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Abstract Sparse swarms of flying insects show a high degree of spatial cohesion and are a 

form of collective animal behaviour; albeit one different from flocks and schools as they do not 

display ordered collective movements and under quiescent (laboratory) conditions long-range 

correlations are also absent. A better understanding of these outliers of collective behaviour 10 

may help to answer a long-standing open question in collective behaviour studies, namely 

‘What is the signature that a group is ‘collective’? Even though dilute swarms of flying insects 

are mostly empty space no studies have reported on the dynamics of the spaces between 

swarming insects. Here I show that the spaces between insects (i.e., the centroids of empty 

tetrahedra formed by individuals and their 3 nearest neighbours)  in laboratory swarms exhibit 15 

long range (maximal) correlations and novel dynamic scaling in common with insects in natural 

swarms. Spaces within laboratory swarms therefore move like insects in natural swarms. I 

thereby unify seemingly disparate behaviours as long range correlations between individuals 

are absent in laboratory swarms but present in natural swarms. With the aid of stochastic 

trajectory models of non-interacting insects I show that long range (maximal) correlations and 20 

the novel dynamic scaling arise generally and are not indicative of fine tuning.  These results 

call for a re-evaluation of the importance of correlations and scaling in collective behaviours.  
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Sparse swarms of flying midges show a high degree of spatial cohesion and are a form of 

collective animal behaviour; albeit one different from flocks and schools as they do not display 

ordered collective movements [Okubo 1986, Kelley and Ouellette 2013, Attanasi et al. 2014a, 30 

Puckett et al. 2014]. The occurrence of these swarms makes it clear that group order and 

morphology are not sufficient to accurately describe animal aggregations. This has prompted 

the suggestion that correlation, rather than order, is the true hallmark of collective behaviour 

in biological systems [Attanasi et al. 2014a]. However, results in the literature have reported 

contradictory results as to the presence of long-range correlation in insect swarms, with 35 

swarms in the wild displaying correlation but those in a controlled laboratory environment not 

[Puckett et al. 2014, Ni and Ouellette 2015, Reynolds 2021a]. Under controlled laboratory 

conditions individuals ‘appear somewhat paradoxically to be tightly bound to the swarm while 

at the same time weakly coupled inside it’ [Puckett et al. 2014].  They behave on the average 

as if they are trapped in an elastic potential well that keeps them bound to the swarm [Kelley 40 

and Ouellette 2013]. van der Vaart et al. [2020] resolved these apparently incompatible results 

for laboratory and natural swarms by showing that external perturbations generically induce 

the emergence of correlations. Here I show that correlations of the kind identified in natural 

swarms (mating swarms of the non-biting midge Chironomidae and the biting midge 

Ceratopogonidae typically containing hundreds even thousands of individuals) which 45 

seemingly lie within a novel dynamical class [Cavagna et al. 2017] are present in unperturbed 

in much smaller laboratory swarms (mating swarms of the non-biting midge Chironomus 

riparius containing tens of individuals) and characterise the movements of the spaces between 

insects. I thereby unify two seemingly disparate outliers of collective behaviour by establishing 

a duality between natural and laboratory insect swarms. This is significant because a long-50 

standing open question in collective behaviour studies is ‘What is the signature that a group 

is ‘collective’? [Ouellette 2022]. A comprehensive answer to which must encompass insect 

swarms.  

Long-range correlations between insects are absent in laboratory swarms [Puckett et al. 2014, 

Ni and Ouellette 2015, Reynolds 2021a]. The centroids of tetrahedra formed by individuals 55 

and their 3 nearest neighbours will, however, be corrrelated because each individual can 

belong to more than one tetrahedron (Fig. 1). Such centroids are necessarily positioned 

between insects and are used here to  define the  ‘spaces’ between insects, i.e., the most 

empty regions of space in the vicinity of the insects. Note that tetrahedra are the minimum 

configuration capable of describing the 3-dimensional movements of adjacent individuals 60 

(since 3 individuals will always lie in a plane). The statistical and dynamical properties of these 

tetrahedra are documented in Reynolds [2021a]. Spaces could be defined differently, being 

situated, for example, at the centres of Voronoi cells or at the centres of circumspheres of the 
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tetrahedra. These possibilities are not considered here because such centres can be located 

outside of the swarm and even infinitely distant from the swarm making their interpretation in 65 

terms of spaces problematic.  Moreover, such centres can move exceedingly fast. 

 

The spaces can be linked together in various ways to form trajectories. Here, in the first 

instance, this is done by linking together spaces associated with individuals, i.e., the spaces 

in the vicinity of the nth insect at successive positional fixes of that insect form the trajectory of 70 

the nth space. 

 

Here following Attanasi et al. [2014a] the dynamics of the spaces between insects in the 

laboratory swarms was quantified by the ‘connected correlation function’ which measures the 

extent to which the behaviour of individual i is correlated to that of individual j, at a distance r. 75 

The connected correlation function is given by 

𝐶(𝑟) =
∑ 𝛿𝑣𝑖.𝛿𝑣𝑗𝛿(𝑟−𝑟𝑖𝑗)
𝑁
𝑖≠𝑗

∑ 𝛿(𝑟−𝑟𝑖𝑗)
𝑁
𝑖≠𝑗

                  (1) 

where iv is the velocity of individual i relative to the swarm centre and where ( ) 1=− ijrr if 

drrrr
ji + and zero otherwise, and dr is the space binning factor.  And following Cavagna 

et al. [2017] I tested for ‘dynamic scaling’ by computing the spatio-temporal correlation 80 

functions of velocity fluctuations in Fourier space 

𝐶(𝑘, 𝑡) = ⟨
𝟏

𝑵
∑

𝒔𝒊𝒏(𝒌𝒓𝒊𝒋(𝒕𝟎,𝒕))

𝒌𝒓𝒊𝒋(𝒕𝟎,𝒕)
𝑵
𝒊𝒋 𝒗𝒊(𝒕𝟎). 𝒗𝒋(𝒕𝟎 + 𝒕)⟩             (2) 

where 𝑟𝑖𝑗(𝑡0, 𝑡) = |𝑟𝑖(𝑡0) − 𝑟𝑗(𝑡 + 𝑡0)| is the distance between insects i and j at different times. 

Cavagna et al. [2017] evaluated ( )tkC . at /1=k where  is the correlation length. Here the 

root-mean-square swarm size (averaging over both time and individuals) was used as a proxy 85 

for the correlation length.  

 

Over distances of about ½ the root-mean-square swarm size there is a positive correlation, 

indicating that spaces between insects in the laboratory swarms have common velocity 

fluctuations (Fig. 2a). Such correlations are entirely absent between the individual insects (Fig. 90 

2a) but are present between individuals within natural swarms [Attanasi et al. 2014a]. 

Moreover, in common with individuals within natural swarms, the spaces between insects in 
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the laboratory swarm may exhibit dynamic scaling. In accordance with the analysis of Cavagna 

et al. [2017] for insects in natural swarms, spatio-temporal correlation functions tend to 

collapse onto the same curve when presented as functions of kzt where the dynamical critical 95 

exponent z=1 (Fig. 2b,c). This suggests that the natural swarms reported on by Cavagna et 

al. [2017] and the spaces within the laboratory swarms belong to the same dynamic 

universality class; a seemingly novel dynamic universality class [Cavagna et al. 2017]. It is not 

conclusive because there is only partial collapse of the data under rescaling and because the 

laboratory swarm root-mean-square sizes only range between about 188 mm and 230 mm 100 

and. Partial rather than complete collapse of the data may be due to the relative scarcity of 

long trajectories in the dataset, making the correlation functions noisy at long times [Sinhuber 

et al. 2019]. Nonetheless, the conjecture finds support in the results of numerical simulations 

using stochastic model for the trajectories on non-interacting swarming insects [Reynolds et 

al. 2017]. Individuals in these simulated swarms have in accordance with observations [Kelley 105 

and Ouellette 2013] Gaussian position and velocity statistics and behave on the average as if 

they are trapped in an elastic potential well that keeps them bound to the swarm. In these 

Langevin-like models the position and velocity of an insect are jointly Markovian. The models 

are in close agreement with all available observations of laboratory swarms accounting for 

example for: the emergence of tensile strength;  collective viscoelastic response to applied 110 

oscillatory visual perturbations; environmental perturbations induce correlations; the 

coexistence in equilibrium of core ‘condensed’ phases surrounded by dilute ‘vapour’ phases 

that maintain their macroscopic properties even though individual insect pass freely between 

them [Reynolds et al. 2017, Reynolds 2018a, Reynolds 2019a,b, van der Vaart et al. 2019, 

2020]. Spatio-temporal correlation functions characterizing spaces within simulated laboratory 115 

swarms collapse onto the same curve when presented as functions of kzt when z=1 (Fig. 3a,b); 

mirroring the dynamic scaling behaviour of insects in natural swarms [Cavagna et al. 2017]. 

Moreover, associated characteristic timescales for the spaces, k , as determined by

( ) ( ) 4/,/sin
0

 =


tkCt
t

dt
k , scale like 

z

k k −~ (Fig. 3c), as do the characteristic timescales 

for insects in natural swarms [Cavagna et al. 2017]. 120 

 

Cavagna et al. [2017] noted that the dynamical exponential exponent z=1 is novel, setting 

natural swarms apart from other dynamical systems: the swarm (disordered) phase of the 3-

dimensional Vicsek model [Vicsek et al. 1995], for example, exhibits dynamical scaling but is 

characterized by z=2 [Cavagna et al. 2017].  Further evidence for something qualitatively new 125 

in the dynamics of natural swarms comes from the non-exponential shape of the spatio-
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temporal correlation functions for times 𝑡 < 𝜏𝑘 [Cavagna et al. 2017]. This holds true for the 

spatio-temporal correlation functions characterizing the spaces within laboratory swarms (Fig. 

4). 

 130 

The duality between spaces in laboratory swarms and insects in natural swarms does not 

depend sensitivity on how spaces are stitched together. Long-ranged correlations and 𝑧 ≈ 1 

dynamic scaling are evident to the same degree when, for example, spaces are not tied to 

particular individuals as in the above approach (Figs. 5 and 6). Data shown in Figs. 5 and 6 

were obtained as follows. First the positions, 𝒙𝑛(𝑡), and velocities, 𝒖𝑛(𝑡) of the spaces at time 135 

t were used to estimate the positions, �̂�𝑛(𝑡 + ∆𝑡), of the spaces at the next time step, i.e.,  

�̂�𝒏(𝑡 + ∆𝑡) = 𝒙𝑛(𝑡) + 𝒖𝑛(𝑡)∆𝑡 where the subscript denotes the nth space; the positions, 

𝒙𝑛(𝑡 + ∆𝑡), of the centroids at time 𝑡 + ∆𝑡 were then calculated, as above, using the locations 

of individual insects and their 3 nearest neighbours at time 𝑡 + ∆𝑡; finally the actual position  

of a space at time 𝑡 + ∆𝑡 was taken be the position of the centroid that was closest to the 140 

estimated position of that space. To make the mapping one-to-one, once a centroid has been 

assigned to the trajectory of a space it is removed from the remainder of the assignment 

process.   

 

Discussion 145 

In studies of collective behaviour attention is naturally drawn to the patterns traced out by 

individuals. Here it was shown that additional insights can be gained by studying how the 

spaces between individuals move. In the case of insect swarms, examined here, such 

analyses were shown to unify disparate behaviours seen in the laboratory under quiescent 

conditions and in the wild where individuals must contend with environmental perturbations. 150 

Long range correlations between insects are absent in quiescent laboratory swarms [Puckett 

et al. 2014, Ni and Ouellette 2015, Reynolds 2021a] but are a hallmark of natural swarms 

[Attanasi et al. 2014a,b, Cavagna et al. 2017]. Previously it was shown how perturbations can 

induce correlations between individuals, thereby reconciling seemingly conflicting results [van 

der Vaart et al. 2020]. Moreover, the results of numerical simulations indicate that 155 

perturbations result in novel dynamic scaling of the kind seen in natural swarms [van der Vaart 

et al. 2020]. Here it was shown that long-range correlations and novel dynamic scaling of the 

kind seen in natural swarms are, in fact, present in quiescent laboratory swarms, 

characterizing the movements of the spaces between individuals. This was found to be case 

for two differing definitions of a ‘space’ (Figs. 2, 3, 5 & 6).  160 
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Neighbouring spaces (defined in terms of the surrounding individuals) are necessarily 

correlated because some individuals will be associated with two or more spaces. But this does 

not account for the presence of long-range correlations and the novel dynamical scaling (Fig. 

2). These characteristic features of the correlations may be partly a consequence of individuals 165 

being trapped with harmonic potentials; a facet of swarming that is also evident in bird flocks 

[Kelley and Ouellette 2013, Reynolds et al. 2022]. 

 

The long-range correlations and the dynamical scaling identified in natural swarms have been 

interpreted as evidence that wild swarms are nearly critical and tune themselves to be close 170 

to a phase transition from disorder to order (though always remaining on the disordered side) 

[Attanasi et al. 2014b]. The findings obtained here for much smaller laboratory swarms 

suggest instead that even when the intrinsic dynamics are always disordered with no hint of 

criticality, long range correlations and scaling can be hiding in plain sight. This has wide 

significance because scaling is one of the most powerful concepts in statistical physics but 175 

one limited in scope to strongly correlated systems and seemingly not appliable to weakly 

correlated systems like laboratory swarms. Nonetheless, fine tuning and proximity to a phase 

transition are not required to obtain dynamic scaling and maximal correlations (correlations 

that grow with swarm size) as these are evident in the simulation data obtained with arbitrarily 

chosen model parameters, and so like near critical damping [Reynolds 2021a] and tensile 180 

strength arise freely [Reynolds 2019a]. They are not indicative of selection for potentially 

advantageous behaviours, although they could be accidentally advantageous allowing for 

maximal information transmission and dynamic range [Bialek et al. 2014]. The findings 

reported here also demonstrate the surprising utility of stochastic models for simulating the 

trajectories of independent, unperturbed non-interacting insects in laboratory swarms to 185 

describe accurately the flight patterns of strongly interacting insects in wild swarms. This is 

significant because accounting directly for correlations in 3-dimensional stochastic models 

remains a formidable challenge [Reynolds et al. 2017, Reynolds et al. 2022]. Nonetheless, 

future work could be directed at devising better ways to the define spaces and their trajectories 

as there are shortcomings with the tetrahedral methods. In the first tetrahedral method, large 190 

displacements can arise whenever there is a change in the make-up of the tetrahedral 

because the centroid can then shift abruptly (there is no positional matching); in the second 

tetrahedral method, large accelerations can arise whenever there is a change in the make-up 

of the tetrahedral because there is no velocity matching. Neither method is consistent with the 

observed functional forms of the connected correlation functions which have positive primary 195 
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lobes and negative secondary lobes [Attanasi et al. 2014a]. This is a not fundamental problem 

because z=1 dynamic scaling together with negative second lobes can be obtained with 

somewhat contrived definitions of spaces (results not shown).   

 

The duality established here between laboratory and natural swarms bolsters the approach to 200 

collective behaviour championed by Ouellette [2019, 2022] who recognized that the properties 

of animal aggregates cannot be determined by passive observation alone; instead one must 

interact with them, by for example applying controlled perturbations. This approach allows for 

the extraction of emergent group properties that are not directly linked to the characteristics of 

the individuals [Ni and Ouellette 2016, Sinhuber et al. 2021]. The identification and 205 

understanding of these emergent macroscopic properties of insect swarms holds promise of 

a unified ‘thermodynamic’ theory of insect swarms, where one seeks to describe their 

mechanical-like properties in a way that does not directly reference individual behaviours 

[Ouellette 2017, Sinhuber et al. 2021]. The duality established here suggests that many of the 

emergent mechanical/thermodynamic properties of laboratory swarms will be present in some 210 

form in wild swarms [Ni and Ouellette 2016, van der Vaart et al. 2019, Sinhuber et al. 2021]. 

Moreover it suggests that theoretical insights into laboratory swarms (which are relatively easy 

to obtain because long-range interactions are absent [Puckett et al. 2014, Ni and Ouellette 

2015, Reynolds 2021a]) can be carried over to natural swarms which are strongly correlated 

[Reynolds 2018a,b, Reynolds 2019a,b, 2021a,b]. 215 
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Figure 1. Examples of tetrahedra formed by individuals and their 3 nearest neighbours, 

their centroids and their correlations. A snap shot of simulation data is shown illustrating 300 

two focal individuals (•), their 3 nearest neighbours (•), the centroids of the tetrahedra formed 

by the focal individuals and their 3 nearest neighbours (•), i.e., the locations of the ‘spaces’ in 

the vincinity of the focal individuals. Some other individuals are also shown (•). The vectors 

indicate velocities. The two focal individuals share a common nearest neighbour. The 

movements of the two spaces are therefore correlated. Data were obtained using a two-305 

dimensional version of the stochastic model of Reynolds et al. [2017]. 
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Figure 2. Spaces within laboratory swarms move like insects in wild swarms. a) The 310 

connected correlation function, C(r) and the cumulative correlation for insects and spaces 

within a laboratory swarm Ob1 containing on average 94 individuals and with root-mean-

square size 230 mm. b) Normalized time correlation functions for spaces, ( )tkC , , were 

evaluated at /1=k where r = is the root mean square size of the swarm. c) ( )tkC ,  as a 

function of the scaling variable tk z for the same cases as shown in panel b). Data are taken 315 

from Sinhuber et al. [2019]. Ob1 is the latest swarm in the dataset. Ob17 is the smallest dusk 

time swarm with root-mean-square size 188 mm. The partial collapse of the data under the 

rescaling is here quantified with ∆=
1

𝑁
∑ (𝐶(𝑘, 𝑡)𝑖 − 𝐶(𝑘, 𝑡)𝑗)

2
= 0.028𝑡,𝑖≠𝑗  and ∆̂=

1

𝑁
∑ (𝐶(𝑘, 𝑘𝑧𝑡)𝑖 − 𝐶(𝑘, 𝑘𝑧𝑡)𝑗)

2
𝑘𝑧𝑡,𝑖≠𝑗 = 0.008 where i and j refer to the swarms Ob1, Ob3 and 

Ob17 and where N is the number of positional fixes. 320 
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Figure 3. Spaces within simulated laboratory swarms of non-interacting individuals 

move like insects in natural swarms. a) Normalized time correlation functions, ( )tkC , , were 

evaluated at /1=k where r = is the root mean square size of the swarm. b) ( )tkC ,  as a 325 

function of the scaling variable tk z for the same cases as shown in panel a). c) Characteristic 

timescales, k , computed at /1=k as a function of k. Predictions are shown for the model 

of Reynolds et al. [2017] for swarms containing 100 non-interacting individuals with root-mean 

square velocity and velocity autocorrelation timescale 1=u  and 1=T . Root mean square 

swarm sizes r  range between 1 and 1/4. 330 
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Figure 4. Non-exponential relaxation of spaces within laboratory swarms. Spatio-

temporal correlation functions characterizing the spaces within laboratory swarms are non-

exponential for times 𝑡 < 𝜏𝑘. Purely exponential relaxation is characterized by −log(𝐶(𝑘, 𝑥))/335 

𝑥 → 1 for 𝑥 → 0. The concave shapes seen here mirror that obtained by Cavagna et al. [2015] 

for insects in natural swarms. Normalized time correlation functions, ( )tkC , , were evaluated 

at /1=k where r = is the root mean square size of the swarm. Data are taken from 

Sinhuber et al. [2019]. Ob1 is the latest swarm in the dataset. root-mean-square size 230 mm. 

Ob17 is the smallest dusk time swarm with root-mean-square size 188 mm. 340 
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Figure 5. Spaces that are not tied to individuals within laboratory swarms move like 

insects in wild swarms. a) The connected correlation function, C(r) and the cumulative 

correlation for insects and spaces within a laboratory swarm Ob1 containing on average 94 

individuals and with root-mean-square size 230 mm. b) Normalized time correlation functions, 345 

( )tkC , , were evaluated at /1=k where r = is the root mean square size of the swarm. 

c) ( )tkC ,  as a function of the scaling variable tk z for the same cases as shown in panel b). 

Data are taken from Sinhuber et al. [2019]. Ob1 is the latest swarm in the dataset. Ob17 is the 

smallest dusk time swarm with root-mean-square size 188 mm. The partial collapse of the 

data under the rescaling is here quantified with ∆=
1

𝑁
∑ (𝐶(𝑘, 𝑡)𝑖 − 𝐶(𝑘, 𝑡)𝑗)

2
= 0.026𝑡,𝑖≠𝑗  and 350 

∆̂=
1

𝑁
∑ (𝐶(𝑘, 𝑘𝑧𝑡)𝑖 − 𝐶(𝑘, 𝑘𝑧𝑡)𝑗)

2
𝑘𝑧𝑡,𝑖≠𝑗 = 0.003 where i and j refer to the swarms Ob1, Ob3 and 

Ob17 and where N is the number of positional fixes. 
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 355 

Figure 6. Spaces that are not tied to individuals within simulated laboratory swarms 

move like insects in natural swarms. a) Normalized time correlation functions, ( )tkC , , were 

evaluated at /1=k where r = is the root mean square size of the swarm. b) ( )tkC ,  as a 

function of the scaling variable tk z for the same cases as shown in panel a). c) Characteristic 

timescales, k , computed at /1=k as a function of k. Predictions are shown for the model 360 

of Reynolds et al. [2017] for swarms containing 100 non-interacting individuals with root-mean 

square velocity and velocity autocorrelation timescale 1=u  and 1=T . Root mean square 

swarm sizes r  range between 1 and 1/4. 

 


