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Gene expression is a quantitative trait that can be mapped genetically in structured populations to identify expression
quantitative trait loci (eQTL). Genes and regulatory networks underlying complex traits can subsequently be inferred. Using a
recently released genome sequence, we have defined cis- and trans-eQTL and their environmental response to low phosphorus
(P) availability within a complex plant genome and found hotspots of trans-eQTL within the genome. Interval mapping, using
P supply as a covariate, revealed 18,876 eQTL. trans-eQTL hotspots occurred on chromosomes A06 and A01 within Brassica
rapa; these were enriched with P metabolism-related Gene Ontology terms (A06) as well as chloroplast- and photosynthesis-
related terms (A01). We have also attributed heritability components to measures of gene expression across environments,
allowing the identification of novel gene expression markers and gene expression changes associated with low P availability.
Informative gene expression markers were used to map eQTL and P use efficiency-related QTL. Genes responsive to P supply
had large environmental and heritable variance components. Regulatory loci and genes associated with P use efficiency
identified through eQTL analysis are potential targets for further characterization and may have potential for crop
improvement.

Expression quantitative trait loci (eQTL) are genetic
regions associated with variation in gene expression
among individuals (Kliebenstein, 2009). This variation
can arise due to sequence polymorphisms in target
genes, their cis-regulatory (proximal) or trans-regulatory

(distal) regions, leading to phenotypic differences.
Identifying variation in gene expression within a seg-
regating mapping population is potentially of im-
mense use, in particular within the plant and crop
sciences (Druka et al., 2010). First, there is the oppor-
tunity to map the chromosomal positions of thousands
of genes based on constitutive differences in expres-
sion between parents. Gene mapping at this scale is of
great value, especially for organisms whose genomes
have not been fully sequenced, and can contribute to
efforts to integrate physical and genetic maps. Fur-
thermore, in polyploids and/or where a genome con-
tains ancestral duplications, a feature common among
plant species, it will become feasible to map gene
paralogues given sufficiently robust expression probes.
Second, since a single gene could be associated with
one or many eQTL, categorizing eQTL into cis- or
trans-eQTL effects relative to the physical location of a
gene can reveal regulatory networks controlling gene
expression in the absence of a priori models. Third, by
combining eQTL analysis with trait analysis, putative
candidate genes associated with traits can be iden-
tified indirectly by correlation analysis. Candidate
genes associated with important traits can then be-
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come targets for traditional genetic characterization
(Druka et al., 2010).
Several eQTL studies have been reported in plants,

including studies on Arabidopsis (Arabidopsis thali-
ana), barley (Hordeum vulgare), Populus, and maize (Zea
mays; for review, see Kliebenstein, 2009; Druka et al.,
2010). In studies where a physical map is available,
eQTL have been categorized empirically as cis- and/or
trans-eQTL based on assumptions about genetic link-
age. The most significant eQTL tend to be cis-eQTL,
which occur when a sequence polymorphism in a gene
or promoter maps to quantitative variation in the gene
transcript (Kliebenstein, 2009). This phenomenon,
when combined with linkage, results in the standard
“cis-diagonal” being seen when gene physical position
is plotted against eQTL position (DeCook et al., 2006;
Keurentjes et al., 2007; West et al., 2007; Kliebenstein,
2009). In contrast, sequence polymorphisms in regu-
latory genes such as transcription factors, which do
not colocate with the physical position of the gene, can
result in allelic variation at trans-eQTL. A cis-eQTL in
a regulatory gene, therefore, can generate many trans-
eQTL (Kliebenstein, 2009). Several trans-eQTL hot-
spots have been identified in plants, in which loci are
associated with variation in the expression level of
many hundreds or even thousands of genes, and these
are thought to represent master regulatory loci with
potentially pleiotropic effects (Kliebenstein, 2009). Typ-
ically, the statistical significance of associations between
genetic loci and trans-eQTL are less than cis-eQTL,
potentially due to the complex nature of regulatory
gene networks.
The identification of cis- and trans-eQTL has already

revealed information regarding the complex genetic
architecture of variation in plant gene expression.
However, relationships between classical phenotypic
or trait QTL and variation in gene expression have not
been widely reported, since most studies have been
conducted under single experimental conditions. No-
tably, in barley, correlations between loci conferring
resistance to rust pathogens and variation in gene
expression have also been found using eQTL ap-
proaches (Druka et al., 2008; Chen et al., 2010). How-
ever, the identification of eQTL under abiotic stress has
not yet been reported.
The aim of this study was to identify eQTL under

altered soil phosphorus (P) supply. Brassica rapa was
chosen since it is a close crop relative of Arabidopsis
that retains a diploid genome structure, albeit includ-
ing multiple paralogues. Recent hybridizations be-
tween the diploid A genome of B. rapa (vegetable and
oil crops) and the C genome of Brassica oleracea (veg-
etable crops) have given rise to the widely grown
amphidiploid Brassica napus (AC genome; canola/
oilseed rape/colza, rutabaga/swede; Allender and
King, 2010). Furthermore, extensive genetic and ge-
nomic resources for B. rapa have now been assembled.
These include a rapid-cycling mapping population
developed from highly inbred lines of rapid cycling
(IMB211) and yellow sarson (R500) B. rapa (Iniguez-

Luy et al., 2009), more than 2M Brassica GenBank se-
quences, and a B. rapa genome sequencemade available
in 2011 alongside other reference Brassica genome and
resequencing projects (Multinational Brassica Genome
Project; www.brassica.info/resource/sequencing.php),
as well as oligonucleotide microarrays (Trick et al.,
2009a; Love et al., 2010).

Identifying and characterizing eQTL under altered
P supply will increase our understanding of P use
efficiency (PUE) in plants. An improved understand-
ing of the genetics of PUE at the individual gene level
may provide new opportunities for crop improvement
based on candidate gene and marker identification at a
scale that is much more rapid than one based on trait
QTL approaches alone (Hammond et al., 2009). There
are pressing economical and environmental pressures
to reduce our reliance on inorganic P fertilizers, in-
cluding the development of crops that grow well under
conditions of low soil P and that utilize P fertilizer in-
puts most efficiently.

RESULTS AND DISCUSSION

The transcriptional profiling of B. rapa recombinant
inbred lines (RILs) grown in different environments
has enabled us to characterize the genetic architecture
of plant adaptation to low P availability. To our
knowledge, this is the first study of its kind in which
the heritability (H2) of global gene expression is esti-
mated in response to a known abiotic stress (P avail-
ability) and the quantitative expression of genes is
mapped across environments to identify eQTL associ-
ated with adaptation to P availability. To complete this
study, we have utilized the BraIRRI mapping popula-
tion (Iniguez-Luy et al., 2009). This population was
derived from a cross between a highly inbred rapid-
cycling B. rapa (IMB211, female) and a highly inbred
annual yellow sarson (var trilocularis; R500, male), and
the progeny selfed for eight generations to generate
RILs.

Transcriptional Responses to Low P Availability
Indicates Enhanced P Recycling

To determine conserved transcriptional responses to
P availability, transcriptional profiles were determined
across the BraIRRI mapping population within the
treatments. To correct for multiple testing, a Benjamini
and Hochberg multiple testing-corrected P , 0.05
(Benjamini and Hochberg, 1995) was used subject to
greater than 2-fold difference in expression between
low and optimal external P concentration ([P]ext). Anal-
ysis of transcriptional profiles between treatments
identified 2,009 probes representing transcripts with
significantly greater abundance at low [P]ext (Supple-
mental Table S2) and 1,217 probes representing tran-
scripts with significantly less transcript abundance at
low [P]ext (Supplemental Table S3). Probes with greater
abundance included those with annotations to genes
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whose expression has been shown previously to change
in response to low P availability (Hammond et al., 2005;
White and Hammond, 2008; Fang et al., 2009; Nilsson
et al., 2010). These included probes annotated as
having phosphatase activity, such as a transcript with
homology to Arabidopsis Purple Acid Phosphatase6
(At1g56360.1), which had a greater than 1,000-fold
difference in expression between low and optimal [P]

ext. In addition, six other transcripts with homology to
Arabidopsis proteins containing phosphatase activity
were in the top 50 transcripts with significantly greater
abundance at low [P]ext (Supplemental Table S2). Pro-
teins with acid phosphatase activity are known to be
induced under P-limiting conditions and act to release
P from various inorganic P monoesters to recycle
inorganic P to essential metabolic processes (Li et al.,
2002; Tran et al., 2010).

Several transcripts with significantly greater abun-
dance at low [P]ext showed homology to proteins
involved in the manipulation of membrane lipids.
These included two transcripts with homology to
glycerophosphoryl diester phosphodiesterases and
a transcript with homology to Arabidopsis PLDP2,
phospholipase D, which are involved in the catabolism
of phospholipids, recycling P to essential metabolic
processes and providing diacyglcerol for galactolipid
biosynthesis (van der Rest et al., 2002; Li et al., 2006a,
2006b; Tjellström et al., 2008). Transcripts with homol-
ogy to proteins involved in the biosynthesis of galacto-
lipids and sulfolipids also had significantly greater
abundance at low [P]ext, including two isoforms of
1,2-diacylglycerol 3-b-galactosyltransferase (MGDG
andMGDC) (Supplemental Table S2). Under P-limiting
conditions, plants can alter the composition of their
membranes, reducing their phospholipid content by
replacing phospholipids with galactolipids and sulfoli-
pids (Essigmann et al., 1998; Andersson et al., 2003,
2005; Kobayashi et al., 2009), a process that may be
regulated through cross talk between the auxin and
cytokinin signaling pathways (Kobayashi et al., 2006),
thus decreasing the structural requirement for P.

Transcripts with homology to proteins and tran-
scripts involved in the regulation of plant responses to
low P availability also had significantly greater abun-
dance under low P availability (Supplemental Table
S2). These included two transcripts with homology
to two Arabidopsis SPX domain-containing proteins
(At2g45130 and At5g20150) and a transcript with
homology to Arabidopsis IPS1 (At3g09922). Proteins
containing SPX domains have been implicated in the
regulation of plant responses to low P availability, with
the two proteins, SPX1 and SPX3, playing positive
roles in plant adaptation to low P availability and
acting in the PHR1 signaling cascade (Duan et al.,
2008; Wang et al., 2009; Liu et al., 2010). The expression
of the transcripts from the IPS1 family is induced
rapidly and specifically in response to P starvation
(Burleigh and Harrison, 1999; Martı́n et al., 2000;
Hammond et al., 2003; Hou et al., 2005; Shin et al.,
2006), and these noncoding transcripts sequestermiR399

and serve to attenuate the miR399-mediated transcrip-
tional responses to low P availability (Franco-Zorrilla
et al., 2007).

Analysis of Gene Ontology (GO) terms associated
with these transcripts was consistent with the role of
these genes in plant adaptations to low P availability
(Supplemental Tables S4 and S5). Transcripts with
greater abundance under low P availability had an
enrichment of GO terms attributed to flavonoid bio-
synthetic process (GO:0009813), sulfur compound
biosynthetic process (GO:0044272), phosphoric ester
hydrolase activity (GO:0042578), phosphatase activity
(GO:0016791|GO:0016302), and response to nutrient
levels (GO:0031667). The expression of these tran-
scripts in the BraIRRI mapping population is thus
consistent with previous observations of plant tran-
scriptional responses to low P availability.

P-Responsive Transcripts Are Highly Heritable

The H2 of gene expression was calculated for each
probe on the array, using the log2-normalized signal
values from all 78 genotypes at both low and optimal
[P]ext. H

2 was calculated as the genotype variance as a
proportion of the genotype, genotype and environ-
ment ([P]ext) interaction, and a residual term using
residual maximum likelihood procedures, with the
effect of the [P]ext fixed (Fig. 1A; Supplemental Table
S6). This provides a measure of how much variation
in the expression of an individual gene was due to
genotype relative to variation from environmental
factors, such as experimental design and treatment.
The transcript abundance for over 22% of probes had a
H2 of zero, and 90% of the probes had a H2 of less than
0.5. Since the variance component model used to cal-
culate H2 apportions the variance between genotype,
environment, and their interaction, there is a mathe-
matical interdependence between the H2 and the var-
iance attributed to the environment component, [P]ext
(Fig. 1B). This relationship identifies three groups of
probes: (1) probes for which the transcript abundance
is nonheritable and nonresponsive to [P]ext; (2) probes
for which the transcript abundance is heritable and
that are highly responsive to [P]ext; and (3) probes for
which the transcript abundance is highly heritable but
are not responsive to [P]ext (Fig. 1B).

We hypothesized that the annotations for probes in
group 2 will be enriched with genes known to respond
to low P availability. Enrichment for genes identified
as responding to low P availability (Supplemental
Table S2) was determined in overlapping groups of
3,000 probes (e.g. 0–3,000, 1,500–4,500, 3,000–6,000,
etc.) generated from a list of all probes ordered by H2

(e.g. probes in the group 0–3,000 had H2 = 0, probes in
group 90,000–91,854 had H2 . 0.866). There was a
significant (P , 0.05 for the x2 distribution for a two-
way contingency table) enrichment of probes identi-
fied as responding to low P availability (Supplemental
Table S6) in groups of probes with H2 between 0.23 and
0.95, with an average treatment effect of 0.35 (Fig. 2A).
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GO term analysis of these significant groups also
showed enrichment for GO terms associated with the
chloroplast, ribosome, and carbohydrate metabolism.
Groups of probes with H2 values less than 0.23 or
greater than 0.95 showed no enrichment for any GO
terms, with the exception of groups of probes with
H2 = 0, which were enriched for a single GO term
associated with the endomembrane system.
Enrichment of genes responsive to low P availability

in groups of genes with high H2 and treatment effects
was also confirmed using independent data from
transcriptional profiling studies of Arabidopsis re-
sponses to low P availability (Fig. 2, B–D; Wu et al.,
2003; Misson et al., 2005; Morcuende et al., 2007). This
suggests that transcriptional responses to P availabil-
ity are highly heritable and provide potential targets
for breeding crops with improved abilities to grow
under low soil P conditions.

Gene Expression Markers Are Highly Heritable But Not
Responsive to P Availability

Using the gene expression data obtained for all the
individual RILs in the BraIRRI mapping population,
it was possible to identify gene expression markers

(GEMs) in the genome suitable for mapping eQTL and
QTL. In total, 125 robust GEMs were identified for
67 RILs (Fig. 3). The overall map length was 870.8
centimorgan (cM) across chromosomes A01 to A10,
with an average distance between markers of 7.0 cM.
The selection procedure used to generate the original

Figure 2. Frequency distribution of genes differentially expressed
between optimal and low P treatments identified in this paper (A), by
Misson et al. (2005; B), by Morcuende et al. (2007; C), or by Wu et al.
(2003; D) as a function of H2. Horizontal bars represent significance
(P , 0.05) thresholds for overrepresentation of P-responsive genes
within a bin of 3,000 genes.

Figure 1. A, Frequency distribution for the H2 of gene expression for all
probes on the Agilent Brassica array. B, H2 plotted against the treatment
effect calculated in the residual maximum likelihood analysis. White
circles represent GEMs identified from the array data and used to
generate the GEMs map for the BraIRRI mapping population.
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2,306 candidate GEMs was expected to enrich for
single-feature polymorphisms (group 3 of the marker
types described above). In practice, this was borne out,
with all of the final selected markers showing more

signal variation between parental alleles than due
to [P]ext, with none of the GEMs present in transcripts
responding to low P availability (Supplemental Tables
S2 and S3), and an average H2 across the 125 markers

Figure 3. Distribution of 125 GEMs for the BraIR-
RI_04_2010a map (Supplemental Table S1)
across the B. rapa A genome (A) and across the
67 genotypes of the BraIRRI mapping population
used to identify eQTL and QTL associated with
low and optimal P availability (B).
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of 0.93 (Fig. 1B). That the markers are largely nonre-
sponsive to P indicates that their use for genetic map
construction is justified, with the maps developed then
being suitable for examining P-responsive transcripts
(group 2 GEMs). The independence of marker types
for different parts of the analysis gives confidence that
the analysis is not tautological. Thus, the use of these
spaced markers for eQTL and QTL analysis appears
justified for the reasons described above. The seg-
regation pattern shows a reasonable distribution of
recombination break points across the 67 genotypes
(Fig. 3B), although some degree of apparent local
double recombination can be seen for a number of
groups (e.g. lines 42 and 58 on A04; Supplemental
Text S1).

The Expression QTL Hotspot on A06 Is Enriched with
P-Responsive Transcripts

Using the genetic map based on GEMs (BraIR-
RI_04_2010a), data for individual probes across 67
lines and two [P]ext treatments were subjected to
interval mapping, using [P]ext as a covariate. A total
of 18,874 eQTL were identified across the genome,
representing 15,910 unique probes, with log of the
odds (LOD) scores ranging between 3.17 and 2,824.18
(Supplemental Table S7). Robust physical genomic
locations were identified for 10,545 of the 15,910
probes associated with eQTL, allowing the positions
of the genes to be compared with the positions of their
associated eQTL and the nature of their regulation to
be determined. Highly significant eQTL tend to be cis-
eQTL, which occur when a sequence polymorphism
in a gene or promoter maps to quantitative variation
in the gene transcript (Kliebenstein, 2009). In contrast,
sequence polymorphisms in regulatory genes such
as transcription factors, which do not colocate with
the physical position of the gene, can result in allelic
variation at trans-eQTL. The midpoint between mark-
ers was used to define boundaries for the colocation
of eQTL with their physical positions within the
genome. Of the 14,257 eQTL that could be physically
mapped, 6,304 colocated to the same chromosome as
indicated by the eQTL mapping, with 3,236 colocating
to the same physical position as the marker and
defined as cis-eQTL (Supplemental Tables S8 and
S9). This proportion of cis-eQTL to trans-eQTL is
similar to that reported in the Arabidopsis Bay-0 3
Sha RIL population (West et al., 2007) but lower than
that observed in the Arabidopsis Landsberg erecta 3
Cape Verde Island RIL population (Keurentjes et al.,
2007). The median LOD statistic associated with the
3,236 cis-eQTL was 8.4 and that for the 11,021 trans-
eQTL was 4.0. This is consistent with previous eQTL
studies, which have reported higher LOD scores as-
sociated with cis-eQTL compared with trans-eQTL
(Keurentjes et al., 2007; West et al., 2007). The additive
effect of the parental alleles was consistent between
treatments, with 47.5% and 46.7% of eQTL resulting
from a negative effect of the IMB211 allele under

optimal [P]ext and low [P]ext, respectively, and 52.3%
and 53.3% of eQTL resulting from a positive effect of
the IMB211 allele under optimal [P]ext and low [P]ext,
respectively.

Using physical positions for the probes within the B.
rapa genome and the number of eQTL associated with
a specific marker above an empirical threshold, trans-
eQTL hotspots were identified (Fig. 4). These are
regions of the genome in which loci are associated
with variation in the expression level of many hun-
dreds or even thousands of genes. They are thought to
represent master regulatory loci, with one or a few
regulatory genes at this physical position controlling
the expression of many genes associated with that
position in the genome. We observed an average of
152.2 eQTL per marker, which is consistent with the
expected number of eQTL per marker of 151.0, based
on 125markers and 18,876 eQTL. The 99.9% upper and

Figure 4. Comparison between genetic and physical positions of the
14,257 eQTL for which physical positions could be identified (A) and
the distribution of eQTL associated with individual markers across the
B. rapa A genome (B). Probe sequences were aligned to the concat-
enated scaffolds of the B. rapa Chiifu-401 genome sequence (version
1.0) to determine physical positions and compared with genetic
locations determined through eQTL analyses.
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lower confidence intervals of the Poisson distribution,
which assumes that GEMs and eQTL are distributed
equally, are 113 and 194. Thus, any marker associated
with more than 194 eQTL is considered to be a regu-
latory hotspot, which is likely to contain many puta-
tive trans-eQTL. There are 27 markers with more than
194 eQTL (Fig. 4). These hotspots might represent
gene-dense regions within the genome, and markers
with less than 113 eQTL associated with them may
represent regions of the genome with few genes, such
as centromeres (Keurentjes et al., 2007). The most
notable trans-eQTL hotspot occurs on chromosome
A06, where marker 2 (B_1046058; 7.02 cM) is associ-
ated with 1,311 eQTL. Subsequent analysis revealed
significant enrichment for GO terms associated with
protein modification and P metabolism. Putative reg-
ulatory hotspots were also identified on chromosome
A01 at marker 15 (B_1083235; 106.9 cM), which is

associated with 785 eQTL, and is enriched with chloro-
plast and photosynthesis-related GO terms, on chromo-
some A04 at marker 5, which is enriched for His-related
GO terms, and on chromosome A09 at marker 12
(B_1049533; 97.7 cM), which is enriched for cytoskeleton
and nucleus-related GO terms.

Due to the low marker density, it is not possible to
make direct comparisons to eQTL and QTL identified
previously in Arabidopsis, but reanalyses of these data
with a higher density map and improved genomic data
will facilitate this and allow comparative genomics
analyses of the eQTL and overlap of homologous
genes between hotspots. Approaches that distinguish
between paralogues within the genome, such as the
use of high-density oligonucleotide arrays with exon-
specific probes or RNAseq, will also increase the accu-
racy and depth of these analyses in the future (Trick
et al., 2009b; Love et al., 2010).

Figure 5. Shoot dry weight (A), shoot P
concentration (B), physiological PUE
(C), agronomic PUE (D), P utilization
efficiency (E), and P uptake efficiency
(F) for the B. rapa BraIRRI mapping
population. DM, Dry matter; P, shoot
P concentration; Pf, fertilizer P ap-
plied. Data are residual maximum
likelihood-estimated means for plants
grown in compost under CE conditions
at low and optimal [P]ext. The bound-
aries of the box closest to and farthest
from zero indicate the 25th and 75th
percentiles, respectively. The solid line
within the box indicatee the median.
Error bars indicate the 10th and 90th
percentiles. Circles indicate outliers.
Parents of the mapping population are
indicated.
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Trait QTL Colocalize with eQTL

Transgressive segregation of trait values beyond the
parental values was observed for all traits measured in
the BraIRRI mapping population (Fig. 5). Shoot P
concentration (shoot [P]) varied 1.97-fold at optimal P
availability and 4.17-fold at low P availability, with
population mean shoot [P] of 0.72% for lines grown at
optimal P availability and 0.30% for lines grown at low
P availability. Measures of PUE also varied among the
67 RILs grown at optimal and low P availability (Fig.
5). Genetic loci associated with the responsiveness
to [P]ext were subsequently mapped using these data
(Table I). Of the 13 trait QTL mapped, six colocalize
with eQTL, including QTL associated with P utiliza-
tion efficiency (g dry matter g21 tissue P) at marker 2
(B_1046058; 7.02 cM) on A06, QTL associated with
physiological PUE (g2 drymatter g21 tissue P) at optimal
[P]ext at marker 7 (B_1022937; 48.85 cM) on A01, and
marker 5 (B_1057766; 35.87 cM) on A06. A QTL associ-
ated with agronomic PUE (g dry matter g21 fertilizer P
applied) also colocalized with marker 5 on A06.
Previously, QTL for shoot [P] and PUE traits have

been identified in Arabidopsis, B. oleracea, B. rapa, and
B. napus mapping populations (Bentsink et al., 2003;
Loudet et al., 2003; Lisec et al., 2008; Wu et al., 2008;
Zhao et al., 2008; Hammond et al., 2009; Liu et al., 2009;
Ding et al., 2010; Yang et al., 2010). The high colinearity
and synteny between the Arabidopsis, B. oleracea, and
B. rapa genomes enables the identification of con-
served loci between these species (Parkin et al., 2005;
Schranz et al., 2006). QTL for leaf [P] have been located
in B. rapa on chromosomes A01, A03, and A08 at 27, 40,
and 47 cM, respectively (Zhao et al., 2008) and for
shoot [P] in B. oleracea on C3 at 30 and 107 cM and
on C7 at 33 cM (Hammond et al., 2009). A QTL asso-
ciated with shoot [P] at low [P]ext was identified on A9
in this study and did not colocate with previous studies.

QTL associated with dry weight at low and optimal
[P]ext and physiological PUE at optimal and low [P]ext
colocalize with QTL associated with physiological
PUE at high and low [P]ext, P uptake efficiency (g tis-
sue P g21 fertilizer P applied), and shoot dry weight
identified on chromosome 1 in B. oleracea (Hammond
et al., 2009). Alignment with QTL identified in Arab-
idopsis for shoot [P] reveals some colocalization be-
tween loci. QTLmapped to the top of A06 in this study
colocalize with QTL for shoot [P] identified previously
(Bentsink et al., 2003; Loudet et al., 2003) on the top of
Arabidopsis chromosome 1. This suggests that loci for
shoot [P] may be conserved in the Brassicaceae, but
further work, including identification of the genes
responsible for these QTL, is required to confirm this.
Interestingly, several of the QTL associated with dry
weight at optimal [P]ext on A01 and A06 and physio-
logical PUE at optimal [P]ext, QTL associated with P
utilization efficiency, and agronomic PUE on A06 all
colocalize with eQTL hotspots. Further research is
required to confirm the genetic nature of any links
between these QTL.

CONCLUSION

Using high-density microarrays, we have identified
robust GEMs within the BraIRRI mapping population.
Combined with the recently released B. rapa genome
sequence, we have defined cis- and trans-eQTL and
their environmental responses to low P availability
within a complex plant genome. Putative hotspots of
trans-eQTL within the genome were also identified.
Genes responsive to P supply had large environmental
and heritable variance components. This suggests that
transcriptional responses to P availability are highly
heritable and provide potential targets for breeding

Table I. Significant (P , 0.05) QTL associated with shoot P and measures of PUE in B. rapa

Shoot dry matter, shoot [P], and measures of PUE were determined in 67 RILs of the BraIRRI mapping population. Plants were grown under CE
conditions in compost containing 9 mg L21 (low) or 30 mg L21 (optimal) Olsen extractable P. Dry weight and shoot [P] were determined after 18 d of
growth, and measures of PUE were calculated according to Hammond et al. (2009). QTL positions were estimated in QTL Cartographer 2.0 using the
zmapQTL model 6 composite interval mapping option. DM, Dry matter; P, shoot [P]; Pf, fertilizer P applied.

Trait Chromosome Marker Position LOD Score
Additive

Effect

LOD Threshold

(P , 0.05)

cM

Dry weight at optimal [P]ext (mg) A01 3 13.6 3.632 20.010 2.352
Dry weight at optimal [P]ext (mg) A06 6 43.1 2.646 20.010 2.352
Dry weight at low [P]ext (mg) A01 6 47.0 3.186 20.007 2.758
Shoot [P] at low [P]ext (% DM) A09 8 63.6 2.529 20.027 2.409
Physiological P use at optimal [P]ext (g

2 DM g21 P) A01 7 48.9 2.811 21.564 2.693
Physiological P use at optimal [P]ext (g

2 DM g21 P) A06 5 35.9 5.178 22.344 2.693
Physiological P use at low [P]ext (g

2 DM g21 P) A01 6 45.0 2.585 24.118 2.500
P efficiency ratio at low [P]ext (g DM g21 P) A06 4 32.6 4.243 255.303 2.107
P utilization efficiency (g DM g21 P) A06 2 14.2 1.684 51.696 1.536
P utilization efficiency (g DM g21 P) A09 11 92.7 3.116 125.712 1.536
P utilization efficiency (g DM g21 P) A09 13 107.8 3.995 2103.788 1.536
Agronomic PUE (g DM g21 Pf) A06 5 35.9 3.473 20.348 2.276
P uptake efficiency (g P g21 Pf) A05 6 40.1 2.903 20.342 2.101
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crops with improved abilities to grow under low soil P
conditions. Further analyses are required to identify
the major regulators underlying trans-eQTL hotspots
and the biochemical, morphological, and physiologi-
cal processes they regulate in the plant adaptations to
low soil P availability.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Seeds of 78 informative lines from the BraIRRI mapping population of

Brassica rapa (2n = 2x = 10; A genome) and the two parent lines were selected

for study. The establishment of the BraIRRI population is described by

Iniguez-Luy et al. (2009). Briefly, the population was derived from a cross

between a highly inbred rapid-cycling B. rapa (IMB211, female), derived from

the WI Fast Plant population, produced from 10 generations of selection for

early flowering and rapid generation time (Williams and Hill, 1986), and a

highly inbred annual yellow sarson (var trilocularis; R500, male). An initial F1

plant was self-pollinated, and 160 RILs were obtained by single seed descent

to the S4 generation (Iniguez-Luy et al., 2009) and subsequently to S8 (C.

Hopkins, unpublished data, Rothamsted Research, UK).

Plants were grown from seed in individual pots (9 cm 3 9 cm 3 8 cm;

Desch Plantpak) containing a moistened peat-based compost under

controlled-environment conditions. The potting mix consisted of 25% sand

and 75% (v/v) compost (Shamrock medium grade sphagnum peat; Scotts UK).

Unfertilized, the potting mix had an Olsen extractable P (Olsen et al., 1954) of 8

mg L21. Two [P]ext treatments of 9 mg L21 (low) or 30 mg L21 (optimal) Olsen

extractable P were produced by incorporating 0.075 and 0.45 g of sieved

(mesh, 500 mm) single superphosphate (7% P) per liter of compost, and used to

induce a growth response based on previous studies with Brassica (Hammond

et al., 2009). Both compost treatments contained the following nutrients in

sufficient amounts to prevent deficiencies: NH4NO3 (0.4 g L21), KNO3 (0.75

g L21), ground limestone (2.25 g L21), magnesium limestone (2.25 g L21), and

a fritted trace elements mixture containing boron, copper, iron, manganese,

molybdenum, and zinc (WM255; Fargro Ltd.) at 0.4 g L21. Potting mixes were

made in bulk using a paddle mixer (model 156; St. Moritz). The controlled

environment (CE) was a walk-in high-specification growth room (Weiss-

Gallenkamp) set to a 16-h photoperiod using metal halide lamps, giving a

photon flux density between 400 and 700 nm (photosynthetically active

radiation) of 250 mmol photons m22 s21 at plant height. The day/night settings

for temperature and relative humidity were 18�C/15�C and 76%/71%.

The experimental design was based on an a-design (John and Williams,

1995). The experiment was done in three runs, with all 78 RILs plus parents

grown in each run. Each run comprised 12 blocks. Each block contained two

subblocks: one for low [P]ext and one for optimal [P]ext treatments. Each

subblock was placed on an independent tray, with capillary matting, and

irrigated through automated drippers with deionized water. Within a block,

the same set of lines was sown in the same (randomized) order in each

subblock. Each subblock contained up to 42 pots, comprising six individual

plants per RIL for six or seven RILs.

All plants were harvested 21 d after sowing. For each line at each

treatment, fully expanded leaves from three plants (six-leaf stage, not flower-

ing) were sampled, snap frozen in liquid nitrogen, freeze dried, ground, and

stored at 280�C. For the remaining three plants, leaf, stem, and cotyledon

fresh weight and dry weight were determined. Leaf samples were digested by

the addition of 2 mL of nitric acid to 0.3 g of dried, ground material and

processed in a closed vessel acid digestion microwave (MARSXpress; CEM).

Digested samples were diluted with 23 mL of deionized water and analyzed

using inductively coupled plasma emission spectrometry (JY Ultima 2; Jobin

Yvon) to determine shoot [P].

RNA Extraction and Array Processing

RNAwas extracted from leaf samples from one experimental run (run 2; 78

lines at low and optimal [P]ext, with one line duplicated [i.e. 158 samples]) and

from leaf samples from the parent lines at low and optimal P in all three

experimental runs (12 samples) using a modified TRIzol extraction method

(Hammond et al., 2006). Extracted total RNA was purified using the RNA

Cleanup protocol for RNeasy columns with on-column DNase digestion to

remove residual genomic DNA (Qiagen). Samples of total RNAwere checked

for integrity and quality using an Agilent Bioanalyzer (Agilent Technologies).

RNA samples were labeled with the QuickAmp Labeling Kit (Agilent Tech-

nologies) and hybridized to Agilent Brassica 95k 60-mer arrays (Trick et al.,

2009a) for 17 h at 65�C at 10 rpm. The arrays were washed, then scanned on an

Agilent G2565CA scanner, according to the manufacturer’s instructions. Data

files were generated using Agilent Feature Extraction Software (version

10.7.3.1). Array files have been submitted to the Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/projects/geo/; accession no. GSE27052).

Initial Data Analysis

Data files (n = 170) were imported into GeneSpring GX (version 11.0.2;

Agilent Technologies). Signal values within arrays were normalized to the

50th percentile. Normalized signal values for individual probes were stan-

dardized to the median signal value for the probe across all arrays. The log2-

normalized signal values were exported as a data matrix with 170 columns

(unique RNA samples) and 91,854 (92k) rows (array probes; data available

fromGene Expression Omnibus accession no. GSE27052). GO enrichment was

performed using the GO category analysis tool in Gene Spring GX with a P

value, adjusted for multiple testing using the method of Benjamini and

Hochberg (1995), of 0.05. GO terms were assigned to individual probes based

on their homology to Arabidopsis (Arabidopsis thaliana) gene sequences.

Custom GenStat scripts (VSN International; available on request from the

corresponding author) were used to batch process the log2-normalized signal

values in groups of up to 1,500 genes. Genotypic and environmental variance

components were estimated for each probe, where environment represents

low and optimal [P]ext and genotype represents the effect of line within the

population. A variance components model was used to allocate sources of

variation, with environment defined as a fixed factor and [genotype +

(genotype.environment) + residual] defining the random term. The model

was fitted using residual maximum likelihood procedures (Patterson and

Thompson, 1971; Robinson, 1987). H2 was calculated using the method of

Cullis et al. (2006) as H2 = 1 – mean(pev)/sG, where pev is the vector prediction

error variance for the line effects and sG is the line variance component. This

can be interpreted as broad-sense mean line H2, which is approximately equal

to H2 = sG/(sG + sGE + s/2), where sGE is the genotype 3 environment

variance component and s is the residual variance (Cullis et al., 2006).

Development of GEMs

To enable mapping of eQTL and trait QTL, a robust set of 125 GEMs were

selected for a subset of 67 genotypes (BraIRRI_04 subpopulation). First, the

mean log2-normalized expression for each of the 92k transcripts was calcu-

lated for each of the two parents at both [P]ext treatments (i.e. IMB211 [n = 6]

and R500 [n = 6]). Transcripts were then ranked following a two-tailed

Student’s t test in ascending order of significance. Based on a parental

segregation threshold of P , 0.001, a subset of 2,306 transcripts was selected

for exploration as suitable GEMs. For GEMs mapping, a reiterative procedure

was followed in JoinMap4 (Kyazma; van Ooijen, 2006) using a combination of

maximum likelihood mapping (MLM) and regression mapping (RM) ap-

proaches. A putative marker data set was identified through selection from

the original 2,306 transcripts, minimizing missing data. Selecting for good

separation of IMB211 and R500 allele scores within the 78 lines produced a

data set of 838 putative GEM loci, and these were combined with 224 RFLP

and simple sequence repeat markers from the S4 BraIRRI map (Iniguez-Luy

et al., 2009) for initial group determination before the S4 BraIRRI markers were

removed before map construction. Grouping used the “independence LOD”

option ranging from LOD 2 to 15 in two LOD steps, with the appropriate level

for defining a linkage group being determined by visual inspection of the

groupings produced. Generally, the final LOD stringency selected was be-

tween LOD = 3 and LOD = 5, with the exception of A02 and A03, as described

below. Results fromMLM and RM (maps 1 and 2 only, with a “jump” value of

3) were used to create initial linkage groupmaps, using default settings unless

otherwise stated. The comparison of results fromMLM and RM iterations was

used to test the robustness of observed GEM order. The final set of 125markers

was generated through a reiterative process of removing GEMs through

examining “fit and stress” parameters for MLM and also through visual

inspection of graphical genotypes for MLM and RM for each map iteration

(for detailed discussion, see JoinMap4 manual). GEM markers containing

clear miscalls were removed, focusing on double recombination events in

small genetic distances (1–5 cM). From the initial “grouping” derived from 838

Hammond et al.
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GEM markers, a “minimal” map was created by continuing to remove

markers to try to produce a framework at approximately 10 cM resolution

for optimal QTL analysis. For both BraIRRI and GEM data, A02 and A03 were

difficult to separate at the “group” stage, so very high stringency was applied,

suggesting a genuine (but unknown) genetic effect. The resulting GEMs-based

map (Fig. 3; Supplemental Table S1; Supplemental Text S1; BraIRRI_04_2010a),

containing 125 GEMs mapped across 67 individuals from the BraIRRI map-

ping population, was subsequently used for QTL and eQTL analyses.

Identifying eQTL and Trait QTL

eQTL associated with individual probes were identified using a two-stage

process. GenStat procedure QIBDPROBABILITIES (Boer and Thissen, 2009)

was used to calculate a set of genetic predictors at the marker positions on the

GEMs genetic map (BraIRRI_04_2010a) for 67 RILs (BraIRRI_04 subpopula-

tion). Initially, a parallel regression model was used to identify possible QTL

effects across 1,500 genes simultaneously, by testing for a combined QTL +

(QTL 3 environment) effect, where QTL indicates a genetic predictor used as

a covariate. This model was fitted for each genetic predictor in turn. For

probes with a significant result in the first step, simple interval mapping,

using genetic predictors within the mixed model framework, was performed

using QTL procedures implemented in GenStat (Boer et al., 2007). Briefly, a

mixed model was fitted with fixed environment effects and QTL 3 environ-

ment interaction for each genetic predictor in turn and random terms

comprising genotype, genotype 3 environment, and residual terms. A com-

pound symmetry structure was used to account for genetic covariance across

environments.

We aligned individual probes on the 95k oligonucleotide array to prepub-

lication concatenated scaffolds of the B. rapa Chiifu-401 genome sequence

(version 1.0, 255.9 Mb, representing 90% of the assembled sequences), kindly

provided by Xiaowu Wang (Institute of Vegetables and Flowers-Chinese

Academy of Agricultural Sciences). Probes that aligned with three or fewer

locations with a match of 98% or greater within the genome sequence were

then assigned to specific chromosome sequence coordinates. Therefore, we

were able to distinguish cis- and trans-eQTL. cis-eQTL were defined as those

whose physical position was in the same region as the marker associated with

it. The region for defining cis-eQTL was taken as the midpoint between the

marker associated the eQTL and the adjacent markers or the end of the

chromosome for markers at the ends of chromosomes. eQTL that fell outside

of this region were defined as trans-eQTL. eQTL hotspots were identified

when the number of eQTL associated with a specific marker exceeded an

empirical threshold. Here, the threshold was defined as the upper 99%

confidence interval for the Poisson distribution, assuming an equal distribu-

tion of GEMs and eQTL.

Trait QTL associated with shoot [P], dry weight, and fresh weight at

optimal and low [P]ext and measures of PUE (Hammond et al., 2009) were

identified using the same 67 RILs (BraIRRI_04 subpopulation) and 125 GEMs

(BraIRRI_04_2010a map). Marker mean and QTL positions were estimated in

QTL Cartographer 2.0 (S. Wang, C.J. Basten, and Z.-B. Zeng, 2001–2004,

Windows QTL Cartographer 2.0, Department of Statistics, North Carolina

State University, Raleigh) using the zmapQTL model 6 composite interval

mapping option. Five background cofactors were determined by forward

stepwise regression and a 10-cMwindow, with genome scanning at 2 cM. This

procedure estimated the LOD score and additive effect every 2 cM along each

chromosome. Significant LOD thresholds were determined empirically based

on 1,000 permutations and ranged from 1.54 to 2.81. The additive effect of each

QTL was reported relative to the contribution of alleles from the female

IMB211 parent.
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scripts.

Supplemental Table S7. Expression QTL associated with low and optimal

P availability.
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