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A B S T R A C T   

This study presents an assessment of a model inversion approach to derive shallow water bathymetry in optically 
complex waters, with the aim of both understanding localised capability and contributing to the global evalu
ation of Sentinel-2 for coastal monitoring. A dataset of 12 Sentinel-2 MSI images, in three different study areas 
along the Irish coast, has been analysed. Before the application of the bathymetric model two atmospheric 
correction procedures were tested: Deep Water Correction (DWC) and Case 2 Regional Coastal Color (C2RCC) 
processor. DWC outperformed C2RCC in the majority of the satellite images showing more consistent results. 
Using DWC for atmospheric correction before the application of the bathymetric model, the lowest average RMSE 
was found in Dublin Bay (RMSE ¼ 1.60, bias ¼ � 0.51), followed by Mulroy Bay (RMSE ¼ 1.66, bias ¼ 1.30) 
while Brandon Bay showed the highest average error (RMSE ¼ 2.43, bias ¼ 1.86). However, when the optimal 
imagery selection was considered, depth estimations with a bias less than 0.1 m and a spread of �1.40 m were 
achieved up to 10 m. These results were comparable to those achieved by empirical tuning methods, despite not 
relying on any in situ depth data. This conclusion is of particular relevance as model inversion approaches might 
allow future modifications in crucial parts of the processing chain leading to improved results. Atmospheric 
correction, the selection of optimal images (e.g. low turbidity), the definition of suitably limited ranges for the 
per-pixel occurrence of optical constituents (phytoplankton, CDOM, backscatter) and seabed reflectances, in 
combination with the understanding of the specifics characteristics at each particular site, were critical steps in 
the derivation of satellite bathymetry.   

1. Introduction 

Bathymetric information is essential in many coastal applications 
such as environment, management, research or economy. However, 
many shallow water areas worldwide remain unmapped. Coastal zones 
are under continuous pressures (e.g. human-induced alterations, 
erosion, storms) that can be enhanced by climate change effects (Hal
pern et al., 2008; Lipiec et al., 2018; Gamito et al., 2019). For this 
reason, maintaining detailed and updated information under these cir
cumstances requires efficient technologies that can register these 
continuous changes. Precise bathymetric data are also necessary to 

reach the SDG 14: Life below water of the Agenda 2030 for Sustainable 
Development (W€olf et al., 2019). 

In the case of Ireland, much progress in the seafloor mapping has 
been achieved through the INFOMAR programme, the successor to the 
Irish National Seabed Survey (INSS). Between 1999 and 2005 the 
INFOMAR programme generated seafloor maps of more than 80% of 
Ireland’s seabed territory involving a mapping coverage of 432,000 
km2. Currently, the INFOMAR programme aims to cover the remaining 
unmapped areas, which mainly correspond with shallow coastal regions. 
Covering these areas with oceanographic vessels or small boats with 
acoustic equipment on board is not operative or involve associated 
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navigational hazards. In this sense, optical satellite data can be an effi
cient alternative for bathymetric derivation in shallow coastal waters, 
providing temporal and spatial continuity. The potential of remote 
sensing to extract bathymetry has been recognised in clear shallow 
waters (<30 m) worldwide (Dekker et al., 2011; Eugenio et al., 2015). In 
Ireland, several attempts to characterize these zones using LiDAR 
(Coveney and Monteys, 2011) and multispectral satellite data (Monteys 
et al., 2015; Cahalane et al., 2019) have been made. However, the 
inherent conditions of Irish waters with high turbidity in some areas 
together with a high percentage of cloud coverage have often compro
mised the results obtained. 

Sentinel-2 mission, with Sentinel-2A and Sentinel-2B registering data 
at 10 m of spatial resolution and a nominal revisit time of 5 days, offers 
new potential for coastal applications where satellite-derived bathym
etry is included. These unique technical characteristics of Sentinel-2 
have already been tested for bathymetry derivation in several loca
tions worldwide. However, most of these studies have been performed in 
clear water environments (Traganos et al., 2018; Hedley et al., 2018; 
Evagorou et al., 2019) with only a few examples found in optically 
complex waters (Caballero et al., 2019). 

When using remote sensing data to extract bathymetry, we can 
differentiate three main techniques: empirical approaches, empirically- 
tuned physics based, and optimization-tuned physics inversion ap
proaches. Empirical approaches such as machine learning are the newest 
methods and not commonly used (Sagawa et al., 2019). The 
empirically-tuned physics-based have the longest history and are still 
the most frequently used (e.g. Lyons et al., 2011; Pacheco et al., 2015). 
In these methods, water column contributions and light attenuation 
properties are empirically derived from the satellite images by regres
sion with in situ depth data (e.g. nautical charts, echo-sounder data or 
LiDAR). However, water turbidity and the influence of the seafloor can 
limit the performance of these algorithms, and they can be location- or 
data-limited (Lee et al., 2001). The detection and monitoring of changes 
can be a challenge using empirically tuned algorithms due to the in
fluence of water column conditions, for example in turbid areas (Dekker 
et al., 2011). However, recent works have reported potential strategies 
for identifying (Caballero et al., 2019) and even reducing turbidity im
pacts (Caballero and Stumpf, 2020). 

Even more complex, the application of optimization solutions to the 
model inversion approaches are being consolidated (Brando et al., 2009; 
Hedley et al., 2009; Dekker et al., 2011; Collings et al., 2018). In this 
study, a specific variant of the model inversion method as described in 
Hedley et al., 2009, 2010 and 2018 and implemented in the software 
package IDA (https://www.numopt.com/) was used. Although the term 
“physics-based” is frequently used to describe this optimization 
approach, the most common empirically-tuned algorithms, are also 
based on the physics of light transmission within the water column. 
Truly empirical algorithms, such as machine learning methods, are 
developed quite differently, and are not widely used. The primary dif
ference in the model inversion method is that instead of using in situ 
data for calibration, it constrains the optical properties of the system a 
priori to physically plausible values, but also allows them to vary at each 
pixel. The application of the model requires the specification of a range 
of optical properties of the water and the seafloor (Gao, 2009). Although 
analytical approaches can perform well with multispectral data 
(Hamylton et al., 2015; Hedley et al., 2018) they have been mainly 
applied to hyperspectral data and also mainly focused in clear water 
environments (e.g. Goodman et al., 2008; Brando et al., 2009; Dekker 
et al., 2011). The optically complex waters around the Irish coast, which 
can vary from relatively clear waters to highly turbid depending on the 
area, constitute an excellent range for testing this approach in chal
lenging environments. Model inversion methods require specifying the 
range of optical properties that could occur at the site (Lee et al., 1999) 
� in optically complex waters this range is potentially more extensive, 
and thus increases uncertainties in the inversion, especially when using 
multispectral data. 

An important aspect that needs to be considered in both tuning ap
proaches, empirical and optimization, is the atmospheric influence. 
Especially for model inversion methods, the correction of atmospheric 
effects is considered a critical step for obtaining accurate bathymetry 
data (Goodman et al., 2008; Hedley et al., 2012; Eugenio et al., 2017). At 
satellite altitude, up to 90% of the sensor-measured signal in blue 
wavelengths can be due to atmospheric and surface reflectance (Gordon 
and Morel, 1983). Hence, it is crucial to have an accurate atmospheric 
correction method. Currently, several atmospheric processors are 
available for Sentinel-2 data. In previous studies, carried out in Irish 
waters, we found that the Case 2 Regional Coast Colour processor 
(C2RCC) produced the highest linear relationships between ratios of 
log-transformed bands and in situ depth (Casal et al., 2019). For this 
reason, this processor is considered in this study for comparison with the 
deep water calibration (DWC) approach implemented in the IDA soft
ware (Hedley et al., 2018). 

In summary, the main objectives of this study are to:  

1) Assess the performance of a model inversion approach to derived 
bathymetry using Sentinel-2 data in a range of optically complex 
environments around the Irish coast.  

2) Compare atmospheric correction approaches for satellite-derived 
bathymetry, specifically the Case 2 Regional CoastColour (C2RCC) 
method versus a deep water calibration (DWC) approach.  

3) Identify the challenges and opportunities for this methodology across 
a range of coastal environments.  

4) Provide general recommendations for the practical application of 
this approach. 

2. Material and methods 

2.1. Study area 

Dublin Bay is located on the east coast of Ireland and presents a C- 
shape with an approximately 10 km entrance (Fig. 1). Dublin Bay is a 
macro-tidal estuary with a mean tidal range of 2.75 m (Dyer, 1973) and 
an intertidal zone of about 16 km2 (Brooks et al., 2016). In general, the 
entire bay presents a relatively flat topography with vast areas of fine 
sand combined with small areas of rocks and pebbles (Brooks et al., 
2016). High nutrient loads, the deposition of large quantities of organic 
matter and undergoing regular dredging influence the water column 
conditions (O’Higgins and Wilson, 2005). The phytoplankton spring 
bloom varies interannually between April and May and presents a mean 
chlorophyll range of 2.2–5.5 μg L� 1 (O’Boyle and Silke, 2010). Between 
May and September, chlorophyll concentrations reach occasional peaks 
higher than 10 μg L� 1 (O’Higgins and Wilson, 2005). 

Mulroy Bay is a glacially derived embayment with frequent strong 
winds, situated on the northern coast of County Donegal (Fig. 1). The 
tidal range varies on average from ~3.7 m (neap to spring) at the mouth 
of the Outer Bay to ~1.4 m in Broadwater (Moreno-Navas et al., 2011). 
Bar Rocks and High Rock, exposed at low tide, are navigational hazards 
in the centre of the bay. Studies carried out in Mulroy Bay reported total 
chlorophyll concentrations to be small, ~2 μg L� 1, for most of the 
year-round with only occasional peaks in February and March (>5 μg 
L� 1) (Telfor and Robinson, 2003). Mulroy Bay is one of the most 
intensively farmed areas in Ireland regarding aquaculture (Telfor and 
Robinson, 2003). These activities affect its water quality conditions. 
However, this effect is more pronounced at the Broadwater and the 
Northwater, areas not considered in this study. 

Brandon Bay, located on the west coast of County Kerry, presents 
broad sandy intertidal areas with dunes covered by saltmarsh vegetation 
and hosts one of the longest sandy beaches in Ireland (12 km). (Fig. 1). 
Plant species are typically scarce on the flats, although there are some 
eelgrass beds (Zostera sp.) and patches of green algae (e.g. Ulva sp. and 
Enteromorpha sp.). Brandon Bay is highly exposed to wave action. On the 
west side, the Owenmore River discharges into a sandy estuary 
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influencing the surface water conditions. Depending on the weather 
conditions, the discharge of this river produces high concentrations of 
sediments into the bay, especially on the western side. Brandon Bay is 
relevant for tourism and recreation, which have an economic and social 
contribution to the local community. 

2.2. Field data 

2.2.1. In situ depth 
Several multibeam survey lines were acquired on the 25/07/2017 in 

Dublin Bay and processed using the hydrographic CARIS HIPS™ suite 
(Fig. 1). Vertical tidal corrections were applied and reduced to LAT 
(Lowest Astronomical Tide). Depth data meets International Hydro
graphic Organization (IHO) Order 1 standard. Multibeam bathymetric 
data for Brandon Bay were acquired between 25/09/2017 and 29/09/ 
2017 using a Reson T-20 P multibeam system and processed using the 
same protocol and standards as for Dublin Bay. In the case of Mulroy 
Bay, the bathymetry data was acquired some years earlier, on the 11/ 
09/2005 and 12/09/2005, using airborne LiDAR (Fig. 1). Vertical tidal 
corrections were also applied and reduced to LAT. Position uncertainty 
was less than 1 m, and the vertical error uncertainty was approximately 
0.5 m. The horizontal spatial resolution of the un-gridded data is circa 4 
m � 4 m. In all the cases, the data were gridded to 5 m � 5 m using an 
inverse distance weighted (IDW) algorithm and subsequently randomly 
reduced to approximately 2000 data points to optimise computing 
procedures. Only water depths between 0 and 10 m were considered for 
the subsequent analysis. 

2.2.2. Bottom reflectance data 
In the model inversion analysis, bottom reflectance is included as a 

linear mix of any pair of two endmember reflectance spectra drawn from 
a set of input spectra (an approach employed by several of the methods 
described in Dekker et al., 2011). For this reason, field campaigns to 
obtain measurements of sediment reflectance were carried out in the 
three study areas: Dublin Bay (03/10/2017; 23/05/2018; 25/05/2018), 
Brandon Bay (26/05/2018; 27/05/2018) and Mulroy Bay 
(04/06/2018). Spectra measurements were registered using a field 
spectroradiometer GER1500 at low tide and around noon-time when 
possible. A reference panel of 99% reflectance was used for calibration. 
Measurements were taken under stable atmospheric conditions and with 
an interval of less than 1 min between reference and target. Spectral 
signatures of the most representative intertidal substrates: sand, pebbles, 
rock, green and brown macroalgae were registered between 282 and 
1092 nm with approximately 3.2 nm of spectral resolution (Fig. 2). The 
model inversion analysis is designed to perform all calculations at 2 nm 
intervals and convolve to Sentinel-2 bands as a final step. Therefore, the 
bottom spectral signatures were resampled to 2 nm resolution by linear 
interpolation as part of the model set up. 

2.3. Satellite data 

A total of 12 Sentinel-2 images were used, four for each study area 
(Table 1). The common presence of cloud cover, swell and sediment 
plumes considerably restrict the availability of suitable images over the 
Irish coast. Most of the images included in this study were free of clouds 

Fig. 1. Map of the study areas a) Dublin Bay b) Mulroy Bay and c) Brandon Bay. Overlapped are the mutibeam data, of which the red points are transects referred to 
in the results (0 m–10 m). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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and close to the optimal conditions as judged by visual inspection (low 
turbidity and low presence of white caps). Some images presenting sub- 
optimal conditions were also included for comparison. All the selected 
images exhibited sun glint to some extent. Moreover, the images regis
tered over Dublin Bay were also affected by the change in the cross-track 
view direction of the MSI sensor units. This effect, due to different de
tector view angles (ESA, 2018), is nominal in Sentinel-2 imagery and is 
amplified when the levels of illumination from the sun are strongest on 
the eastern side of the image swath (see figures later). Only the 10 m 
resolution bands were included in the analysis. Band 1 (444 nm) was 
ruled out due to its low spatial resolution (60 m), and for consistency 
with previous studies (Casal et al., 2019, 2020). 

Since model inversion methods work with water-leaving reflectance 
as a radiometric quantity, accurate atmospheric correction is essential 
and has a significant impact on the bathymetry results (Goodman et al., 
2008). For this reason, before the bathymetric algorithm application, all 

the Sentinel-2 images were atmospherically corrected using two 
different methods: 1) Case 2 Regional CoastColour processor (C2RCC) 
and 2) the Deep Water Calibration (DWC) method implemented in the 
IDA software (Hedley et al., 2018). 

C2RCC (Doerffer and Schiller, 2007) relies on an extensive database 
of simulated water-leaving reflectance and related TOA radiances using 
neural networks. These neural networks determine the water-leaving 
radiance from the TOA and retrieve inherent optical properties of the 
water body (Brockmann et al., 2016). Outputs of remote sensing 
reflectance (Rrs) defined as the ratio of water-leaving radiance to the 
total downwelling irradiance just above water were selected. This pro
cessor showed the best results in previous studies using empirically 
tuned algorithms and seems to reduce the presence of sun glint (Casal 
et al., 2019). For this reason, no sun glint correction was applied after 
the atmospheric correction using this processor. 

DWC atmospheric correction is based on a set of look-up-tables for 

Fig. 2. Spectral signatures of benthic substrates: wet sand (n ¼ 22), brown macroalgae (n ¼ 20) and green macroalgae (n ¼ 7) measured in Mulroy Bay. Black line 
represents the average values and the grey vertical lines correspond to � standard deviation. Vertical boxes represent the wavelength range of the 10 m bands: B2 
(458–523 nm), B3 (543–578 nm), B4 (650–680 nm) and B8 (785–900 nm). 

Table 1 
Detail of the Sentinel-2 images included in the study. Acquisition time is provided in Coordinated Universal Time (UTC); Note Irish Standard Time in summer is 
UTCþ1. Tide height (m) information was provided by the Irish National Tide Gauge Network. Wind speed (m s� 1) was taken from Dublin Bay Buoy for Dublin Bay, 
Foyle Buoy for Mulroy Bay and Ballybunnion Buoy for Brandon Bay. These buoys are part of the meteorological and oceanographic (MetOcean) sensors network.  

Study area Satellite S2-granule Date Acquisition Time (UTC) Tide Height (m) Wind speed (m s� 1) 

Dublin Bay S2-A T29UPV 17/06/2017 11:33 1.29 3.60  
S2-A 17/07/2017 11:33 1.25 6.17  
S2–B 07/06/2018 11:33 1.75 3.08  
S2–B 05/09/2018 11:33 1.69 3.85  

Mulroy Bay S2-A T29UNB 04/05/2017 11:54 2.51 6.68  
S2-A 20/06/2017 11:43 1.99 4.63  
S2-A 23/07/2017 11:43 0.57 3.09  
S2–B 30/06/2018 11:43 1.49 6.17  

Brandon Bay S2-A T29UMT 11/05/2017 11:43 1.38 1.54  
S2-A 29/04/2018 11:54 0.72 3.60  
S2-A 29/05/2018 11:54 1.46 3.08  
S2–B 03/07/2018 11:53 0.22 5.66   
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atmospheric reflectance and transmission including a maritime 99% 
relative humidity aerosol model as described in Antoine and Morel 
(1999) and Shettle and Fenn (1975). The look-up-tables are generated 
by libRadtran (Emde et al., 2015) and are parameterised on solar-view 
geometry, with the only two free parameters being aerosol optical 
thickness, τ(550) ranging between 0 and 0.3, and wind speed, u10, 
ranging between 0 ms� 1 and 10 ms� 1 (conditions of the sea surface 
state). The main effect of these two parameters is to notionally 
contribute to a spatially homogenous component of atmosphere and 
indirect sea-surface reflectance, i.e. sky reflectance (Hedley et al., 2018). 
Per-pixel sun glint effects were first corrected using the regression-based 
deglint method (Hedley et al., 2005) using the band 8 (842 nm) with 10 
m resolution corresponding to the NIR (Near Infra-Red) to estimate and 
correct the sun glint present in visible bands. After this step, the atmo
spheric correction estimates a value for the aerosol optical thickness and 
a value for wind-speed to be applied over the whole image area. This 
estimation was based on a set of deep water areas selected by the user, 
an inversion procedure finds the optimal solution for τ(550) and u10 that 
results in deep water estimates in the bathymetric method (described 
below). Therefore, this atmospheric correction is tailored to the ba
thymetry model, and is perhaps better interpreted as an alignment of the 
image to the bathymetry model, rather than an independent atmo
spheric correction. 

2.4. Bathymetry mapping 

The basis of the optimization method is a forward model of above- 
water spectral remote sensing reflectance Rrs (λ) based on parameters 
of the water column and bottom substrates reflectance. This combina
tion of optimization with inversion was initially developed by Lee et al. 
(1998, 1999, 2001) and later modified by other authors (e.g. Hedley 
et al., 2009), following the general form : 

RrsðλÞ � f ðP; G; X; H; e1; e2;m; λÞ (1) 

In equation P, G, X and H represent, respectively, the water column 
phytoplankton, the coloured dissolved organic matter (CDOM), partic
ulate backscatter, and depth. The bottom reflectance is a linear mix of 
two endmember reflectance spectra drawn from a set of ne, and indexed 
by e1 and e2 such as that 0 � e1, e2< ne. The mix fraction of e1 vs e2 is 
given by m which ranges from 0 to 1. In this study, endmembers of wet 
sand, green macroalgae and brown macroalgae were included. At each 
pixel in the image a look-up table inversion procedure (Adaptive-Look- 
Up Tables, ALUT, Hedley et al., 2009) was applied to find the input 
values to the model which produced the closest spectral match to image 
reflectance. For the look-up-table approach bounded ranges for the 
different parameters were established. The limits of these ranges were 
defined taking into account previous studies carried out in Irish waters 
and similar areas (e.g. Lee et al., 1999; O’Higgins and Wilson, 2005; 
Bowers et al., 2013; Garaba et al., 2014) as well as taking into account 
the experience of the authors in the Irish coast and other areas. After 
testing several combinations, and in the absence of specific surveys to 
register these measurements, the limits were defined as follows: 
phytoplankton (P) ranging between 0 and 10 μg L� 1 for Dublin Bay and 
Brandon Bay while for Mulroy Bay the range was defined between 0 and 
2 μg L� 1. The same range of CDOM (G) absorption at 440 nm, a (440), 
and particulate backscatter at 440 (X), bbp (440), was used for the three 
study areas. These limits were from 0 to 0.3 m-1 in the case of CDOM (G) 
and from 0 to 0.2 m-1 in the case of backscatter (X). Only a range be
tween 0 m and 10 m was included for depth estimations, partly because 
it was not expected to be able to produce deeper accurate estimates in 
these optically complex waters. Moreover, this depth range is the most 
challenging for boat-based survey techniques and where 
satellite-derived bathymetry offers the most potential complementary 
value. 

The model inversion method provides per-pixel bathymetry uncer
tainty estimates (Hedley et al., 2010, 2018a). The uncertainty estimates 

were calculated in the bathymetry derivation process but not explored in 
this study. However, the uncertainty propagation does affect the 
calculation of the bathymetry, so some details are relevant here. Un
certainty is propagated by inverting each pixel 20 times with a random 
spectral error term added to the pixel reflectance derived from the 
covariance matrix over a deep water area (Hedley et al., 2010, 2016). 
This error term, the environmental noise equivalent radiance, NEΔRrs(λ) 
(Brando et al., 2009), notionally includes all sources of pixel-to-pixel 
variation from water surface upwards, which in the context of the 
model can be considered noise. Usually, this noise term is dominated by 
variable water surface reflectance (even after glint correction) but may 
also contain atmospheric fluctuations and instrument noise (Hedley 
et al., 2018). The best estimate for bathymetry at each pixel was taken as 
the mean over the 20 inversions. It should be noted, that typically, this 
mean estimate is slightly different to a single non-noise perturbed 
inversion estimate. Tide correction for the time of the image acquisition 
was applied using the data provided by the Irish National Tide Gauge 
Network mentioned in Table 1. 

Validation of the results was performed by the comparison of the 
satellite-derived bathymetry and in situ depth (multibeam and LiDAR) 
data for each study area. A mean 3 � 3 pixel filter was also applied to the 
retrieved bathymetric maps before validation procedures to smooth the 
data and reduce noise (Traganos et al., 2018; Hedley et al., 2018a; Casal 
et al., 2019). Coefficient of determination (R2), bias and Root Mean 
Square Error (RMSE) diagnostics were determined. These diagnostics 
were calculated for the total number of matchups (0–10 m) and for data 
binned every 2 m: 0–2 m, 2–4 m, 4–6 m, 6–8 m and 8–10 m. 

R2 is a statistical fit measure of how close the data are to a fitted 
regression line. A low R2 indicates that the model explains a low per
centage of the variability of the response data around its mean. How
ever, R2, as taken in isolation, is not always a reliable indicator of 
accurate bathymetry and vice versa. The interpretation will depend on 
the behaviour of associated scatterplots and the ranges of depths. For 
example, a model with a low R2 could be due to poor fit in the overall 
range of 0 m–10 m but at the same time showing good performance in 
depths shallower than 5 m. The bias diagnostic determines the tendency 
to over- or under-estimate the in situ values (resulting in negative and 
positive bias values, respectively). The RMSE represents the difference 
between estimated values and observed values. Ideally, it should tend to 
zero. Bias and RMSE were defined as: 

​ Bias¼
XN

i¼1

ρsatellite � ρinsitu

N
(2)  

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1

ðρsatellite � ρinsituÞ
2

N

v
u
u
t (3) 

After the initial analysis, the individual transects indicated in Fig. 1 
were subjected to a more detailed inspection. In this case, in addition to 
the bias (Eq. (2)) the ‘spread’ was calculated being the width of the 
interval around the bias-corrected 1:1 line within which 90% of the 
points lie. I.e. the spread metric is equivalent to saying that ‘the results 
when corrected for a systematic bias of X m were within �Y m of the in 
situ data 90% of the time’, where Y is the spread. This process facilitates 
a straightforward expression of the performance and the separation of 
bias (accuracy) from spread (precision). 

3. Results and discussion 

3.1. Evaluation of atmospheric correction methods 

Analysis of the 12 Sentinel-2 images confirmed that atmospheric 
correction influences the accuracy of bathymetric values derived from 
satellite data. Scatterplots showed that using DWC method 9 of the 12 
images presented higher R2 values, and 10 presented lower RMSE than 
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using C2RCC processor (Fig. 3 and Fig. 4). A clear relationship between 
satellite-derived depth and in situ depth was evident in all the scatter
plots except for the image for the Dublin bay image of September 5, 
2018 (Figs. 3d and 4d) due to high turbidity conditions present in the 
image (discussed below). The scatterplots resulting from C2RCC atmo
spheric correction also showed a saturation of satellite-derived depths at 
lower values than the DWC processor (e.g. Figs. 3b and 4b). For these 
reasons, DWC was considered the preferred atmospheric correction and 
the remaining analysis of the bathymetric results presented here will 
mainly refer to this processor. 

3.2. Site and image-specific impacts on bathymetry estimation 

For either atmospheric correction, analysis of the scatterplots of 
satellite-derived depth against in situ data confirms that the environ
mental conditions present in the Sentinel-2 image influences in great 
extent the performance and accuracy of the model inversion. For 
example, Figs. 3d and 4d correspond to a Sentinel-2 image with high 
turbidity as a consequence of the high waves and heavy rain produced 
by the subtropical storm Ernesto (18th-19th August 2018). In this case, 
there was almost no meaningful relation between satellite-derived depth 
and in situ depth regardless of the atmospheric correction used. Storm 
events are frequent in Ireland affecting water quality conditions and 
therefore satellite bathymetry derivation. The effects of light turbidity 
were also visible in other scatterplots (e.g. Figs. 3j and 4j) resulting in a 
wider scatter in the relationship between the satellite signal and depth. 

Evaluating the results in more optimal conditions, scatterplots cor
responding to Dublin Bay (Fig. 4 a-c) and Mulroy Bay (Fig. 4 e-g) 
appeared closer to the ideal 1:1 line with higher R2 values. This result 
was expected for Mulroy Bay as it has the highest water transparency 
conditions of the three study areas considered (Casal et al., 2019). 
However, despite its optically complex waters, where optimal condi
tions were present (e.g. very low turbidity), results in Dublin Bay were 
better than the ones obtained in Mulroy Bay (up to 10 m water depth), 
showing higher R2 and lower RMSE values. The surface water conditions 
present in Brandon Bay are more complex. Brandon Bay is an open bay, 
highly exposed to the wave action and has events of moderate turbidity, 
primarily due to the influence of the Owenmore River. These conditions, 
together with a steeper bottom slope, restrict the consistency of the 
satellite depth to in situ depth relationship and result, in general, in 
lower R2 values. For the three sites the optimal results, identified from 
inspection of the scatterplots and images together with RMSE, bias and 
R2 values, corresponded to the images acquired on the 17/07/2017, 
23/07/2017 and 11/05/2017 for Dublin Bay, Mulroy Bay and the 
Brandon Bay, respectively (Fig. 4b, g, 4i). 

Visual inspection of the scatterplots also revealed common features 
in all the study areas as well as particular conditions for each study site 
(Fig. 5). In some images, the effect of local turbidity events caused un
derestimates of bathymetry. For example, in Dublin Bay run-off coming 
from the saltmarshes of Bull Island produced shallower estimated depths 
between 1 m and 5 m in the northern part of the bay, close to the Howth 
peninsula (e.g. Fig. 5a). A number of points in the scatterplots of Bran
don Bay and some of Mulroy Bay (Fig. 4) indicate areas where satellite- 
derived bathymetry produced deeper values than the in situ bathymetry. 
These areas appear to have a darker bottom type which produced an 
over-estimation of satellite-derived depth. In the case of Mulroy Bay 
these matchups were located in rocky bottom close to the shore and 
deeper areas of the river channel (Fig. 5 b); while in the case of Brandon 
Bay were located in the northern and middle part of the bay (Fig. 5c). 
Overall the results indicate the existence of various confounding char
acteristics particular to each study site that could be considered on a site 
by site basis. Understanding the specific features of a site is therefore 
important when applying satellite-derived bathymetry models. 

From the analysis of the scatterplots, some negative values were 
found in very shallow waters. Since tidal corrections were applied, 
negative depths would be expected in places which are emergent at 

lowest astronomical tides, i.e. anywhere in the intertidal zone. Bearing 
in mind these areas are submerged at the time of image acquisition, the 
negative values could also represent an underestimation of depth as 
compared to the multibeam or LIDAR data in shallow areas. Typically, 
the depth estimation in shallowest areas is very consistent (Fig. 5) so the 
question is how a systematic deviation can arise. Aside from potential 
radiometric (model-based) issues, one possibility is a local variable 
difference between the in situ depth data and the tide gauge used for the 
tide correction. In the case of Mulroy Bay and Brandon Bay, the tide 
gauge was not exactly in the study area. In Mulroy Bay, variations in 
sediment deposition could also have contributed to the deviation 
observed, between the satellite-derived depth and the insitu depth. Even 
Mulroy Bay is a stable area, a significant difference exists (~10 years) 
between the LiDAR data, used for validation, and the Sentinel-2 images. 
Another reason that could explain this discrepancy is the limitation of 
airborne LiDAR data in shallow areas to differentiate between water- 
surface return and the seafloor return. Regardless, these very shallow 
waters (<0.5 m) are not a priority for satellite-based surveying, being 
amenable to other survey methods (e.g. Unmanned Aerial Vehicles) and 
having a little impact for navigation or seabed morphology studies. 

3.3. Accuracy, precision and consistency of bathymetric estimates 

Fig. 6 summarises the bias, RMSE and R2 values at different depth 
ranges for the three images that were selected as the optimal results. 
Also shown are the average values over all images for different depth 
ranges. For each study area, one of the four images was excluded from 
the average calculation since meteorological or water column conditions 
were evidentially poor. In the case of Dublin Bay and Brandon Bay, the 
images ruled out corresponded to the ones registered on the 05/09/2018 
and the 29/04/2018 respectively, both due to high turbidity. In the case 
of Mulroy Bay, the image ruled out was the one registered on the 30/06/ 
2018, due to atmospheric haze affecting the area. These plots, therefore, 
indicate the best performance in the context of ‘reasonably expected’ 
good performance. In practice, the results from the single optimal im
ages and three-best averages were very similar (Fig. 6). 

Bias values for Dublin Bay showed variability being positive or 
negative depending on the depth range considered. In Mulroy and 
Brandon Bay, bias values were in both cases positive, indicating a ten
dency toward overestimation of satellite-derived depth. In general, bias 
was less for Dublin Bay in comparison with Mulroy Bay and Brandon 
Bay, Brandon Bay had the most significant bias values. Regarding the 
depth range, the largest bias values were found between 8 m and 10 m in 
the case of Dublin Bay but were less than 1 m in most of the depth ranges 
at that site. In Brandon Bay, the largest bias was found between 4 m and 
8 m with values of ~3 m. Bias in Mulroy Bay showed similar values in all 
the depth ranges considered (<2 m). 

Considering all the depth ranges, the highest RMSE values were 
found in Brandon Bay and showed almost no difference between the 
optimal image and the average (Fig. 6c). Dublin Bay presented the 
lowest RMSE values, and the optimal image and the three-best average 
presented very similar values up to depths of 6 m, beyond which the 
optimal image maintained consistent RMSE of ~1 m, but the three-best 
average RMSE increased (Fig. 6 a). This fact was an expected result 
because as errors are introduced they become significant in deeper areas 
first. RMSE in Mulroy Bay showed less variability between depth ranges 
being lower than 2 m when the optimal image is considered. 

Before describing the R2 values, it should be reminded here that for a 
correct understanding of these values in SDB studies they should be 
interpreted together with RMSE and bias. Taking this issue into account, 
R2 values showed different behaviour between the study areas. In the 
case of Dublin Bay and Brandon, a loss of relationship between satellite 
and in situ depth was observed between 6 m and 8 m. For Mulroy Bay, 
the highest R2 values were also found between 0 m and 2 m with similar 
values in the rest of depth ranges considered (R2 < 0.2). In general, R2 

values obtained over the whole depth range (Fig. 4) were much higher 
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Fig. 3. Scatterplots of satellite derived depth vs in situ depth. Atmospheric correction using C2RCC processor has been applied previously to the inversion approach. 
DB indicates Dublin Bay (n ¼ 1628), MB indicates Mulroy Bay (n ¼ 1818) and BB indicates Brandon Bay (n ¼ 1591). RMSE, bias, and R2are included in each plot. The 
grey line represents the 1:1 regression line. 
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Fig. 4. Scatterplots of satellite derived depth vs in situ depth. Atmospheric correction using DWC processor has been applied previously to the inversion approach. 
DB indicates Dublin Bay (n ¼ 1628), MB indicates Mulroy Bay (n ¼ 1818) and BB indicates Brandon Bay (n ¼ 1591). RMSE, bias, and R2 are included in each plot. 
The grey line represents the 1:1 regression line. 
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than in the 2 m intervals, but this fact was especially evident in the case 
of Mulroy Bay. The broad-scale correspondence of depth estimates to in 
situ data over a range of 10 m is clearly better than in a subset 2 m in
terval, where data point noise becomes a more substantial factor. In 
summary, these results showed consistent error over all depths in Dublin 
Bay and Mulroy Bay, but greater variability in Brandon Bay. 

The plots of Fig. 4 show the results over the entire site, but as shown 
in Fig. 5 outliers are spatially correlated. This fact implies there is a 
locality to the pattern of results that may also apply to the correspon
dence between data points and bathymetry estimates in regions of 
overall better performance. To understand spatial patterns, further in
dividual localised transects were considered for Dublin Bay (T1, T2 and 
T3 in Fig. 1a) and Brandon Bay (T1 in Fig. 1c). Mulroy Bay was not 
considered due to the difference in time between the in situ data and the 
satellite images. 

For the ‘best result’ Dublin Bay image of 17/07/2017 the bias on two 
transects, T1 and T3, was less than 0.5 m while for T2 was 0.69 m 
(representing overestimation of depth) (Fig. 7, centre column). The 90% 
confidence interval spread less than �1.55 m for all transects. For the 
other two images, bias was generally larger, but still variable between 
transects of the same image. In some cases, especially in the image of 17/ 
06/2017 (Fig. 7 left column) the correspondence between in situ data 
and satellite estimates was curved, meaning the ‘bias’ not an especially 
useful metric. For Brandon Bay, similar observations were made, but in 
this case, the spread was more constant between images (Fig. 8). All bias 
values were positive in this case, indicating an overestimation of depth. 

These results showed that satellite-derived depth is highly variable 
and depends on many factors. Systematic errors within an image, such as 
the curve in all three transects of the image taken on the 17/06/2017 
(Fig. 7 a, d, g), could be attributed to image conditions or issues with 
atmospheric correction, since a radiometric discrepancy between the 
model and input image data may explain this result. Conversely, 

systematic errors that occur in all images at specific spatial locations are 
site-dependent (e.g. Fig. 5). However, the situation is more complicated 
where there is reasonable adherence to a unity slope, but variation in 
bias within an image exists. For example, transect T2 in image 17/07/ 
2017 has a bias of 0.69 m (Fig. 7e) but this bias is almost zero in transect 
T1 (Fig. 7b). The results along transect T2 are potentially influenced by 
the outflow of the Liffey River (Fig. 1). These results show that while the 
basic capability for estimating bathymetry over the 0–10 m range was 
very good, there can be local spatial influences within a single image 
that are not visually obvious, maybe thin aerosol plumes or variations in 
water constituents. It should, of course, be remembered that while in 
situ data is assumed ‘correct’ it might also be subject to spatial errors and 
change over time. 

3.4. Bathymetric maps 

The satellite-derived bathymetry maps (Fig. 9) obtained from the 
‘optimal’ images with either C2RCC or DWC correction were represen
tative of the actual known bathymetric features described by the 
INFOMAR programme and also by other studies carried out in the same 
areas (e.g. Monteys et al., 2015; Cahalane et al., 2017; Casal et al., 2019; 
Casal et al., 2020). 

In the case of Dublin Bay, it was observed a progressive increment in 
depth from the shore to the outer areas and also from northern areas to 
southern areas. This difference was more evident in the image corrected 
by DWC (Fig. 9c). In both cases, C2RCC and DWC, the Liffey River 
channel was identified as a deeper area. To the East of the bay, the 
Burford and Kish sandbanks were visible also in both cases. However, 
they were more defined in the map resulting from DWC (Fig. 9c). The 
alternation of detectors in the along-track direction of the MSI had also 
an impact on the resulting bathymetric maps (Fig. 9c) however, given 
the pixel-to-pixel noise level in the bathymetry estimates was not a 

Fig. 5. Spatial distribution of “anomalous” satellite-derived depth values detected in the scatterplots. Red colour represents negative values, i.e. areas estimated as 
intertidal by satellite data but not by in situ data. Blue colour represents derivations of the model producing over-prediction and under-prediction of depth values. 
Sentinel-2 images (RGB) and the correspondent scatterplots for A) Dublin Bay (17/07/2017) b) Mulroy Bay (23/07/2017) and c) Brandon Bay (11/05/2017). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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significant source of error (being not even visible in the transects in 
Fig. 7). This finding was consistent with previous studies which have 
reported that while this striping effect has an impact when visually 
examining the data, it does not significantly alter bathymetric values 
(Casal et al., 2019). 

In Mulroy Bay, shallow areas were located close to the shores, with 
the western side deeper than the eastern side. The deepest values were 
located at the mouth of the bay and the inner channel. Rocky shallow 
areas in the central part of the bay were also reflected in the bathymetric 
maps. In the case of Brandon Bay, bathymetric maps showed a more 

Fig. 6. Bias, RMSE, R2 and n values resulting from the optimal images and the average of all the images considered by study area a) Dublin Bay, b) Mulroy Bay, c) 
Brandon Bay. n corresponds to the total number of matchups. Bar lines represent standard deviation and they are only shown in the case of average values. Some of 
the images have been ruled out because of meteorological and water column conditions. These images corresponded to the ones registered on the 05/09/2018, 30/ 
06/2018 and 29/04/2018 for Dublin Bay, Mulroy Bay and Brandon Bay, respectively. 
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Fig. 7. Scatterplots for individual transects carried out over homogenous bottom type in Dublin Bay (see Fig. 1). Red dots fall within the 90% confidence interval. 
Solid line represents the bias-shifted 1:1 line and dashed line represents the 1:1 line. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Fig. 8. Scatterplots for individual transect carried out over homogenous bottom type in Brandon Bay (see Fig. 1). Red dots fall within the 90% confidence interval. 
The solid line represents the bias-shifted 1:1 line and dashed line represents the 1:1 line. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 

Fig. 9. Example of bathymetry maps for a-c) Dublin Bay (17/07/2017), d-f) Mulroy Bay (23/07/2017) and g-i) Brandon Bay (11/05/2019) resulting after atmo
spheric correction by C2RCC and DWC. 
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pronounced decrease in depth from the shore to the inner part of the 
bay, which is consistent with the more abrupt topography known to be 
present in this bay. This area is the most complex of the three areas 
considered, taking into account meteorology and water surface condi
tions. Brandon Bay is an exposed bay with strong swell and high 
turbidity. These circumstances, together with the frequent cloud 
coverage of the area limit the number of suitable images for satellite 
derived bathymetry. The influence of the discharge of the Owenmore 
River located in the west part of the bay could be detected in some of the 
bathymetric maps, especially in the ones resulting from the atmospheric 
correction using the DWC method (Fig. 9i). The presence of dark sub
strates in shallow areas close to the shore such as macroalgae resulted in 
the mapping of these areas as “false” deep areas in comparison with 
existing bathymetric mapping for the area (e.g. Fig. 9i). 

3.5. Specific recommendations 

3.5.1. Atmospheric correction 
Results of this study showed that atmospheric correction is a critical 

step in the derivation of satellite bathymetry. Although bathymetric 
maps produced by either correction looked reasonable at large scales 
(Fig. 9) specific comparisons to in situ data revealed consistent differ
ences in performance (Fig. 4 vs. 5). While the choice of correction 
method was shown to have a major influence on estimated depths, 
variation between and even within images is likely to be contributed by 
atmospheric effects and the efficacy of their correction. The influence of 
atmospheric correction methods in MSI has already been reported in 
other applications related to aquatic environments (Souza-Martins et al., 
2017; Hedley, 2018b; Casal et al., 2019; K€onig et al., 2019). In this 
study, two different atmospheric correction methods, C2RCC and DWC, 
were tested. In general, the DWC approach for atmospheric correction 
produced more accurate and less biased satellite-derived bathymetry 
maps. This result is unsurprising since the DWC method is specifically 
designed to correct imagery for the application of the bathymetric 
inversion model, whereas C2RCC is a more generic method. 

3.5.2. Site-specific features and image selection 
The analysis of the 12 scatterplot plots (with associated diagnostics) 

between satellite-derived depth and in situ depth revealed a high vari
ability to the results and a clear dependence on the “quality” of image 
used. For example, better results can be obtained in an area of more 
complex waters such as Dublin Bay when the conditions are “good” (e.g. 
low turbidity) than in an area of more clear waters such as Mulroy Bay 
when the conditions are “bad” (e.g. river plume, low clouds) (e.g. Fig. 4 
b and 4 h). The availability of two Sentinel-2 satellites, that in Ireland 
can provide a revisit time of 3 days, is of enormous importance as it 
increases the chance of obtaining good images in areas with significant 
limitations due to weather and water surface conditions. Going forward, 
combining multiple image analyses may be a robust way of removing 
outliers (Caballero and Stumpf, 2020). 

The overall scatterplots (Fig. 4), location of outliers (Fig. 5) and 
transects (Figs. 7 and 8) revealed common features for all study areas but 
also inherent characteristics of each area. Satellite images after storms 
should be avoided for bathymetry derivation due to the production of re- 
suspension material that strongly influences the relation between sat
ellite signal and depth (Fig. 4 d). Areas challenging for satellite-derived 
bathymetry exist even in the images registered under “optimal” condi
tions. Local and variable turbidity events have an impact on satellite- 
derived bathymetry, causing an under-estimation of depth values. 
Dark bottom types such as rock and macroalgae also have an impact on 
satellite-derived bathymetry, potentially causing an overestimation of 
depth values. Even when the reflectances of these bottom types are 
included in the bathymetric model confusion can arise, simply because it 
is inherently difficult to determine if a dark pixel corresponds to a deep 
area or a shallow dark bottom. In our results, this was especially relevant 
in the case of Brandon Bay. Concerning these site-specific issues, it is 

clear that full automation of bathymetric map production from satellite 
data is a challenging aim, a more practical approach for quality assur
ance is a careful manual interpretation based on site-specific knowledge 
and interpretation. However, this approach cannot be feasible in large 
areas. 

3.5.3. Empirical tuning models vs model inversion methods 
Similar averages of RMSE values over the full range of depths from 

0 to 10 m were obtained for Dublin Bay (RMSE ¼ 1.60) and Mulroy Bay 
(RMSE ¼ 1.66) while Brandon Bay registered the highest average RMSE 
value (RMSE ¼ 2.43). The lowest RMSE value was obtained in Dublin 
Bay on the 17/07/2017 (RMSE ¼ 1.00) and it is coincident with the 
image where the highest R2 value (R2 ¼ 0.86) was found. These numbers 
were quite similar to the ones obtained in previous studies using 
empirically tuned methods like the Linear Band Model (Lyzenga, 1978, 
1985; Lyzenga et al., 2006) in the same study areas. In these studies, 
values of R2 > 0.80 and average RMSE values of 1.05 and 0.81 were 
obtained for Dublin Bay and Mulroy Bay, respectively (Casal et al., 
2019). These empirically tuned methods worked well in our study areas 
because the Sentinel-2 images were selected close to optimal conditions 
(e.g. low turbidity) and these areas present a homogenous bottom type. 
It is broadly recognised that empirically tuned algorithms can accurately 
retrieve bathymetry, but only in areas of constant water clarity and 
homogenous bottom type (Dekker et al., 2011). As mentioned before, 
recent works have reported potential strategies for identifying (Cabal
lero et al., 2019) and even reducing turbidity impacts (Caballero and 
Stumpf, 2020). However, these empirically tuned methods require in 
situ training data, which is a major limitation since if such data is 
lacking, they cannot be used. Empirically tuned methods are also hard to 
verify since in situ validation data is frequently not really independent of 
the training data and effectively just repeats the calibration regression 
fit. The demonstrated accuracy of inversion approaches in the Irish coast 
could offer a potential solution to cover a different variety of study areas 
not only the ones with homogenous bottom types and water quality 
conditions. Where in situ data is available, this offers a genuinely in
dependent quality assurance process. Moreover, optimization 
approached to calibration provide information about uncertainty and 
have the potential to estimate water inherent optical properties and 
bottom cover. 

3.5.4. Depth limits 
Regarding the different depth ranges considered, for most images a 

low relationship between satellite-derived depth and in situ depth was 
found for depths occurring beyond 6 m. This criterion could be used to 
define a critical depth limit for satellite bathymetry derivation using 
Sentinel-2 data in these areas. Nevertheless, under good conditions with 
the best images, depth continues to be detectable to 10 m and possibly 
more, but with decreasing precision (Fig. 5). In the case of Mulroy Bay 
and the best Dublin Bay image, the accuracy in terms of R2 and RMSE 
within the 2 m depth intervals was maintained until 10 m. The depth 
where the relation between satellite-derived and in situ data started to 
deviate from 1:1 line was coincident with the results obtained using 
empirically tuned approaches in the same study areas (Casal et al., 
2019). Moreover, these results were not so different from studies carried 
out in clear waters of the Australian and Caribbean coast where high 
absolute accuracies were obtained for bathymetry estimates down to 
8–13 m (Dekker et al., 2011). Higher depths of 15 m, were reported by 
other authors (Hedley et al., 2018a) using Sentinel-2 data in the Great 
Barrier Reef. These results confirm the potential of Sentinel-2 imagery to 
derive medium resolution bathymetric maps, with the advantage of 
more cost-effective temporal coverage than offered by higher-resolution 
commercial sensors. 

3.5.5. Ranges of water column optical properties 
In shallow waters, remote sensing reflectance not only depends on 

the absorption and scattering properties of dissolved and suspended 
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materials in the water column but also on the reflectivity of the bottom 
(Dekker et al., 2011). To take the most advantage of model inversion 
methods, ideally, a well-defined range of optical component values 
should be provided as an input of the model to generate the lowest 
possible uncertainty while encompassing the expected range across the 
site. Preliminary work for this study (not reported here) indicated that 
the choice of ranges for water optical properties had only a slight effect 
on the accuracy of the resultant bathymetry maps.However, the highest 
R2 and lowest RMSE and bias were reached when the defined range was 
the most restricted but consistent with the known ranges at the sites. For 
this reason, it is highly recommended to obtain information about the 
potential range of water column optically active constituents such as 
phytoplankton concentration, CDOM absorption and backscatter. In our 
case, this information was taken from previously published studies 
carried out in more general areas around the Irish coast and from the 
experience of the researchers. However, specific field campaigns at local 
level are recommended to obtain more precise and accurate results. 

4. Conclusions 

Sentinel-2 data quality and availability for worldwide coastal regions 
have increased the attention of coastal managers regarding satellite- 
derived bathymetry applied research. This paper presents the results 
of a model inversion approach to predict water depths, without using 
existing in situ bathymetry, in optically complex waters of the Northeast 
Atlantic region. Practical bathymetric information is present in the re
sults; with optimal imagery selection, depth estimates with an average 
bias less than 0.1 m and a spread of �1.40 m can be achieved up to 10 m. 
The accuracy of the results placed them in the Category Zones of Con
fidence (CATZOC) class C, providing useful information on survey 
planning and monitoring capabilities. Moreover, the results showed 
similar accuracy levels to the ones obtained using standards empirically 
tuned models in the same areas (Casal et al., 2019). This finding is of 
particular relevance as model inversion approaches might allow future 
modifications in critical parts of the processing chain leading to 
improved results. Such improvements can be part of the atmospheric 
correction step, sea surface corrections or better containing the optical 
water constituents. Besides, other non-model specific improvements 
that come from processing multiple datasets and applying a median 
filter may help to reduce the bias. 

Furthermore, the assessment carried out in this work provides key 
points in the understanding of a model inversion approach to derive 
bathymetric data in similar optically complex waters. The transferability 
of these methods between locations is a challenge, and the best accu
racies will be expected when local algorithms are applied. As shown 
here, any specific site will have its own anomalies and features that will 
introduce spatial artefacts into the bathymetry analysis. Visual inter
pretation and manual intervention in map production can remain a 
necessary step. Nevertheless, this process becomes more manageable, 
since the technical capabilities such as spatial resolution and revisit time 
offered by Sentinel-2, together with its cost-effectiveness, present many 
advantages to select optimal images, a critical step in the extraction of 
optimal bathymetric values. 
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