁺ 6E3 +EPP	1E4 (2) Mg ²⁺	5E3 Mg ²⁺ 5	E3 Mg ²⁺	
ten	2E3	2E3- 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1E3 Muluhuhumuman 1	E3-	
i II.	1E4 FPP	1E4 FPP	SE3 FPP 5	E3 FPP	
9.0	2E3 (2)	2E3 (2)	1E3 1. 1. 1. 1. 1. 1. 1.	E3	
v/z 6	1E4 NADPH	1E4 NADPH	5E3 NADPH 5	E3 NADPH	
8	6E3 +Mg ^{2*}	6E3+Mg ²⁺	3E3 + Mg ²⁺ 3	-E3+Mg ²⁺	
	4E6 (2) Squalene	4E6 (2) Squalene	4E6 (2) Squalene	E6 (2) Squalene	
	3E6 0.5mM	2E5- 0.5mM	3E6 0.5mM 2	6 0.5mM	
1	166 Poplicol	456 (4) Poplysol	1E6 1		
	3E6 (1) Pepidsol 3E6 0.5mM	3E6- 2E5- 0.5mM	3E6- 2E5- 2E5- (1) Feblusol 4 0.5mM 3	E6 0.5mM	
		166-		Ē6	
21 22 23 24 Time (min)		21 22 23 24 Time (min)	21 22 23 24 Time (min)	21 22 23 24 Time (min)	

Supplementary Figure 8. Results of the *in vitro* enzyme activity assays for AtSS, EpSS-L1, EpSS-L2, EpSS-L1to-L2 and EpSS-L2to-L1 heptaswap mutants. In vitro enzymatic reactions were conducted using total protein lysates from *E. coli* strains expressing: (A,B) *A. thaliana Squalene Synthase (AtSS),* (C,D) *E. peplus Squalene Synthase (EpSS-L2),* (E,F) *E. peplus Peplusol Synthase (EpSS-L1),* (G,H) *E. peplus Peplusol- to Squalene Synthase heptaswap (EpSS-L1to-L2),* (I,J) *E. peplus Squalene- to Peplusol Synthase heptaswap (EpSS-L2to-L1)* as well as strains transformed with the empty vector (K,L). Various co-factors of the reactions including NADPH, NADP⁺, Mg²⁺ were tested as described in methods section. Hexane/EthylAcetate extracted and derivatized products of enzymatic assays were analyzed by GC-MS in parallel with *E. peplus* latex-purified peplusol and commercial squalene standards. Extracted Ion Chromatograms (EIC) for *m/z* 69 showing peplusol (1), squalene (2), and un-identified compound (7).

Supplementary Figure 9. GC-MS derived *m/z* profiles of the products of the selected *in vitro* enzymatic reaction as well as those for peplusol and squalene standards.

Supplementary Table 1. Primers used for COS analysis of *Euphorbia lathyris* plant material.

Gene	<i>E. lathyris</i> genomic coordinates	<i>A. thaliana</i> homologue	Gene annotation	Forward (5'-3')	Reverse (5'-3')
Agtl	OY755225.1:14 453648- 14458991	AT2G13360	alanine:glyoxylate aminotransferase	GGCATTAACC GGTTCACAG	CCTCATTGAGAT TGCCAAGATG
AroB	OY755229.1:c4 143650- 4139650	AT5G66120	3-dehydroquinate synthase	GTTTGATAAA GCTATTGGAT CACG	TCAAAAAATTCA GCATCTCTTATA AGC
At103	OY755228.1:c7 3927075- 73921903	AT3G56940	putative dicarboxylate diiron protein	TTGACAAAGG CTAGAAAATA CACA	CAATCATTGAGG TACATTGTCAC
gbssi	OY755220.1:12 5705500- 125709950	AT1G32900	granule bound starch synthase 1	CAGGGTTTTG ACTGTGAGC	GGAACCCTGTGT AACCTTCT

Supplementary Table 2. Primers used for cloning and sub cloning of *E. peplus* and *E. lateriflora* candidate gene cDNAs into pEAQ-HT (*N. benthamiana* transient expression vector) with corresponding GenBank accession numbers.

Gene ID	GenBank Accession	SwissProt annotation	Forward (5'3')	Reverse (5'3')
EpSS-L1	WCJ40906.1	Squalene	CTGTATATTCTGCCC	AATTTAATGAAACCAGAGT
		synthase-	AAATTCGCGAAAAA	TAAAGGTCAGTAAGTGGTC
		like	ATGGAGATTTTGGGA	ATTTTTTGTG
			GGGATAG	
EpSS-L2	WCJ40907.1	Squalene	CTGTATATTCTGCCC	AATTTAATGAAACCAGAGT
		synthase-	AAATTCGCGAAAAA	TAAAGGTTAGTTGGTCCGA
		like	ATGGGGAGTTTGGG	TTGCAG
			AGC	
ElSS-L1	PP978604	Squalene	CTGTATATTCTGCCC	AATTTAATGAAACCAGAGT
		synthase-	AAATTCGCGAAAAA	TAAAGGTTAGTAAGTGGTC
		like	ATGGAGATTTTGGGT	ATTTTTTGAGATATGC
			GGAATAGTG	
ElSS2-L2	PP978605	Squalene	CTGTATATTCTGCCC	AATTTAATGAAACCAGAGT
		synthase-	AAATTCGCGAAAAA	TAAAGGCTAGTTGGTCCGA
		like	ATGGGGAGTTTGGG	TTGCC
			AGC	

Supplementary Table 3. Primers used to clone guide sequence (in red) and to amplify linear DNA parts from CEN.PK2-1C strain.

pCASsgRNA_	CGGGTGGCGAATGGGACTTT <mark>GTAATATTGTCTTGTTTCCC</mark> GTTTTAGAGCTAG
ARS911-F	AAATAGC
pCASsgRNA_	GCTATTTCTAGCTCTAAAACGGGAAACAAGACAATATTACAAAGTCCCATTC
ARS911-R	GCCACCCG
PTDH3-	
ARS911overlap	ATAGAAAAAAATCGGATGTTGAATGGGCATAAATATAAATGTATATAAAGA
_F	ATAAAAAACACGCTTTTTCAGTTCG
PTDH3-	
tHMG1overlap_	
R	TCTTCACCAATTGGTCTGCAGCCATTTTGTTTGTTTATGTGTGTG
tHMG1-	
PTDH3overlap_	
F	GAATAAACACACATAAACAAACAAAATGGCTGCAGACCAATTGGTG
tHMG1-	
TCYC1overlap	
R	TCCTTCCTTTTCGGTTAGAGCGGATTTAGGATTTAATGCAGGTGACGG
TCYC1-	
tHMG1overlap_	
F	GTCCGTCACCTGCATTAAATCCTAAATCCGCTCTAACCGAAAAGGAAG
TCYC1-	
ARS911overlap	TTTAAATTTTATGTCTGTTTTGTATGCTATTTCATTTTCATTTACTTCTCTCG
R	AGCGTCCCAAAACCTTC

Supplementary Note 1. NMR data for 2,3-oxidosqualene and peplusol

NMR data for *N. benthamiana* - extracted 2,3-oxidosqualene: ¹H NMR (600 MHz, CDCl 3): δ 5.12 (m, 5H (H-7, H-11, H-14, H-18, H-22)), 2.71 (t, 1H (H-3)), 2.18-1.94 (m, 18H (H-5, H-8, H-9, H-12, H-13, H-16, H-17, H-20,H-21)), 1.70-1.55 (m, 2H (H-4)), 1.68 (s, 3H (H-24)), 1.62 (s, 3H (H-26)), 1.60 (s, 12H (H-27, H-28, H-29, H-30)), 1.26 (s, 3H (H-25)); 13 C NMR (151 MHz, CDCl 3): δ 135.1 (C-19), 135.0 (C-10/C-15), 134.9 (C-10/C-15), 134.0 (C-6), 131.3 (C-23), 125.0 (C-7), 124.4 (C-22), 124.3 (C-11, C-14, C-18), 64.3 (C-3), 58.4 (C-2), 39.8, 39.7 (C-16, C-20, C-9), 36.3 (C-5), 28.3 (C-12, C-13), 27.5 (C-4), 26.8 (C-21), 26.7 (C-8'), 25.7 (C-24), 24.9 (C-1), 18.7 (C-25), 17.7 (C-30), 16.1, 16.0 (C-26, C-27, C-28, C-29).

HRMS (m/z) [M+H]+ calculated for C₃₀H₅₀O, 427.3940; found, 427.4031. NMR and HRMS data for 2,3-oxidosqualene are in agreement with previously published data^{5,6}

NMR data for *E. peplus* and *E. lateriflora* - extracted peplusol (exact match): ¹H NMR (600 MHz, CDCl₃): δ 5.14-5.06 (m, 5H (H-6, H-10, H-2', H-6', H-10')), 4.96 (s, 1H (H-15)), 4.87 (s, 1H (H-15)), 3.59-3.51 (m, 2H (H-1)), 2.28 (ddt, J = 7.2, 5.5, 7.2 Hz, 1H (H-2)), 2.19-2.12 and 2.12-2.01 (m, (H-4, H-5, H-1', H-5', H-9')), 2.02-1.95 (m, 6H (H-8, H-4', H-8')), 1.68 (s, 6H (H-13, H-13')), 1.61 (s, 6H (H-12, H-12')), 1.60 (s, 6H (H-14', H-14 or H-15')), 1.59 (s, 3H (H-14 or H-15')); ¹³C NMR (CDCl₃): δ 149.6 (C-3), 136.5, 135.6, 135.0, 131.4, 131.3 (C-7, C-11, C-3', C-7', C-11'), 124.4, 124.3, 124.1, 123.9 (C-6, C-10, C-6', C-10'), 122.2 (C-2'), 111.0 (C-15), 64.0 (C-1), 48.8 (C-2), 39.8, 39.7, 39.7 (C-8, C-4', C-8'), 34.4 (C-4), 29.1 (C-1'), 26.8, 26.7, 26.6 (C-5, C-9, C-9'), 26.2 (C-5'), 25.7 (C-13, C-13'), 17.7 (C-12, C-12'), 16.2, 16.1, 16.0 (C-14, C-14', C-15').

HRMS (m/z) [M+H]+ calculated for C₃₀H₅₀O, 427.3940; found, 427.4012. NMR and HRMS data for peplusol are in agreement with previously published data⁷

Supplementary references

- 1 Johnson, A. R. *et al.* Chromosome-level genome assembly of *Euphorbia peplus*, a model system for plant latex, reveals that relative lack of Ty3 transposons contributed to its small genome size. *Genome Biol Evol* **15**, evad018 (2023).
- 2 Liu, H. *et al.* Molecular digitization of a botanical garden: high-depth wholegenome sequencing of 689 vascular plant species from the Ruili Botanical Garden. *Gigascience* **8**, giz007 (2019).
- 3 Abramson, J. *et al.* Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature* **630**, 493-500 (2024).
- 4 Meng, E. C. *et al.* UCSF ChimeraX: Tools for structure building and analysis. *Protein Sci* **32**, e4792 (2023).
- 5 Abad, J. L., Casas, J., Sanchezbaeza, F. & Messeguer, A. Dioxidosqualenes: Characterization and activity as inhibitors of 2,3-oxidosqualene lanosterol cyclase. *J Org Chem* **58**, 3991-3997 (1993).
- 6 Tian, Y., Xu, X., Zhang, L. & Qu, J. Tetraphenylphosphonium tetrafluoroborate/1,111,313,3-hexafluoroisopropanol (PhPBF/HFIP) effecting epoxide-initiated cation-olefin polycyclizations. *Organic Letters* **18**, 268-271 (2016)
- 7 Giner, J. L., Berkowitz, J. D. & Andersson, T. Nonpolar components of the latex of *Euphorbia peplus*. *J Nat Prod* **63**, 267-269 (2000).