
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
A - Papers appearing in refereed journals

Holman, F. H., Riche, A. B., Castle, M., Wooster, M. J. and Hawkesford, 

M. J. 2019. Radiometric calibration of ‘Commercial off the shelf’ cameras 

for UAV-based high-resolution temporal phenotyping of reflectance and 

NDVI. Remote Sensing. 11 (14), p. 1657. 

The publisher's version can be accessed at:

• https://dx.doi.org/10.3390/rs11141657

• https://www.mdpi.com/2072-4292/11/14/1657

The output can be accessed at: https://repository.rothamsted.ac.uk/item/8wx1q.

© 11 July 2019. Licensed under the Creative Commons CC BY.

11/07/2019 15:03 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://dx.doi.org/10.3390/rs11141657
https://www.mdpi.com/2072-4292/11/14/1657
https://repository.rothamsted.ac.uk/item/8wx1q
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


  

Remote Sens. 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

Article 1 

Radiometric calibration of ‘Commercial off the shelf’ 2 

cameras for UAV-based high-resolution temporal 3 

phenotyping of reflectance and NDVI. 4 

Fenner H. Holman1 *, March Castle2, Andrew B. Riche2, Martin J. Wooster1,3, Malcolm J. 5 
Hawkesford2  6 

1 Department of Geography, King’s College London, London WC2B 4BG; fenner.holman@kcl.ac.uk, 7 
martin.wooster@kcl.ac.uk. 8 

2 Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ; andrew.riche@rothamsted.ac.uk, 9 
malcolm.hawkesford@rothamsted.ac.uk, march.castle@rothamsted.ac.uk. 10 

3 National Centre for Earth Observation (NCEO), Leicester, LE1 7RH, UK. 11 
 12 
* Correspondence: fenner.holman@kcl.ac.uk  13 

Received: date; Accepted: date; Published: date 14 

Abstract: Vegetation indices, such as the Normalised Difference Vegetation Index (NDVI), are 15 
common metrics used for measuring traits of interest in crop phenotyping. However traditional 16 
measurements of these indices are often influenced by multiple confounding factors such as canopy 17 
cover and reflectance of underlying soil, visible in canopy gaps. Digital cameras mounted to 18 
Unmanned Aerial Vehicles offer the spatial resolution to investigate these confounding factors, 19 
however incomplete methods for radiometric calibration into reflectance units limits how the data 20 
can be applied to phenotyping. In this study, we assess the applicability of very high spatial 21 
resolution (1cm) UAV-based imagery taken with commercial off the shelf (COTS) digital cameras 22 
for both deriving calibrated reflectance imagery, and isolating vegetation canopy reflectance from 23 
that of the underlying soil. We present new methods for successfully normalising the imagery for 24 
exposure and solar irradiance effects, generating multispectral (RGB-NIR) orthomosaics of our 25 
target field based wheat crop trial. Validation against measurements from a ground spectrometer 26 
showed good results for reflectance (R2 ≥ 0.6) and NDVI (R2 ≥ 0.88). Application of imagery collected 27 
through the growing season and masked using the Excess Green Red index was used to assess the 28 
impact of canopy cover on NDVI measurements. Results showed the impact of canopy cover 29 
artificially reducing plot NDVI values in the early season, where canopy development is low. 30 

Keywords: Unmanned Aerial Vehicle, reflectance, radiometric calibration, NDVI, digital cameras, 31 
canopy reflectance. 32 

 33 

1. Introduction 34 

In crop phenotyping, vegetation indices (e.g. NDVI) derived from canopy reflectance are 35 
commonly used to assess certain physiological traits of interest [1]; including (i) plant vigour [2,3], 36 
(ii) plant biomass [4,5], (iii) plant nitrogen status [6], (iv) plant Leaf Area Index (LAI) [7,8] and (v) 37 
final crop yield [9]. However, these indices are typically influenced by both the target vegetation 38 
condition and variables such as background soil properties and canopy cover/density [10]. The 39 
combined influence of each variable quite often remains unacknowledged when associating 40 
vegetation indices (VIs) to traits of interest; a problem when there are multiple situations (e.g. low 41 
canopy cover and high vegetation vigour vs. high canopy cover and low vegetation vigour) that may 42 
equate to similar VI measures. Such situations can provide significant uncertainty, and even false 43 
indications of plant status [11]. Traditional methods of measuring canopy spectral reflectance (e.g. 44 
ground spectrometers and/or satellite based remote sensing) offer insufficient spatial resolution to 45 
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investigate and dissect the influences of the many variables involved in controlling VI measures. 46 
Unmanned Aerial Vehicle (UAV) based remote sensing systems may, however, offer this capability, 47 
and are becoming a prominent method for high throughput phenotyping of field-based crop trials, 48 
largely thanks to their very high spatial resolution imagery [12].  49 

In combination with modified digital cameras or commercially available multispectral imagers, 50 
low-cost UAVs are increasingly being used for high temporal resolution crop condition monitoring 51 
and field phenotyping. More recently modified single and dual ‘commercial off the shelf’ (COTS) 52 
digital camera systems are being used for collection of multispectral (RGB–NIR) imagery at spatial 53 
resolutions superior to those achieved by commercial cameras such as the Parrot Sequoia [13]. 54 
However, captured imagery is still subject to distortions from camera (exposure, vignetting, file 55 
format and spectral sensitivity), and environmental factors (predominantly solar spectral irradiance) 56 
[14–23], weakening the capacity to extract accurate quantitative information [15,24]. Whilst 57 
calibration methods for the bulk of these factors have been investigated, shortcomings remain in 58 
relation to long term consistency, particularly in relation to variable solar irradiance. Firstly, 59 
obtaining temporally relevant measures of irradiance for individual UAV images is a challenge. Berra 60 
et al. [25] used ground based artificial targets of known reflectance, along with the empirical line 61 
method, to convert camera measures to reflectance units. However, inconsistent capturing of targets 62 
within individual images limited calibration to final orthomosaics. Therefore variations in irradiance 63 
during the flight were not corrected for, increasing errors in the derived reflectance datasets [26]. 64 
Furthermore, the temporal stability of reflectance of such artificial targets left out in the field can vary 65 
by up to 16% over a season [27]. An alternative is to use a supplementary device measuring irradiance 66 
concurrently with COTS camera data collection, providing the information to convert individual 67 
images into reflectance units. The Parrot Sequoia employs this method, utilising its own downwelling 68 
light sensor operating at the same spectral bands as the imager itself. The second shortcoming 69 
identified relates to the fixing of exposure settings (aperture, shutter speed and ISO) to remove 70 
influence of camera exposure settings on the amount of light reaching the sensor, or the sensitivity of 71 
the sensor to light. This “fixed settings” approach increases risk of under or over exposure of images 72 
- which equates to lost data [28]. Linear relationships between image DN and varying ISO, shutter 73 
speed and aperture have been previously demonstrated [29], indicating post-capture normalising of 74 
images of varying exposure can be achieved. As far as we can tell this feature has not been utilised 75 
for this purpose before. 76 

Given the above, the aim of the current study is to calibrate individual wavebands of dual COTS 77 
cameras to reflectance, with a focus to include individual image irradiance corrections from a 78 
separate irradiance sensor and allowance for non-fixing of camera exposure. Then, within a field 79 
phenotyping setting, using a low-cost UAV utilise the very high-resolution reflectance imagery to 80 
temporally analyse the influence of canopy structure and soil reflectance on derived vegetation 81 
indices, specifically NDVI. Within this framework, specific objectives are to: 82 

 83 
1. Develop a method for full radiometric calibration of COTS camera imagery, with new methods 84 

for exposure normalisation and individual image incoming solar irradiance adjustment.  85 
2. Quantitatively assess the influence of the radiometric calibration steps and the final quality of 86 

the derived reflectance and NDVI datasets. 87 
3. Utilise the very high-resolution maps derived from the UAV imagery to analyse the influence of 88 

canopy cover on NDVI trends for a field based wheat crop trial. 89 

  90 
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2. Materials and Methods 91 

2.1 Field Site  92 

All data was collected at the experimental farm operated by Rothamsted Research, UK 93 
(51°48′34.56′′N, 0°21′22.68′′W). We focused on the Defra-funded Wheat Genetic Improvement 94 
Network (WGIN) Diversity Field Experiment [24], whose aim is to test the influence of applying 95 
different nitrogen fertiliser treatments to different wheat cultivars. A total of 30 different cultivars 96 
were grown at 4 different nitrogen application rates, with three replicates making a total of 360 plots. 97 
(Table 1) [25]. Each plot consisted of a 9m x 3m non-destructive plot and a 2.5m x 3m plot reserved 98 
for destructive sampling. This study focuses on the non-destructive part only. 99 

Table 1. Details of the four nitrogen treatments applied to the diversity field experiment for 2017. 100 

Treatment Code 
Total Nitrogen 

Application (kg N ha-1) 

Application 

Date 

Nitrogen Applied 

(kg N ha-1) 

N1 0 - 0 

  - 0 

  - 0 

N2 100 15/03/2017 50 

  05/04/2017 50 

  09/05/2017 0 

N3 200 15/03/2017 50 

  05/04/2017 100 

  09/05/2017 50 

N4 350 15/03/2017 50 

  05/04/2017 250 

  09/05/2017 50 

2.2 UAV Imagery 101 

A DJI S900 UAV [30] fitted with a DJI flight controller was flown on a pre-determined flight plan 102 
at 45 m altitude over the field site nine times between 7th March 2017 and 4th July 2017. The flight 103 
plan was designed to ensure 80% overlap between concurrent images was obtained. Two Sony α5100 104 
mirrorless digital cameras [31] mounted on the UAV were used for the image collection. These 105 
cameras contain 24.3 mega pixel complementary metal-oxide semiconductor (CMOS) sensors, and 106 
both were fitted with 20mm F2.8 Sony prime lenses. One camera was left as standard to record RGB 107 
imagery, and one had had its internal NIR-blocking filter replaced with an 830nm long pass filter to 108 
block visible light and enable recording of NIR waveband imagery. The 830nm filter was selected to 109 
ensure minimal capturing of visible light in the imagery, as seen with the 660nm filter used by Berra 110 
et al.[25,32] 111 

All images were captured at 1-sec intervals and in RAW format, with focus set to 45 m to reflect 112 
the UAV flying height. Aperture and ISO were left on automatic, whilst shutter speed was fixed to 113 
1/500sec to ensure minimisation of motion blur. The UAV and cameras were flown over the field site 114 
at a time relatively close to local solar noon, with actual recording times varying from 10:11 to 13.25.  115 
Twelve Ground Control Points, whose positions were measured with a Trimble Geo 7 DGPS [33], 116 
were used for georeferencing final orthomosaics. To provide measures of total incoming solar 117 
irradiance, a Tec5 HandySpec Field spectrometer [34] fitted with a cosine corrected downwelling 118 
optic was deployed at a fixed location next to the field and set to measure at 1-second intervals. 119 
Spectral measurements were collected at 10 nm spectral resolution across the wavelength range 360-120 
1000 nm. 121 

2.3 Validation Data 122 
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Mean plot canopy reflectance, measured with the Tec5 HandySpec Field spectrometer, were 123 
used for validation of UAV derived canopy reflectance measures. To collect the spectrometer 124 
measurements, a single scan of each plot’s canopy was collected with the spectrometer optic held 125 
approximately 1m above the plot; the standard procedure employed by Rothasmted Research. Each 126 
scan produced one spectral reflectance measure for the plot at 10 nm spectral resolution across the 127 
wavelength range 360-1000 nm. This procedure was repeated for all 360 plots on three separate dates 128 
during the growing season between 19th April and 4th July 2017. The Tec5 HandySpec adjusts for 129 
changes in solar illumination between measurements using a downwelling optic fitted with a cosine 130 
diffuser; reflectance is calculated using proprietary software. Before comparing to UAV results, the 131 
Tec5 results were convolved to the same spectral wavebands as the cameras. These ground-based 132 
measurements were not always collected on the same days as UAV flights due to logistical 133 
constraints, but were within 3 days. Additional validation data was obtained by flying a Parrot 134 
Sequoia multispectral imager [13] simultaneously with the dual camera system for a single date (21st 135 
June 2017). The Sequoia was set to capture images every second and the Sequoia’s downwelling 136 
sunshine sensor was mounted atop the UAV for collection of irradiance measurements. The Sequoia 137 
images were processed using Pix4D (Version 4.3.1) [35] using standard recommended settings, 138 
downwelling light sensor data and manufacturer derived calibrations, producing Green, Red, and 139 
NIR reflectance orthomosaics at a ground sampling distance (GSD) of 5cm.  140 

Due to the differences between COTS camera and Parrot Sequoia spectral responses (Table 2), 141 
direct comparison between the cameras was not possible. Therefore, assessment of accuracy of the 142 
individual UAV-based imaging systems was conducted by comparing both against the Tec5. 143 

 144 

Table 2. Spectral sensitivities for the Parrot Sequoia's four spectral bands. 145 

Camera Channel Wavelength Range (nm) 

Green 530-570 

Red 640-680 

Red Edge 730-740 

NIR 770-810 

 146 

  147 
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2.4 Post-processing of Captured Imagery 148 

The processing of the dual-camera imagery followed the workflow outlined in Figure 1. 149 

Specific details on the main correction steps, including the novel exposure corrections are provided. 150 

151 

Figure 1. Flow chart of key processing steps used to convert raw images to reflectance 

images. The blue circles indicate inputs, green squares indicate processing steps and 

yellow squares derived products. 
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2.4.1 Relative Spectral Response  152 

Relative Spectral Responses (RSR), Figure 2, of both cameras were determined using a double 153 
monochromator fitted with an integrating sphere, using the method described by Berra et al. [32]. The 154 
unmodified RGB camera shows greatest sensitivity in the green channel, as expected from a Bayer 155 
matrix colour filter array [32]. For the modified NIR camera, overall sensitivity was similar in all three 156 
bands that originally measured Red, Green and Blue waveband light. Whilst now mostly sensitive to 157 
NIR wavelength light, all channels show some sensitivity to light below 830 nm (i.e. sensitivity to 158 
radiation outside the NIR spectral range remained), indicating the modified internal filter was not 159 
performing at 100% at 830nm. The ‘Blue’ channel of the NIR-adapted camera displayed the least 160 
sensitivity to light below 830 nm, therefore was best suited for use as the NIR channel. The 161 
wavebands determined for each channel of the RGB and NIR channels are presented in Table 3.  162 

 163 
Table 3. Sony α5100 camera band sensitivities. Sensitivities were measured using a double 164 

monochromator fitted with an integrating sphere. 165 

Model Channel Wavelength Range (nm) 

“RGB” Camera Red 580-660 

 Green 420-610 

 Blue 410-540 

“NIR” Camera NIR (blue channel) 800-900 

2.4.2 RAW Conversion 166 

Figure 2. Relative Spectral response of the two Sony cameras used in this study. Vertical dotted line 

indicates the 830nm blocking filter present in the adapted Sony NIR camera. 



Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 26 

 

Images were collected in RAW format before conversion to 16-bit TIFF format using DCRAW 167 
9.27 [36]. This was done using bilinear conversion algorithms and a dark current correction, to 168 
maintain original sensor DN measurements. The exact settings are presented in Table 4. Dark current 169 
correction images for each camera were captured in complete darkness (i.e. lens cap on and lights 170 
turned off), and used for the DCRAW processing. 171 

 172 

Table 4. Details of DCRAW settings used to convert images from raw to TIFF. 173 

DCRAW Command Action 

-v Print verbose messages 

-6 Write 16bit 

-W No automatic image brightening 

-g 1 1 Apply unadjusted gamma curve 

-T Write Tiff format 

-r 1 1 1 1 Set unadjusted white balance 

-t 0 Do not rotate image 

-q 0 Apply linear demosaicing 

-o 0 Raw output colour space 

-K darkimage.pgm Apply dark image correction using file specified 

 174 

2.4.3 Exposure Corrections 175 

To determine the relationships between digital number and exposure settings (aperture and 176 
ISO), a series of images were collected of a Lambertian spectralon reflectance panel, set up indoor 177 
under constant illumination with white incandescent bulb light. For each exposure setting (aperture, 178 
ISO and shutter speed), a series of images were captured under the settings full range (e.g. ISO100 – 179 
ISO1000), whilst other settings remained fixed. As illumination remained constant; thee image sets 180 
were produced, each modelling the influence of changing one exposure setting on image DNs. 181 

Linear relationships between pixel DN and aperture and ISO were observed (Figure 3). From 182 
these relationships, the aperture correction factor (CFapp) was derived to normalise images captured 183 
under varied aperture to an aperture value of 1 (Equations 1 and 2). 184 

 
𝐼𝑚𝑎𝑔𝑒𝑎𝑝𝑝 =

𝐼𝑚𝑎𝑔𝑒𝑅𝐴𝑊

 𝐶𝐹𝑎𝑝𝑝

 
(1) 

Where: 185 

 
𝐶𝐹𝑎𝑝𝑝 =

1

(𝑓𝑠𝑡𝑜𝑝𝑖𝑚𝑎𝑔𝑒)2
 (2) 

 186 
Where f-stop is the aperture value the image was captured with and ImageRAW is the DCRAW 187 

converted TIFF image and Imageapp is the aperture corrected image. 188 
For ISO, Equation 3, was used to normalise images to an ISO value of 100, the lowest and most 189 

commonly used setting on the cameras. 190 

 
𝐼𝑚𝑎𝑔𝑒𝐼𝑆𝑂 =

𝐼𝑚𝑎𝑔𝑒𝑎𝑝𝑝

(
𝐼𝑆𝑂𝑖𝑚𝑎𝑔𝑒

100
)

 
(3) 
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Where ISOimage is the ISO setting used to capture the image; Imageapp is the aperture corrected image; 191 
and Imageiso is the ISO and aperture corrected image. 192 

2.4.4 Vignetting Correction 193 

An adapted version of the method outlined by LeLong et al. [16] was used in this study; such 194 
that camera, band and aperture specific vignetting correction filters were generated for each data 195 
collection date. For each flight, the following steps were taken to produce vignetting filters: 196 

1. Images of matching camera, band and aperture settings were summed together and 197 
averaged.  198 

2. The radial vignetting profile of the averaged image was modelled using the median of 199 
evenly spaced concentric rings.  200 

3. A 2nd degree polynomial function interpolated the vignetting profile from the median of 201 
rings. 202 

4. The interpolation values were then divided by the minimum value to produce a 203 
multiplicative correction factor which brightened the corners. 204 

5. The concentric rings are given the value of the correction factor corresponding to its 205 
distance from the centre to produce the final vignetting filter (Figure 4 middle). 206 

Unlike LeLong et al.[16], the vignetting filter was applied as a multiplicative filter rather 207 

than additive, this is in order to maintain the underlying patterns within the original 208 

images.2.4.5 Cross Calibration Factor and Reflectance Calibration 209 

Figure 3. Linear relationships and R2 between camera exposure settings, (a) aperture and (b) ISO, and 

image digital numbers. For (a) Aperture, f-numbers have been converted from ‘stops’ to aperture 

diameter via 1/f-stop2. 

Figure 4..Example of input NIR image (left), generated vignetting filter (middle) and vignetting 

corrected image (right). 
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Before converting image DNs to reflectance, it was necessary to cross calibrate the Tec5 210 
downwelling sensor and the cameras. To do this the empirical line method was used to retrieve the 211 
relationship between Tec5 irradiance measures and exposure and vignetting corrected image DN, 212 
over 5 Lambertian reference targets (Figure 5). 213 

The camera and band specific calibration factors, Table 5, were applied to individual images, 214 
before Equation 4 was used to convert images from DN to reflectance using time matched Tec5 215 
irradiance measurements. 216 

  217 

Figure 5. Results of relationships between exposure and vignetting corrected image DNs and Tec5 

spectrometer reflectance. All camera bands show strong linear agreements with Tec5 reflectance. 

Measurements of 5 black, grey and white spectral reflectance targets were used for this. 
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Table 5. Calibration equations for each of the four camera bands. Equations were derived from 218 
comparison of camera and Tec5 measurements of 5 reference targets. 219 

Camera and Band Calibration Equation 

RGB – Blue 0.0092 × 𝐷𝑁 + 0.00889 

RGB – Green 0.00773 × 𝐷𝑁 + 0.00757 

RGB – Red 0.0189 × 𝐷𝑁 + 0.00603 

NIR - Blue 0.0249 × 𝐷𝑁 − 0.00706 

 220 
 

𝑅𝑏,𝑡 =
𝐼𝑚𝑎𝑔𝑒𝑏,𝑡

𝑇𝑒𝑐5 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒𝑏,𝑡

 (4) 

Where Ri,t is the final reflectance image at time t and waveband b, Imageb,t is the single image captured 221 
at time t and band b, and Tec5 irradianceb,t is the Tec5 irradiance measurement captured at the same 222 
time, t and convolved to the same band b as the image.  223 

2.4.6 Orthomosaic Generation 224 

Agisoft Photoscan (1.4.3) [37] was used to process final imagery to orthomosaics, including 225 
automatic lens correction. For each date, two orthomosaics were generated, RGB and NIR. Agisoft 226 
processing settings, Table 6 were kept consistent for all orthomosaics. In order to minimise the impact 227 
of geometric distortion and variation, the disabled blending mode was used to generate the 228 
orthomosaic [38]. This mode takes pixel data from the image whose view is closest to nadir.  229 
Orthomosaics were generated and exported at 1cm Ground Sampling Distance (GSD).Table 6. 230 
Processing settings for Agisoft Photoscan. The same settings were used for all Orthomosaics 231 
generated. 232 

Processing Step Setting 

Align Photos High 

Generate Dense Point Cloud Medium 

Generate Mesh High 

Generate Orthomosaic Disabled 

 233 
NDVI orthomosaics were generated using Equation 5, before mean values for each plot in each 234 

camera band and NDVI were extracted using custom Python based processing tools. As in Holman 235 
et al. [12], a 50cm buffer was applied to each plot before extracting mean values in order to prevent 236 
influence of plot edge effect.  237 

 
𝑁𝐷𝑉𝐼 =

𝑅𝑁𝐼𝑅 − 𝑅𝑟

𝑅𝑁𝐼𝑅 + 𝑅𝑟

 (5) 

 238 
Where RNIR is measured reflectance in the NIR band and Rr is measured reflectance in the red band. 239 

  240 
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2.5 Canopy Masking 241 

To dissect green canopy from background variables, the Excess Green Red (ExGR) index was 242 
used (Equation 6), with a threshold of > 0 to classify green vegetation [39,40]. Figure 6 shows an 243 
example of the produced mask, with reasonable agreement between visual green canopy and pixels 244 
classified as green by ExGR. The masks were used to extract mean plot NDVI of green pixels only. 245 

 
𝐸𝑥𝐺𝑅 = (2×𝐺 − 𝑅 − 𝐵) − (1.4×𝑅 − 𝐺) (6) 

3. Results 246 

3.1 Validation of Calibrations 247 

The influence of the calibration steps applied to COTS camera imagery on precision of results 248 
was first assessed. For a single date (21st June 2017), camera imagery was processed with corrections 249 
applied cumulatively to understand their influence on results. For clarity, extracted mean plot results 250 
for the red and NIR bands have been scaled to a range 0-1. 251 

Red band results (Figure 7) show little impact on linear trend and intercept from correction steps, 252 
with consistent slopes around 1.2 and intercepts of 0.07. Correlations show improvement with 253 
addition of corrections, R2RAW = 0.82 up to R2Vignetting = 0.89, with camera related exposure and 254 
vignetting offer the greatest gains. No meaningful effect on nRMSE and bias is gained from 255 
corrections. 256 

Figure 6. Example image of an RGB image of wheat trial plots and right the ExGR mask output. In the 

ExGR mask white represents green classified pixels and black non-green pixels. Imagery is from the 

21st June 2017 UAV data collection campaign. 
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For the NIR band (Figure 8), more significant impact of correction steps is observed. Gains in 257 
both the linear fit and R2 are achieved at each step, with vignetting indicating most significant 258 
influence. Both nRMSE and bias decline in accuracy with the addition of correction steps. 259 

 260 
 261 
 262 
 263 
 264 
 265 
 266 
 267 
 268 
 269 
 270 
 271 

Figure 7. Assessment of the cumulative influence of correction steps on precision of scaled mean plot 

measurements in the red band. Results are compared to scaled COTS camera convolved Tec5 

measurements of mean plot reflectance. The dashed line represents the 1:1 line. 
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 The influence of corrections on NDVI, calculated from non-scaled data (Figure 9), indicates high 272 
precision (R2 = 0.91) but poor accuracy (nRMSE = 0.85, Bias = -0.57) compared to the ground validation 273 
data. Addition of irradiance correction greatly improves accuracy; particularly nRMSE, bias and 274 
linear trend. Exposure corrections improve correlation, though drops in nRMSE and bias are also 275 
introduced. Finally, the addition of vignetting improves all statistics, indicating the complete 276 
collection of calibration steps produces best results in terms of both accuracy and precision. 277 

 278 
 279 
 280 
 281 
 282 
 283 
 284 
 285 
 286 

Figure 8. Assessment of the cumulative influence of correction steps on precision of scaled mean plot 

measurements in the NIR band. Results are compared to scaled COTS camera convolved Tec5 

measurements of mean plot reflectance. The dashed line represents the 1:1 line. 
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Further investigation of camera settings (Figure 10), via calculation on Exposure Value (Equation 287 
7), highlights how the cameras adjusted exposure independently during UAV flight. This 288 
independence explains the poor accuracy of NDVI from raw images, where variable camera settings 289 
(which can vary between the independent cameras used to gather RGB and NIR data) artificially 290 
altering the red to NIR ratio. Inclusion of the varying solar spectral irradiance data corrects this, 291 
improving the data consistency greatly; whilst inclusion of exposure and vignetting corrections 292 
removes all influence of variable exposure settings, producing even higher accuracy data. 293 

Where fi is the image aperture, ti is the image shutter speed and ISOi is the image ISO value. 294 

  295 

 
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒𝑖 = 2×𝑙𝑜𝑔2(𝑓𝑖) − 𝑙𝑜𝑔2(𝑡𝑖) − 𝑙𝑜𝑔2(𝐼𝑆𝑂𝑖/100) (7) 

Figure 9. Assessment of the cumulative influence of radiometric corrections applied to COTS camera 

derived NDVI. Results are compared to COTS camera convolved Tec5 derived NDVI. Dashed line 

indicates the 1:1 line. 
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3.2 Accuracy Assessment of COTS Camera Reflectance 296 

For three dates (19/04/2017, 21/06/2017, 04/07/2017) COTS camera derived mean plot reflectance 297 
and calculated NDVI was assessed against Tec5 results. Poorer results in all statistics in the last date 298 
(04/07/17) show reduced agreement with Tec5 reflectance measurements. At this later date, onset of 299 
senescence will increase the variability in canopy reflectance both within and between plots, as seen 300 
by the increase vertical error bars. This spatial non-uniformity of senescence onset is better measured 301 
by the UAV data as opposed to the spectrometer, leading to poorer statistics at this time point.2 302 
 303 

Figure 10. Exposure value for the RGB and NIR cameras over the duration of a flight showing the 

cameras adjusting erxposure independently. Data is from the flight on 21st June 2017. 
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The green (Figure 12) and red bands (Figure 13) show very similar trends in accuracy to the blue 304 
band. Both bands show good fit (R2 ≥ 0.84) and consistent small negative biases Bias indicating slight 305 
underestimation of reflectance from the cameras. The same trend between nitrogen treatments over 306 
time is also present. As well as the greater within plot variation for the last date compared to the 307 
earlier two.  308 

  309 

Figure 11. Accuracy assessments of blue band reflectance for three dates. Tec5 reflectance is convolved to the 

spectral response of the COTS cameras for comparison. The points are coloured based on nitrogen treatment 

applied to the plot. Standard deviation of reflectance measured by the COTS cameras is presented by vertical 

error bars. The dashed line represents the 1:1 line. 

Figure 12. Accuracy assessments of green band reflectance for three dates. Tec5 reflectance is 

convolved to the spectral response of the COTS cameras for comparison. The points are coloured 

based on nitrogen treatment applied to the plot. Standard deviation of reflectance measured by the 

COTS cameras is presented by vertical error bars. The dashed line represents the 1:1 line. 
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 310 
The NIR band (Figure 14) shows reduced fit in comparison to the visible bands (0.64 ≥ R2 ≤ 0.7) 311 

and larger biases indicate lower accuracies achieved in the NIR band. In contrast to the visible bands, 312 
the NIR shows lowest accuracy in the first date before improving for the subsequent two dates. 313 
Trends between nitrogen treatments shows N1 treatments consistently have lowest reflectance 314 
indicating reduced vegetation in these plots as would be expected. Standard deviations show the 315 
same increased variability in plot reflectance of the last date. Overall the results of the NIR camera 316 
indicate lower sensitivity to higher canopy reflectance compared to the Tec5.  317 

Figure 13. Accuracy assessments of red band reflectance for three dates. Tec5 reflectance is convolved 

to the spectral response of the COTS cameras for comparison. The points are coloured based on nitrogen 

treatment applied to the plot. Standard deviation of reflectance measured by the COTS cameras is 

presented by vertical error bars. The dashed line represents the 1:1 line. 

 

Figure 14. Accuracy assessments of NIR band reflectance for three dates. Tec5 reflectance is convolved 

to the spectral response of the COTS cameras for comparison. The points are coloured based on nitrogen 

treatment applied to the plot. Standard deviation of reflectance measured by the COTS cameras is 

presented by vertical error bars. The dashed line represents the 1:1 line. 
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Accuracy assessments of calculated NDVI (Figure 15) shows high correlations (R2 ≥ 0.88) and 318 
low nRMSE and biases indicating overall very good accuracy is achieved from the COTS cameras. 319 
Temporal accuracy shows a similar drop in accuracy for the final date as seen in the visible bands, 320 
but overall good stability is achieved. The lower accuracy of the NIR band appears to not impact 321 
accuracy of calculated NDVI.  322 

Additional assessment compared results from the COTS cameras with the Parrot Sequoia 323 
(Figure 16), a commercially available multispectral imager whose data is processed using proprietary 324 
calibrations. Of the individual bands, green showed the strongest agreement between the two camera 325 
systems, with comparable R2, nRMSE and bias. The red band indicated poorer accuracy achieved by 326 
the Sequoia, with large nRMSE, negative biases and poorer linear agreement with the Tec5. In the 327 
NIR band, both camera systems showed comparable accuracy levels and precision. NDVI results 328 
show greater accuracy achieved by the COTS cameras, with the Sequoia overestimating NDVI 329 
compared to the TEC5 (as indicated by positive bias). The similarity in results between the COTS 330 
cameras and Parrot Sequoia, particularly in the NIR waveband, suggests  331 

  332 

Figure 15. Accuracy assessments COTS camera derived NDVI for three dates. The points are coloured 

based on nitrogen treatment applied to the plot. Standard deviation of reflectance measured by the 

COTS cameras is presented by vertical error bars. The dashed line represents the 1:1 line. 
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3.3 Influence of canopy on NDVI 333 

The focus of this component of the study was to investigate the potential for high spatial 334 
resolution imagery to be used to dissect the influence of canopy cover on derived vegetation indices. 335 
For nine dates, the COTS camera imagery was calibrated, processed and NDVI calculated. For one 336 
date, 18/05/2017, significant shadowing impacted on results of masking; as such this date was 337 
removed from further processing. For the remaining eight dates, a subset of ten varieties have been 338 
used. Examples of NDVI orthomosaic crops for three dates highlight the temporal and spatial 339 
variation achieved from the COTS cameras (Figure 17). 340 

Figure 16. Comparison of accuracies achieved by COTS (blue) cameras and Parrot Sequoia (red) in 

green, red and NIR reflectance and NDVI. Comparisons are made against Tec5 measure reflectances 

and NDVI. Reflectance was measured from both cameras on the same date (21/06/2017), whilst the Tec5 

was used two days later. The dashed line represents the 1:1 line. 
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Assessment of NDVIunmasked (Figure 18(a), top row) show typical trends over time and between 341 
nitrogen treatments. All varieties and treatment levels show a starting NDVI value around 0.4, 342 
increasing to a peak in late-May before dropping off at the end of the season. Comparison between 343 
nitrogen treatments shows clear differences between plots with (N2, N3 and N4) and without (N1) 344 
fertiliser application, with the N1 treatment showing lower maximum NDVI, despite similar initial 345 
NDVI values (~0.4). The drop in NDVI values at the end of the season is likely a result of senescence 346 
and the browning of crop canopy. Application of ExGR derived masks (Figure 18(b), second row) to 347 
extract NDVI of green classified pixels only, produces new trends between treatments and over time. 348 
For all treatments, shallower temporal trends in NDVI are observed, with the N1 treatment 349 
displaying a close to horizontal trend with the peak in late-May no longer featuring. Comparing the 350 
difference between NDVIunmasked and NDVIExGR (Figure 18(c), third row) shows the greatest influence 351 
of masking occurs early season where % green pixel is lowest (Figure 18(d), bottom row).   352 

Figure 17. Example subset of NDVI orthomosaics from three dates - 27/03/2017 (left), 18/05/2017 

(middle), 21/06/2017 (right). Orthomosaics highlight the spatial variability of NDVI both between and 

within plots. 
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4. Discussion  353 

This study has provided a quantitative assessment of commercial off the shelf (COTS) digital 354 
cameras for supporting the UAV-based remote sensing of field-based crop trials. COTS cameras 355 
provide very high spatial resolution imagery, potentially enabling the separation of canopy 356 
influences on vegetation indices from those of the background soil and thus making the derived 357 
information more relevant to crop health assessment and monitoring. 358 

We have designed and tested a data processing workflow to radiometrically calibrate COTS 359 
camera imagery into reflectance units, in blue, green, red and NIR wavebands. Cameras were allowed 360 
to vary their exposure settings during flight, to cope with varying solar illumination conditions, 361 
whilst having a fixed shutter speed to avoid blurring from the UAV-motion. We find that our 362 

Figure 18. Temporal trends of ten wheat varieties grown under four different nitrogen treatments for: 

(a) the standard unmasked mean NDVI; (b) mean NDVI derived from ExGR masked plots to remove 

the influence of background soil; (c) displaying temporal differences between masked and unmasked 

NDVI results; (d) percentage green pixel as calculated from the ExGR masks. Nitrogen application 

dates and quantities for the N2, N3 and N4 treatments are presented by the vertical lines. All data 

represent the means of three replicates. 
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processing workflow can cope with this setup, and that the influence of the different pre-processing 363 
steps varies by band.  In particular, the NIR band showed greater impact from vignetting corrections 364 
than the visible wavebands, agreeing with past studies who found the modified internal filters used 365 
in NIR COTS cameras increases the impact of vignetting in images by up to 30% [16,25]. The influence 366 
of varied exposure settings as well as the success of the developed corrections was perhaps most clear 367 
during calculations of NDVI, because the separate visible and NIR COTS cameras used did not 368 
necessarily change their exposure settings in the same way at the same time, leading to artificial 369 
changes in derived NDVI. Even without corrections, good precision is seen for the NDVI metrics 370 
calculated, with trends in NDVI cross between plots maintained. However, NDVI values calculated 371 
from such raw camera data (or that calibrated into radiances rather than reflectances) are always 372 
significantly different to those derived from calibrated reflectances, and this difference is sensor 373 
specific [41]. Ultimately this means VIs calculated from different sensors can be only be 374 
intercompared in a fully meaningful way if calculated from calibrated reflectance measures. 375 

Temporal consistency of the developed workflow was tested over three dates via comparison of 376 
COTS camera and Tec5 field-spectrometer derived mean plot reflectance. Results showed good 377 
accuracy with NDVI results (R2 ≥ 0.88, nRMSE ≤ 0.15) comparable to those achieved by other studies 378 
[25,42,43]. Consistency of results over this period indicates a good level of robustness in the 379 
developed methods for variable weather conditions both during and between data collection flights. 380 
Some variability occurred between time points in all bands and NDVI; likely a result of the UAV and 381 
Tec5 spectrometer obtaining measurements at different spatial resolutions [38] and datasets not being 382 
collected on the same date. Rossi et al. [44] demonstrated the impact of non-concurrent data collection 383 
when comparing different reflectance from different sensors, with a single day lag negatively 384 
impacting on correlation results. Variability in accuracy also occurred between bands, particularly 385 
for visible vs. NIR, which was observed consistently over time. The same variations were also 386 
observed in the Parrot Sequoia results, as well as by Aasen and Bolten [38], who found the varying 387 
field of views between cameras and spectrometers coupled with varying bidirectional reflectance 388 
factors in visible and NIR wavelengths impacted on correlations in the NIR band. Lack of influence 389 
of the NIR results on NDVI accuracy further indicates disparity between imaging and non-imaging 390 
measurement systems, as opposed to error in the NIR band. Investigation of this variability between 391 
bands and data sources should be a focus of future work. 392 

Application of the very high resolution (GSD = 1cm) reflectance imagery over time was used to 393 
investigate the impact of canopy cover and background soil on derived NDVI. Results of the 394 
unmasked NDVI presented temporal trends over a season in relation to differing nitrogen treatments 395 
and for different wheat varieties. Masking of background soil pixels, via Excess Green Red, offered 396 
new insights into temporal NDVI trends in relation to canopy cover. Greatest differences between 397 
NDVIunmasked and NDVIExGR (Figure 18 (d)) occurred in the early season, where canopy cover is lowest 398 
[45], indicating background soil and canopy cover can artificially influence measured vegetation 399 
indices. Isolation of the crop canopy for VI measurements should provide improved relationships 400 
between VI and traits of interest such as yield, canopy quality, senescence  and canopy chlorophyll 401 
content [10,46], and therefore should be a focus of future studies.  402 

5. Conclusion 403 

This study has presented methods for radiometric calibration of commercial off the shelf digital 404 
camera imagery to reflectance for use in plant phenotyping. New calibrations for image exposure 405 
normalisation, combined with robust vignetting and irradiance corrections produced accurate 406 
reflectance and NDVI, comparable to a Parrot Sequoia multispectral camera and Tec5 ground 407 
spectrometer. The very high-resolution imagery obtained provided new insights into the influence 408 
of canopy cover and background soil on derived plot NDVI, especially in the early season. Future 409 
studies should look to incorporate additional UAV phenotyping methods such as 3D structure and 410 
thermal measurements to provide a more extensive low-cost phenotyping UAV based system.  411 
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